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Summary

In many clinical and observational studies, auxiliary data from the same subjects,
such as repeated measurements or surrogate variables, will be collected in addition
to the data of main interest. Not directly related to the main study, these auxiliary
data in practice are rarely incorporated into the main analysis, though they may carry
extra information that can help improve the estimation in the main analysis. Under
the setting where part of or all subjects have auxiliary data available, we propose an
effective weighting approach to borrow the auxiliary information by building a work-
ing model for the auxiliary data, where improvement of estimation precision over the
main analysis is guaranteed regardless of the specification of the working model. An
information index is also constructed to assess how well the selected working model
works to improve the main analysis. Both theoretical and numerical studies show the
excellent and robust performance of the proposed method in comparison to estima-
tion without using the auxiliary data. Finally, we utilize the Atherosclerosis Risk in
Communities study for illustration.

KEYWORDS:
Auxiliary data; Estimation efficiency improvement; Empirical likelihood; Information borrowing; Infor-
mation index.

1 INTRODUCTION

To improve the estimation accuracy in the main study, auxiliary measurements may play an important role. In the literature,
there are multiple types of auxiliary measurements, of which the most popular one is from an external independent study. Such
information could be either at the summary level or from other validation data through shared covariate effects between the
main and external studies. In presence of this type of auxiliary data, methods based on the generalized method of moment,
generalized regression, weight calibration, constrained maximum likelihood, empirical likelihood, etc., have been proposed to
borrow auxiliary information to power up the main study1,2,3,4,5,6,7,8,9,10,11,12,13. In this article, we consider a different type of
auxiliary data that is also widely seen in applications, i.e., an auxiliary measurement collected in the same study but served as the
outcome in a secondary analysis. Usually, such kind of auxiliary measurement is highly associated with the primary outcome,
and how to incorporate this secondary information to enhance estimation precision for the main analysis is of high interest.
There are many examples in epidemiological and clinical studies where auxiliary outcomes that are associated with primary

outcome are available but the information contained in these variables is rarely incorporated into the main analysis. For instance,
in the prospective Cardiovascular Health Study14,15, both cardiovascular and cancer outcomes were measured. Investigators
may borrow information from cancer outcomes to improve studies in which cardiovascular disease is the main outcome, or vice

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may lead
to differences between this version and the Version of Record. Please cite this article as doi:
10.1002/sim.9252

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1002/sim.9252
http://dx.doi.org/10.1002/sim.9252


2 C.Chen ET AL

versa. Another example is the long-term Health Professional Follow-up Study16 on the association between coffee drinking
status at the baseline and prostate cancer risk. Since data on coffee consumption during the follow-up were also repeatedly
measured, these data not used in the main analysis become auxiliary but contain extra information about the main study. A
third example is a study on the relationship between risk of influenza and vaccination status in the current flu-season, in which
case individuals’ vaccination and disease status in previous seasons are auxiliary measurements and may help improve the
main analysis. In this article, we use the Atherosclerosis Risk in Communities study17,18 for illustration. We are interested in
detecting baseline risk factors for the development of essential hypertension during the follow-up. In addition to the primary
interest, there are certain auxiliary measurements available in the study that are associated with the hypertension development,
e.g., longitudinal measurements of systolic blood pressure. Since these auxiliary measurements are not typically treated as risk
factors for hypertension, in the existing literature they are rarely incorporated into the main analysis for risk factor detection.
However, the systolic blood pressure is highly associated with the occurrence of hypertension, it may contain useful information
for the estimation in the main analysis.
In the remaining article, let us focus on the auxiliary measurements collected from all or part of the subjects in the same study.

To make use of these auxiliary data, we propose an estimation procedure by reweighting the study subjects in their contribution
towards the main analysis. The weights are calculated based on the empirical likelihood method19 through specifying a working
model for the auxiliary data. Note that weighting based on the empirical likelihood have already been investigated in certain areas,
including missing data problems, casual inference, and longitudinal quantile regression20,6,21,22,23,24,25. Distinct from existing
literature, we allow the auxiliary data and the main data to contain completely different variables, which implies a broader
applicability for information borrowing. The auxiliary data are also allowed to be available only from a subset of study subjects.
One of desirable features of the proposed method is that mis-specification of the working model for the auxiliary data will not
affect estimation consistency of the main analysis but still improves estimation precision in comparison to estimation without
the auxiliary data. Here, mis-specification also refers to informative missing data issues when building the working model, in
addition to misspecification of the working model itself. We further propose an index of information borrowing (IIB) to assess
the overall performance of the estimation procedure, serving as a criterion in practice for selecting a proper auxiliary data set or
a desirable working model.
The rest of paper is organized as follows. Section 2 describes the new estimation procedure with its theoretical properties in a

general setting. Two examples are then illustrated. Section 3 conducts simulation studies to evaluate the numerical performance
of the proposed method. An application to the Atherosclerosis Risk in Communities study data is presented in Section 4. Some
discussions are given in Section 5. The technical proofs, extra discussions, and other simulation results are presented in the
Supplementary Material.

2 PROPOSED ESTIMATION PROCEDURE

We start with a general framework. For each subject i from a random sample, i = 1,… , n, let Du
i be the data for the main

analysis, which include both the outcome Yi (eg., occurrence of hypertension in ARIC study) and covariatesXi (eg., risk factors
such as age, bmi, etc.) of primary interest. The model of interest is a regression of the main outcome on potential risk factors,
with regression parameters � estimated by solving the estimating equations

n
∑

i=1
g(Du

i , �) = 0. (1)

Here, the estimating functions g(Du
i , �) can be the derivative of least squares, the score function from a likelihood, the general-

ized estimating equations (GEE), etc., based on different specifications of the regression model of interest. For illustration, we
assume that all primary dataDu

i are observed. Some more complicated setups, such as in missing data framework, are discussed
in Section 5 and Section 3.2 in the Supplementary Material. Let �0 be the true parameter values such that E{g(Du

i , �0)} = 0.
Then, the solution �̂ to the equation (1) is consistent for �0 and has an asymptotic normal distribution under some regularity
conditions26.
In addition to the data Du

i for the main analysis, many studies have secondary (auxiliary) variables collected, such as longi-
tudinal measurements of systolic blood pressure in ARIC study. Let Da

i be the auxiliary data collected on subject i. It includes
an auxiliary outcome with certain covariates, which is believed to contain information to improve over the main estimation.
To avoid confusion, hereafter, we callDa

i the auxiliary data/variables and use terms auxiliary outcome/covariates to denote the
outcome/covariates in the auxiliary data Da

i . In practice, not every subject has auxiliary data. Without loss of generality, we
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assume that the first m1 subjects in the study have auxiliary data, that is,Da
i for i = 1,… , m1. A more concrete specification for

the main data Du
i and auxiliary data D

a
i will be provided in later examples and Section 3.

To improve the estimation precision from (1), auxiliary data Da
i can play an important role. Due to potential association

between the main data and the auxiliary data, the estimation of main parameters of interest � will be affected if the information
in the auxiliary data is incorporated. One way to incorporate the auxiliary information is to jointly model the two sets of data.
However, the joint modeling approach may be theoretically complicated (sometimes even intractable) and computationally
intensive (more discussions in Section 5). Instead, to effectively use the auxiliary data to improve estimation for the main
parameters �, we consider the following combined weighted estimating equations

m1
∑

i=1
m1p̂ig(Du

i ; �) +
n
∑

i=m1+1
g(Du

i ; �) = 0, (2)

where the weights p̂i on subjects i = 1,… , m1 are non-negative and maximize
∏m1

i=1 pi under the constraints
m1
∑

i=1
pi = 1,

m1
∑

i=1
pih(Da

i ;�) = 0, (3)

where the estimating functions h(Da
i ;�) are based on some working model for the auxiliary data Da

i that satisfies
E{h(Da

i ;�
∗)} = 0. The working model has parameters �with dimension r and true values �∗ if the working model for auxiliary

data is correctly specified. From (2) and (3), intuitively, we can see that the information from auxiliary data Da
i is incorpo-

rated into the main model by the constructed weights p̂i, which lead to more efficient estimation of auxiliary data distribution19

and thus make data integration and information borrowing possible. Denote the dimension of h(Da
i ;�) as q, and we require

q > r, thereby resulting in over-identified estimating functions. Two working examples for auxiliary data and corresponding
specification of over-identified functions h(Da

i ;�) are provided below.

