
1. Introduction
The Earth's magnetotail plays a prominent role in the dynamics of the magnetosphere, as a site of temporary 
energy storage and sudden release, involving magnetic reconnection and causing ground disturbances and auroral 
displays. Its different regions are here denoted as follows:

“Near tail” denotes the region earthward of about 25–30 Earth radii (RE) down to geosynchronous orbits, which 
includes the region where, according to standard substorm models, a new reconnection site forms, governing sub-
storm and other activity. This region has been explored most recently by the satellite missions Cluster (Escoubet 
et al., 2001), “Time History of Events and Macroscale Interactions during Substorms” (THEMIS) (Angelopou-
los, 2008), and “Magnetospheric Multiscale” (MMS) (Burch et al., 2016). Earlier observations by “Orbiting Geo-
physical Observatory” (OGO) and Vela satellites in this region, together with ground magnetic observations, have 
laid the basis for the now widely accepted “Near-Earth Neutral Line” model of substorms (Baker et al., 1996; 
Hones, 1977; McPherron et al., 1973), which states that substorm features are closely related to the formation of 
reconnection in this region, associated with earthward and tailward plasma flows, a collapse (“dipolarization”) of 
the inner tail, and the severance of a portion of the plasma sheet and its ejection as a plasmoid. Essential elements 
of this model had already been suggested by Atkinson (1966) and Atkinson (1967).

“Far tail,” “deep tail,” or “distant tail” denotes the region beyond the distance of the Moon, which has been 
explored until recently only by two satellite missions, “International Sun-Earth Explorer”-3 (ISEE-3) (Bame 
et al., 1983; Baker, et al., 1984; Hones, 1977; Slavin et al., 1983; Tsurutani et al., 1984; Tsurutani & von Rosen-
vinge, 1984; Zwickl et al., 1984) and Geotail (Kokubun et al., 1994; Machida et al., 1994; Mukai et al., 1994; 
Nishida, 1994). This region typically includes a “distant neutral line” (Hones, 1977; Baker et al., 1984), which is 
considered to terminate the region of closed field lines, which are connected to Earth at both ends during quiet 
times, and may also be the site of reconnection.

The region in between is termed here “mid tail.” It covers the region of the departing plasmoids (e.g., Galeev, 1979; 
Hones, 1977), potential earthward flows from the distant neutral line (e.g., Kiehas et al., 2018), but may also be 
the site of, presumably reconnection related, local activity (Sergeev et al., 1996). This region is the main region of 
interest in the present investigation, although our results may be pertinent also for the more distant magnetotail. It 
was first explored by Explorer satellites (also labeled “International Monitoring Platform,” IMP) with Explorers 
33 and 35 being the first satellites to establish the tail magnetic geometry out to and beyond the distance of the 
Moon (Behannon, 1968; Mihalov & Sonett, 1968; Ness et al., 1967a, 1967b). Mihalov et al. (1968) established 
the persistence of a magnetic field component normal to the neutral sheet, taking the occasional southward turn-
ing as evidence of reconnection earthward from the satellites. Armstrong and Krimigis (1968) and Fennell (1970) 
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reported Explorer 33 and 35 observations of proton bursts with energies above 0.31 MeV in the tail region out to 
and beyond the Moon's distance. These flows were preferentially, but not always, anti-earthward, mostly aligned 
with the magnetic field, and closely related to auroral bay activity.

Based on IMP-7 observations at ∼35�� distance, Sarris, Krimigis, & Armstrong (1976) identified proton bursts 
with energies above 0.29 MeV (and electron bursts with Ee ≥ 0.22 MeV) in the plasma sheet (as well as in the 
boundary layer and the magnetosheath). The bursts showed anisotropies both toward and away from Earth togeth-
er with a significant dawn-to-dusk component and also an association with magnetic activity. Sarris, Krimigis, 
Iijima, et al. (1976) reported IMP-6 and IMP-7 observations of proton bursts near xSM ≈ −32RE in association with 
a substorm, indicating a nearby source with a location first tailward, then earthward of the satellites.

