RESEARCH ARTICLE

Improving Main Analysis by Borrowing Information from Auxiliary Data

Chixiang Chen*1 | Peisong Han² | Fan He ${ }^{3}$

${ }^{1}$ Department of Biostatistics, Epidemiology
and Informatics, University of
Pennsylvania, Pennsylvania, U.S.A.
${ }^{2}$ Department of Biostatistics, University of Michigan, Michigan, U.S.A.
${ }^{3}$ Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Penn State College of Medicine, Pennsylvania, U.S.A.

Correspondence

*Chixiang Chen, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Pennsylvania, PA 19104. Email: chixiang.chen@pennmedicine.upenn.edu

Abstract

Summary In many clinical and observational studies, auxiliary data from the same subjects, such as repeated measurements or surrogate variables, will be collected in addition to the data of main interest. Not directly related to the main study, these auxiliary data in practice are rarely incorporated into the main analysis, though they may carry extra information that can help improve the estimation in the main analysis. Under the setting where part of or all subjects have auxiliary data available, we propose an effective weighting approach to borrow the auxiliary information by building a working model for the auxiliary data, where improvement of estimation precision over the main analysis is guaranteed regardless of the specification of the working model. An information index is also constructed to assess how well the selected working model works to improve the main analysis. Both theoretical and numerical studies show the excellent and robust performance of the proposed method in comparison to estimation without using the auxiliary data. Finally, we utilize the Atherosclerosis Risk in Communities study for illustration.

KEYWORDS:

Auxiliary data; Estimation efficiency improvement; Empirical likelihood; Information borrowing; Information index.

1 | INTRODUCTION

To improve the estimation accuracy in the main study, auxiliary measurements may play an important role. In the literature, there are multiple types of auxiliary measurements, of which the most popular one is from an external independent study. Such information could be either at the summary level or from other validation data through shared covariate effects between the main and external studies. In presence of this type of auxiliary data, methods based on the generalized method of moment, generalized regression, weight calibration, constrained maximum likelihood, empirical likelihood, etc., have been proposed to borrow auxiliary information to power up the main study $112 / 3415 / 6718910|1| 12 \mid 13$. In this article, we consider a different type of auxiliary data that is also widely seen in applications, i.e., an auxiliary measurement collected in the same study but served as the outcome in a secondary analysis. Usually, such kind of auxiliary measurement is highly associated with the primary outcome, and how to incorporate this secondary information to enhance estimation precision for the main analysis is of high interest.

There are many examples in epidemiological and clinical studies where auxiliary outcomes that are associated with primary outcome are available but the information contained in these variables is rarely incorporated into the main analysis. For instance, in the prospective Cardiovascular Health Study ${ }^{[1415}$, both cardiovascular and cancer outcomes were measured. Investigators may borrow information from cancer outcomes to improve studies in which cardiovascular disease is the main outcome, or vice

[^0]versa. Another example is the long-term Health Professional Follow-up Study ${ }^{16}$ on the association between coffee drinking status at the baseline and prostate cancer risk. Since data on coffee consumption during the follow-up were also repeatedly measured, these data not used in the main analysis become auxiliary but contain extra information about the main study. A third example is a study on the relationship between risk of influenza and vaccination status in the current flu-season, in which case individuals' vaccination and disease status in previous seasons are auxiliary measurements and may help improve the main analysis. In this article, we use the Atherosclerosis Risk in Communities study ${ }^{[1718}$ for illustration. We are interested in detecting baseline risk factors for the development of essential hypertension during the follow-up. In addition to the primary interest, there are certain auxiliary measurements available in the study that are associated with the hypertension development, e.g., longitudinal measurements of systolic blood pressure. Since these auxiliary measurements are not typically treated as risk factors for hypertension, in the existing literature they are rarely incorporated into the main analysis for risk factor detection. However, the systolic blood pressure is highly associated with the occurrence of hypertension, it may contain useful information for the estimation in the main analysis.
In the remaining article, let us focus on the auxiliary measurements collected from all or part of the subjects in the same study. To make use of these auxiliary data, we propose an estimation procedure by reweighting the study subjects in their contribution towards the main analysis. The weights are calculated based on the empirical likelihood method ${ }^{[19}$ through specifying a working model for the auxiliary data. Note that weighting based on the empirical likelihood have already been investigated in certain areas, including missing data problems, casual inference, and longitudinal quantile regression ${ }^{[2066212223324255}$. Distinct from existing literature, we allow the auxiliary data and the main data to contain completely different variables, which implies a broader applicability for information borrowing. The auxiliary data are also allowed to be available only from a subset of study subjects. One of desirable features of the proposed method is that mis-specification of the working model for the auxiliary data will not affect estimation consistency of the main analysis but still improves estimation precision in comparison to estimation without the auxiliary data. Here, mis-specification also refers to informative missing data issues when building the working model, in addition to misspecification of the working model itself. We further propose an index of information borrowing (IIB) to assess the overall performance of the estimation procedure, serving as a criterion in practice for selecting a proper auxiliary data set or a desirable working model.
The rest of paper is organized as follows. Section 2 describes the new estimation procedure with its theoretical properties in a general setting. Two examples are then illustrated. Section 3 conducts simulation studies to evaluate the numerical performance of the proposed method. An application to the Atherosclerosis Risk in Communities study data is presented in Section 4 . Some discussions are given in Section 5 The technical proofs, extra discussions, and other simulation results are presented in the Supplementary Material.

2 | PROPOSED ESTIMATION PROCEDURE

We start with a general framework. For each subject i from a random sample, $i=1, \ldots, n$, let \boldsymbol{D}_{i}^{u} be the data for the main analysis, which include both the outcome Y_{i} (eg., occurrence of hypertension in ARIC study) and covariates \boldsymbol{X}_{i} (eg., risk factors such as age, bmi, etc.) of primary interest. The model of interest is a regression of the main outcome on potential risk factors, with regression parameters $\boldsymbol{\beta}$ estimated by solving the estimating equations

$$
\begin{equation*}
\sum_{i=1}^{n} g\left(D_{i}^{u}, \boldsymbol{\beta}\right)=\mathbf{0} . \tag{1}
\end{equation*}
$$

Here, the estimating functions $g\left(\boldsymbol{D}_{i}^{u}, \boldsymbol{\beta}\right)$ can be the derivative of least squares, the score function from a likelihood, the generalized estimating equations (GEE), etc., based on different specifications of the regression model of interest. For illustration, we assume that all primary data \boldsymbol{D}_{i}^{u} are observed. Some more complicated setups, such as in missing data framework, are discussed in Section 5 and Section 3.2 in the Supplementary Material. Let $\boldsymbol{\beta}_{0}$ be the true parameter values such that $E\left\{g\left(\boldsymbol{D}_{i}^{u}, \boldsymbol{\beta}_{0}\right)\right\}=\mathbf{0}$. Then, the solution $\hat{\boldsymbol{\beta}}$ to the equation (1) is consistent for $\boldsymbol{\beta}_{0}$ and has an asymptotic normal distribution under some regularity conditions ${ }^{266}$.

In addition to the data \boldsymbol{D}_{i}^{u} for the main analysis, many studies have secondary (auxiliary) variables collected, such as longitudinal measurements of systolic blood pressure in ARIC study. Let \boldsymbol{D}_{i}^{a} be the auxiliary data collected on subject i. It includes an auxiliary outcome with certain covariates, which is believed to contain information to improve over the main estimation. To avoid confusion, hereafter, we call \boldsymbol{D}_{i}^{a} the auxiliary data/variables and use terms auxiliary outcome/covariates to denote the outcome/covariates in the auxiliary data D_{i}^{a}. In practice, not every subject has auxiliary data. Without loss of generality, we
assume that the first m_{1} subjects in the study have auxiliary data, that is, \boldsymbol{D}_{i}^{a} for $i=1, \ldots, m_{1}$. A more concrete specification for the main data \boldsymbol{D}_{i}^{u} and auxiliary data \boldsymbol{D}_{i}^{a} will be provided in later examples and Section 3

To improve the estimation precision from (1), auxiliary data \boldsymbol{D}_{i}^{a} can play an important role. Due to potential association between the main data and the auxiliary data, the estimation of main parameters of interest $\boldsymbol{\beta}$ will be affected if the information in the auxiliary data is incorporated. One way to incorporate the auxiliary information is to jointly model the two sets of data. However, the joint modeling approach may be theoretically complicated (sometimes even intractable) and computationally intensive (more discussions in Section 5]. Instead, to effectively use the auxiliary data to improve estimation for the main parameters β, we consider the following combined weighted estimating equations

$$
\begin{equation*}
\sum_{i=1}^{m_{1}} m_{1} \hat{p}_{i} \boldsymbol{g}\left(\boldsymbol{D}_{i}^{u} ; \boldsymbol{\beta}\right)+\sum_{i=m_{1}+1}^{n} \boldsymbol{g}\left(\boldsymbol{D}_{i}^{u} ; \boldsymbol{\beta}\right)=\mathbf{0} \tag{2}
\end{equation*}
$$

where the weights \hat{p}_{i} on subjects $i=1, \ldots, m_{1}$ are non-negative and maximize $\prod_{i=1}^{m_{1}} p_{i}$ under the constraints

$$
\begin{equation*}
\sum_{i=1}^{m_{1}} p_{i}=1, \sum_{i=1}^{m_{1}} p_{i} \boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)=\mathbf{0}, \tag{3}
\end{equation*}
$$

where the estimating functions $\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)$ are based on some working model for the auxiliary data \boldsymbol{D}_{i}^{a} that satisfies $\boldsymbol{E}\left\{\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}^{*}\right)\right\}=\mathbf{0}$. The working model has parameters $\boldsymbol{\theta}$ with dimension r and true values $\boldsymbol{\theta}^{*}$ if the working model for auxiliary data is correctly specified. From (2) and (3), intuitively, we can see that the information from auxiliary data \boldsymbol{D}_{i}^{a} is incorporated into the main model by the constructed weights \hat{p}_{i}, which lead to more efficient estimation of auxiliary data distribution 19 and thus make data integration and information borrowing possible. Denote the dimension of $\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)$ as q, and we require $q>r$, thereby resulting in over-identified estimating functions. Two working examples for auxiliary data and corresponding specification of over-identified functions $\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)$ are provided below.

