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Web Appendix A Computation Details

In this section, computational algorithms are introduced to obtain the scaled iRRR estimator

and the score matrix. For readers’ convenience, we first reproduce the scaled composite

nuclear norm penalization approach (3) and the score matrix estimation framework (8) of

the main paper. They are given by

(µ̂, Ĉ0, B̂
n, σ̂) = arg min

µ,C0,B,σ
Lw(µ,C0,B, σ)

= arg min
µ,C0,B,σ

{

1

2nqσ
‖Y − 1nµ

T − Z0C0 −XB‖2F +
σ

2
+ λ

K
∑

k=1

wk‖Bk‖∗
}

(1)

and

Γ̂−k = arg min
Γj,j 6=k

{

1

2n
‖Xk −

∑

j 6=k

XjΓj‖2F +
∑

j 6=k

ξw
′′

j√
n
‖XjΓj‖∗

}

, (2)
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respectively. Since the intercept and the control variables can be treated as a group with

penalty zero, instead of solving (1), we only need to focus on

(B̂n, σ̂) = argmin
B,σ

Lw(B, σ)

= argmin
B,σ

{

1

2nqσ
‖Y −XB‖2F +

σ

2
+ λ

K
∑

k=1

wk‖Bk‖∗
}

. (3)

As for the two algorithms to solve (3), one is derived as a block-wise coordinate descent

algorithm and another is built on the alternating direction method of multipliers (Boyd et al.,

2011, ADMM). Both methods have good performance in our simulation. As for the score

matrix estimation with (2), an ADMM algorithm is proposed.

A.1 Scaled iRRR Estimation

With a given σ, we have

σLw(B, σ) = Lw∗(B) +
σ2

2

where w∗ = σw = (σw1, . . . , σwK)
T and Lw∗(B) is the objective function in the original

iRRR estimation framework (Li et al., 2019)

B̂n(w) = arg min
B∈Rp×q

Lw(B) = arg min
B∈Rp×q

{

1

2nq
‖Y −XB‖2F + λ

K
∑

k=1

wk‖Bk‖∗
}

. (4)

The notation B̂n(w) emphasizes the dependence of the estimator on the weightw. Therefore,

a block-wise coordinate descent algorithm can be applied to solve (3). Suppose at the k-

th iteration, we have σ̂(k) and B̂n(k)(w(k)). Then at the (k + 1)-th iteration, the updating
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procedure is summarized as

σ̂(k+1) ← ‖Y −XB̂n(k)(w(k))‖F/
√
nq, (5)

w(k+1) ← wσ̂(k+1), (6)

B̂n(k+1)(w(k+1))← arg min
B∈Rp×q

Lw(k+1)(B). (7)

We stop iteration when σ̂ gets converged. Due to the joint convexity of (3), the estimates

produced from the above iterative algorithm converge to the minimizer of (3), with B̂n =

B̂n(σ̂w). In step (7), the optimization problem is solved by using an ADMM based algorithm

described in Li et al. (2019).

An alternative is to directly apply ADMM to solve (3). Let Ak (k = 1, . . . , K) be the

surrogate variables of Bk with the same dimension, we optimize

min
Ak ,Bk,σ

1

2nqσ

∥

∥

∥

∥

∥

Y −
K
∑

k=1

XkBk

∥

∥

∥

∥

∥

2

F

+
σ

2
+ λ

K
∑

k=1

wk‖Ak‖∗

s.t. Ak = Bk, k = 1, . . . , K.