On the basis of ISEE-3 data, Scholer et al. (1983) found that suprathermal protons with energies above ∼35 keV 
are a persistent feature of the distant tail and Daly et al. (1984), without distinguishing between quiet and dis-
turbed times, found an almost equal occurrence of tailward and earthward streaming energetic ions above 35 keV 
at distances below ∼100 RE but a strong preponderance of tailward streaming beyond. Cowley et al. (1984) also 
reported energetic ions streaming mainly tailward, particularly in boundary layers of the distant plasma sheet. 
ISEE-3 observations in the far tail (Baker, et al., 1984; Hones, 1977; Richardson & Cowley, 1985; Richardson 
et al., 1987; Scholer, Gloeckler, Hovestadt, et al., 1984; Scholer, Gloeckler, Klecker, et al., 1984) provided a de-
tailed description of energetic particle properties associated with plasmoids, showing energy dispersed energetic 
ions streaming tailward along the magnetic field at the boundary of tailward moving plasmoids, while the interior 
was characterized by more broadly distributed, apparently tailward convecting populations. (The ion plasma 
instrument on ISEE-3 was not functioning during the far tail mission).

The conclusions from ISEE-3 observations were confirmed and expanded by ion plasma observations of Geo-
tail (e.g., Håland et al., 1999; Ieda et al., 1998; Machida et al., 2000; Nagai et al., 1994) and the, lunar orbiting, 
Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) 
spacecraft (Angelopoulos, 2011). Runov et al. (2018) conducted a statistical analysis of tailward reconnection 
outflows captured by the ARTEMIS probes. They showed that typical ion energy spectra obtained in the outflows 
are characterized by increased fluxes at energies above 10 keV compared to the ion spectra in the background 
plasma sheet, while the spectral shape was non-Maxwellian with a pronounced high energy tail. Grigorenko 
et al. (2019) studied ion and electron beams observed by the ARTEMIS probes near the plasma sheet boundary 
layer (PSBL). They found no significant differences in characteristics between earthward and tailward ion beams, 
nor between beams observed on open or closed field lines. However, tailward ion beams tended to be shorter and 
more closely related to high absolute values of the AL index, that is, geomagnetic activity.

A few attempts have been made to model the acceleration and fluxes of energetic ions in the mid and distant tail. 
The large extent of the region of interest from the near-Earth reconnection site to the distance of the Moon and 
beyond obviously does not permit a fully self-consistent particle simulation. Zeleny et al.  (1984) and Zelenyi 
et al. (1990) used a largely analytic approach to address the ion and electron acceleration in the vicinity of an 
x-line, based on the explosive growth of a tearing mode (Galeev,  1979) in a two-dimensional configuration, 
neglecting variations in the cross-tail (y) direction. They demonstrated efficient acceleration from the inductive 
electric field and the formation of power-law high-energy distributions.

Investigations that have taken the large-scale tail structure into account have used a combination of MHD sim-
ulation with test particle tracing in the fields of this simulation. In particular, Scholer and Jamitzky (1987) and 
Scholer and Jamitzky (1989) used a two-dimensional MHD simulation of near tail reconnection and plasmoid 
ejection to study the acceleration of protons in the electric and magnetic fields of the simulation. In their simu-
lations, energized protons originated from the lobes at various distances in x and were accelerated in the vicinity 
of the near-Earth x-line. The subsequent motion toward the distant tail lead to strongly field-aligned fluxes close 
to the plasma sheet boundary with the expected spatial dispersion of the largest energies closest to the boundary.