Example 1. The typical auxiliary measurement in longitudinal format is oftentimes available in practice and can carry the infor-
mation that is useful for the main analysis. For example, the repeated measurements on systolic blood pressure are informative
for the analysis where the risk of hypertension occurrence is the outcome with primary interest. In general, the auxiliary data
Da
i from the ith subject contains repeatedly measured auxiliary outcomes Ỹi with dimension T and some covariates X̃i. Then,

the over-identified estimating functions accounting for the association within repeated measurements can take the form of

h(Da
i ;�) =

⎛

⎜

⎜

⎝

ZT
i R

−1∕2
i V1R

−1∕2
i

{

Ỹi − �(X̃i;�)
}

…
ZT
i R

−1∕2
i V�R

−1∕2
i

{

Ỹi − �(X̃i;�)
}

⎞

⎟

⎟

⎠

, (4)

where Zi = )�(X̃i;�)∕)�T ; Ri is a diagonal matrix containing variances of each element in Ỹi; �(X̃i;�) are the conditional
mean of Ỹi indexed by parameters �. The � matrices Vj lead to the over-identified estimating function with length q = r× � > r,
given � ≥ 2. One possible candidate for Vj is the basis matrix as suggested in27,6. Another option is to take Vj to be the inverse
of a working correlation matrix, in which case (4) is equivalent to stacking multiple generalized estimating functions (GEEs)28
with different working correlation structures. In what follows, we will adopt basis matrices for constructing Vj . In practice, we
recommend using more distinct and small number of basis matrices to avoid potential co-linearity issue. Detailed specifications
are referred to Section 3.1.

Example 2. Sometimes, the secondary outcomes that are highly associated with the disease of main interest is available. For
example, the measurement of amyloid plaques is often accessible in addition to Alzheimer’s disease outcome29. Those mea-
surements may not be in a longitudinal format but could be still informative for the analysis of the disease of primary interest.
Suppose for the auxiliary data, we specify a working model with a auxiliary outcome Ỹi and covariates X̃i such that the condi-
tional mean of Ỹi given X̃i is �(X̃i;�). Then, we may consider the over-identified estimating function h(Da

i ;�) with the form

h(Da
i ;�) = d(X̃i, Z̃i;�)

{

Ỹi − �(X̃i;�)
}

, (5)
where d(X̃i, Z̃i;�) is a user-specified vector function with dimension q > r and Z̃i are some additionally available variables.
One special case is to set d(X̃i, Z̃i;�) = (X̃T

i , Z̃
T
i )

T . The variables Z̃i may be part of or all the covariates Xi used for the main
analysis. The selected redundant variables Z̃i should satisfy E{h(Da

i ;�∗)} = 0 for some parameter values �∗ (not necessarily
to be the true ones �∗).
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Given a specific type of auxiliary data with corresponding estimating functions h(Da
i ;�), the constrained optimization in

(3) results in estimated weights p̂i (and estimated �̂ as by product) that are used to reweight subjects i = 1,… , m1 in (2). The
solution to (2) is our proposed estimator �̂EN . The following theorem summarizes the asymptotic property of �̂EN .

Theorem 1. Under certain regularity conditions in the Supplementary Material, suppose there exist parameter values �∗ such
that Ẽ{h(Da

i ;�∗)} = 0, then we have
n

1
2 (�̂EN − �0) ←→ N(0,VEN )

in distribution, where asymptotic covariance matrix VEN equals � −1(� − ��S�T )(� T )−1 with � = limn→∞ m1∕n,
� = E{)g(Du

i ; �0)∕)�
T }, � = E{g⊗2(Du

i ; �0)}, � = Ẽ{g(Du
i ; �0)h(D

a
i ;�∗)

T }, and S = S−1
11 (�∗) −

S−1
11 (�∗)S12(�∗)
(�∗)S21(�∗)S−1

11 (�∗). Here, 
(�∗) = {S21(�∗)S−1
11 (�∗)S12(�∗)}−1, S11(�∗) = Ẽ{h⊗2(Da

i ;�∗)}, S12(�∗) =
Ẽ{)h(Da

i ;�∗)∕)�
T }, and S21(�∗) = ST12(�∗). The notation f

⊗2 is ff T , and Ẽ(f ) denotes the limit value of (1∕m1)
∑m1
i=1 fi,

for any measurable function vector f .

The proof is presented in Section 1.1 in the Supplementary Material. The regularity conditions are similar to those for the
empirical likelihood19 and the method of moments26. In VEN , the term Ṽ = � −1�(� −1)T is the asymptotic covariance matrix
for the estimator �̂ solving the equations in (1)26. Since the matrix S is nonnegative definite, the asymptotic covariance matrix
of �̂EN is no larger than that of �̂. In addition, the term � quantifies the degree of information borrowing from the auxiliary data,
with the efficiency of �̂EN reaches the maximum when auxiliary data are available for all subjects, i.e., m1 = n.
Efficiency improvement of �̂EN over �̂ requires q > r; i.e., the length of the estimating function h(⋅) should be larger than

the number of paramemters �. If q = r and the matrix S12(�∗) has full rank, then


(�∗) =
{

S21(�∗)S−1
11 (�∗)S21(�∗)

}−1 = S−1
21 (�∗)S11(�∗)S−1

21 (�∗),

which implies S = S−1
11 (�∗) − S

−1
11 (�∗) = 0 and thus �S�T = 0. In this case, all information in the auxiliary data has been

used to estimate nuisance parameters �, and thereby the auxiliary data no longer improves over the main analysis. Indeed, such
a situation would cause the weights p̂i equal to 1∕n for all i, being totally non-informative to the main analysis. Moreover, the
quantity � = E[g(Du

i ; �0)h(D
a
i ;�

∗)T ] typically describes the strength of association between the main outcome in Du
i and the

auxiliary outcome in Da
i . Higher association implies larger potential of efficiency gain, thus highlighting the motivation of this

article to incorporate auxiliary outcome that are highly associated with the trait of main interest into the estimation procedure.
In theory, for a particular specified working model, we only require the existence of �∗ such that Ẽ{h(Da

i ;�∗)} = 0. Thus, the
working model for the auxiliary data does not have to be correctly specified for efficiency improvement for the main parameter
estimation. Note that the mis-specification of the working model will occur if the mean structure fails to incorporate appropriate
covariates and/or the working model fails to address the issue of informative missingness in auxiliary data. In any case, however,
our proposed weighting scheme always enables unbiased estimation of main parameters �, as long as Ẽ{h(Da

i ;�∗)} = 0 hold
with some values �∗. This benefit can also be seen from our numerical evaluations (Section 3). It is worthwhile pointing out
that, since we do not intend to make any inference on the auxiliary data, the working model does not need to be practically
interpretable. It only serves as a bridge to deliver the information from the auxiliary data to the main analysis.
To illustrate the efficiency gain of our method in using the auxiliary data, we consider the following set of estimating functions

S =
{

G∗
n(�)

|

|

|

|

G∗
n(�) =

1
n

n
∑

i=1
g(Du

i ; �) −
1
n

m1
∑

i=1
Ch(Da

i ; �̂)
}

, (6)

where C is any p × r constant matrix, and �̂ is the empirical likelihood estimator under the constraints in (3). When the weight
matrixC is set to be zero, the class reduces to the estimating function in (1). Thus, the constructed class contains the unweighted
estimation function as a special case. Furthermore, (6) augments the unweighted estimation function based on the main data by
using a weighted estimating function based on the auxiliary data, with an arbitrary weight. The following property summarizes
the optimality of our proposed estimator within this class.