Let Λ = (ΛT
1 , . . . ,Λ

T
K)

T be the Lagrange parameter with each Λk ∈ R
pk×q, then the aug-

mented Lagrangian objective function is

D(Y;A,B, σ,Λ) =
1

2nqσ

∥

∥

∥

∥

∥

Y −
K
∑

k=1

XkBk

∥

∥

∥

∥

∥

2

F

+
σ

2
+ λ

K
∑

k=1

wk‖Ak‖∗

+

K
∑

k=1

〈Λk,Ak −Bk〉F +
ρ

2

K
∑

k=1

‖Ak −Bk‖2F ,

where ρ is a pre-specified constant to control the step size. Let Ã, B̃, σ̃ and Λ̃ be the

estimates from the last iteration, then in the primal step we first update (B, σ) with the

given Ã and Λ̃, secondly estimate A based on the updated (B, σ) and Λ̃, and finally conduct
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the dual step. Specifically, to update (B, σ) we first estimate B with

B̂ =

(

1

nqσ̃
XTX+ ρIp

)−1(
1

nqσ̃
XTY + Λ̃+ ρÃ

)

, (8)

and then update σ with

σ̂ =
‖Y −XB̂‖F√

nq
. (9)

Here we remark that we only update (B, σ) once in each iteration, and it works well in

simulation. As for the estimation of A, note that the objective function is separable with

respect to each Ak given (B̂, σ̂, Λ̃), i.e.,

D(Y,Ak, B̂, σ̂, Λ̃) = λwk‖Ak‖∗ +
〈

Λ̃k,Ak

〉

F
+

ρ

2
‖Ak‖2F − ρ

〈

Ak, B̂k

〉

F
.

Minimizing the above objective function with respect to Ak is equivalent to solving

min
Ak

1

2
‖Ak − (B̂k − Λ̃k/ρ)‖2F +

λwk

ρ
‖Ak‖∗,

which has an explicit solution (Cai et al., 2010)

Âk = UkS(Dk, wkλ/ρ)V
T
k , (10)

where Uk, Vk and Dk come from the singular value decomposition (B̂k−Λ̃k/ρ) = UkDkV
T
k ,

and S(Dk, wkλ/ρ) = (Dk − wkλ/ρ)+ is the soft-thresholding operator to all the diagonal

elements of Dk. Finally, based on the updated Âk and B̂k, the dual step is

Λ̂k = Λ̃k + ρ
(

Âk − B̂k

)

, k = 1, . . . , K. (11)
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For establishing the stopping rule, the primal residual and dual residual are defined as

rprimal = ‖Â− B̂‖F ,

rdual = ρ‖Â− Ã‖F . (12)

Once both residuals fall below a pre-specified tolerance level, we stop the iteration. In

practice, we can gradually increase the step size ρ to accelerate the algorithm (He et al.,

2000). The procedure is summarized in Algorithm 1.

Algorithm 1 The ADMM algorithm to solve (3).

Parameter: λ, ρ.
Initialize A, B, σ and the Lagrange multiplier Λ;
while The stopping criterion is not satisfied do

• Primal step:

– Update Bk, k = 1, . . . , K by (8);

– Update σ by (9);

– Update Ak, k = 1, . . . , K by (10);

• Dual step:

– Update Λ by (11);

• Calculate the primal and dual residuals defined in (12);

• (Optional) Increase ρ by a small amount, e.g., ρ← 1.01ρ.

end while

A.2 Score Matrix Estimation

In order to obtain the score matrix, we need to solve (2) which can be formulated as

min
Ak ,Bk

1

2n
‖Y −

K
∑

k=1

XkBk‖2F + λ

K
∑

k=1

wk‖XkAk‖∗ (13)

s.t. XkAk = XkBk, k = 1, . . . , K.
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Different from the original iRRR estimation framework (4), in (13) we penalize the nuclear

norm of the group effect XkBk directly. The ADMM algorithm proposed in Li et al. (2019)

can be applied here with a small modification, i.e., based on B̂ and Λ̃ we need to update

XkAk but not Ak from

min
AkXk

1

2
‖XkAk − (XkB̂k − Λ̃k/ρ)‖2F +

λwk

ρ
‖XkAk‖∗.

By conducting singular value decomposition to XkB̂k − Λ̃k/ρ and applying the soft thresh-

olding operator to its singular values with the threshold value λwk/ρ we can update XkAk.