Birn et al. (2004) followed a similar approach, however, based on a three-dimensional MHD simulation (Birn & 
Hesse, 1996). They focused particularly on the acceleration of O+ ions, but included also results on H+ ions, at a 
single final energy of 180 keV. They also found the resulting energetic ion fluxes concentrated close to the plasma 
sheet boundary. However, the particles originated not only from the lobes but, to a significant amount, from inside 
the plasma sheet dawnward of the observation site.
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Here we use a similar procedure, based on the three-dimensional, time-de-
pendent fields of an MHD simulation of near-tail reconnection, flow bursts, 
and plasmoid ejection (Birn et  al.,  2011). In contrast to the earlier MHD 
simulation (Birn & Hesse, 1996), this simulation also includes a transition 
toward a dipole field, a significantly lower plasma pressure in the lobes of 

𝐴𝐴 ∼ 0.5% of the typical lobe magnetic pressure, and a small net cross-tail mag-
netic field component of 𝐴𝐴 ∼ 1% of the lobe magnetic field strength. We will 
focus particularly on two specific energies and on the tail region inside but 
close to the Moon's distance, as explored by the ARTEMIS satellites.

It should be noted that our investigation, due to the properties of the under-
lying MHD simulation, pertains to large-scale plasmoids of several tens of 
RE lengths in the Sun-Earth (x) direction, as inferred, for instance, by Hones, 
Birn, et al. (1984) (75–150 RE) or Scholer, Gloeckler, Hovestadt, et al. (1984) 
(50–100 RE) on the basis of ISEE-3 observations out to ∼220 RE. This length 
represents the typical length of closed loops or helical field lines resulting 
from single x-line reconnection in the near tail combined with a distant x-line 
beyond the Moon's distance; it provides an upper limit of observed scales. 
Statistical analyses (Moldwin & Hughes, 1992), based on ISEE-3 measure-
ments in the near and distant tail, revealed average lengths of 16.7 ± 13.0 RE 
while Geotail data in the nearer tail inside of ∼30 RE yielded plasmoid sizes 
of 3–9 RE (Håland et  al.,  1999) and ∼4.4 RE (Slavin et  al.,  2003). Recent 
MMS observations indicated plasmoids or flux ropes of even shorter scales 
of a few ion inertial lengths (Eastwood et al., 2007; Sun et al., 2019), corre-
sponding to x dimensions of ∼1,500 km or less.

There is evidence that large-scale plasmoids move from the near and mid tail 
to the distant tail (e.g., Angelopoulos et al., 1995; Richardson et al., 1987; 
Slavin et al., 1998, 1999). However, it is not clear how small-scale islands or 

flux ropes evolve, whether they form prior to merging into big islands or from break-up of larger ones, and wheth-
er they maintain their identity between the near and the far tail. Both, particle-in-cell (PIC) and resistive MHD 
simulations have shown that long, stretched thin current sheets may develop small-scale magnetic islands, which 
subsequently merge into larger ones (e.g., Bhattacharjee et  al., 2009; Daughton et  al., 2009). However, these 
simulations typically start from assuming very thin extended current sheets, which may represent an early state 
prior to the major plasmoid ejection or the “postplasmoid plasma sheet” tailward of a large departing plasmoid 
(Richardson et al., 1987). Furthermore, little is known about the association of small-scale plasmoids with ener-
getic particles. While there is some evidence that small-scale islands may be effective in accelerating electrons 
(Chen et al., 2008; Zhong et al., 2020), as suggested by Drake et al. (2006), a similar effect on ions has not been 
documented; most likely because their size is too small to trap and quasi-adiabatically affect ions.

2. MHD Results
The underlying MHD simulation is described in more detail by Birn et al. (2011). It spans a region 0 ≥ x ≥ −60, 
|y| ≤ 40, |z| ≤ 10 with the Earth dipole located at x = 5, outside the box. As in earlier papers, we use a dimensional 
length unit Ln = 1.5RE, choosing other dimensional units as Bn = 12.6 nT and vn = 1,000 km/s. Here Bn denotes 
the lobe field strength and vn an Alfvén velocity, based on Bn and the plasma sheet density, at x ≈ −10, close to 
the location where the x-line forms in the simulation. The chosen units lead to a time unit tn = Ln/vn ≈ 10 s and 
electric field En = vnBn = 12.6 mV/m.