Example 1. The typical auxiliary measurement in longitudinal format is oftentimes available in practice and can carry the information that is useful for the main analysis. For example, the repeated measurements on systolic blood pressure are informative for the analysis where the risk of hypertension occurrence is the outcome with primary interest. In general, the auxiliary data \boldsymbol{D}_{i}^{a} from the $i^{\text {th }}$ subject contains repeatedly measured auxiliary outcomes $\tilde{\boldsymbol{Y}}_{i}$ with dimension T and some covariates $\tilde{\boldsymbol{X}}_{i}$. Then, the over-identified estimating functions accounting for the association within repeated measurements can take the form of

$$
\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)=\left(\begin{array}{l}
\boldsymbol{Z}_{i}^{T} \boldsymbol{R}_{i}^{-1 / 2} \boldsymbol{V}_{1} \boldsymbol{R}_{i}^{-1 / 2}\left\{\tilde{\boldsymbol{Y}}_{i}-\boldsymbol{\mu}\left(\tilde{\boldsymbol{X}}_{i} ; \boldsymbol{\theta}\right)\right\} \tag{4}\\
\cdots \\
\boldsymbol{Z}_{i}^{T} \boldsymbol{R}_{i}^{-1 / 2} \boldsymbol{V}_{\tau} \boldsymbol{R}_{i}^{-1 / 2}\left\{\tilde{\boldsymbol{Y}}_{i}-\boldsymbol{\mu}\left(\tilde{\boldsymbol{X}}_{i} ; \boldsymbol{\theta}\right)\right\}
\end{array}\right),
$$

where $\boldsymbol{Z}_{i}=\partial \boldsymbol{\mu}\left(\tilde{\boldsymbol{X}}_{i} ; \boldsymbol{\theta}\right) / \partial \boldsymbol{\theta}^{T} ; \boldsymbol{R}_{i}$ is a diagonal matrix containing variances of each element in $\tilde{\boldsymbol{Y}}_{i} ; \boldsymbol{\mu}\left(\tilde{\boldsymbol{X}}_{i} ; \boldsymbol{\theta}\right)$ are the conditional mean of $\tilde{\boldsymbol{Y}}_{i}$ indexed by parameters $\boldsymbol{\theta}$. The τ matrices \boldsymbol{V}_{j} lead to the over-identified estimating function with length $q=r \times \tau>r$, given $\tau \geq 2$. One possible candidate for \boldsymbol{V}_{j} is the basis matrix as suggested in ${ }^{2766}$. Another option is to take \boldsymbol{V}_{j} to be the inverse of a working correlation matrix, in which case 4 is equivalent to stacking multiple generalized estimating functions (GEEs) ${ }^{28}$ with different working correlation structures. In what follows, we will adopt basis matrices for constructing \boldsymbol{V}_{j}. In practice, we recommend using more distinct and small number of basis matrices to avoid potential co-linearity issue. Detailed specifications are referred to Section 3.1

Example 2. Sometimes, the secondary outcomes that are highly associated with the disease of main interest is available. For example, the measurement of amyloid plaques is often accessible in addition to Alzheimer's disease outcome ${ }^{29}$. Those measurements may not be in a longitudinal format but could be still informative for the analysis of the disease of primary interest. Suppose for the auxiliary data, we specify a working model with a auxiliary outcome \tilde{Y}_{i} and covariates \tilde{X}_{i} such that the conditional mean of \tilde{Y}_{i} given $\tilde{\boldsymbol{X}}_{i}$ is $\mu\left(\tilde{\boldsymbol{X}}_{i} ; \boldsymbol{\theta}\right)$. Then, we may consider the over-identified estimating function $\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)$ with the form

$$
\begin{equation*}
\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)=\boldsymbol{d}\left(\tilde{\boldsymbol{X}}_{i}, \tilde{\boldsymbol{Z}}_{i} ; \boldsymbol{\theta}\right)\left\{\tilde{Y}_{i}-\mu\left(\tilde{\boldsymbol{X}}_{i} ; \boldsymbol{\theta}\right)\right\}, \tag{5}
\end{equation*}
$$

where $\boldsymbol{d}\left(\tilde{\boldsymbol{X}}_{i}, \tilde{\boldsymbol{Z}}_{i} ; \boldsymbol{\theta}\right)$ is a user-specified vector function with dimension $q>r$ and $\tilde{\boldsymbol{Z}}_{i}$ are some additionally available variables. One special case is to set $\boldsymbol{d}\left(\tilde{\boldsymbol{X}}_{i}, \tilde{\boldsymbol{Z}}_{i} ; \boldsymbol{\theta}\right)=\left(\tilde{\boldsymbol{X}}_{i}^{T}, \tilde{\boldsymbol{Z}}_{i}^{T}\right)^{T}$. The variables $\tilde{\boldsymbol{Z}}_{i}$ may be part of or all the covariates \boldsymbol{X}_{i} used for the main analysis. The selected redundant variables $\tilde{\boldsymbol{Z}}_{i}$ should satisfy $\boldsymbol{E}\left\{\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}_{*}\right)\right\}=\mathbf{0}$ for some parameter values $\boldsymbol{\theta}_{*}$ (not necessarily to be the true ones $\boldsymbol{\theta}^{*}$).

Given a specific type of auxiliary data with corresponding estimating functions $\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)$, the constrained optimization in (3) results in estimated weights \hat{p}_{i} (and estimated $\hat{\boldsymbol{\theta}}$ as by product) that are used to reweight subjects $i=1, \ldots, m_{1}$ in (2). The solution to 2 , is our proposed estimator $\hat{\boldsymbol{\beta}}_{E N}$. The following theorem summarizes the asymptotic property of $\hat{\boldsymbol{\beta}}_{E N}$.

Theorem 1. Under certain regularity conditions in the Supplementary Material, suppose there exist parameter values $\boldsymbol{\theta}_{*}$ such that $\tilde{E}\left\{\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}_{*}\right)\right\}=\mathbf{0}$, then we have

$$
n^{\frac{1}{2}}\left(\hat{\boldsymbol{\beta}}_{E N}-\boldsymbol{\beta}_{0}\right) \rightarrow N\left(\mathbf{0}, \boldsymbol{V}_{E N}\right)
$$

in distribution, where asymptotic covariance matrix $\boldsymbol{V}_{E N}$ equals $\boldsymbol{\Gamma}^{-1}\left(\Sigma-\rho \boldsymbol{\Lambda} \boldsymbol{S} \boldsymbol{\Lambda}^{T}\right)\left(\boldsymbol{\Gamma}^{T}\right)^{-1}$ with $\rho=\lim _{n \rightarrow \infty} m_{1} / n$, $\boldsymbol{\Gamma}=E\left\{\partial g\left(D_{i}^{u} ; \boldsymbol{\beta}_{0}\right) / \partial \boldsymbol{\beta}^{T}\right\}, \boldsymbol{\Sigma}=E\left\{\boldsymbol{g}^{\otimes 2}\left(\boldsymbol{D}_{i}^{u} ; \boldsymbol{\beta}_{0}\right)\right\}, \boldsymbol{\Lambda}=\tilde{E}\left\{\boldsymbol{g}\left(\boldsymbol{D}_{i}^{u} ; \boldsymbol{\beta}_{0}\right) \boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}_{*}\right)^{T}\right\}$, and $\boldsymbol{S}=\boldsymbol{S}_{11}^{-1}\left(\boldsymbol{\theta}_{*}\right)-$ $\boldsymbol{S}_{11}^{-1}\left(\boldsymbol{\theta}_{*}\right) \boldsymbol{S}_{12}\left(\boldsymbol{\theta}_{*}\right) \boldsymbol{\Omega}\left(\boldsymbol{\theta}_{*}\right) \boldsymbol{S}_{21}\left(\boldsymbol{\theta}_{*}\right) \boldsymbol{S}_{11}^{-1}\left(\boldsymbol{\theta}_{*}\right)$. Here, $\boldsymbol{\Omega}\left(\boldsymbol{\theta}_{*}\right)=\left\{\boldsymbol{S}_{21}\left(\boldsymbol{\theta}_{*}\right) \boldsymbol{S}_{11}^{-1}\left(\boldsymbol{\theta}_{*}\right) \boldsymbol{S}_{12}\left(\boldsymbol{\theta}_{*}\right)\right\}^{-1}, \boldsymbol{S}_{11}\left(\boldsymbol{\theta}_{*}\right)=\tilde{E}\left\{\boldsymbol{h}^{\otimes 2}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}_{*}\right)\right\}, \boldsymbol{S}_{12}\left(\boldsymbol{\theta}_{*}\right)=$ $\tilde{E}\left\{\partial \boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}_{*}\right) / \partial \boldsymbol{\theta}^{T}\right\}$, and $\boldsymbol{S}_{21}\left(\boldsymbol{\theta}_{*}\right)=\boldsymbol{S}_{12}^{T}\left(\boldsymbol{\theta}_{*}\right)$. The notation $\boldsymbol{f}^{\otimes 2}$ is $\boldsymbol{f} \boldsymbol{f}^{T}$, and $\tilde{E}(\boldsymbol{f})$ denotes the limit value of $\left(1 / m_{1}\right) \sum_{i=1}^{m_{1}} \boldsymbol{f}_{i}$, for any measurable function vector f.

The proof is presented in Section 1.1 in the Supplementary Material. The regularity conditions are similar to those for the empirical likelihood ${ }^{[19}$ and the method of moments ${ }^{[26]}$. In $\boldsymbol{V}_{E N}$, the term $\tilde{\boldsymbol{V}}=\Gamma^{-1} \boldsymbol{\Sigma}\left(\boldsymbol{\Gamma}^{-1}\right)^{T}$ is the asymptotic covariance matrix for the estimator $\hat{\boldsymbol{\beta}}$ solving the equations in $1{ }^{266}$. Since the matrix \boldsymbol{S} is nonnegative definite, the asymptotic covariance matrix of $\hat{\boldsymbol{\beta}}_{E N}$ is no larger than that of $\hat{\boldsymbol{\beta}}$. In addition, the term ρ quantifies the degree of information borrowing from the auxiliary data, with the efficiency of $\hat{\boldsymbol{\beta}}_{E N}$ reaches the maximum when auxiliary data are available for all subjects, i.e., $m_{1}=n$.

Efficiency improvement of $\hat{\boldsymbol{\beta}}_{E N}$ over $\hat{\boldsymbol{\beta}}$ requires $q>r$; i.e., the length of the estimating function $\boldsymbol{h}(\cdot)$ should be larger than the number of paramemters $\boldsymbol{\theta}$. If $q=r$ and the matrix $\boldsymbol{S}_{12}\left(\boldsymbol{\theta}_{*}\right)$ has full rank, then

$$
\boldsymbol{\Omega}\left(\boldsymbol{\theta}_{*}\right)=\left\{\boldsymbol{S}_{21}\left(\boldsymbol{\theta}_{*}\right) \boldsymbol{S}_{11}^{-1}\left(\boldsymbol{\theta}_{*}\right) \boldsymbol{S}_{21}\left(\boldsymbol{\theta}_{*}\right)\right\}^{-1}=\boldsymbol{S}_{21}^{-1}\left(\boldsymbol{\theta}_{*}\right) \boldsymbol{S}_{11}\left(\boldsymbol{\theta}_{*}\right) \boldsymbol{S}_{21}^{-1}\left(\boldsymbol{\theta}_{*}\right)
$$

which implies $\boldsymbol{S}=\boldsymbol{S}_{11}^{-1}\left(\boldsymbol{\theta}_{*}\right)-\boldsymbol{S}_{11}^{-1}\left(\boldsymbol{\theta}_{*}\right)=\mathbf{0}$ and thus $\boldsymbol{\Lambda} \boldsymbol{S} \boldsymbol{\Lambda}^{T}=\mathbf{0}$. In this case, all information in the auxiliary data has been used to estimate nuisance parameters $\boldsymbol{\theta}$, and thereby the auxiliary data no longer improves over the main analysis. Indeed, such a situation would cause the weights \hat{p}_{i} equal to $1 / n$ for all i, being totally non-informative to the main analysis. Moreover, the quantity $\boldsymbol{\Lambda}=E\left[\boldsymbol{g}\left(\boldsymbol{D}_{i}^{u} ; \boldsymbol{\beta}_{0}\right) \boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}^{*}\right)^{T}\right]$ typically describes the strength of association between the main outcome in \boldsymbol{D}_{i}^{u} and the auxiliary outcome in \boldsymbol{D}_{i}^{a}. Higher association implies larger potential of efficiency gain, thus highlighting the motivation of this article to incorporate auxiliary outcome that are highly associated with the trait of main interest into the estimation procedure.