Property 1. The asymptotic covariance matrix of the proposed estimator �̂EN is the minimum that can be achieved by any
estimator solving G∗

n(�) = 0 for G∗
n(�) ∈ S .

The proof is given in Section 1.2 in the SupplementaryMaterial. Note that Property 1 is for a given working function h(Da
i ;�).

In general, it is rather challenging to determine the optimal form of h(Da
i ;�) that leads to the most efficiency improvement for

the estimation of �. Thus, a criterion assessing several candidate working models is highly desired. Noting that � and �S�T

play essential roles in the efficiency improvement based on Theorem 1. Thus, the quantity trace{�� −1�S�T (� T )−1}may serve
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as such a criterion. It is equivalent to the sum of eigenvalues for the matrix �� −1�S�T (� T )−1, providing an overall evaluations
for the efficiency gain. Therefore, we propose the following index for information borrowing (IIB), which is a scaled version of
this quantity,

IIB = trace{�Diag( ̂̃V )−
1
2 �̂ −1�̂Ŝ�̂T (�̂ T )−1Diag( ̂̃V )−

1
2 } (7)

where the terms ̂̃V , �̂ , �̂, and Ŝ are some consistent estimators for Ṽ , � , �, and S, respectively. The multiplier Diag( ̂̃V )−1∕2

is used to adjust the asymptotic standard error, thereby making it comparable to the one from unweighted estimator based on
the equations in (1). The IIB is nonnegative, and a larger value may indicate a better performance in borrowing information by
incorporating the auxiliary data.

3 SIMULATION

3.1 Example 1
In this section, we will examine the performance of our proposed estimator in the case specified in Example 1, where auxil-
iary outcomes are repeated measurements. We consider the setting where the outcome in the main analysis is binary but the
longitudinal outcomes in the auxiliary data are continuous. This setup considers different types of outcomes in the main and
auxiliary data and mimics the situation in ARIC study, where occurrence of hypertension (binary-scale) is our main interest
with systolic blood pressure (continuous-scale) as an auxiliary outcome. Specifically, for i = 1,… , m1, the auxiliary data Da

i
contain continuous repeated outcomes Ỹi with dimension T = 4 generated by the model Ỹi = X̃i� + �̃i with � = (−1, 1, 2, 1)T

and covariates X̃i = (1, X̃i1, X̃i2, X̃i3) with X̃ij = (X̃ij1,… , X̃ijT )T . Here, time-dependent covariate vector X̃i1 follows mul-
tivariate Normal distribution with mean zero, variance one, and exchangeable correlation matrix with correlation coefficient
0.3; time-dependent covariate vector X̃i2 follows multivariate Bernoulli distribution with success probability 0.5 and exchange-
able correlation matrix with correlation coefficient 0.3; X̃i3 is a time-independent covariate vector where all components are
equal and are from Bernoulli distribution with success probability 0.5. The residual vector �̃i = (�̃i1,… , �̃iT )T follows multi-
variate normal distribution with mean zero, variance one, and the exchangeable correlation structure with correlation coefficient
�̃ = 0.4, 0.8 in this simulation.
In the main analysis, the outcome of interest is binary with success probability p⋆i = {1 + exp(−XT

i �)}
−1, where � =

(�0, �1, �2, �3)T = (1,−1,−1, 1)T and Xi = (1, X̃i11, X̃i21, X̃i31)T . In other words, the covariates used in the main analysis are
the baseline covariates in the auxiliary data. The association between the binary outcome of primary interest and the continuous
auxiliary outcome in the auxiliary data is generated as follows. For each i, generate a standard Normal random variable Z̄i and
then a variable x̄i = �̃i1r0 + Z̄i(1 − r20)

0.5 with 0 ≤ r0 ≤ 1. It is clear that x̄i follows the standard normal distribution. Then the
binary outcome of main interest Yi is equal to 1 if x̄i ≥ x0i and equal to 0 otherwise, where x0i is the (1 − p⋆i )

th percentile of the
standard Normal distribution. The constant r0 controls the strength of association between the binary Yi and the continuous Ỹi,
with a larger value indicating a stronger association. In our simulations, we consider two possible values r0 = 0.5 and r0 = 0.9,
leading to correlation coefficient between Yi and Ỹi1 equal to 0.34 and 0.63, respectively.
We consider three different scenarios and specify h(Da

i ;�) in (4) for the auxiliary data by employing basis matrices for
different correlation structures. In scenario 1, we select the basismatricesV1 andV2 corresponding to an exchangeable correlation
structure, where V1 is the identity matrix, and V2 is the matrix with 0 on the diagonal and 1 off the diagonal. In scenario 2, in
addition to V1 and V2 as above, we also use V3 and V4 corresponding to the basis matrices for an AR-1 correlation structure,
where V3 is a matrix with 1 on the two main off-diagonal and 0 elsewhere, and V4 is a matrix with 1 at the left-top and right-
bottom corners and 0 elsewhere. This is to study if addingmore basis matrices will further improve estimation efficiency for main
parameters �. In scenario 3, we evaluate the performance under a mis-specified working model for �i(X̃i;�) with covariates X̃i
replaced by X̌i = (1, X̃i1, X̃i2). The basis matrices are the same as in scenario 2. We consider settings where 50% and 100% of
the subjects have auxiliary data for sample sizes n = 300, 600. We are not aware of an existing method that is directly applicable
to our simulation setting, so we compare our proposed estimator to the main-data-only estimator. More discussions about the
potential comparison to existing methods are provided in Section 5. All simulation results are summarized based on 1000Monte
Carlo runs in Table 1 (� = 100%) with the results of partially observed auxiliary data (� = 50%) provided in Table S2 in the
Supplementary Material.
Overall, the proposed estimator has a good performance evidenced by the small bias and greater-than-one ERE, which is the

ratio between the empirical variance of the maximum likelihood estimator using the main study data alone and the empirical
variance of the proposed estimator. The empirical coverage probabilities of the 95% confidence intervals are all close to the
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TABLE 1 Simulation results for Example 1. All subjects have auxiliary data (� = 100%)

n=300 n=600
Bias ESE ASE ERE 95%CP IIB Bias ESE ASE ERE 95%CP IIB

S2 �̃=0.4 �0 2 24 24 1.01 94.8 0.222 1 17 17 1.02 94.5 0.167
r0=0.5 �1 -2 28 28 1.04 95.8 -2 19 20 1.03 96.5

�2 -3 17 16 1.01 94.2 -1 12 11 1.02 95.0
�3 1 29 29 1.01 94.2 0 21 20 1.03 94.0

�̃=0.4 �0 2 24 24 1.04 95.3 0.479 1 17 17 1.08 95.4 0.420
r0=0.9 �1 -2 27 27 1.14 95.1 -1 19 19 1.12 95.6

�2 -3 17 16 1.07 93.5 -1 11 11 1.10 93.8
�3 1 28 28 1.06 95.0 0 20 20 1.05 94.9

�̃=0.8 �0 2 24 24 1.00 95.2 0.181 1 17 17 1.04 95.8 0.198
r0=0.5 �1 -2 27 28 1.06 95.7 -2 19 20 1.06 95.9