After a period of external driving, causing the formation of a thin embedded current sheet, a dynamic evolution 
is initiated at t = 61 by imposing finite resistivity concentrated in the region of enhanced current density, while 
the driving is stopped. This leads to the start of weak reconnection at t ≈ 90, followed by more rapid reconnection 
after t ≈ 120.

Figures 1 and 2 provide an overview of the evolution of the cross-tail electric field in the y = 0 and z = 0 plane, 
respectively. (The Moon's distance would be close to the center of the box near x = −35.) This electric field 

Figure 1. Evolution of the (normalized) electric field component Ey (color) in 
the x, z plane. Black lines again are magnetic flux contours.
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component, closely related to the fast earthward and tailward flows, is the 
dominant factor in the particle acceleration. The contribution to the total field 
from the resistive term is confined to the vicinity of the x-line. It is initial-
ly considerably smaller than the fields shown and would not show in the 
color scheme of Figures 1 and 2 but is increased at later times over the initial 
values by an intensification of current density associated with the dynamic 
evolution, which might be considered as nonlinear (resistive) tearing in a 3D 
geometry (Galeev, 1979; Schindler, 1974). As the application of an external 
field is discontinued after the initial driven phase, the electric field in the 
MHD simulation illustrated in Figures 1 and 2 can entirely be considered as 
inductive, resulting from ∂B/∂t.

Figure  2 shows the effects of rapid reconnection and fast flows first near 
midnight (t = 130, 140) and then (t = 150) near |y| ≈ 4. It is noteworthy that 
the maximum cross-tail voltage difference ∫Eydy tailward of the near-Earth 
reconnection site (x ≈ −10) amounts to ∼80 kV, based on our chosen units. 
This corresponds to a maximum energy of ∼80 keV for a singly charged ion 
gained from a single crossing of the high Ey field.

Note also that, even before additional flow bursts arise outside of the first 
one near midnight, there is not a uniquely defined plasmoid width in y, as 
illustrated by the two field line projections in Figure 2b. The field line closer 
to the core of the plasmoid (dark blue line) extends over a wider distance in y 
than the field line closer to the plasmoid boundary (light blue line).

3. Orbit Integration
Proton orbits were integrated backward in time from selected final locations 
and final velocities on the basis of the time dependent magnetic and electric 

fields of the MHD simulation. The orbits were stopped when they reached the initial state (t = 61) or one of the 
outer boundaries. At the inner boundary, x = 0, particles were reflected back, however, taking into account a delay 
time consistent with mirroring closer to Earth, outside the simulation box. This time was estimated from motion 
in a Tsyganenko model field (Tsyganenko, 1987) that was matched to the inner boundary. Particle fluxes were 
evaluated by mapping the phase space density f from the initial to the final location, using Liouville's theorem 
of the conservation of f along a phase space trajectory (Curran & Goertz, 1989). Enhanced fluxes therefore are 
primarily due to large energy gains (low initial energies implying higher f values) and, to a minor extent the higher 
density in the source region, that is, central plasma sheet (CPS) versus PSBL or lobes.

Source distributions were chosen as kappa distributions (Christon et al., 1988, 1989; Vasyliunas, 1968),

𝑓𝑓 (𝑊𝑊 ) ∝ 𝑛𝑛𝑖𝑖

(

1 +
𝑊𝑊

(𝜅𝜅 − 3∕2)𝑘𝑘𝑘𝑘𝑖𝑖

)−𝜅𝜅−1

 (1)

with W representing particle energy. The parameters ni and Ti were chosen to be consistent with the pressure in the 
MHD simulation and κ = 5.5 was chosen on the basis of tail observations (Christon et al., 1988, 1989). We note, 
however, that the results reported below mostly reflect the energy gain along the orbits and would not be changed 
qualitatively if different source distributions (say, Maxwellians) or kappa values were chosen.