In theory, for a particular specified working model, we only require the existence of $\boldsymbol{\theta}_{*}$ such that $\tilde{E}\left\{\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}_{*}\right)\right\}=\mathbf{0}$. Thus, the working model for the auxiliary data does not have to be correctly specified for efficiency improvement for the main parameter estimation. Note that the mis-specification of the working model will occur if the mean structure fails to incorporate appropriate covariates and/or the working model fails to address the issue of informative missingness in auxiliary data. In any case, however, our proposed weighting scheme always enables unbiased estimation of main parameters $\boldsymbol{\beta}$, as long as $\tilde{E}\left\{\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}_{*}\right)\right\}=\mathbf{0}$ hold with some values $\boldsymbol{\theta}_{*}$. This benefit can also be seen from our numerical evaluations (Section 3). It is worthwhile pointing out that, since we do not intend to make any inference on the auxiliary data, the working model does not need to be practically interpretable. It only serves as a bridge to deliver the information from the auxiliary data to the main analysis.

To illustrate the efficiency gain of our method in using the auxiliary data, we consider the following set of estimating functions

$$
\begin{equation*}
\mathcal{S}=\left\{\boldsymbol{G}_{n}^{*}(\boldsymbol{\beta}) \left\lvert\, \boldsymbol{G}_{n}^{*}(\boldsymbol{\beta})=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{g}\left(\boldsymbol{D}_{i}^{u} ; \boldsymbol{\beta}\right)-\frac{1}{n} \sum_{i=1}^{m_{1}} \boldsymbol{\operatorname { C h }}\left(\boldsymbol{D}_{i}^{a} ; \hat{\boldsymbol{\theta}}\right)\right.\right\} \tag{6}
\end{equation*}
$$

where \boldsymbol{C} is any $p \times r$ constant matrix, and $\hat{\boldsymbol{\theta}}$ is the empirical likelihood estimator under the constraints in $\sqrt{3}$. When the weight matrix \boldsymbol{C} is set to be zero, the class reduces to the estimating function in (1). Thus, the constructed class contains the unweighted estimation function as a special case. Furthermore, (6) augments the unweighted estimation function based on the main data by using a weighted estimating function based on the auxiliary data, with an arbitrary weight. The following property summarizes the optimality of our proposed estimator within this class.
Property 1. The asymptotic covariance matrix of the proposed estimator $\hat{\boldsymbol{\beta}}_{E N}$ is the minimum that can be achieved by any estimator solving $\boldsymbol{G}_{n}^{*}(\boldsymbol{\beta})=\mathbf{0}$ for $\boldsymbol{G}_{n}^{*}(\boldsymbol{\beta}) \in \mathcal{S}$.

The proof is given in Section 1.2 in the Supplementary Material. Note that Property 1 is for a given working function $\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)$. In general, it is rather challenging to determine the optimal form of $\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)$ that leads to the most efficiency improvement for the estimation of $\boldsymbol{\beta}$. Thus, a criterion assessing several candidate working models is highly desired. Noting that ρ and $\boldsymbol{\Lambda} \boldsymbol{S} \boldsymbol{\Lambda}^{T}$ play essential roles in the efficiency improvement based on Theorem 1 . Thus, the quantity trace $\left\{\rho \boldsymbol{\Gamma}^{-1} \boldsymbol{\Lambda} \boldsymbol{S} \boldsymbol{\Lambda}^{T}\left(\boldsymbol{\Gamma}^{T}\right)^{-1}\right\}$ may serve
as such a criterion. It is equivalent to the sum of eigenvalues for the matrix $\rho \boldsymbol{\Gamma}^{-1} \boldsymbol{\Lambda} \boldsymbol{S} \boldsymbol{\Lambda}^{T}\left(\boldsymbol{\Gamma}^{T}\right)^{-1}$, providing an overall evaluations for the efficiency gain. Therefore, we propose the following index for information borrowing (IIB), which is a scaled version of this quantity,

$$
\begin{equation*}
\text { IIB }=\operatorname{trace}\left\{\rho \operatorname{Diag}(\hat{\tilde{\boldsymbol{V}}})^{-\frac{1}{2}} \hat{\boldsymbol{\Gamma}}^{-1} \hat{\boldsymbol{\Lambda}} \hat{\boldsymbol{S}} \hat{\boldsymbol{\Lambda}}^{T}\left(\hat{\boldsymbol{\Gamma}}^{T}\right)^{-1} \operatorname{Diag}(\hat{\tilde{\boldsymbol{V}}})^{-\frac{1}{2}}\right\} \tag{7}
\end{equation*}
$$

where the terms $\hat{\boldsymbol{V}}, \hat{\boldsymbol{\Gamma}}, \hat{\boldsymbol{\Lambda}}$, and $\hat{\boldsymbol{S}}$ are some consistent estimators for $\tilde{\boldsymbol{V}}, \boldsymbol{\Gamma}, \boldsymbol{\Lambda}$, and \boldsymbol{S}, respectively. The multiplier $\operatorname{Diag}(\hat{\boldsymbol{V}})^{-1 / 2}$ is used to adjust the asymptotic standard error, thereby making it comparable to the one from unweighted estimator based on the equations in $\sqrt[1]{1}$. The IIB is nonnegative, and a larger value may indicate a better performance in borrowing information by incorporating the auxiliary data.

3 | SIMULATION

3.1 | Example 1

In this section, we will examine the performance of our proposed estimator in the case specified in Example 1 where auxiliary outcomes are repeated measurements. We consider the setting where the outcome in the main analysis is binary but the longitudinal outcomes in the auxiliary data are continuous. This setup considers different types of outcomes in the main and auxiliary data and mimics the situation in ARIC study, where occurrence of hypertension (binary-scale) is our main interest with systolic blood pressure (continuous-scale) as an auxiliary outcome. Specifically, for $i=1, \ldots, m_{1}$, the auxiliary data \boldsymbol{D}_{i}^{a} contain continuous repeated outcomes $\tilde{\boldsymbol{Y}}_{i}$ with dimension $T=4$ generated by the model $\tilde{\boldsymbol{Y}}_{i}=\tilde{X}_{i} \boldsymbol{\theta}+\tilde{\boldsymbol{\epsilon}}_{i}$ with $\boldsymbol{\theta}=(-1,1,2,1)^{T}$ and covariates $\tilde{X}_{i}=\left(\mathbf{1}, \tilde{X}_{i 1}, \tilde{X}_{i 2}, \tilde{X}_{i 3}\right)$ with $\tilde{X}_{i j}=\left(\tilde{X}_{i j 1}, \ldots, \tilde{X}_{i j T}\right)^{T}$. Here, time-dependent covariate vector $\tilde{X}_{i 1}$ follows multivariate Normal distribution with mean zero, variance one, and exchangeable correlation matrix with correlation coefficient 0.3 ; time-dependent covariate vector $\tilde{\boldsymbol{X}}_{i 2}$ follows multivariate Bernoulli distribution with success probability 0.5 and exchangeable correlation matrix with correlation coefficient $0.3 ; \tilde{\boldsymbol{X}}_{i 3}$ is a time-independent covariate vector where all components are equal and are from Bernoulli distribution with success probability 0.5 . The residual vector $\tilde{\boldsymbol{\epsilon}}_{i}=\left(\tilde{\epsilon}_{i 1}, \ldots, \tilde{\epsilon}_{i T}\right)^{T}$ follows multivariate normal distribution with mean zero, variance one, and the exchangeable correlation structure with correlation coefficient $\tilde{\rho}=0.4,0.8$ in this simulation.

In the main analysis, the outcome of interest is binary with success probability $p_{i}^{\star}=\left\{1+\exp \left(-\boldsymbol{X}_{i}^{T} \boldsymbol{\beta}\right)\right\}^{-1}$, where $\boldsymbol{\beta}=$ $\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)^{T}=(1,-1,-1,1)^{T}$ and $X_{i}=\left(1, \tilde{X}_{i 11}, \tilde{X}_{i 21}, \tilde{X}_{i 31}\right)^{T}$. In other words, the covariates used in the main analysis are the baseline covariates in the auxiliary data. The association between the binary outcome of primary interest and the continuous auxiliary outcome in the auxiliary data is generated as follows. For each i, generate a standard Normal random variable \bar{Z}_{i} and then a variable $\bar{x}_{i}=\tilde{\epsilon}_{i 1} r_{0}+\bar{Z}_{i}\left(1-r_{0}^{2}\right)^{0.5}$ with $0 \leq r_{0} \leq 1$. It is clear that \bar{x}_{i} follows the standard normal distribution. Then the binary outcome of main interest Y_{i} is equal to 1 if $\bar{x}_{i} \geq x_{0 i}$ and equal to 0 otherwise, where $x_{0 i}$ is the $\left(1-p_{i}^{\star}\right)^{\text {th }}$ percentile of the standard Normal distribution. The constant r_{0} controls the strength of association between the binary Y_{i} and the continuous $\tilde{\boldsymbol{Y}}_{i}$, with a larger value indicating a stronger association. In our simulations, we consider two possible values $r_{0}=0.5$ and $r_{0}=0.9$, leading to correlation coefficient between Y_{i} and $\tilde{\boldsymbol{Y}}_{i 1}$ equal to 0.34 and 0.63 , respectively.

We consider three different scenarios and specify $\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)$ in (4) for the auxiliary data by employing basis matrices for different correlation structures. In scenario 1, we select the basis matrices \boldsymbol{V}_{1} and \boldsymbol{V}_{2} corresponding to an exchangeable correlation structure, where \boldsymbol{V}_{1} is the identity matrix, and \boldsymbol{V}_{2} is the matrix with 0 on the diagonal and 1 off the diagonal. In scenario 2 , in addition to \boldsymbol{V}_{1} and \boldsymbol{V}_{2} as above, we also use \boldsymbol{V}_{3} and \boldsymbol{V}_{4} corresponding to the basis matrices for an AR-1 correlation structure, where \boldsymbol{V}_{3} is a matrix with 1 on the two main off-diagonal and 0 elsewhere, and \boldsymbol{V}_{4} is a matrix with 1 at the left-top and rightbottom corners and 0 elsewhere. This is to study if adding more basis matrices will further improve estimation efficiency for main parameters $\boldsymbol{\beta}$. In scenario 3 , we evaluate the performance under a mis-specified working model for $\boldsymbol{\mu}_{i}\left(\tilde{\boldsymbol{X}}_{i} ; \boldsymbol{\theta}\right)$ with covariates $\tilde{\boldsymbol{X}}_{i}$ replaced by $\check{\boldsymbol{X}}_{i}=\left(\mathbf{1}, \tilde{\boldsymbol{X}}_{i 1}, \tilde{\boldsymbol{X}}_{i 2}\right)$. The basis matrices are the same as in scenario 2 . We consider settings where 50% and 100% of the subjects have auxiliary data for sample sizes $n=300,600$. We are not aware of an existing method that is directly applicable to our simulation setting, so we compare our proposed estimator to the main-data-only estimator. More discussions about the potential comparison to existing methods are provided in Section5. All simulation results are summarized based on 1000 Monte Carlo runs in Table 1 ($\rho=100 \%$) with the results of partially observed auxiliary data ($\rho=50 \%$) provided in Table S2 in the Supplementary Material.