Accordingly, we have

Λ̂k = Λ̃k + ρ( ˆXkAk −XkB̂k),

rprimal = ‖X̂A−XB̂‖F ,

rdual = ρ
K
∑

k=1

‖XT
k (X̂A− X̃A)‖F .

Once both residuals fall below a pre-specified tolerance level we stop the algorithm.

Web Appendix B Proof of Theorem 1

Proof of Theorem 1. We follow the proof in Mitra and Zhang (2016). With η > 0, first

define

µ(w, η) =
8(1 + η)(2 + η)

η2

∑K
k=1 qrkλ

2w2
k

κ(X)
, τ+ =

2 + η

1 + η
µ(w, η), τ− =

2

1 + η
µ(w, η), (14)

and an event

E = ∩Kk=1Ak = ∩Kk=1

{

d1(X
T
kE)

nqσ∗/
√
1 + τ−

≤ λwk

1 + η

}

.
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Let ∆ = B̂n(tw) − B∗, ∆k = B̂n
k(tw) − B∗

k, σ̂
2(tw) = ‖Y − XB̂n(tw)‖2F/(nq) and t ≥

σ∗/
√
1 + τ−, then

σ∗2 − σ̂2(tw) =
‖Y −XB∗‖2F

nq
− ‖Y −XB̂n(tw)‖2F

nq

=
〈X∆, 2E−X∆〉F

nq

=
〈X∆,Y + E−XB̂n(tw)〉F

nq

=
〈X∆,E〉F

nq
+
〈X∆,Y −XB̂n(tw)〉F

nq
. (15)

We first deal with the first term on the right hand side of (15)

|〈X∆,E〉F |
nq

≤
K
∑

k=1

d1(X
T
kE)‖∆k‖∗
nq

≤ λt

1 + η

K
∑

k=1

wk‖∆k‖∗. (16)

The last inequality is built on the event E with t ≥ σ∗/
√
1 + τ−. Next we deal with the

second term on the right hand side of (15)

|〈X∆,Y −XB̂n(tw)〉F |
nq

≤ 1

nq

K
∑

k=1

‖∆k‖∗d1(XT
k {Y −XB̂n(tw)}).

In order to bound d1(X
T
k {Y −XB̂n(tw)}), recall that B̂n(tw) is a minimizer of Ltw(B) if

and only if there exists a diagonal matrix Jk with d1(Jk) ≤ 1 such that

XT
k {Y −XB̂n(tw)} = λtnqwkUkJkV

T
k , k = 1, . . . , K,

where UkDkV
T
k is the singular value decomposition of B̂n

k(tw) (Watson, 1992). Thus, for

each k we have

d1(X
T
k {Y −XB̂(tw)}) ≤ λtnqwk
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and

|〈X∆,Y −XB̂n(tw)〉F |
nq

≤ tλ

K
∑

k=1

wk‖∆k‖∗. (17)

Then, from

〈X∆, 2E−X∆〉F
nq

≤ 〈X∆, 2E〉F
nq

and inequality (16) we have

σ∗2 − σ̂2(tw) ≤ |〈X∆, 2E〉F |
nq

≤ 2tλ

1 + η

K
∑

k=1

wk‖∆k‖∗, (18)

and from (15), (16) and (17) we have

σ∗2 − σ̂2(tw) ≥ −|〈X∆,Y −XB̂(tw)〉F |
nq

− |〈X∆,E〉F |
nq

≥ −tλ(2 + η)

1 + η

K
∑

k=1

wk‖∆k‖∗. (19)

Therefore, we have

−tλ(2 + η)

1 + η

K
∑

k=1

wk‖∆k‖∗ ≤ σ∗2 − σ̂2(tw) ≤ 2tλ

1 + η

K
∑

k=1

wk‖∆k‖∗. (20)