We used full orbit integration

𝑑𝑑𝐱𝐱

𝑑𝑑𝑑𝑑
= 𝐮𝐮

𝑑𝑑𝐮𝐮

𝑑𝑑𝑑𝑑
=

𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝑛𝑛

𝑚𝑚
(𝐄𝐄 + 𝐮𝐮 × 𝐁𝐁) (2)

here x and u represent the particle location and velocity, normalized by Ln and vn, respectively, m is the ion (here, 
proton) mass and e is the proton charge, while E and B are the normalized MHD fields, which were interpolated 
linearly in space and time from the finite grid of the MHD simulation. Since this could, in principle, lead to 

Figure 2. Evolution of the (normalized) electric field component Ey (color) in 
the x, y plane. Black lines are contours of constant Bz; Bz = 0 lines are dashed. 
The two blue lines in panel (b) are projections of field lines.



Journal of Geophysical Research: Space Physics

BIRN ET AL.

10.1029/2021JA029892

5 of 14

spurious parallel electric fields, we did comparisons with an interpolation procedure that separated parallel and 
perpendicular electric field components and found that this effect was negligible for ion orbits.

Based on the velocity unit defined in Section 2, the proton energy is given by W = Wnu
2 where

𝑊𝑊𝑛𝑛 =
1

2
𝑚𝑚𝑚𝑚

2
𝑛𝑛 = 5.22 keV (3)

we note that the orbit integration (2) depends only on q/m (with q = e for protons), through the dimensionless 
parameter σ defined by

𝜎𝜎 = 𝜔𝜔𝑐𝑐𝑐𝑐𝑡𝑡𝑛𝑛 =
𝑞𝑞𝑞𝑞𝑛𝑛

𝑚𝑚
𝑡𝑡𝑛𝑛 =

𝐿𝐿𝑛𝑛

𝑑𝑑𝑐𝑐

 (4)

where di is the ion (proton) inertial length, with σ = 11.5 for the chosen units. Multiplying the magnetic field unit 
by a factor λ and the time unit by 1/λ, leaves σ unchanged. Leaving the length unit also unchanged, the orbit results 
can be applied also to a different parameter set with vn multiplied by λ, and En and Wn by λ2.

4. Evolution of Ion Fluxes
4.1. Midnight Meridional Plane

Figures 3 and 4 show the evolution of tailward fluxes of 20.9 and 83.5 keV (final energy), respectively, in the 
midnight meridional plane, y = 0. Each pixel corresponds to a single phase space trajectory backward from the 
given location to the source location (which in almost all cases was at the initial state t = 61) and the distribution 
function value f thus represents the value at the source location mapped to the final location, according to the 
procedure described in Section 3. The fluxes occupy the CPS closer to Earth but split into two layers surrounding 
the plasmoid core at later times and larger distances. As expected and observed, the higher-energy fluxes are at 
higher latitude, somewhat closer to the plasmoid boundary. Remarkably, at later times and larger distance, the 
boundary fluxes at higher energy converge around the front of the plasmoid toward the equatorial plane. In the 

Figure 3. Tailward fluxes of 20.9 keV protons in the y = 0 plane.
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present simulation and based on the chosen dimensional units, this happens at a distance beyond the Moon's. 
However, this result might vary depending on characteristic length and velocity scales.

4.2. Equatorial Plane

Figures 5 and 6 show the evolution of the tailward fluxes in the equatorial plane, z = 0, together with the projec-
tions of several orbits contributing to the enhanced fluxes, shown as multi-colored lines. The color of these lines 
indicate the instantaneous energy W corresponding to the color bars on the lower right in Figure 5 and the top 
right in Figure 6. The green portions, in particular, indicate where the dominant energy increase occurs

The regions of enhanced fluxes show a complicated structure, which involves multiple regions, and changes in 
time. The enhanced fluxes tend to be shifted toward dusk as expected from the duskward acceleration. Howev-
er, at times enhanced fluxes may also extend dawnward, for instance at t = 130 for 20.9 keV (Figure 5c) near 
x ≈ −15. In this case, the effect appears to be related to an expansion of the region of enhanced electric field Ey 
(and the associated flow) from a narrow channel closer to the x-line as indicated by the black contours. The sam-
ple orbits in Figure 5c that end on the dawn side indicate that the flux enhancements also result from single cross-
ings of the enhanced electric field in the y direction. As one might expect, this effect is less pronounced at higher 
energies (Figure 6). Figures 6d and 6e also show the sudden appearance of fluxes at large distance, x ≈ −50 and 
beyond, which is related to the convergence of the fluxes toward the equatorial plane shown in Figures 4d and 4e.