Overall, the proposed estimator has a good performance evidenced by the small bias and greater-than-one ERE, which is the ratio between the empirical variance of the maximum likelihood estimator using the main study data alone and the empirical variance of the proposed estimator. The empirical coverage probabilities of the 95% confidence intervals are all close to the

TABLE 1 Simulation results for Example 1. All subjects have auxiliary data ($\rho=100 \%$)

			$\mathrm{n}=300$						$\mathrm{n}=600$					
			Bias	ESE	ASE	ERE	95\%СР	IIB	Bias	ESE	ASE	ERE	95\%СР	IIB
S2	$\tilde{\rho}=0.4$	β_{0}	2	24	24	1.01	94.8	0.222	1	17	17	1.02	94.5	0.167
	$r_{0}=0.5$	β_{1}	-2	28	28	1.04	95.8		-2	19	20	1.03	96.5	
		β_{2}	-3	17	16	1.01	94.2		-1	12	11	1.02	95.0	
		β_{3}	1	29	29	1.01	94.2		0	21	20	1.03	94.0	
	$\begin{gathered} \tilde{\rho}=0.4 \\ r_{0}=0.9 \end{gathered}$	β_{0}	2	24	24	1.04	95.3	0.479	1	17	17	1.08	95.4	0.420
		β_{1}	-2	27	27	1.14	95.1		-1	19	19	1.12	95.6	
		β_{2}	-3	17	16	1.07	93.5		-1	11	11	1.10	93.8	
		β_{3}	1	28	28	1.06	95.0		0	20	20	1.05	94.9	
	$\begin{gathered} \tilde{\rho}=0.8 \\ r_{0}=0.5 \end{gathered}$	β_{0}	2	24	24	1.00	95.2	0.181	1	17	17	1.04	95.8	0.198
		β_{1}	-2	27	28	1.06	95.7		-2	19	20	1.06	95.9	
		β_{2}	-2	16	16	1.05	94.7		-1	12	11	1.07	94.6	
		β_{3}	1	29	29	1.00	94.3		0	21	20	1.01	93.0	
	$\begin{gathered} \tilde{\rho}=0.8 \\ r_{0}=0.9 \end{gathered}$	β_{0}	2	25	24	1.03	94.5	0.582	2	17	17	1.08	94.4	0.523
		β_{1}	-3	26	26	1.24	94.8		-1	18	18	1.23	95.3	
		β_{2}	-3	16	15	1.18	93.9		-1	11	11	1.18	95.6	
		β_{3}	2	29	29	1.00	94.8		0	20	20	1.01	94.3	
S1	$\begin{gathered} \tilde{\rho}=0.4 \\ r_{0}=0.5 \end{gathered}$	β_{0}	2	25	25	1.00	95	0.042	1	18	17	1.00	94.8	0.042
		β_{1}	-2	29	29	1.00	95.5		-2	20	20	1.01	96.5	
		β_{2}	-2	17	17	1.01	95.1		-1	12	12	1.01	95.4	
		β_{3}	1	30	29	0.99	94.8		0	21	20	1.00	94.1	
	$\begin{gathered} \tilde{\rho}=0.4 \\ r_{0}=0.9 \end{gathered}$	β_{0}	2	25	25	1.00	95.5	0.124	2	17	18	1.02	95.5	0.105
		β_{1}	-2	28	29	1.03	95.6		-1	20	21	1.05	95.5	
		β_{2}	-3	17	16	1.03	94.6		-1	12	12	1.05	94.3	
		β_{3}	1	29	29	0.99	95.5		0	20	21	1.00	95.9	
	$\begin{aligned} & \tilde{\rho}=0.8 \\ & r_{0}=0.5 \end{aligned}$	β_{0}	2	24	25	1.00	95.2	0.114	1	17	17	1.02	96.1	0.099
		β_{1}	-2	28	29	1.03	95.5		-2	20	20	1.04	96.4	
		β_{2}	-2	16	16	1.04	94.7		-1	12	12	1.06	95	
		β_{3}	1	29	29	0.99	94.4		0	21	20	1.00	93.9	
	$\begin{gathered} \tilde{\rho}=0.8 \\ r_{0}=0.9 \end{gathered}$	β_{0}	2	25	24	1.03	95.9	0.312	2	17	17	1.03	94.8	0.294
		β_{1}	-2	28	27	1.14	95.2		-1	19	19	1.13	95.3	
		β_{2}	-3	16	16	1.13	94.1		-1	11	11	1.13	95.4	
		β_{3}	1	29	29	0.99	95.1		0	20	20	1.00	94.5	
S3	$\begin{gathered} \hline \tilde{\rho}=0.4 \\ r_{0}=0.5 \end{gathered}$	β_{0}	2	24	24	1.00	94.7	0.16	1	17	17	1.01	95.1	0.120
		β_{1}	-2	28	28	1.03	95.9		-2	20	20	1.02	96.1	
		β_{2}	-3	17	16	1.00	94.8		-1	12	12	1.02	95	
		β_{3}	1	30	29	0.99	94.2		0	21	20	1.00	93.8	
	$\begin{gathered} \tilde{\rho}=0.4 \\ r_{0}=0.9 \end{gathered}$	β_{0}	2	24	24	1.03	95.8	0.332	1	17	17	1.04	95.5	0.285
		β_{1}	-2	27	27	1.13	95.2		-1	19	19	1.10	95.9	
		β_{2}	-3	17	16	1.07	94.3		-1	11	11	1.08	94.1	
		β_{3}	1	30	29	0.98	94.9		0	20	20	0.99	95.6	
	$\tilde{\rho}=0.8$$r_{0}=0.5$	β_{0}	2	24	24	1.00	95	0.200	1	17	17	1.02	95.3	0.154
		β_{1}	-2	27	28	1.05	95.9		-2	20	20	1.04	96.3	
		β_{2}	-2	16	16	1.03	94.4		-1	12	11	1.05	95	
		β_{3}	1	29	29	0.99	94.6		0	21	20	1.01	93.3	
	$\tilde{\rho}=0.8$$r_{0}=0.9$	β_{0}	2	25	24	1.03	95	0.444	2	17	17	1.06	94.6	0.399
		β_{1}	-3	27	27	1.20	95.4		-1	18	19	1.19	95.2	
		β_{2}	-3	16	16	1.13	94.3		-1	11	11	1.14	94.5	
		β_{3}	2	29	29	0.97	94.9		0	20	20	0.99	94.5	

S1, S2, S3: scenarios 1, 2, 3. ESE: empirical standard error. ASE: estimated asymptotic standard error. ERE: empirical relative efficiency, the empirical variance of the maximum likelihood estimator using the main study data alone divided by the empirical variance of the proposed estimator. CP: coverage probability. All values except ERE and IIB are multiplied by 100.
nominal level. There is more efficiency improvement as more auxiliary data become available, i.e. as ρ increases. For all scenarios, as expected, the efficiency improvement increases as the correlation coefficient between the repeated measurements or between the outcome of interest and the repeated measurements increases, reflected by the increased ERE. Also from the ERE, for any given $\tilde{\rho}$ and r_{0}, efficiency improvement in scenario 2 is always higher than that in scenario 1 , showing that adding additional valid estimating equations in $\boldsymbol{h}\left(\boldsymbol{D}_{i}^{a} ; \boldsymbol{\theta}\right)$ further improves the efficiency. This is to be expected, since with a fixed parameter $\boldsymbol{\theta}$, more estimating equations lead to higher efficiency from the estimating equation theory ${ }^{266}$. In scenario 3 where the working model is mis-specified, the proposed estimator has little bias and still has a better efficiency compared to the maximum likelihood estimator based on the main study data alone, showing the flexibility and robustness of our proposed method. We

TABLE 2 Simulation results for Example 2.

			$\mathrm{n}=300$						$\mathrm{n}=600$					
			Bias	ESE	ASE	ERE	95\%CP	IIB	Bias	ESE	ASE	ERE	95\%CP	IIB
S1	$\begin{gathered} \text { prop }=100 \% \\ r_{0}=0.5 \end{gathered}$	β_{1}	1	20	20	1.10	94.6	0.514	1	14	14	1.18	94.2	0.487
		β_{2}	-3	18	17	1.01	93.7		-1	12	12	1.00	95.0	
		β_{3}	-1	26	25	1.30	93.9		-1	18	17	1.38	95.0	
		β_{4}	2	17	16	1.11	93.6		1	11	11	1.16	94.7	
	$\begin{aligned} \text { prop } & =100 \% \\ r_{0} & =0.7 \end{aligned}$	β_{1}	1	19	18	1.24	94.0	0.975	1	13	13	1.37	94.7	0.947
		β_{2}	-3	17	16	1.03	93.8		-1	12	12	1.02	95.0	
		β_{3}	-1	21	21	1.85	93.4		-1	15	15	2.03	96.0	
		β_{4}	2	16	15	1.25	92.9		1	10	10	1.34	95.2	
	$\begin{gathered} \text { prop }=100 \% \\ r_{0}=0.9 \end{gathered}$	β_{1}	1	17	16	1.51	94.4	1.591	1	12	12	1.70	94.7	1.564
		β_{2}	-3	17	16	1.05	93.5		-1	12	11	1.04	95.1	
		β_{3}	-1	14	14	4.21	94.2		-1	9	10	4.95	95.8	
		β_{4}	2	14	13	1.53	93.6		1	9	9	1.63	96.0	
	$\begin{gathered} \text { prop }=50 \% \\ r_{0}=0.5 \end{gathered}$	β_{1}	1	21	20	1.04	94.1	0.275	1	15	14	1.08	94.7	0.248
		β_{2}	-3	18	17	0.99	93.8		-1	12	12	0.99	95.0	
		β_{3}	-1	27	27	1.13	93.9		-1	19	19	1.14	94.4	
		β_{4}	2	17	16	1.04	92.7		1	11	11	1.07	94.4	
	$\begin{gathered} \text { prop }=50 \% \\ r_{0}=0.7 \end{gathered}$	β_{1}	1	20	20	1.09	94.2	0.506	1	14	14	1.15	94.8	0.476
		β_{2}	-3	18	17	1.00	93.8		-1	12	12	1.00	94.8	
		β_{3}	-1	26	25	1.29	94.3		-1	18	17	1.33	94.4	
		β_{4}	2	17	16	1.09	92.9		1	11	11	1.14	94.6	
	$\begin{gathered} \text { prop }=50 \% \\ r_{0}=0.9 \end{gathered}$	β_{1}	1	20	19	1.19	94.2	0.814	1	13	13	1.27	94.9	0.783
		β_{2}	-3	18	16	1.00	94.0		-1	12	12	1.01	94.7	
		β_{3}	-1	23	22	1.59	94.7		0	16	16	1.70	94.4	
		β_{4}	2	16	15	1.20	93.6		1	11	11	1.24	95.0	
S2	$\begin{aligned} \text { prop } & =100 \% \\ r_{0} & =0.5 \end{aligned}$	β_{1}	1	20	20	1.10	94.2	0.477	1	14	14	1.16	94.2	0.451
		β_{2}	-3	18	17	1.01	93.8		-1	12	12	1.00	95.0	
		β_{3}	-1	26	25	1.27	93.5		-1	18	18	1.33	94.6	
		β_{4}	2	17	16	1.08	93.5		1	11	11	1.15	94.8	
	$\begin{aligned} \text { prop } & =100 \% \\ r_{0} & =0.7 \end{aligned}$	β_{1}	1	19	18	1.23	93.8	0.906	-1	13	13	1.33	94.6	0.877
		β_{2}	-3	18	16	1.02	93.7		-1	12	12	1.02	95.1	
		β_{3}	-1	22	21	1.75	94.0		1	15	15	1.87	95.2	
		β_{4}	2	16	15	1.21	93.2		1	10	10	1.31	95.1	
	$\begin{gathered} \text { prop }=100 \% \\ r_{0}=0.9 \end{gathered}$	β_{1}	1	18	17	1.47	94.3	1.477	-1	12	12	1.61	94.7	1.448
		β_{2}	-3	17	16	1.04	93.5		-1	12	11	1.04	95.2	
		β_{3}	-1	15	15	3.52	94.7		1	11	11	3.80	95.7	
		β_{4}	2	15	14	1.44	92.6		1	9	10	1.57	95.7	
	$\begin{gathered} \text { prop }=50 \% \\ r_{0}=0.5 \end{gathered}$	β_{1}	1	21	20	1.03	94.1	0.260	1	15	14	1.07	94.8	0.232
		β_{2}	-3	18	17	0.99	93.5		-1	12	12	1.00	95.0	
		β_{3}	-1	28	27	1.11	93.3		-1	19	19	1.14	94.2	
		β_{4}	2	18	16	1.03	92.9		1	11	11	1.07	94.7	
	$\begin{gathered} \text { prop }=50 \% \\ r_{0}=0.7 \end{gathered}$	β_{1}	1	20	20	1.09	94.1	0.476	1	14	14	1.14	94.8	0.444
		β_{2}	-3	18	17	1.00	93.6		-1	12	12	1.01	94.9	
		β_{3}	-1	26	25	1.26	93.7		-1	18	18	1.31	94.4	
		β_{4}	2	17	16	1.08	93.0		1	11	11	1.13	94.9	
	$\begin{gathered} \text { prop }=50 \% \\ r_{0}=0.9 \end{gathered}$	β_{1}	1	20	19	1.18	94.3	0.763	1	14	13	1.23	94.6	0.728
		β_{2}	-3	18	16	1.00	94.1		-1	12	12	1.01	94.7	
		β_{3}	-1	24	23	1.53	93.5		-1	16	16	1.62	94.6	
		β_{4}	2	16	15	1.17	93.5		1	11	11	1.23	95.0	