�2 -2 16 16 1.05 94.7 -1 12 11 1.07 94.6
�3 1 29 29 1.00 94.3 0 21 20 1.01 93.0

�̃=0.8 �0 2 25 24 1.03 94.5 0.582 2 17 17 1.08 94.4 0.523
r0=0.9 �1 -3 26 26 1.24 94.8 -1 18 18 1.23 95.3

�2 -3 16 15 1.18 93.9 -1 11 11 1.18 95.6
�3 2 29 29 1.00 94.8 0 20 20 1.01 94.3

S1 �̃=0.4 �0 2 25 25 1.00 95 0.042 1 18 17 1.00 94.8 0.042
r0=0.5 �1 -2 29 29 1.00 95.5 -2 20 20 1.01 96.5

�2 -2 17 17 1.01 95.1 -1 12 12 1.01 95.4
�3 1 30 29 0.99 94.8 0 21 20 1.00 94.1

�̃=0.4 �0 2 25 25 1.00 95.5 0.124 2 17 18 1.02 95.5 0.105
r0=0.9 �1 -2 28 29 1.03 95.6 -1 20 21 1.05 95.5

�2 -3 17 16 1.03 94.6 -1 12 12 1.05 94.3
�3 1 29 29 0.99 95.5 0 20 21 1.00 95.9

�̃=0.8 �0 2 24 25 1.00 95.2 0.114 1 17 17 1.02 96.1 0.099
r0=0.5 �1 -2 28 29 1.03 95.5 -2 20 20 1.04 96.4

�2 -2 16 16 1.04 94.7 -1 12 12 1.06 95
�3 1 29 29 0.99 94.4 0 21 20 1.00 93.9

�̃=0.8 �0 2 25 24 1.03 95.9 0.312 2 17 17 1.03 94.8 0.294
r0=0.9 �1 -2 28 27 1.14 95.2 -1 19 19 1.13 95.3

�2 -3 16 16 1.13 94.1 -1 11 11 1.13 95.4
�3 1 29 29 0.99 95.1 0 20 20 1.00 94.5

S3 �̃=0.4 �0 2 24 24 1.00 94.7 0.16 1 17 17 1.01 95.1 0.120
r0=0.5 �1 -2 28 28 1.03 95.9 -2 20 20 1.02 96.1

�2 -3 17 16 1.00 94.8 -1 12 12 1.02 95
�3 1 30 29 0.99 94.2 0 21 20 1.00 93.8

�̃=0.4 �0 2 24 24 1.03 95.8 0.332 1 17 17 1.04 95.5 0.285
r0=0.9 �1 -2 27 27 1.13 95.2 -1 19 19 1.10 95.9

�2 -3 17 16 1.07 94.3 -1 11 11 1.08 94.1
�3 1 30 29 0.98 94.9 0 20 20 0.99 95.6

�̃=0.8 �0 2 24 24 1.00 95 0.200 1 17 17 1.02 95.3 0.154
r0=0.5 �1 -2 27 28 1.05 95.9 -2 20 20 1.04 96.3

�2 -2 16 16 1.03 94.4 -1 12 11 1.05 95
�3 1 29 29 0.99 94.6 0 21 20 1.01 93.3

�̃=0.8 �0 2 25 24 1.03 95 0.444 2 17 17 1.06 94.6 0.399
r0=0.9 �1 -3 27 27 1.20 95.4 -1 18 19 1.19 95.2

�2 -3 16 16 1.13 94.3 -1 11 11 1.14 94.5
�3 2 29 29 0.97 94.9 0 20 20 0.99 94.5

S1, S2, S3: scenarios 1, 2, 3. ESE: empirical standard error. ASE: estimated asymptotic standard error. ERE: empirical relative efficiency, the
empirical variance of the maximum likelihood estimator using the main study data alone divided by the empirical variance of the proposed
estimator. CP: coverage probability. All values except ERE and IIB are multiplied by 100.

nominal level. There is more efficiency improvement as more auxiliary data become available, i.e. as � increases. For all sce-
narios, as expected, the efficiency improvement increases as the correlation coefficient between the repeated measurements or
between the outcome of interest and the repeated measurements increases, reflected by the increased ERE. Also from the ERE,
for any given �̃ and r0, efficiency improvement in scenario 2 is always higher than that in scenario 1, showing that adding addi-
tional valid estimating equations in h(Da

i ;�) further improves the efficiency. This is to be expected, since with a fixed parameter
�, more estimating equations lead to higher efficiency from the estimating equation theory26. In scenario 3 where the work-
ing model is mis-specified, the proposed estimator has little bias and still has a better efficiency compared to the maximum
likelihood estimator based on the main study data alone, showing the flexibility and robustness of our proposed method. We
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TABLE 2 Simulation results for Example 2.

n=300 n=600
Bias ESE ASE ERE 95%CP IIB Bias ESE ASE ERE 95%CP IIB

S1 prop=100% �1 1 20 20 1.10 94.6 0.514 1 14 14 1.18 94.2 0.487
r0=0.5 �2 -3 18 17 1.01 93.7 -1 12 12 1.00 95.0

�3 -1 26 25 1.30 93.9 -1 18 17 1.38 95.0
�4 2 17 16 1.11 93.6 1 11 11 1.16 94.7

prop=100% �1 1 19 18 1.24 94.0 0.975 1 13 13 1.37 94.7 0.947
r0=0.7 �2 -3 17 16 1.03 93.8 -1 12 12 1.02 95.0

�3 -1 21 21 1.85 93.4 -1 15 15 2.03 96.0
�4 2 16 15 1.25 92.9 1 10 10 1.34 95.2

prop=100% �1 1 17 16 1.51 94.4 1.591 1 12 12 1.70 94.7 1.564
r0=0.9 �2 -3 17 16 1.05 93.5 -1 12 11 1.04 95.1

�3 -1 14 14 4.21 94.2 -1 9 10 4.95 95.8
�4 2 14 13 1.53 93.6 1 9 9 1.63 96.0

prop=50% �1 1 21 20 1.04 94.1 0.275 1 15 14 1.08 94.7 0.248
r0=0.5 �2 -3 18 17 0.99 93.8 -1 12 12 0.99 95.0

�3 -1 27 27 1.13 93.9 -1 19 19 1.14 94.4
�4 2 17 16 1.04 92.7 1 11 11 1.07 94.4

prop=50% �1 1 20 20 1.09 94.2 0.506 1 14 14 1.15 94.8 0.476
r0=0.7 �2 -3 18 17 1.00 93.8 -1 12 12 1.00 94.8

�3 -1 26 25 1.29 94.3 -1 18 17 1.33 94.4
�4 2 17 16 1.09 92.9 1 11 11 1.14 94.6

prop=50% �1 1 20 19 1.19 94.2 0.814 1 13 13 1.27 94.9 0.783
r0=0.9 �2 -3 18 16 1.00 94.0 -1 12 12 1.01 94.7

�3 -1 23 22 1.59 94.7 0 16 16 1.70 94.4
�4 2 16 15 1.20 93.6 1 11 11 1.24 95.0

S2 prop=100% �1 1 20 20 1.10 94.2 0.477 1 14 14 1.16 94.2 0.451
r0=0.5 �2 -3 18 17 1.01 93.8 -1 12 12 1.00 95.0

�3 -1 26 25 1.27 93.5 -1 18 18 1.33 94.6
�4 2 17 16 1.08 93.5 1 11 11 1.15 94.8

prop=100% �1 1 19 18 1.23 93.8 0.906 -1 13 13 1.33 94.6 0.877
r0=0.7 �2 -3 18 16 1.02 93.7 -1 12 12 1.02 95.1