4.3. Cross-Sectional x = −30 Plane

Figure 7 shows the evolution of tailward fluxes of 20.9 and 83.5 keV in the center of the box, x = −30, as function 
of y and z. Black and red contours indicate topological boundaries. The red lines show the outer boundary of 
closed plasmoid field lines and the black lines the inner lobe boundary. The region between the red and the black 
lines in the center corresponds to open, disconnected field lines, resulting from lobe field reconnection, whereas 
the region farther away in |y| correspond to closed field lines, extending into the more distant tail, which have not 
(yet) undergone reconnection. Overall the region of energetic particle fluxes show a shape of a lying U, extending 

Figure 4. Same as Figure 3 but for 83.5 keV energy.
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duskward and toward the boundary regions near midnight. The outer separatrix (black lines) encloses the region 
of accelerated particles with the region of more energetic particles closer to the boundaries but the boundary be-
tween closed plasmoid fields and open disconnected field lines (red lines) apparently does not affect the energetic 
particle fluxes. However, this may be the result of our MHD configuration, which has no distinct drop in pressure 
or density at the open/closed boundary.

The origins of the accelerated particles shown in Figures 7c and 7g at t = 130 are indicated in Figures 8a and 8b, 
selecting the pixels with the largest fluxes. The origins are colored according to the initial pressure at t = 61, as in-
dicated by panel c. The 20.9 keV particles (Figure 8a) all originate from the inner (red) and outer (orange pixels) 
CPS, while for 83.5 keV (Figure 8b) the PSBL contributes as well (green pixels). These contributions are well 
ordered, proceeding duskward and outward with the sources proceeding from inner CPS toward outer CPS and 
PSBL. It is noteworthy that the boundaries between these source regions are not related to the boundary between 
closed plasmoid and disconnected field lines (red lines) at this time.

Figures 8d and 8e show the source locations in x and z of the particles contributing to the peak fluxes. The color 
now indicates the relative energy gain of the particles. This shows that particles with the higher energy gain tend 
to come from the more distant tail for 83.5 keV (orange and red pixels in Figure 8e) while the source locations 
are more mixed for 20.9 keV (Figure 8d).

Figure 5. Tailward fluxes of 20.9 keV protons in the z = 0 plane at various times indicated in the top right of each panel. 
Black contours indicate enhanced cross-tail electric field, and red contours are contours of constant Bz, as shown in Figure 2, 
with the Bz = 0 lines shown as dashed lines. The multi-colored lines show projections of typical orbits of protons contributing 
to the enhanced fluxes with the color indicating the instantaneous energy corresponding to the lower scale on the right. The 
black triangles show the final particle locations.
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5. Typical Orbits and Acceleration Mechanisms
The orbits shown in Figures 5 and 6 already illustrate that the energy gain typically results from a single crossing 
of the enhanced electric field region; the acceleration region primarily correspond to the part of the orbits colored 
in green. The acceleration may be close to the x-line, near x = −10, or farther tailward within the departing plas-
moid. Here we illustrate two orbits in more detail.

Figure 9 shows two characteristic orbits (dark and light blue lines with final locations indicated by small trian-
gles) contributing to the enhanced 20.9 keV fluxes at t = 135, as shown in Figures 3d and 5d, superposed on 
the color-coded electric field Ey at the final time. Figure 9a shows projections of the orbits into the x, y plane, 
Figure 9b in the x, z plane. The bottom panel, Figure 9c shows the energy as function of location x. It clearly 
demonstrates that the acceleration occurs by single crossings of the acceleration region of enhanced cross-tail 
electric field, close to the x-line for orbit B (light blue) but farther tailward in the moving plasmoid for orbit A 
(dark blue line). In either case the initial energy is near or below the thermal energy Wn = 5.2 keV. As shown by 
panel b, orbit B represents a particle contributing to the beams on the outside of the plasmoid near the boundary, 
while the particle of orbit A contributes to the equatorial fluxes.