Next, we derive the rate of
∑K

k=1wk‖∆k‖∗ by analyzing

B̂n(tw)

t
= arg min

B∈Rp×q

{

1

2nq
‖Y/t−XB‖2F + λ

K
∑

k=1

wk‖Bk‖∗
}

. (21)

Since t ≥ σ∗/
√
1 + τ−, event E leads to

∩Kk=1

{

d1(X
T
kE/t)

nq
≤ λwk

1 + η

}

,
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which facilitates the application of Theorem 2 in Li et al. (2019) to (21) and we get

t−1λ

K
∑

k=1

wk‖∆k‖∗ = λ

K
∑

k=1

wk‖B̂n
k(tw)/t−B∗

k/t‖∗ ≤
8(1 + η)(2 + η)

η2

∑K
k=1 rkqλ

2w2
k

κ(X)
= µ(w, η).

It follows that

tλ

K
∑

k=1

wk‖∆k‖∗ ≤ t2µ(w, η), (22)

which together with (20) leads to

−2 + η

1 + η
t2µ(w, η) ≤ σ∗2 − σ̂2(tw) ≤ 2

1 + η
t2µ(w, η).

Recall the definition of τ+ and τ− in (14), we have

−τ+t2 ≤ σ∗2 − σ̂2(tw) ≤ τ−t
2. (23)

The second inequality in (23) with t = σ∗/
√
1 + τ− leads to t2− σ̂2(tw) ≤ t2−σ∗2+τ−t

2 = 0,

which indicates σ̂(tw) ≥ t = σ∗/
√
1 + τ−. Assume σ∗/

√
1− τ+ ≥ σ∗/

√
1 + τ−, then the first

inequality of (23) with t = σ∗/
√
1− τ+ implies t2 − σ̂2(tw) ≥ t2 − σ∗2 − τ+t

2 = 0, i.e.,

σ̂(tw) ≤ t = σ∗/
√
1− τ+. Due to the joint convexity of the scaled iRRR framework (3),

we have σ̂(tw) = ‖Y −XB̂n(tw)‖F/√nq converges to σ̂ which is the minimizer of (3) and

consequently we have

σ∗

√
1 + τ−

≤ σ̂ ≤ σ∗

√
1− τ+

and

∣

∣

∣

∣

σ̂

σ∗
− 1

∣

∣

∣

∣

= op(µ(w, η)).
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If we have
√
nqµ(w, η)→ 0, then

∣

∣

σ̂
σ∗ − 1

∣

∣ = op((nq)
−1/2).Moreover, if vec(E) ∼ Nnq(0, σ

2Inq)

we have σ∗/σ ∼ χnq/
√
nq. Then, by central limit theorem we get

√
nq

(

σ∗

σ
− 1

)

→ N
(

0,
1

2

)

.

Consequently, we can prove

√
nq

(

σ̂

σ
− 1

)

→ N
(

0,
1

2

)

. (24)

Next we derive the estimation error bound for B̂n(σ̂w) (i.e., B̂n) under the framework (21).

Since σ̂ ≥ σ∗/
√
1 + τ−, the estimation error bounds are

‖B̂n −B∗‖2F �
σ∗2
∑K

k=1 rkq
2λ2w2

k

(1− τ+)κ2(X)
,

K
∑

k=1

λwk‖B̂n
k −B∗

k‖∗ �
σ∗
∑K

k=1 rkqλ
2w2

k√
1− τ+κ(X)

by applying Theorem 2 in Li et al. (2019) and the fact that σ̂ ≤ σ∗/
√
1− τ+. Finally, we

prove P(E) > 1− ǫ with some 0 < ǫ < 1. Note that, follow the same reasoning as the proof

of Theorem 6 in Mitra and Zhang (2016) with the assumption vec(E) ∼ Nnq(0, σ
2Inq), it can

be verified that if we let wk = d1(Xk)
{

√

pk/n+
√

2 log(K/ǫ)/(nq)
}

/
√
nq with a properly

selected λ then we have P(E) > 1− ǫ. This completes the proof.
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Web Appendix C A Brief Overview of High-Dimensional