�3 -1 22 21 1.75 94.0 1 15 15 1.87 95.2
�4 2 16 15 1.21 93.2 1 10 10 1.31 95.1

prop=100% �1 1 18 17 1.47 94.3 1.477 -1 12 12 1.61 94.7 1.448
r0=0.9 �2 -3 17 16 1.04 93.5 -1 12 11 1.04 95.2

�3 -1 15 15 3.52 94.7 1 11 11 3.80 95.7
�4 2 15 14 1.44 92.6 1 9 10 1.57 95.7

prop=50% �1 1 21 20 1.03 94.1 0.260 1 15 14 1.07 94.8 0.232
r0=0.5 �2 -3 18 17 0.99 93.5 -1 12 12 1.00 95.0

�3 -1 28 27 1.11 93.3 -1 19 19 1.14 94.2
�4 2 18 16 1.03 92.9 1 11 11 1.07 94.7

prop=50% �1 1 20 20 1.09 94.1 0.476 1 14 14 1.14 94.8 0.444
r0=0.7 �2 -3 18 17 1.00 93.6 -1 12 12 1.01 94.9

�3 -1 26 25 1.26 93.7 -1 18 18 1.31 94.4
�4 2 17 16 1.08 93.0 1 11 11 1.13 94.9

prop=50% �1 1 20 19 1.18 94.3 0.763 1 14 13 1.23 94.6 0.728
r0=0.9 �2 -3 18 16 1.00 94.1 -1 12 12 1.01 94.7

�3 -1 24 23 1.53 93.5 -1 16 16 1.62 94.6
�4 2 16 15 1.17 93.5 1 11 11 1.23 95.0

S1, S2: scenarios 1 and 2, with correctly specified andmis-specifiedworkingmodel, respectively. ESE: empirical standard error. ASE: estimated
asymptotic standard error. ERE: empirical relative efficiency, the empirical variance of the maximum likelihood estimator using the main study
data alone divided by the empirical variance of the proposed estimator. CP: coverage probability. All values except ERE and IIB are multiplied
by 100.

also observe that, for all the settings considered, the estimates corresponding to X̃i11 and X̃i21, the baseline value of the time-
dependent covariates X̃i1 and X̃i2, have more efficiency gain compared to the estimates corresponding to X̃i31, the baseline value
of the time-independent covariates X̃i3. More discussion regarding this observation is given in Section 2 in the Supplementary
Material. The IIB seems to be a good measure to compare the overall efficiency gain across different scenarios. Note that, under
our data generating scheme the correlation coefficient between main outcome and auxiliary outcome can only take values up to
around 0.6, therefore the efficiency gains observed in Table 1 are mild. Substantial efficiency gain could be discovered in real
studies or from other simulation setups in Section 3.2 and Section 2 in the Supplementary Material (Table S1 and Table S3).
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TABLE 3 Simulation results for auxiliary data with informative missingness

n=300 n=600
Bias ESE ASE ERE 95%CP IIB Bias ESE ASE ERE 95%CP IIB

r0=0.5 �1 3 20 20 0.99 96 0.202 0 15 14 1.02 95 0.185
�2 -2 17 17 0.98 95 -1 12 12 1.01 94
�3 -2 27 27 1.03 94 0 20 19 1.06 94
�4 2 17 16 1.05 95 1 12 12 1.05 95

r0=0.7 �1 3 20 20 1.01 96 0.367 0 15 14 1.06 95 0.349
�2 -2 17 17 0.99 95 -1 12 12 1.01 94
�3 -2 26 26 1.11 94 0 19 18 1.15 94
�4 2 16 16 1.10 96 1 11 11 1.10 95

r0=0.9 �1 3 20 19 1.06 95 0.587 0 14 14 1.11 94 0.568
�2 -2 17 17 0.99 95 -1 12 12 1.02 94
�3 -2 25 24 1.25 95 -1 18 17 1.31 94
�4 2 16 16 1.17 95 1 11 11 1.17 95

ESE: empirical standard error. ASE: estimated asymptotic standard error. ERE: empirical relative efficiency, the empirical variance of the
maximum likelihood estimator using the main study data alone divided by the empirical variance of the proposed estimator. CP: coverage
probability. All values except ERE and IIB are multiplied by 100.

3.2 Example 2
In this section, we assess the performance of our proposed estimator under the setting in Example 2, where a surrogate auxiliary
outcome (cross-sectional) is available to the main trait. There are five covariates in total generated as following: X̃i1 follows the
Uniform distribution on [0, 1]; Z̃i1 follows Bernoulli distribution with success probability 0.5; (X̃i2, Z̃i2)T follows the bivariate
Normal distribution with mean zero, variance one, and correlation coefficient 0.3; X̃i3 is the sum of Z̃i2 and a standard normal
random variable with a standardization such that X̃i3 has mean zero and variance one. With these covariates, the outcome
of primary interest is Yi that follows Bernoulli distribution with success probability p⋆i = {1 + exp(−XT

i �)}
−1, where � =

(�0, �1, �2, �3)T = (1,−1,−1, 1)T and Xi = (1, X̃i2, Z̃i1, X̃i3)T . The auxiliary outcome is modeled as Ỹi = X̃T
i � + �̃i, with

X̃i = (1, X̃i1, X̃i2)T and � = (−1, 1, 1)T . Here, to generate a correlation between Yi and Ỹi, we set �̃i = r0Z0i + (1 − r20)
0.5�i,

where �i follows standard Normal distribution, and Z0i is Yi with a standardization to have mean zero and unit variance. The
residual �̃i then has mean zero and unit variance as well and is associated with Yi, where the degree of association is controlled
by 0 ≤ r0 ≤ 1. In this setup, we consider three values for r0, 0.5, 0.7, 0.9, and adopt (5) as our working estimating functions with
redundant variables Z̃i = (Z̃i1, Z̃i2)T .
We consider two scenarios, with correctly specified and mis-specified working models for the auxiliary outcome, respectively.

In the latter scenario, X̌i = (1, X̃i2)T instead of X̃i is used to construct the working model �i(X̌i;�) for the auxiliary outcome
Ỹi. The simulation results based on 1000 Monte Carlo runs are summarized in Table 2. Similar to Section 3.1, our proposed
estimator for the main parameters � shows a better performance compared to logistic regression without integrating the auxiliary
data. It has smaller standard errors and is robust against mis-specification of the working model. More discussions about the
efficiency gain are referred to Section 3.1 in the Supplementary Material.

3.3 Informative missing in auxiliary data
Section 3.1 and 3.2 evaluates the performance when the mean structure of auxiliary outcomes is mis-specified. Not limited to
this, our weighting scheme is also robust to other mis-specification of the working model, such as informative missingness in
auxiliary data (Section 2). Note that, though previous simulation setups have already considered partially observed auxiliary
data, we implicitly assume that the unobserved auxiliary data are missing completely at random. Thus, this section provides
more evaluation to the case in presence of non-ignorable missing auxiliary data.
For illustration, we take the setup from Example 2 and consider the situation where the mean structure is mis-specified, and

also the auxiliary outcome is informatively missing. To be specific, we first generate main data with sample size 300 and 600
by following the lines in Section 3.2. Then, we simulate complete auxiliary data, where the auxiliary outcome is modeled as
Ỹi = X̃T

i �+ �̃i+ �̃i. Here, �̃i follows standard Normal distribution, and X̃i, �̃i, and � are defined the same in Section 3.2. We then
simulate observing indicator R̃i, so that R̃i = 1 to keep subject i’s auxiliary data and R̃i = 0, otherwise. The success probability
for R̃i is given as {1 + exp(−HT

i �̃)}
−1, where Hi = (X̌T

i , �̃i)
T , �̃ = (1, 1, 0.5)T , and X̌i are already defined in Section 3.2. By
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incorporating �̃i into both models, R̃i and Ỹi are not independent given covariates X̃i, leading to non-ignorable missingness30,31.
To evaluate our proposed estimation, we only take auxiliary data with Ri = 1 to construct the working model, of which the
mean structure is mis-specified with covariates X̌i. Thus, both informative missing data issue and mis-specification of the mean
structure are present for the auxiliary outcome. Table 3 summarizes the results under 1000 Monte Carlo runs under two sample
sizes and three r0 values (defined in Section 3.2). It is seen that, even under the worst situation with both missing data problem
and mean structure mis-specification, our weighting scheme leads to little bias from the estimation for main parameters � and
still improve estimation precision in comparison to the estimation without the auxiliary data.