Figure 10 illustrates two representative orbits of accelerated ions of 83.5 keV final energy. Both ions originate 
from the CPS on meandering orbits but from different distances. Particle D (light blue line) is characteristic for 
those contributing to the enhanced flux around x ≈ −50, resulting from the convergence of boundary layer fluxes 
toward the equatorial plane. As illustrated by panel b, this particle in fact contributes to the boundary fluxes at 
earlier times. Panel c demonstrates that the particle energy is almost entirely field-aligned after cross-tail acceler-
ation near the x-line at x ≈ −10 before it converges toward z = 0 and becomes perpendicular when it reaches the 
equatorial plane (dark blue dashed line).

Figure 6. Same as Figure 5 but for 83.5 keV energy.
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In contrast, particle C (dark blue line) originates from a more distant location in x and becomes accelerated when 
it encounters the enhanced electric field of the departed plasmoid near 𝐴𝐴 ≈ −20 . In both cases the initial energy is 
∼30 keV, consistent with the fact that the maximum gain by a simple crossing of the acceleration region should 
be less than about 80 keV.

All sample orbits shown so far demonstrate the same acceleration mechanism, a simple, non-adiabatic, crossing 
of a region of enhanced cross-tail electric field, either near the x-line in the near tail or within the departing plas-
moid. This provides a maximum for the possible acceleration of ∼80 keV, based on the chosen parameters, but 
more typically 50 keV or less.

6. Summary and Discussion
We have used our combined MHD/test particle approach to explore the acceleration and flux increases of hydro-
gen ions in the mid tail region tailward of a near-Earth reconnection site. External driving is used in the MHD 
simulation only to prepare the tail for reconnection by the formation of a thin embedded current sheet in the near 
tail. This driving is discontinued after finite resistivity is imposed in the region of the thin current sheet to ena-
ble reconnection; hence the simulation does not include a general externally driven convection. Our simulation 

Figure 7. Tailward fluxes of 20.9 and 83.5 keV protons in the x = −30 plane. Black and red contours indicate topological boundaries with the red line showing the 
outer boundary of closed plasmoid field lines and the black line the inner lobe boundary.
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includes a small net cross-tail magnetic field (guide field) of a few percent of the lobe field, which breaks the 
mirror symmetry but apparently has no significant influence on the dynamic evolution. The simulation does not 
include a distant reconnection site. Therefore the investigated properties are purely the consequences of near-
Earth reconnection and tailward plasmoid ejection; they do not include fast impulsive or convective earthward 
flows in the mid tail, which in observations may constitute about one half of the fast flows at lunar distance 
(Kiehas et al., 2018).

Concerning the MHD simulation, we would like to point out a few results. First, although the maximum tailward 
speeds are comparable to the earthward speeds in the inner tail, the maximum integrated cross-tail electric fields 
in the departing plasmoid are smaller than in the dipolarizing flux bundle moving earthward, yielding cross-tail 
voltages of approximately 50–80 keV compared to ∼200 keV on the earthward side for the chosen parameters 
(Section 2). Second, the simulation does not yield a unique plasmoid width. The helical field lines close to the 
core of the plasmoid tend to extend more widely in y, and are more tightly wound, than the field lines on the out-
side, even when both kinds are still connected to the Earth at both ends. The narrower width of the outer structure 
is related to the width of the fast tailward beam and the associated limited width of fast reconnection.

We have focused on two final energies, 20.9 and 83.5 keV, the latter being slightly above the maximum energy 
gain from a crossing of the dawn-dusk electric field region associated with the reconnection site and the depart-
ing plasmoid, which is about 50–80 keV, based on the chosen dimensional units. We note again, that our results 
can still be scaled to different cases by choosing different normalization parameters. For instance, increasing the 
magnetic field unit by, say, a factor of 2 and reducing the time unit by 1/2 leaves the dimensionless orbit results 
unchanged but would increase the two chosen particle energies to 83.5 and 334 keV, respectively, and the cross 
tail voltage to ∼200–320 kV.