Inference Procedures and the LDPE

Approach

Researches on statistical inference for regularized estimators emerged in recent years as the

prevailing of high-dimensional statistics. Regularized estimation methods are commonly

used in high dimensional linear regression problems, e.g., lasso (Tibshirani, 1996), elastic

net (Zou and Hastie, 2005), and group lasso (Yuan and Lin, 2006). However, due to the

regularization, the resulting estimator is often biased and not in an explicit form, making

its sampling distribution complicated and even intractable. In order to account for uncer-

tainty in estimation and assess the selected model, several methods have been proposed for

assigning p-values and constructing confidence intervals for a single or a group of coeffi-

cients. See, e.g., Knight and Fu (2000); Wasserman and Roeder (2009); Meinshausen et al.

(2009); Chatterjee and Lahiri (2013); Ning and Liu (2017); Shi et al. (2019). One popular

class of method utilizes the projection and bias-correction technique, where a de-biasing

procedure is first applied to the regularized estimator and then the asymptotic distribution

is derived for the resulting estimator. For example, Bühlmann (2013) applied bias correc-

tion to a Ridge estimator and derived an inference procedure, Zhang and Zhang (2014) and

Javanmard and Montanari (2014) considered the lasso estimator. Shi et al. (2016) general-

ized the procedure of Javanmard and Montanari (2014) to make inference for lasso estimator

obtained under multiple linear constraints on coefficients. To facilitate chi-square type hy-

pothesis testing for a possibly large group of coefficients without inflating the required sample

size due to group size, Mitra and Zhang (2016) generalized the idea of the low-dimensional

projecting estimator (Zhang and Zhang, 2014, LDPE) to correct the bias of a scaled group

lasso estimator. Although the above methods are effective under various model settings,

to the best of our knowledge, so far there is not much work focus on inference in high-

dimensional multivariate regression, especially for rank restricted models, which motivates
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the derivation of the inference method considered in this paper.

It is worthwhile to dive deeper into the LDPE approach proposed by Zhang and Zhang

(2014), as our proposed method will be built upon it. The illustration proceeds under a

multiple linear regression model y = x1β1 + . . . + xpβp + ǫ, where y ∈ R
n is the response

vector and xj ∈ R
n is a vector consisting of observations of the j-th predictor. Suppose we

are interested in the effect of predictor xj (1 ≤ j ≤ p) on the response. The initial estimator

β̂n
j can be obtained by lasso method. As we mentioned before, lasso estimator is biased due

to the regularization on coefficients. The effect of xj on response cannot be fully represented

by β̂n
j , hence a properly selected score vector is used to recover the part of information that

is lost in regularization. The resulting LDPE β̂j can be written as

β̂j = β̂n
j +

zTj (y−
∑p

l=1 xlβ̂
n
l )

zTj xj
, (25)

where the score vector zj has the same dimension as xj and only depends on the design

matrix X = (x1, . . . ,xp). The score vector zj serves as a tool to extract the information that

is only related to xj from the residual, then to correct the bias this part of effect is added

back to β̂n
j after standardization.

The classical scenario with n > p can help us understand the mechanism of the above

procedure better. When n > p, zj can be set as x⊥
j , the projection of xj onto the orthogonal

complement of the column space of X−j (the design matrix with the j-th column deleted).

This choice of zj can be regarded as the information only carried by the j-th predictor

and satisfies zTj X−j = 0. Then whatever the initial estimator is, the resulting de-biased

estimator is the least square estimator which is unbiased. However, in order to satisfy

zTj X−j = 0 when p < n, zj needs to be a zero vector which consequently makes (25)

ineffective. Therefore, in order to apply the de-biasing procedure (25) in the high-dimensional

scenario, we have to relax the requirement zTj X−j = 0, i.e., to approximate x⊥
j to control

the bias caused by zTj X−j 6= 0 to be under a tolerable level. For example, the score vector
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is obtained by applying lasso to the regression of xj on X−j in Zhang and Zhang (2014),

while in Javanmard and Montanari (2014) the score vector is estimated from an optimization

program that minimizes the variance of the de-biased estimator while control its bias.