4 DATA APPLICATION

Hypertension impacts over 1/3 of the U.S. adults and is a major risk factor for cardiovascular disease and stroke, one of the top
causes of death in the U.S. and worldwide. The Atherosclerosis Risks in Communities study, beginning in 1987, is a prospective
epidemiological study conducted among approximately 16,000 middle-aged adults from four U.S. communities. The objective
of the study is to investigate the distribution and causes of atherosclerosis and its clinical outcomes, as well as other cardio-
vascular risk factors. In this application, we are particularly interested in detecting baseline risk factors for the development of
essential hypertension. Our analysis focuses on the subjects who did not have hypertension at baseline and who were not taking
antihypertensive medications within the two weeks prior to the baseline. The outcome of primary interest is the occurrence of
hypertension (binary-scale) during the follow-up (i.e., systolic blood pressure ≥ 140 mm Hg or diastolic blood pressure ≥ 90
mm Hg). To further narrow down the focus, we select white males sampled from center B. The potential risk factors of interest
include baseline measurements of body mass index (kg/m2), current alcohol drinking status (1=Yes, 0=No), current cigarette
smoking status (1=Yes, 0=No), age (years), and hemoglobin (g/dL). By removing a small portion of subjects with missing
values, the main data set we use has 1143 subjects.
There are quite a few variables with repeated measurements that could be considered as a candidate auxiliary outcome,

including the systolic blood pressure, the diastolic blood pressure, the glucose, etc.. Among them, the systolic blood pressure
and the diastolic blood pressure are the most informative because that is how hypertension is defined. Noting that only 2.96%
subjects in the data have diastolic blood pressure ≥ 90 while 17.6% subjects have systolic blood pressure≥ 140. Thus, we take
the systolic blood pressure as the auxiliary outcome in this application. We have also computed the IIB for different variables,
and using the systolic blood pressure measurements as the auxiliary outcome leads to substantially higher IIB than the others.
The systolic blood pressure is repeatedly measured for four visits in this study. To borrow the auxiliary information, we take

the estimating functions in (4) with the basis matrices V1, V2, V3, and V4 used in Section 3. Such a choice of basis matrices is
based on the highest IIB compared to other three cases that use V1&V2, V1&V3&V4, and V2&V3&V4, respectively. The covariates
used in the working model include body mass index, alcohol drinking status, cigarette smoking status, hemoglobin, usage of
antihypertensive medication (1=Yes, 0=No), and age at each visit. Since some study subjects did not complete four visits, we
consider two ways of using the auxiliary data. The first way uses all available repeated measurements from all subjects, and the
second uses data only from those subjects with all four repeated measurements. For the second way about � =76% of the study
subjects contribute auxiliary data. Both ways are valid since we just need to specify a working model for the auxiliary data, and
mis-specification of the constructed working model will lead to unbiased estimation for the main analysis (referred to Section 2
and Section 3).
The results are summarized in Table 4. When using all available repeated measurements from all subjects, a better efficiency

is observed for estimates for the drinking and cigarette smoking effects, based on a larger relative variance, while the estimates
corresponding to the intercept, BMI, age, and hemoglobin are less efficient, compared to those when using only the subjects
with complete four repeated measurements. In addition, using partial the subjects with all four repeated measurements leads
to a higher IIB. Thus, when the auxiliary data have missing values, using more subjects with incomplete observations may not
necessarily lead to a better estimation. Table 5 summarizes the results when using only the subjects with all four repeated mea-
surements. Compared to the maximum likelihood estimator using the main data alone, the proposed method leads to estimates
with smaller variances after incorporating the information from the auxiliary data. The maximum likelihoodmethod only detects
the significance of baseline age, whereas our method also detects the marginal significance of baseline body mass index on the
development of hypertension. Note that in this application, most subjects have records of the occurrence of hypertension during
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TABLE 4 Data analysis results for the Atherosclerosis Risks in Communities study based on different auxiliary data sets

Data F (IIB: 1.09) Date S (IIB: 1.26)
Estimate Relative Variance Estimate Relative Variance

Intercept -6.2934 1.08 -7.6346 1.17
BMI 0.0054 1.11 0.0352 1.24
DRNKR 0.1633 1.27 0.2350 1.19
CIGT 0.0361 1.18 0.0019 1.13
AGE 0.1036 1.08 0.1031 1.12
Hemoglobin -0.0847 1.14 -0.0504 1.19

Data F: auxiliary data including all subjects. Data S: auxiliary data including the subjects with four observations. BMI: body
mass index. DRNKR: current alcohol drinking status. CIGT: current cigarette smoking status. Relative variance: variance of
the maximum likelihood estimate divided by that of the proposed estimate. .

TABLE 5 Data analysis results for the Atherosclerosis Risks in Communities study using subjects with all four repeated
measurements as the auxiliary data set

Estimate SE Relative variance Odds ratio Lower limit Upper limit P-value P-value MLE

Intercept -7.6346 1.4169 1.17 0.000 0.000 0.008 0.000 0.001
BMI 0.0352 0.0200 1.24 1.036 0.996 1.077 0.078 0.387

DRNKR 0.2350 0.1505 1.19 1.265 0.942 1.699 0.118 0.357
CIGT 0.0019 0.1725 1.13 1.002 0.715 1.405 0.991 0.724
AGE 0.1031 0.0134 1.12 1.109 1.080 1.138 0.000 0.000

Hemoglobin -0.0504 0.0664 1.19 0.951 0.835 1.083 0.448 0.672

BMI: bodymass index. DRNKR: current alcohol drinking status. CIGT: current cigarette smoking status. SE: estimated standard
error. Relative variance: variance of the maximum likelihood estimate divided by that of the proposed estimate. Lower limit and
upper limit: lower bound and upper bound of the 95% confidence interval for the odds ratio.

the study as the main outcome. Thus, taking complete data for main analysis will not be improper. However, our proposed esti-
mation can easily address missing data issue occurred in the main analysis. Discussions and extensions are referred to Section
5 and Section 3.2 in the Supplementary Material.