S1, S2: scenarios 1 and 2, with correctly specified and mis-specified working model, respectively. ESE: empirical standard error. ASE: estimated asymptotic standard error. ERE: empirical relative efficiency, the empirical variance of the maximum likelihood estimator using the main study data alone divided by the empirical variance of the proposed estimator. CP: coverage probability. All values except ERE and IIB are multiplied by 100 .
also observe that, for all the settings considered, the estimates corresponding to $\tilde{X}_{i 11}$ and $\tilde{X}_{i 21}$, the baseline value of the timedependent covariates $\tilde{\boldsymbol{X}}_{i 1}$ and $\tilde{\boldsymbol{X}}_{i 2}$, have more efficiency gain compared to the estimates corresponding to $\tilde{X}_{i 31}$, the baseline value of the time-independent covariates $\tilde{\boldsymbol{X}}_{i 3}$. More discussion regarding this observation is given in Section 2 in the Supplementary Material. The IIB seems to be a good measure to compare the overall efficiency gain across different scenarios. Note that, under our data generating scheme the correlation coefficient between main outcome and auxiliary outcome can only take values up to around 0.6 , therefore the efficiency gains observed in Table 1 are mild. Substantial efficiency gain could be discovered in real studies or from other simulation setups in Section 3.2 and Section 2 in the Supplementary Material (Table S1 and Table S3).

TABLE 3 Simulation results for auxiliary data with informative missingness

		$\mathrm{n}=300$						$\mathrm{n}=600$					
		Bias	ESE	ASE	ERE	95\%CP	IIB	Bias	ESE	ASE	ERE	95\%CP	IIB
$r_{0}=0.5$	β_{1}	3	20	20	0.99	96	0.202	0	15	14	1.02	95	0.185
	β_{2}	-2	17	17	0.98	95		-1	12	12	1.01	94	
	β_{3}	-2	27	27	1.03	94		0	20	19	1.06	94	
	β_{4}	2	17	16	1.05	95		1	12	12	1.05	95	
$r_{0}=0.7$	β_{1}	3	20	20	1.01	96	0.367	0	15	14	1.06	95	0.349
	β_{2}	-2	17	17	0.99	95		-1	12	12	1.01	94	
	β_{3}	-2	26	26	1.11	94		0	19	18	1.15	94	
	β_{4}	2	16	16	1.10	96		1	11	11	1.10	95	
$r_{0}=0.9$	β_{1}	3	20	19	1.06	95	0.587	0	14	14	1.11	94	0.568
	β_{2}	-2	17	17	0.99	95		-1	12	12	1.02	94	
	β_{3}	-2	25	24	1.25	95		-1	18	17	1.31	94	
	β_{4}	2	16	16	1.17	95		1	11	11	1.17	95	

ESE: empirical standard error. ASE: estimated asymptotic standard error. ERE: empirical relative efficiency, the empirical variance of the maximum likelihood estimator using the main study data alone divided by the empirical variance of the proposed estimator. CP : coverage probability. All values except ERE and IIB are multiplied by 100.

3.2 | Example 2

In this section, we assess the performance of our proposed estimator under the setting in Example 2 where a surrogate auxiliary outcome (cross-sectional) is available to the main trait. There are five covariates in total generated as following: $\tilde{X}_{i 1}$ follows the Uniform distribution on [0, 1]; $\tilde{Z}_{i 1}$ follows Bernoulli distribution with success probability $0.5 ;\left(\tilde{X}_{i 2}, \tilde{Z}_{i 2}\right)^{T}$ follows the bivariate Normal distribution with mean zero, variance one, and correlation coefficient $0.3 ; \tilde{X}_{i 3}$ is the sum of $\tilde{Z}_{i 2}$ and a standard normal random variable with a standardization such that $\tilde{X}_{i 3}$ has mean zero and variance one. With these covariates, the outcome of primary interest is Y_{i} that follows Bernoulli distribution with success probability $p_{i}^{\star}=\left\{1+\exp \left(-\boldsymbol{X}_{i}^{T} \boldsymbol{\beta}\right)\right\}^{-1}$, where $\boldsymbol{\beta}=$ $\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)^{T}=(1,-1,-1,1)^{T}$ and $X_{i}=\left(1, \tilde{X}_{i 2}, \tilde{Z}_{i 1}, \tilde{X}_{i 3}\right)^{T}$. The auxiliary outcome is modeled as $\tilde{Y}_{i}=\tilde{X}_{i}^{T} \theta+\tilde{\epsilon}_{i}$, with $\tilde{\boldsymbol{X}}_{i}=\left(1, \tilde{X}_{i 1}, \tilde{X}_{i 2}\right)^{T}$ and $\theta=(-1,1,1)^{T}$. Here, to generate a correlation between Y_{i} and \tilde{Y}_{i}, we set $\tilde{\epsilon}_{i}=r_{0} Z_{0 i}+\left(1-r_{0}^{2}\right)^{0.5} \epsilon_{i}$, where ϵ_{i} follows standard Normal distribution, and $Z_{0 i}$ is Y_{i} with a standardization to have mean zero and unit variance. The residual $\tilde{\epsilon}_{i}$ then has mean zero and unit variance as well and is associated with Y_{i}, where the degree of association is controlled by $0 \leq r_{0} \leq 1$. In this setup, we consider three values for $r_{0}, 0.5,0.7,0.9$, and adopt (5) as our working estimating functions with redundant variables $\tilde{Z}_{i}=\left(\tilde{Z}_{i 1}, \tilde{Z}_{i 2}\right)^{T}$.

We consider two scenarios, with correctly specified and mis-specified working models for the auxiliary outcome, respectively. In the latter scenario, $\check{X}_{i}=\left(1, \tilde{X}_{i 2}\right)^{T}$ instead of \tilde{X}_{i} is used to construct the working model $\mu_{i}\left(\check{X}_{i} ; \theta\right)$ for the auxiliary outcome \tilde{Y}_{i}. The simulation results based on 1000 Monte Carlo runs are summarized in Table 2 Similar to Section 3.1, our proposed estimator for the main parameters β shows a better performance compared to logistic regression without integrating the auxiliary data. It has smaller standard errors and is robust against mis-specification of the working model. More discussions about the efficiency gain are referred to Section 3.1 in the Supplementary Material.

3.3 | Informative missing in auxiliary data

Section 3.1 and 3.2 evaluates the performance when the mean structure of auxiliary outcomes is mis-specified. Not limited to this, our weighting scheme is also robust to other mis-specification of the working model, such as informative missingness in auxiliary data (Section 22. Note that, though previous simulation setups have already considered partially observed auxiliary data, we implicitly assume that the unobserved auxiliary data are missing completely at random. Thus, this section provides more evaluation to the case in presence of non-ignorable missing auxiliary data.

For illustration, we take the setup from Example 2 and consider the situation where the mean structure is mis-specified, and also the auxiliary outcome is informatively missing. To be specific, we first generate main data with sample size 300 and 600 by following the lines in Section 3.2 Then, we simulate complete auxiliary data, where the auxiliary outcome is modeled as $\tilde{Y}_{i}=\tilde{\boldsymbol{X}}_{i}^{T} \boldsymbol{\theta}+\tilde{\alpha}_{i}+\tilde{\epsilon}_{i}$. Here, $\tilde{\alpha}_{i}$ follows standard Normal distribution, and $\tilde{\boldsymbol{X}}_{i}, \tilde{\epsilon}_{i}$, and $\boldsymbol{\theta}$ are defined the same in Section 3.2 We then simulate observing indicator \tilde{R}_{i}, so that $\tilde{R}_{i}=1$ to keep subject i's auxiliary data and $\tilde{R}_{i}=0$, otherwise. The success probability for \tilde{R}_{i} is given as $\left\{1+\exp \left(-\boldsymbol{H}_{i}^{T} \tilde{\boldsymbol{\theta}}\right)\right\}^{-1}$, where $\boldsymbol{H}_{i}=\left(\check{\boldsymbol{X}}_{i}^{T}, \tilde{\alpha}_{i}\right)^{T}, \tilde{\boldsymbol{\theta}}=(1,1,0.5)^{T}$, and $\check{\boldsymbol{X}}_{i}$ are already defined in Section 3.2 By
incorporating $\tilde{\alpha}_{i}$ into both models, \tilde{R}_{i} and \tilde{Y}_{i} are not independent given covariates \tilde{X}_{i}, leading to non-ignorable missingness 3031 . To evaluate our proposed estimation, we only take auxiliary data with $R_{i}=1$ to construct the working model, of which the mean structure is mis-specified with covariates $\check{\boldsymbol{X}}_{i}$. Thus, both informative missing data issue and mis-specification of the mean structure are present for the auxiliary outcome. Table 3 summarizes the results under 1000 Monte Carlo runs under two sample sizes and three r_{0} values (defined in Section 3.2. It is seen that, even under the worst situation with both missing data problem and mean structure mis-specification, our weighting scheme leads to little bias from the estimation for main parameters β and still improve estimation precision in comparison to the estimation without the auxiliary data.