Web Appendix D Derivation of The Inference Proce-

dure

In this section, we introduce the main steps of establishing our proposed method follow

Mitra and Zhang (2016), which include (1) the exploitation of LDPE to correct the bias of

the scaled iRRR estimator, (2) the construction of a χ2-type test statistic based on the de-

biased estimator, and (3) the estimation of the required score matrix and the derivation of

the theoretical guarantee of the reliability of the test. The condition rank(ST
kXk) = rank(Xk)

is required to guarantee the effectiveness of de-biasing, under which the role of Sk in the

de-biasing procedure can be totally replaced by Pk.

First, we provide the de-biased scaled iRRR estimator based on the notations defined

in the main paper. With the scaled iRRR estimator B̂n = (B̂nT
1 , . . . , B̂nT

K )T from (3), the

de-biased estimator of Bk is

B̂k = B̂n
k + (S′

kXk)
+ST

k (Y −XB̂n), (26)

where (S′
kXk)

+ is the Moore-Penrose inverse of S′
kXk. For the group effect XkBk, the related

de-biased estimator is

XkB̂k = XkB̂
n
k + (PkQk)

+Pk(Y −XB̂n). (27)

Next, based on the de-biased estimator, we introduce a test statistic and derive its asymp-
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totic distribution under the null. Note that, if rank(Xk) = pk we have

(PkXk)(B̂k −B∗
k) = PkE− Remk (28)

with

Remk = Pk

∑

j 6=k

(XjB̂
n
j −XjB

∗
j), (29)

and if rank(Xk) < pk, we can only make inference on XkB
∗
k with

(PkQk)(XkB̂k −XkB
∗
k) = PkE− Remk.

The effect of de-biasing in B̂k and XkB̂k is controlled by the approximation of Sk to X⊥
k and

the distance between B̂n and B∗, whereX⊥
k is the best score matrix only available in the ‘low-

dimensional’ scenario and is defined as the projection of Xk onto the orthogonal complement

of the column space spanned by (X1, . . . ,Xk−1,Xk+1, . . . ,XK). These two factors can be

jointly measured by Remk. Therefore, once the magnitude of Remk is ignorable in the sense

that

√

qr′k|σ/σ̂ − 1|+ ‖Remk/σ‖F = op(1), (30)

we have the approximation ‖PkE − Remk‖2F/σ̂2 → ‖PkE/σ‖2F , which together with the

normal assumption on the random error matrix implies ‖PkE − Remk‖2F/σ̂2 → χ2
r′
k
q where

r′k = rank(Pk) = rank(Xk). If in the true model B∗
k = 0 or XkB

∗
k = 0, then since Y =

X−kB
∗
−k + E we have

PkE− Remk = Pk(Y −X−kB̂
n
−k). (31)
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Therefore, the test statistic is

Tk =
1

σ̂2

∥

∥

∥

∥

∥

Pk(Y −
∑

j 6=k

XjB̂
n
j )

∥

∥

∥

∥

∥

2

F

H0∼ χ2
r′
k
q (32)

asymptotically. We shall note that if rank(Xk) < pk, B
∗
k is not identifiable, the method is

only applicable to test H0 : XkB
∗
k = 0 vs. H1 : XkB

∗
k 6= 0 and when rank(Xk) = pk, the

method is also applicable to test H0 : B
∗
k = 0 vs. H1 : B

∗
k 6= 0.