5 DISCUSSION

In the big data era, it is of tremendous interest to have methods that can incorporate auxiliary information to enhance statistical
analysis. This paper considers the case where auxiliary data are collected from the same study subjects. We proposed an effective
estimation procedure to borrow information from the auxiliary data, which can be completely different from the trait of primary
interest. The auxiliary information may substantially improve the estimation efficiency in the main analysis. Note that in theory,
we can reformulate (2) and (3) by introducing an indicator of the availability of auxiliary data, which leads to an alternative
equivalent formulation of the proposed estimation procedure. Please refer to Section 1.3 in the Supplementary Material for
more details. In addition, we provided an index for information borrowing to assess the performance when comparing different
working models for the auxiliary data. The magnitude of efficiency gain by borrowing information from auxiliary data depends
on the number of subjects that have auxiliary data, the strength of association between the main outcome and the auxiliary
outcome, and the specification of the working model for the auxiliary data, among other things.
Some existing methods may be applied to the setting considered in this article after some nontrivial modifications. One such

method is the joint modeling approach, which was originally proposed to incorporate the longitudinal information to survival
analysis via shared random effects32. In the setting we considered, a shared random effect to link the main outcome and the
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auxiliary outcome may be used. However, most joint modeling methods are limited to certain parametric forms, which may not
be applicable to model the data we generated in Section 3. Moreover, when the main and auxiliary data are jointly modeled,
the mis-specification of a working model for the auxiliary data can lead to inconsistent estimation in the main model. In future
research, we will study how to modify and apply some existing methods to our setting and how they compare to our method.
Many extensions could be easily done based on this paper. One direct extension is to address missing data problem in the main

analysis. In presence of high missingness, our method can be easily adjusted by adopting some well-known scheme, such as
inverse probability weight31,33,34, into the estimating function g(Du

i ; �). More details about this extension is provided in Section
3.2 in the Supplementary Material. Moreover, a generalization of the proposed method to other data types, such as survival data,
is of great interest. Borrowing information from possibly multiple auxiliary outcomes is another important research problem.
We will investigate such generalizations in our future work.
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a
i ; θ̂qu by applying La-

grange multiplier technique (Qin and Lawless, 1994), which equals 1{n for i “ m1 ` 1, . . . , n.

The constrains in (2) then become
řm1

i“1 p
˚
i “ m1{n and

řm1

i“1 p
˚
i hpD

a
i ; θq “ 0, and the estimat-

ing equation in (1) becomes
řm1

i“1 p̂
˚
i gpD

u
i ;βq `

řn
i“m1`1

p1{nqgpDu
i ; βq “ 0. Thus, (1) and

(2) are reduced to (2) and (3) from the main manuscript by noting the fact that p̂˚i “ pm1{nqp̂i,

where p̂i are the estimated weights solving (3) from the main manuscript. To address this com-

ment, we discussed and added the above equivalent formulation of our method to Section 5 in

the main manuscript and Section 1.3 in the Supplementary Material.

(3) Presumably, one may also use the following approach. For fixed β and θ, one may maximize

śn
i“1 pi subject to the constraints

řn
i“1 pi “ 1, pi ě 0, and

řn
i“1 pigpD

u
i , βq “ 0,

řn
i“1 piRihpD

a
i , θq “



0. My question is whether this approach is asymptotically equivalent to the one discussed in

this manuscript?

Answer: Thanks for your question. Two estimators are asymptotically equivalent. To see this

(in sketch), we apply the results from Qin and Lawless (1994) and introduce two Lagrange

multipliers λ1 and λ2 corresponding to above two moment constrains. It is easy to check that

λ̂1 and λ̂2 are the solutions to the following equations (Qin and Lawless, 1994)

Q1n “
1

n

n
ÿ

i“1

gpDu
i ; βq

1` λT1 gpD
u
i ; βq ` λT2RihpDa

i ; θq
“0

Q2n “
1

n

n
ÿ

i“1

RihpD
a
i ; θq

1` λT1 gpD
u
i ; βq ` λT2RihpDa

i ; θq
“0,

(3)

and β̂ and θ̂ are the solutions to

G1n “
1

n

n
ÿ

i“1

pBgpDu
i ; βq{BβT qTλ1

1` λT1 gpD
u
i ; βq ` λT2RihpDa

i ; θq
“0

G2n “
1

n

n
ÿ

i“1

pBRihpD
a
i ; θq{Bθ

T qTλ2
1` λT1 gpD

u
i ; βq ` λT2RihpDa

i ; θq
“0.

(4)

By applying Taylor expansion to (3) and (4) at β0, θ˚, λ1 “ 0, and λ2 “ 0, we have

0 “Q1n `
BQ1n

BβT
pβ̂ ´ β0q `

BQ1n

BλT1
λ̂1 `

BQ1n

BλT2
λ̂2 ` oppn

´1{2
q

0 “Q2n `
BQ2n

BθT
pθ̂ ´ θ˚q `

BQ2n

BλT1
λ̂1 `

BQ2n

BλT2
λ̂2 ` oppn

´1{2
q

0 “G1n `
BG1n

BλT1
λ̂1 `

BG1n

BλT2
λ̂2 ` oppn

´1{2
q

0 “G2n `
BG2n

BλT1
λ̂1 `

BG2n

BλT2
λ̂2 ` oppn

´1{2
q,

which hold by the fact that BQ1n{Bθ
T , BQ2n{Bβ

T , BG1n{Bβ
T , BG1n{Bθ

T , BG2n{Bβ
T , and

BG2n{Bθ
T are all zero matrices evaluated at β0, θ˚, λ1 “ 0, and λ2 “ 0. By solving the



above system, we can obtain the asymptotic expansion of main parameter estimates

n1{2
pβ̂ ´ β0q “ ´

BQ1n

BβT
pn1{2Q1n ` n

1{2BD´1Zq ` opp1q, (5)

where B “ pBQ1n{Bλ
T
2 , BQ1n{Bλ

T
1 , 0q, E “ p´Q

T
2n,´G

T
1n,´G

T
2nq

T , and

D “

»

—

—

—

—

—

–

BQ2n

BλT2

BQ2n

BλT1

BQ2n

BθT

0 BG1n

BλT1
0

BG2n

BλT2
0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

After some algebra, the term BD´1Z eventually becomes ´p1{nqΛSQm1pθ˚q defined in (2)

from the Supplementary Material, given that the first m1 subjects in the study have auxiliary

data, and the rest subjects have no auxiliary records. Thus, the expression in (5) is equal to the

asymptotic expansion of the estimator β̂EN in the main manuscript.

Compared to (3) and (4) above, our proposed estimation scheme (2) and (3) from the main

manuscript requires lower dimension of functions and tuning parameters in the empirical like-

lihood framework and thus would be numerically more stable and require less computation.

(4) Example 1 on page 3. Essentially the auxiliary information is given by EpỸi ´ µpX̃i, θqq “ 0.

By using different ”working variances” Vi, i “ 1, 2, . . . , τ , the authors have obtained many

estimating equations for θ. I am wondering whether there is a co-linearity problem?

Answer: Thanks for your comments. The co-linearity may occur if two used basis matrices

are very similar to each other. Thus, we provide some useful tips for users in practice. First, do

not use too many basis matrices. By doing so would help avoid potential co-linearity issue and



substantially reduce the computation load; second, use more distinct basis matrices. The ones

we used in the simulation as well as in the real data application are considerably different from

each other and commonly adopted in the existing literature (Qu et al., 2000; Tang and Leng,

2011). We have also added these comments into the main manuscript. Please refer to the page

3.

(5) The basic requirement is the dimension q of estimating equations h should be strictly larger than

the dimension of unknown parameters r in θ. using the same logic in the manuscript, for any

scalar estimating equation ErhpỸ , X̃, θq|X̃s “ 0, we can construct infinite many estimating

functions ψipX̃qhpỸ , X̃, θq, i “ 1, 2, . . ., where ψipX̃q are any function of X̃ . My question is

whether this approach really carries information for β?

Answer: Thanks for your comments. Theoretically, it does carry information about β, since

(i) the conditional moment equation is for the same true distribution and (ii) the unconditional

moment equations are based on the conditional equations. Different φipX̃q may represent dif-

ferent amount of information. When φipX̃q is a series of basis functions (power functions,

Fourier series, etc) and the dimension increases, the information in the unconditional equations

increases to the information in the conditional equations (Donald et al., 2003). Thus, by doing

so, the resulting weights will provide more efficient estimation of auxiliary data distribution

(Qin and Lawless, 1994), which eventually leads to more efficient estimation for main param-

eters. However, in practice, users need to carefully select φipX̃q function in finite dimension.