4 | DATA APPLICATION

Hypertension impacts over $1 / 3$ of the U.S. adults and is a major risk factor for cardiovascular disease and stroke, one of the top causes of death in the U.S. and worldwide. The Atherosclerosis Risks in Communities study, beginning in 1987, is a prospective epidemiological study conducted among approximately 16,000 middle-aged adults from four U.S. communities. The objective of the study is to investigate the distribution and causes of atherosclerosis and its clinical outcomes, as well as other cardiovascular risk factors. In this application, we are particularly interested in detecting baseline risk factors for the development of essential hypertension. Our analysis focuses on the subjects who did not have hypertension at baseline and who were not taking antihypertensive medications within the two weeks prior to the baseline. The outcome of primary interest is the occurrence of hypertension (binary-scale) during the follow-up (i.e., systolic blood pressure $\geq 140 \mathrm{~mm} \mathrm{Hg}$ or diastolic blood pressure ≥ 90 mm Hg). To further narrow down the focus, we select white males sampled from center \boldsymbol{B}. The potential risk factors of interest include baseline measurements of body mass index ($\mathrm{kg} / \mathrm{m} 2$), current alcohol drinking status ($1=\mathrm{Yes}, 0=\mathrm{No}$), current cigarette smoking status $(1=$ Yes, $0=\mathrm{No}$), age (years), and hemoglobin (g / dL). By removing a small portion of subjects with missing values, the main data set we use has 1143 subjects.

There are quite a few variables with repeated measurements that could be considered as a candidate auxiliary outcome, including the systolic blood pressure, the diastolic blood pressure, the glucose, etc.. Among them, the systolic blood pressure and the diastolic blood pressure are the most informative because that is how hypertension is defined. Noting that only 2.96% subjects in the data have diastolic blood pressure ≥ 90 while 17.6% subjects have systolic blood pressure ≥ 140. Thus, we take the systolic blood pressure as the auxiliary outcome in this application. We have also computed the IIB for different variables, and using the systolic blood pressure measurements as the auxiliary outcome leads to substantially higher IIB than the others.

The systolic blood pressure is repeatedly measured for four visits in this study. To borrow the auxiliary information, we take the estimating functions in (4) with the basis matrices $\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{V}_{3}$, and \boldsymbol{V}_{4} used in Section 3 . Such a choice of basis matrices is based on the highest $I I B$ compared to other three cases that use $\boldsymbol{V}_{1} \& \boldsymbol{V}_{2}, \boldsymbol{V}_{1} \& \boldsymbol{V}_{3} \& \boldsymbol{V}_{4}$, and $\boldsymbol{V}_{2} \& \boldsymbol{V}_{3} \& \boldsymbol{V}_{4}$, respectively. The covariates used in the working model include body mass index, alcohol drinking status, cigarette smoking status, hemoglobin, usage of antihypertensive medication ($1=$ Yes, $0=\mathrm{No}$), and age at each visit. Since some study subjects did not complete four visits, we consider two ways of using the auxiliary data. The first way uses all available repeated measurements from all subjects, and the second uses data only from those subjects with all four repeated measurements. For the second way about $\rho=76 \%$ of the study subjects contribute auxiliary data. Both ways are valid since we just need to specify a working model for the auxiliary data, and mis-specification of the constructed working model will lead to unbiased estimation for the main analysis (referred to Section 2 and Section 3.

The results are summarized in Table 4 . When using all available repeated measurements from all subjects, a better efficiency is observed for estimates for the drinking and cigarette smoking effects, based on a larger relative variance, while the estimates corresponding to the intercept, BMI, age, and hemoglobin are less efficient, compared to those when using only the subjects with complete four repeated measurements. In addition, using partial the subjects with all four repeated measurements leads to a higher IIB. Thus, when the auxiliary data have missing values, using more subjects with incomplete observations may not necessarily lead to a better estimation. Table 5 summarizes the results when using only the subjects with all four repeated measurements. Compared to the maximum likelihood estimator using the main data alone, the proposed method leads to estimates with smaller variances after incorporating the information from the auxiliary data. The maximum likelihood method only detects the significance of baseline age, whereas our method also detects the marginal significance of baseline body mass index on the development of hypertension. Note that in this application, most subjects have records of the occurrence of hypertension during

TABLE 4 Data analysis results for the Atherosclerosis Risks in Communities study based on different auxiliary data sets

	Data F (IIB: 1.09)			Date S (IIB: 1.26)	
	Estimate	Relative Variance		Estimate	Relative Variance
Intercept	-6.2934	1.08		-7.6346	1.17
BMI	0.0054	1.11		0.0352	1.24
DRNKR	0.1633	1.27		0.2350	1.19
CIGT	0.0361	1.18		0.0019	1.13
AGE	0.1036	1.08		0.1031	1.12
Hemoglobin	-0.0847	1.14		-0.0504	1.19

Data F: auxiliary data including all subjects. Data S: auxiliary data including the subjects with four observations. BMI: body mass index. DRNKR: current alcohol drinking status. CIGT: current cigarette smoking status. Relative variance: variance of the maximum likelihood estimate divided by that of the proposed estimate. .

TABLE 5 Data analysis results for the Atherosclerosis Risks in Communities study using subjects with all four repeated measurements as the auxiliary data set

	Estimate	SE	Relative variance	Odds ratio	Lower limit	Upper limit	P-value	P-value MLE
Intercept	-7.6346	1.4169	1.17	0.000	0.000	0.008	0.000	0.001
BMI	0.0352	0.0200	1.24	1.036	0.996	1.077	0.078	0.387
DRNKR	0.2350	0.1505	1.19	1.265	0.942	1.699	0.118	0.357
CIGT	0.0019	0.1725	1.13	1.002	0.715	1.405	0.991	0.724
AGE	0.1031	0.0134	1.12	1.109	1.080	1.138	0.000	0.000
Hemoglobin	-0.0504	0.0664	1.19	0.951	0.835	1.083	0.448	0.672

BMI: body mass index. DRNKR: current alcohol drinking status. CIGT: current cigarette smoking status. SE: estimated standard error. Relative variance: variance of the maximum likelihood estimate divided by that of the proposed estimate. Lower limit and upper limit: lower bound and upper bound of the 95% confidence interval for the odds ratio.
the study as the main outcome. Thus, taking complete data for main analysis will not be improper. However, our proposed estimation can easily address missing data issue occurred in the main analysis. Discussions and extensions are referred to Section 5 and Section 3.2 in the Supplementary Material.

5 | DISCUSSION

In the big data era, it is of tremendous interest to have methods that can incorporate auxiliary information to enhance statistical analysis. This paper considers the case where auxiliary data are collected from the same study subjects. We proposed an effective estimation procedure to borrow information from the auxiliary data, which can be completely different from the trait of primary interest. The auxiliary information may substantially improve the estimation efficiency in the main analysis. Note that in theory, we can reformulate (2) and 3) by introducing an indicator of the availability of auxiliary data, which leads to an alternative equivalent formulation of the proposed estimation procedure. Please refer to Section 1.3 in the Supplementary Material for more details. In addition, we provided an index for information borrowing to assess the performance when comparing different working models for the auxiliary data. The magnitude of efficiency gain by borrowing information from auxiliary data depends on the number of subjects that have auxiliary data, the strength of association between the main outcome and the auxiliary outcome, and the specification of the working model for the auxiliary data, among other things.

Some existing methods may be applied to the setting considered in this article after some nontrivial modifications. One such method is the joint modeling approach, which was originally proposed to incorporate the longitudinal information to survival analysis via shared random effects ${ }^{32]}$. In the setting we considered, a shared random effect to link the main outcome and the
auxiliary outcome may be used. However, most joint modeling methods are limited to certain parametric forms, which may not be applicable to model the data we generated in Section 3 Moreover, when the main and auxiliary data are jointly modeled, the mis-specification of a working model for the auxiliary data can lead to inconsistent estimation in the main model. In future research, we will study how to modify and apply some existing methods to our setting and how they compare to our method.

Many extensions could be easily done based on this paper. One direct extension is to address missing data problem in the main analysis. In presence of high missingness, our method can be easily adjusted by adopting some well-known scheme, such as inverse probability weight ${ }^{313334}$, into the estimating function $\boldsymbol{g}\left(\boldsymbol{D}_{i}^{u} ; \boldsymbol{\beta}\right)$. More details about this extension is provided in Section 3.2 in the Supplementary Material. Moreover, a generalization of the proposed method to other data types, such as survival data, is of great interest. Borrowing information from possibly multiple auxiliary outcomes is another important research problem. We will investigate such generalizations in our future work.

References

1. Imbens GW, Lancaster T. Combining micro and macro data in microeconometric models. Rev Econ Stud 1994; 61(4): 655-680.
2. Chen YH, Chen H. A unified approach to regression analysis under double-sampling designs. J R Stat Soc Series B Stat Methodol 2000; 62(3): 449-460.
3. Qin J. Miscellanea. Combining parametric and empirical likelihoods. Biometrika 2000; 87(2): 484-490.
4. Glynn AN, Quinn KM. An introduction to the augmented inverse propensity weighted estimator. Polit Anal 2010; 18(1): 36-56.
5. Lumley T, Shaw PA, Dai JY. Connections between survey calibration estimators and semiparametric models for incomplete data. Int Stat Rev 2011; 79(2): 200-220.
6. Tang CY, Leng C. Empirical likelihood and quantile regression in longitudinal data analysis. Biometrika 2011; 98(4): 1001-1006.
7. Qin J, Zhang H, Li P, Albanes D, Yu K. Using covariate-specific disease prevalence information to increase the power of case-control studies. Biometrika 2015; 102(1): 169-180.
8. Chatterjee N, Chen YH, Maas P, Carroll RJ. Constrained maximum likelihood estimation for model calibration using summary-level information from external big data sources. J Am Stat Assoc 2016; 111(513): 107-117.
9. Cheng W, Taylor JM, Gu T, Tomlins SA, Mukherjee B. Informing a risk prediction model for binary outcomes with external coefficient information. J R Stat Soc Ser C Appl Stat 2019; 68(1): 121-139.
10. Han P, Lawless JF. Empirical likelihood estimation using auxiliary summary information with different covariate distributions. Stat Sin 2019; 29: 1321-1342.
11. Yang S, Ding P. Combining multiple observational data sources to estimate causal effects. J Am Stat Assoc 2019(justaccepted): 1-46.
12. Huang CY, Qin J, Tsai HT. Efficient estimation of the Cox model with auxiliary subgroup survival information. J Am Stat Assoc 2016; 111(514): 787-799.
13. Gu T, Taylor JM, Cheng W, Mukherjee B. Synthetic data method to incorporate external information into a current study. Can J Stat 2019; 47(4): 580-603.
14. Fried LP, Borhani NO, Enright P, et al. The cardiovascular health study: design and rationale. Ann Epidemiol 1991; 1(3): 263-276.
15. Newman AB, Sachs MC, Arnold AM, et al. Total and cause-specific mortality in the cardiovascular health study. J Gerontol A Biol Sci Med Sci 2009; 64(12): 1251-1261.
16. Wilson KM, Kasperzyk JL, Rider JR, et al. Coffee consumption and prostate cancer risk and progression in the Health Professionals Follow-up Study. JNCI 2011; 103(11): 876-884.
17. Investigators A. The atherosclerosis risk in communit (ARIC) study: Design and objectwes. Am J Epidemiol 1989; 129(4): 687-702.
18. González HM, Tarraf W, Harrison K, et al. Midlife cardiovascular health and 20-year cognitive decline: Atherosclerosis Risk in Communities Study results. Alzheimers Dement 2018; 14(5): 579-589.
19. Qin J, Lawless J. Empirical likelihood and general estimating equations. Ann Stat 1994: 300-325.
20. Qin J, Shao J, Zhang B. Efficient and doubly robust imputation for covariate-dependent missing responses. J Am Stat Assoc 2008; 103(482): 797-810.
21. Zhang B. Empirical likelihood in causal inference. Econom Rev 2016; 35(2): 201-231.
22. Han P, Wang L. Estimation with missing data: beyond double robustness. Biometrika 2013; 100(2): 417-430.
23. Han P. Multiply robust estimation in regression analysis with missing data. J Am Stat Assoc 2014; 109(507): 1159-1173.
24. Han P. Combining inverse probability weighting and multiple imputation to improve robustness of estimation. Scand Stat Theory Appl 2016; 43(1): 246-260.
25. Chan KCG, Yam SCP, Zhang Z. Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting. J R Stat Soc Series B Stat Methodol 2016; 78(3): 673.
26. Newey WK, McFadden D. Large sample estimation and hypothesis testing. Handbook of econometrics 1994; 4: 2111-2245.
27. Qu A, Lindsay BG, Li B. Improving generalised estimating equations using quadratic inference functions. Biometrika 2000; 87(4): 823-836.
28. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73(1): 13-22.
29. Gouras GK, Olsson TT, Hansson O. β-Amyloid peptides and amyloid plaques in Alzheimera's disease. Neurotherapeutics 2015; 12(1): 3-11.
30. Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J Am Stat Assoc 1995; 90(429): 106-121.
31. Enders CK. Applied missing data analysis. Guilford press . 2010.
32. Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Stat Sin 2004: 809-834.
33. Chen C, Shen B, Zhang L, Xue Y, Wang M. Empirical-likelihood-based criteria for model selection on marginal analysis of longitudinal data with dropout missingness. Biometrics 2019; 75(3): 950-965.
34. Chen C, Shen B, Liu A, Wu R, Wang M. A multiple robust propensity score method for longitudinal analysis with intermittent missing data. Biometrics 2020.