Figure 8. Origins of accelerated 20.9 and 83.5 keV protons contributing to enhanced fluxes in the x = −30 plane at t = 130. Panels a and b show top fluxes in the 
velocity distributions of Figures 7b and 7f, with color indicating the origin as defined by the initial pressure (panel c). Panels d and e show the source locations of the 
particles projected into the x, z plane with color now indicating the relative energy gain, together with the magnetic flux contours at t = 61. Black and red contours in 
panels a and b again indicate the topological boundaries with the red line showing the outer boundary of closed plasmoid field lines and the black line the inner lobe 
boundary.
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The following are major conclusions:

1.  The ion acceleration is primarily due to direct acceleration across the 
tail from the inductive electric field associated with the dynamic tail 
evolution, involving near-tail reconnection and plasmoid ejection. This 
electric field is dominated by the resistive term only in the immediate 
vicinity of the x-line but elsewhere given by the motional −v × B field. 
The maximum acceleration is thus limited by the maximum cross-tail 
voltage ∫Eydy. This is about 80 kV for the chosen parameters but might 
be higher in different scenarios when different parameters (larger Bn and/
or larger Ln) were more appropriate. This is lower than what we found for 
the earthward side. The primary reason is that in our simulation, the Bz 
field associated with the plasmoid is smaller than the field in the earth-
ward propagating dipolarization front. Our simulation does not exhibit 
the enhanced fields of anti-dipolarization fronts, which are occasionally 
observed on the tailward side (Li et al., 2014) and could possibly lead to 
larger cross-tail voltages.

2.  The spatial distributions in the x, z plane show the boundary layers of 
tailward streaming energetic ions, as expected from ISEE-3 observa-
tions (Hones, Birn, et al. (1984); Richardson & Cowley, 1985; Scholer 
et al., 1983; Scholer, 1984).

3.  The distributions in the x, y plane are more complicated, but preferen-
tially duskward, as to be expected from the acceleration in that direction.

4.  Acceleration of ions may occur anywhere across the tailward propagat-
ing electric field pulse associated with the plasmoid departure. Different 
branches of accelerated ions in the equatorial plane can be attributed to 
different acceleration locations in x. However, field-aligned beams near 
the plasma sheet boundary are primarily accelerated near the x-line in 
the near tail.

5.  The accelerated particles originate mostly from the CPS; this is a main difference from the results of Scholer 
and Jamitzky (1989). It is probably related to the fact that the Scholer and Jamitzky (1989) simulation was 
two-dimensional without cross-tail variation, while ours is three-dimensional yielding a finite cross-tail ex-
tent of the reconnection site, the ejected plasmoid, and the associated electric fields. In this paper we did not 

Figure 9. Typical orbits of accelerated protons (dark and light blue curves, 
labeled A and B) contributing to enhanced 20.9 keV fluxes at t = 130 in 
Figure 7b: (a) projection into the x, z plane, (b) projection into the x, y plane. 
The orbits are superposed on snapshots of the cross-tail electric field Ey at 
t = 130; the final locations are indicated by small triangles. Panel (c) shows 
the particle energies above the location in x.

Figure 10. Same as Figure 9 but for protons contributing to enhanced fluxes at 83.5 keV. Panel a shows the color-coded 
particle fluxes in the x, y plane as in Figure 6d while panel b shows the electric field Ey. Panel c shows the particle energies as 
function of x as solid lines and the field-aligned contributions as dashed lines.
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explore entry and acceleration mechanisms for different ion species. However, the two possible entry ways 
might explain the apparent mixing of ions of ionospheric and solar wind origin observed by Lui et al. (1998).

Data Availability Statement
Simulation results are available under doi:10.5281/zenodo.5206828.
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