In the manuscript, we provide two workable functions from two illustrating examples, which



have been numerically shown to deliver substantial information from auxiliary data to the main

data analysis (Table 1,2,and 3 in the main manuscript and Table S1 and S3 in the Supplemen-

tary Material). More numerical evaluations can be implemented to check the utility of other

function forms, which merits future work.

(6) Pages 4 and 5. Suppose the auxiliary information can be summarized as a series of estimating

equations. Is there anyway to select the most useful information? Some auxiliary information

may have insignificant contribution in terms of estimating β but may cause numerical problem.

Answer: Thanks for your comments. We sincerely agree with the reviewer that some auxil-

iary information may have insignificant contribution to estimating main parameters. Thus, it is

desired to have one evaluation criterion to help identify the useful information. In this paper,

we have proposed an index for assessing the performance of information borrowing (IIB). IIB

in eq(7) from the main manuscript quantifies the overall capacity of information delivering by

incorporating the auxiliary data. The larger value implies more efficiency gain from auxiliary

data to the main analysis. IIB could be an option to help select the useful information, which is

also validated in our simulation studies from the main manuscript. However, it is very challeng-

ing to determine the optimal schema for delivering the information, which requires substantial

effort and merits future work.



3 Responses to the Comments from Reviewer 2

(1) This paper introduces an estimator that incorporates information on auxiliary data by reweight-

ing the standard estimating equations in the main analysis. The weights are determined from a

set of equations associated with a working model fit to the auxiliary data. The idea is interest-

ing, and the reviewer likes it.

Answer: We thank the reviewer for the supportive comment.

(2) Page 3: Lines:33-37 - In eqn(4), it is unclear how the equations are over-identified. It will be

helpful if the authors can provide an intuitive idea how exactly is the extra information coming

from, after estimating θ̂. Does the parameter θ̂ include other parameters such as variance pa-

rameters of error terms and the parameter associated with the correlation matrix of the repeated

measurements? If yes, please specify it.

Answer: Thanks for your question. The over-identified estimating function means that the di-

mension of the function should be larger than the dimension of the parameters indexed in the

function. For example, in equation (4) from the main manuscript, the length of the parameter

vector θ is r, whereas the length of estimating function hpDa
i ; θq is q “ rˆ τ ą r, given τ ě 2.

The over-identification is due to the usage of multiple basis matrices Vj , which are related to

working correlation structures for repeated measurements and are commonly adopted in the

longitudinal data analysis from the existing literature (Qu et al., 2000; Tang and Leng, 2011).

Intuitively, the extra information for estimating main parameters β, after estimating θ, is coming

from incorporating estimated empirical likelihood p̂i for auxiliary data into the main estimating



equations. These weights will be totally non-informative (equal to 1/n) when the dimension of

estimating function hpDa
i ; θq is equal to the length of the nuisance parameter vector θ, whereas

it will become informative when the function is over-identified. For instance, by using more

unconditional moments based on the conditional mean zero model, the resulting weights lead

to more efficient estimation of auxiliary data distribution (Qin and Lawless, 1994). Thus, tak-

ing the advantage of informative empirical likelihood will lead to more efficient estimation for

main parameters by re-weighting the main estimating equations. Note that the parameter θ in

(4) from the main manuscript include only regression coefficients, not the second moment pa-

rameters. We have also added these explanations to the main manuscript. Please refer to the

page 3.

(3) In the data application, what are the covariates involved in the working model? How does the

performance of the estimator compare if standard GEE longitudinal analysis was done using

the outcome vector as repeated measurements and the primary outcome?

Answer: Thanks for your question. Time-dependent covariates over four visits, including

body mass index, current alcohol drinking status, current cigarette smoking status, usage of

antihypertensive medication, age, and hemoglobin are used in the working model.

The standard GEE as well as existing packages cannot be directly applied to this scenario with

four difficulties: first, the main outcome is in cross-sectional and binary scale, whereas the

auxiliary outcome is in a longitudinal format and continuous scale; second, the main outcome

is complete but auxiliary data are partially observed; third, the covariates and risk effects are



not the same in the main model and the working model; fourth, there are numbers of nuisance

parameters in GEE that should be estimated, such as correlation coefficients among binary and

continuous responses, which is not trivial. Note that, in GEE framework, an efficient estimator

will be guaranteed only if the working correlation structure for repeated measurements and

main outcome is correctly specified, which is also non-trivial to achieve in practice. On the

other hand, our proposed estimation procedure can easily handle all the issues listed above

with light computational load. Even if the working model for auxiliary data is mis-specified,

the resulting estimator is shown to be at least as efficient as the estimator without considering

auxiliary data and be consistent to the true one.

(4) In section 3.3, can the covariates on which the selection depends incorporate time dependent

covariates?

Answer: Thanks for your question. In general, time-dependent covariates are allowed in our

framework, which is numerically assessed in Section 3.1. In Section 3.3, we consider the

case where the available auxiliary outcome is cross-sectional. Thus, the covariates used in this

section is time-independent. More numerical evaluations can be done by considering more

complicated data structure, which merits future work.

(5) Page 3: Line:39 - what is τ ?

Answer: Thanks for your question. τ is the total number of basis matrices Vj used to construct

the over-identified estimating functions hpDa; θq. In section 3.1, there are two basis matrices

pτ “ 2q used in scenario 1 and four basis matrices pτ “ 4q for scenario 2 and 3. In real



data application, we choose four basis matrices pτ “ 4q as it shown better performance in the

simulation. We also add more description about τ in the main manuscript. Please refer to the

page 3.

(6) In Table 1 with 100% auxiliary information and the corresponding table in supplementary table

with 50% auxiliary information, why the efficiency gain is similar in S2 for the parameter β3

when ρ̃ = 0.8 and r0 = 0.9?

Answer: Thanks for your question. The main reason for this phenomenon is that there is little

efficiency gain for the parameter β3 in the setup of S2 when ρ̃ = 0.8 and r0 = 0.9. Thus, the

relative efficiency is close to one in both tables since our proposed method will lead to the

estimator at least as efficient as the estimator without considering the auxiliary data, regardless

of the amount of available auxiliary information.

In practice, the estimation efficiency gain may depend on many factors. One factor is about the

type of covariates. In example 1 from the main manuscript, there is more efficiency gain for the

estimated parameters if the corresponding covariate is time-dependent, compared to the one (β3)

corresponding to a time-independent covariate. However, by selecting proper basis matrices,

which is another important factor to affect the performance, it is still possible to substantially

increase the estimation efficiency for parameters associated with time-independent covariates.

Please refer to Section 2 and Table S3 in the Supplementary Material for more details.

(7) Since the supplementary material should provide detailed proof, it would be great to see what

are the regularity conditions specifically for empirical likelihood and generalized method of
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moments and how are they verified in this context?

Answer: Thanks for your comments. We agree with the reviewer that it would be good to have

corresponding regularity conditions in our context. So, we have added these conditions broadly

adopted in empirical likelihood framework (Qin and Lawless, 1994) and generalized method

of moment (Newey and McFadden, 1994). We also added some discussion about how these

conditions are verified throughout the proof. Please refer to Section 1 in the Supplementary

Material.

(8) Supplementary—- Page 14: Lines:26-30; Page 15: Lines 5 and 10- It would be nice to see the

details of the algebra.

Answer: Thanks for your comments. We have added details of the algebra to make the proof

more clear. Please refer to Section 1.1 and 1.2 in the Supplementary Material.
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