Author contributions

All authors have made important contributions and have approved this work.

Financial disclosure

None reported.

Conflict of interest

The authors declare no potential conflict of interests.

Data Availability Statement

The ARIC study data is managed by the ARIC study Data Coordinating Center and available on the website. The publicly available data used in this manuscript are available from the authors upon request.

Response Letter to the Editor

Thank you very much for the careful and detailed review of our paper. We have dealt with the questions from the associate editor and reviewers. This is very helpful for improving the submitted version. The comments from the associate editor and two reviewers lead to the following major changes of the paper:

- We have added regularity conditions as well as details of the algebra to make the proof more clear in the Supplementary Material.
- We have conducted more numerical evaluations to validate our method.
- We have compared the proposed method with potential alternatives.
- We have discussed an alternative equivalent formulation of our proposed estimation procedure in the Supplementary Material.
- We have examined our writings to avoid grammar mistakes or typos. All changes are marked red in the main manuscript and the Supplementary Material.

Here, we provide you with point-by-point replies to the concerns and comments from the associate editor and two reviewers:

1 Responses to the Comments from the Associate Editor

(1) The author propose an estimator to incorporate information on auxiliary data by re-weighting the standard estimating equations in the main analysis. The method is interesting. Answer: We thank the associate editor for the supportive comment.
(2) But both referees consider the manuscript needs important improvements to clarify some parts and compare the methods with possible alternative approaches. All these suggestions should be carefully addressed.

Answer: Thank you very much for the careful and detailed review of our paper. We have dealt with the questions and comments from two referees. This is very helpful for improving the submitted version. In what follows, we provide point-by-point replies to the comments from two reviewers.

2 Responses to the Comments from Reviewer 1

(1) In this manuscript, the authors have proposed to utilize auxiliary data to get an enhanced inference in the main data analysis. In statistical literature, this is a timely research since the collection of data has become much easier due to the advance of technology. It seems to me the main results are solid.

Answer: We thank the reviewer for the supportive comment.
(2) In equations (1)-(3) in section 2 , if one uses $R=1$ or 0 to be the indicator of the availability of
auxiliary data, is it possible to unify the notation $E\left[R h\left(D^{a}, \theta\right)\right]=0$. Nothing is wrong in the current approach. Just curious whether this is feasible.

Answer: Thanks for your comments. Indeed, what you suggest here is numerically equivalent to what we present in the paper, given that the first m_{1} subjects in the study have auxiliary data, and the rest subjects have no auxiliary records. To see this, let us consider the following re-weighting scheme

$$
\begin{equation*}
\sum_{i=1}^{n} \hat{p}_{i}^{*} g\left(D_{i}^{u} ; \beta\right)=0, \tag{1}
\end{equation*}
$$

where the non-negative weights \hat{p}_{i}^{*} are obtained by maximizing $\prod_{i=1}^{n} p_{i}^{*}$ under the constraints

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}^{*}=1, \sum_{i=1}^{n} p_{i}^{*} R_{i} h\left(D_{i}^{a} ; \theta\right)=0 \tag{2}
\end{equation*}
$$

Notice that the estimated weights from (2) are $\hat{p}_{i}^{*}=n^{-1} /\left\{1+\hat{\lambda}^{T} R_{i} h\left(D_{i}^{a} ; \hat{\theta}\right)\right\}$ by applying Lagrange multiplier technique (Qin and Lawless, 1994), which equals $1 / n$ for $i=m_{1}+1, \ldots, n$. The constrains in (2) then become $\sum_{i=1}^{m_{1}} p_{i}^{*}=m_{1} / n$ and $\sum_{i=1}^{m_{1}} p_{i}^{*} h\left(D_{i}^{a} ; \theta\right)=\mathbf{0}$, and the estimating equation in (1) becomes $\sum_{i=1}^{m_{1}} \hat{p}_{i}^{*} g\left(D_{i}^{u} ; \boldsymbol{\beta}\right)+\sum_{i=m_{1}+1}^{n}(1 / n) g\left(D_{i}^{u} ; \beta\right)=0$. Thus, (1) and (2) are reduced to (2) and (3) from the main manuscript by noting the fact that $\hat{p}_{i}^{*}=\left(m_{1} / n\right) \hat{p}_{i}$, where \hat{p}_{i} are the estimated weights solving (3) from the main manuscript. To address this comment, we discussed and added the above equivalent formulation of our method to Section 5 in the main manuscript and Section 1.3 in the Supplementary Material.
(3) Presumably, one may also use the following approach. For fixed β and θ, one may maximize $\prod_{i=1}^{n} p_{i}$ subject to the constraints $\sum_{i=1}^{n} p_{i}=1, p_{i} \geqslant 0$, and $\sum_{i=1}^{n} p_{i} g\left(D_{i}^{u}, \beta\right)=0, \sum_{i=1}^{n} p_{i} R_{i} h\left(D_{i}^{a}, \theta\right)=$
0. My question is whether this approach is asymptotically equivalent to the one discussed in this manuscript?

Answer: Thanks for your question. Two estimators are asymptotically equivalent. To see this (in sketch), we apply the results from Qin and Lawless (1994) and introduce two Lagrange multipliers λ_{1} and λ_{2} corresponding to above two moment constrains. It is easy to check that $\hat{\lambda}_{1}$ and $\hat{\lambda}_{2}$ are the solutions to the following equations Qin and Lawless, 1994)

$$
\begin{align*}
& Q_{1 n}=\frac{1}{n} \sum_{i=1}^{n} \frac{g\left(D_{i}^{u} ; \beta\right)}{1+\lambda_{1}^{T} g\left(D_{i}^{u} ; \beta\right)+\lambda_{2}^{T} R_{i} h\left(D_{i}^{a} ; \theta\right)}=0 \\
& Q_{2 n}=\frac{1}{n} \sum_{i=1}^{n} \frac{R_{i} h\left(D_{i}^{a} ; \theta\right)}{1+\lambda_{1}^{T} g\left(D_{i}^{u} ; \beta\right)+\lambda_{2}^{T} R_{i} h\left(D_{i}^{a} ; \theta\right)}=0 \tag{3}
\end{align*}
$$

and $\hat{\beta}$ and $\hat{\theta}$ are the solutions to

$$
\begin{align*}
G_{1 n} & =\frac{1}{n} \sum_{i=1}^{n} \frac{\left(\partial g\left(D_{i}^{u} ; \beta\right) / \partial \beta^{T}\right)^{T} \lambda_{1}}{1+\lambda_{1}^{T} g\left(D_{i}^{u} ; \beta\right)+\lambda_{2}^{T} R_{i} h\left(D_{i}^{a} ; \theta\right)}=0 \\
G_{2 n} & =\frac{1}{n} \sum_{i=1}^{n} \frac{\left(\partial R_{i} h\left(D_{i}^{a} ; \theta\right) / \partial \theta^{T}\right)^{T} \lambda_{2}}{1+\lambda_{1}^{T} g\left(D_{i}^{u} ; \beta\right)+\lambda_{2}^{T} R_{i} h\left(D_{i}^{a} ; \theta\right)}=0 . \tag{4}
\end{align*}
$$

By applying Taylor expansion to (3) and (4) at $\beta_{0}, \theta_{*}, \lambda_{1}=0$, and $\lambda_{2}=0$, we have

$$
\begin{aligned}
& 0=Q_{1 n}+\frac{\partial Q_{1 n}}{\partial \beta^{T}}\left(\hat{\beta}-\beta_{0}\right)+\frac{\partial Q_{1 n}}{\partial \lambda_{1}^{T}} \hat{\lambda}_{1}+\frac{\partial Q_{1 n}}{\partial \lambda_{2}^{T}} \hat{\lambda}_{2}+o_{p}\left(n^{-1 / 2}\right) \\
& 0=Q_{2 n}+\frac{\partial Q_{2 n}}{\partial \theta^{T}}\left(\hat{\theta}-\theta_{*}\right)+\frac{\partial Q_{2 n}}{\partial \lambda_{1}^{T}} \hat{\lambda}_{1}+\frac{\partial Q_{2 n}}{\partial \lambda_{2}^{T}} \hat{\lambda}_{2}+o_{p}\left(n^{-1 / 2}\right) \\
& 0=G_{1 n}+\frac{\partial G_{1 n}}{\partial \lambda_{1}^{T}} \hat{\lambda}_{1}+\frac{\partial G_{1 n}}{\partial \lambda_{2}^{T}} \hat{\lambda}_{2}+o_{p}\left(n^{-1 / 2}\right) \\
& 0=G_{2 n}+\frac{\partial G_{2 n}}{\partial \lambda_{1}^{T}} \hat{\lambda}_{1}+\frac{\partial G_{2 n}}{\partial \lambda_{2}^{T}} \hat{\lambda}_{2}+o_{p}\left(n^{-1 / 2}\right)
\end{aligned}
$$

which hold by the fact that $\partial Q_{1 n} / \partial \theta^{T}, \partial Q_{2 n} / \partial \beta^{T}, \partial G_{1 n} / \partial \beta^{T}, \partial G_{1 n} / \partial \theta^{T}, \partial G_{2 n} / \partial \beta^{T}$, and $\partial G_{2 n} / \partial \theta^{T}$ are all zero matrices evaluated at $\beta_{0}, \theta_{*}, \lambda_{1}=0$, and $\lambda_{2}=0$. By solving the
above system, we can obtain the asymptotic expansion of main parameter estimates

$$
\begin{equation*}
n^{1 / 2}\left(\hat{\beta}-\beta_{0}\right)=-\frac{\partial Q_{1 n}}{\partial \beta^{T}}\left(n^{1 / 2} Q_{1 n}+n^{1 / 2} B D^{-1} Z\right)+o_{p}(1) \tag{5}
\end{equation*}
$$

where $B=\left(\partial Q_{1 n} / \partial \lambda_{2}^{T}, \partial Q_{1 n} / \partial \lambda_{1}^{T}, 0\right), E=\left(-Q_{2 n}^{T},-G_{1 n}^{T},-G_{2 n}^{T}\right)^{T}$, and

$$
D=\left[\begin{array}{ccc}
\frac{\partial Q_{2 n}}{\partial \lambda_{2}^{T}} & \frac{\partial Q_{2 n}}{\partial \lambda_{1}^{T}} & \frac{\partial Q_{2 n}}{\partial \theta^{T}} \\
0 & \frac{\partial G_{1 n}}{\partial \lambda_{1}^{T}} & 0 \\
\frac{\partial G_{2 n}}{\partial \lambda_{2}^{T}} & 0 & 0
\end{array}\right]
$$

After some algebra, the term $B D^{-1} Z$ eventually becomes $-(1 / n) \Lambda S Q_{m_{1}}\left(\theta_{*}\right)$ defined in (2) from the Supplementary Material, given that the first m_{1} subjects in the study have auxiliary data, and the rest subjects have no auxiliary records. Thus, the expression in (5) is equal to the asymptotic expansion of the estimator $\hat{\beta}_{E N}$ in the main manuscript.

Compared to (3) and (4) above, our proposed estimation scheme (2) and (3) from the main manuscript requires lower dimension of functions and tuning parameters in the empirical likelihood framework and thus would be numerically more stable and require less computation.
(4) Example 1 on page 3 . Essentially the auxiliary information is given by $E\left(\tilde{Y}_{i}-\mu\left(\tilde{X}_{i}, \theta\right)\right)=0$. By using different "working variances" $V_{i}, i=1,2, \ldots, \tau$, the authors have obtained many estimating equations for θ. I am wondering whether there is a co-linearity problem?

Answer: Thanks for your comments. The co-linearity may occur if two used basis matrices are very similar to each other. Thus, we provide some useful tips for users in practice. First, do not use too many basis matrices. By doing so would help avoid potential co-linearity issue and
substantially reduce the computation load; second, use more distinct basis matrices. The ones we used in the simulation as well as in the real data application are considerably different from each other and commonly adopted in the existing literature (Qu et al., 2000; Tang and Leng, 2011). We have also added these comments into the main manuscript. Please refer to the page 3.
(5) The basic requirement is the dimension q of estimating equations h should be strictly larger than the dimension of unknown parameters r in θ. using the same logic in the manuscript, for any scalar estimating equation $E[h(\tilde{Y}, \tilde{X}, \theta) \mid \tilde{X}]=0$, we can construct infinite many estimating functions $\psi_{i}(\tilde{X}) h(\tilde{Y}, \tilde{X}, \theta), i=1,2, \ldots$, where $\psi_{i}(\tilde{X})$ are any function of \tilde{X}. My question is whether this approach really carries information for β ?

Answer: Thanks for your comments. Theoretically, it does carry information about β, since (i) the conditional moment equation is for the same true distribution and (ii) the unconditional moment equations are based on the conditional equations. Different $\phi_{i}(\tilde{X})$ may represent different amount of information. When $\phi_{i}(\tilde{X})$ is a series of basis functions (power functions, Fourier series, etc) and the dimension increases, the information in the unconditional equations increases to the information in the conditional equations (Donald et al., 2003). Thus, by doing so, the resulting weights will provide more efficient estimation of auxiliary data distribution (Qin and Lawless, 1994), which eventually leads to more efficient estimation for main parameters. However, in practice, users need to carefully select $\phi_{i}(\tilde{X})$ function in finite dimension. In the manuscript, we provide two workable functions from two illustrating examples, which
have been numerically shown to deliver substantial information from auxiliary data to the main data analysis (Table 1,2,and 3 in the main manuscript and Table S1 and S3 in the Supplementary Material). More numerical evaluations can be implemented to check the utility of other function forms, which merits future work.
(6) Pages 4 and 5. Suppose the auxiliary information can be summarized as a series of estimating equations. Is there anyway to select the most useful information? Some auxiliary information may have insignificant contribution in terms of estimating β but may cause numerical problem. Answer: Thanks for your comments. We sincerely agree with the reviewer that some auxiliary information may have insignificant contribution to estimating main parameters. Thus, it is desired to have one evaluation criterion to help identify the useful information. In this paper, we have proposed an index for assessing the performance of information borrowing (IIB). IIB in eq(7) from the main manuscript quantifies the overall capacity of information delivering by incorporating the auxiliary data. The larger value implies more efficiency gain from auxiliary data to the main analysis. IIB could be an option to help select the useful information, which is also validated in our simulation studies from the main manuscript. However, it is very challenging to determine the optimal schema for delivering the information, which requires substantial effort and merits future work.

3 Responses to the Comments from Reviewer 2

(1) This paper introduces an estimator that incorporates information on auxiliary data by reweighting the standard estimating equations in the main analysis. The weights are determined from a set of equations associated with a working model fit to the auxiliary data. The idea is interesting, and the reviewer likes it.

Answer: We thank the reviewer for the supportive comment.
(2) Page 3: Lines:33-37-In eqn(4), it is unclear how the equations are over-identified. It will be helpful if the authors can provide an intuitive idea how exactly is the extra information coming from, after estimating $\hat{\theta}$. Does the parameter $\hat{\theta}$ include other parameters such as variance parameters of error terms and the parameter associated with the correlation matrix of the repeated measurements? If yes, please specify it.

Answer: Thanks for your question. The over-identified estimating function means that the dimension of the function should be larger than the dimension of the parameters indexed in the function. For example, in equation (4) from the main manuscript, the length of the parameter vector θ is r, whereas the length of estimating function $h\left(D_{i}^{a} ; \theta\right)$ is $q=r \times \tau>r$, given $\tau \geqslant 2$. The over-identification is due to the usage of multiple basis matrices V_{j}, which are related to working correlation structures for repeated measurements and are commonly adopted in the longitudinal data analysis from the existing literature (Qu et al., 2000; Tang and Leng, 2011). Intuitively, the extra information for estimating main parameters β, after estimating θ, is coming from incorporating estimated empirical likelihood \hat{p}_{i} for auxiliary data into the main estimating
equations. These weights will be totally non-informative (equal to $1 / n$) when the dimension of estimating function $h\left(D_{i}^{a} ; \theta\right)$ is equal to the length of the nuisance parameter vector θ, whereas it will become informative when the function is over-identified. For instance, by using more unconditional moments based on the conditional mean zero model, the resulting weights lead to more efficient estimation of auxiliary data distribution (Qin and Lawless, 1994). Thus, taking the advantage of informative empirical likelihood will lead to more efficient estimation for main parameters by re-weighting the main estimating equations. Note that the parameter θ in (4) from the main manuscript include only regression coefficients, not the second moment parameters. We have also added these explanations to the main manuscript. Please refer to the page 3.
(3) In the data application, what are the covariates involved in the working model? How does the performance of the estimator compare if standard GEE longitudinal analysis was done using the outcome vector as repeated measurements and the primary outcome?

Answer: Thanks for your question. Time-dependent covariates over four visits, including body mass index, current alcohol drinking status, current cigarette smoking status, usage of antihypertensive medication, age, and hemoglobin are used in the working model.

The standard GEE as well as existing packages cannot be directly applied to this scenario with four difficulties: first, the main outcome is in cross-sectional and binary scale, whereas the auxiliary outcome is in a longitudinal format and continuous scale; second, the main outcome is complete but auxiliary data are partially observed; third, the covariates and risk effects are
not the same in the main model and the working model; fourth, there are numbers of nuisance parameters in GEE that should be estimated, such as correlation coefficients among binary and continuous responses, which is not trivial. Note that, in GEE framework, an efficient estimator will be guaranteed only if the working correlation structure for repeated measurements and main outcome is correctly specified, which is also non-trivial to achieve in practice. On the other hand, our proposed estimation procedure can easily handle all the issues listed above with light computational load. Even if the working model for auxiliary data is mis-specified, the resulting estimator is shown to be at least as efficient as the estimator without considering auxiliary data and be consistent to the true one.
(4) In section 3.3, can the covariates on which the selection depends incorporate time dependent covariates?

Answer: Thanks for your question. In general, time-dependent covariates are allowed in our framework, which is numerically assessed in Section 3.1. In Section 3.3, we consider the case where the available auxiliary outcome is cross-sectional. Thus, the covariates used in this section is time-independent. More numerical evaluations can be done by considering more complicated data structure, which merits future work.
(5) Page 3: Line:39-what is τ ?

Answer: Thanks for your question. τ is the total number of basis matrices V_{j} used to construct the over-identified estimating functions $h\left(D^{a} ; \theta\right)$. In section 3.1, there are two basis matrices $(\tau=2)$ used in scenario 1 and four basis matrices $(\tau=4)$ for scenario 2 and 3. In real
data application, we choose four basis matrices $(\tau=4)$ as it shown better performance in the simulation. We also add more description about τ in the main manuscript. Please refer to the page 3.
(6) In Table 1 with 100% auxiliary information and the corresponding table in supplementary table with 50% auxiliary information, why the efficiency gain is similar in S 2 for the parameter β_{3} when $\tilde{\rho}=0.8$ and $r_{0}=0.9$?

Answer: Thanks for your question. The main reason for this phenomenon is that there is little efficiency gain for the parameter β_{3} in the setup of S 2 when $\tilde{\rho}=0.8$ and $r_{0}=0.9$. Thus, the relative efficiency is close to one in both tables since our proposed method will lead to the estimator at least as efficient as the estimator without considering the auxiliary data, regardless of the amount of available auxiliary information.

In practice, the estimation efficiency gain may depend on many factors. One factor is about the type of covariates. In example 1 from the main manuscript, there is more efficiency gain for the estimated parameters if the corresponding covariate is time-dependent, compared to the one (β_{3}) corresponding to a time-independent covariate. However, by selecting proper basis matrices, which is another important factor to affect the performance, it is still possible to substantially increase the estimation efficiency for parameters associated with time-independent covariates. Please refer to Section 2 and Table S3 in the Supplementary Material for more details.
(7) Since the supplementary material should provide detailed proof, it would be great to see what are the regularity conditions specifically for empirical likelihood and generalized method of
moments and how are they verified in this context?
Answer: Thanks for your comments. We agree with the reviewer that it would be good to have corresponding regularity conditions in our context. So, we have added these conditions broadly adopted in empirical likelihood framework (Qin and Lawless, 1994) and generalized method of moment (Newey and McFadden, 1994). We also added some discussion about how these conditions are verified throughout the proof. Please refer to Section 1 in the Supplementary Material.
(8) Supplementary—— Page 14: Lines:26-30; Page 15: Lines 5 and 10- It would be nice to see the details of the algebra.

Answer: Thanks for your comments. We have added details of the algebra to make the proof more clear. Please refer to Section 1.1 and 1.2 in the Supplementary Material.

References

Donald, S. G., G. W. Imbens, and W. K. Newey (2003). Empirical likelihood estimation and consistent tests with conditional moment restrictions. Journal of Econometrics 117(1), 55-93.

Newey, W. K. and D. McFadden (1994). Large sample estimation and hypothesis testing. Handbook of econometrics 4, 2111-2245.

Qin, J. and J. Lawless (1994). Empirical likelihood and general estimating equations. The Annals of Statistics, 300-325.

Qu, A., B. G. Lindsay, and B. Li (2000). Improving generalised estimating equations using quadratic inference functions. Biometrika 87(4), 823-836.

Tang, C. Y. and C. Leng (2011). Empirical likelihood and quantile regression in longitudinal data analysis. Biometrika 98(4), 1001-1006.

[^0]: This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/sim. 9252