In order to implement and validate this test procedure, in addition to the scaled iRRR

estimator (B̂n, σ̂), we also need to find Pk and verify condition (30). One key ingredient to

verify (30) is to make ‖Remk/σ‖F = op(1). Recall the form of Remk, we have

‖Remk‖F
σ
√
nq

≤
∑

j 6=k ‖PkXj(B̂
n
j −B∗

j)‖F
σ
√
nq

≤
∑

j 6=k

d1(PkQj)

w∗,jσ
√
nq

w∗,j‖XjB̂
n
j −XjB

∗
j‖F

≤ max
j 6=k

d1(PkQj)

w∗,j

K
∑

j=1

w∗,j

σ
√
nq
‖XjB̂

n
j −XjB

∗
j‖F

= Op(q
K
∑

j=1

rjw
2
j )max

j 6=k

d1(PkQj)

w∗,j

,

which leads to

‖Remk‖F
σ

= Op

(

K
∑

k=1

rk{pkq + 2 log(K/ǫ)}√
nq

)

ηk (33)

where ηk = maxj 6=k d1(PkQj)/w∗,j is dominated by d1(PkQj). Thus, an ideal Pk needs to

minimize the variance of the resulting de-biased estimator while control the magnitude of

d1(PkQj). Mitra and Zhang (2016) derived the following optimization framework

Pk = argmin
P

{d1(P(I−Qk)) : P = P2 = PT, d1(PQj) ≤ w′
j, ∀j 6= k} (34)
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to solve out Pk. In (34), w′
j is an upper bound of d1(PQj) and d1(Pk(I−Qk)) measures the

distance between the subspaces spanned by Pk and I−Qk, which may inflate the variance of

the de-biased estimator. The feasibility of (34) with a given w′
j has been verified for random

designs with sub-Gaussian rows, refer to Theorem 4 and Lemma 1 in Mitra and Zhang

(2016) for details. Since (34) has not been solved yet, in practice, Pk can be estimated from

a penalized multivariate regression (2). Then with the conditions in Theorem 2 of the main

paper, we can verify (30) thus validate the inference procedure.

Web Appendix E Proof of Theorem 2

Proof of Theorem 2. First we get the rate of ‖Remk‖F/σ. From the KKT condition of (2), we

have d1(QjSk/
√
n) ≤ ξw

′′

j , which implies d1(QjPk/
√
n)dmin(Sk) ≤ ξw

′′

j . If we let w
′′

j = w∗,j,

then together with (33) and the condition

K
∑

j=1

rj{pjq + 2 log(K/ǫ)}√
nq

{

ξdmin(Sk/
√
n)−1

}

→ 0

we have ‖Remk‖F/σ = op(1). Then we consider the rate of |1− σ/σ̂|. From (24) we can get

∣

∣

∣
1− σ

σ̂

∣

∣

∣
= Op

(

1√
nq

)

,

which together with r′k/n→ 0 implies

∣

∣

∣
1− σ

σ̂

∣

∣

∣
= op

(

1
√

r′kq

)

.

Combine these two results we complete the verification of (30).
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Web Appendix F Simulation with Compositional Data

F.1 Simulation with generated compositional data

We conduct simulations based on generated compositional data with a similar setting as the

preterm infant dataset. Specifically, we let n = 300, p = 60, q = 10, K = 10 and each group

is of size 6. Similar to Shi et al. (2016), we obtain vectors of count wi = (wT
1,i, . . . ,w

T
K,i)

T ∈

R
p, i = 1, . . . , n from a log-normal distribution lnNp(µ

w,Σw). In order to reflect the

difference in abundance of each taxon in the microbiome counts observation, we let µ
w
k =

(10, 1, 1, 1, 1, 1) for k = 1, . . . , 5 and µ
w
k = (1, 1, 1, 1, 1, 1) for k = 6, . . . , 10, where µ

w
k is the

mean vector corresponding to the k-th group. To simulate the commonly existing correlation

among counts of taxa, we let Σw = (ρ
|i−j|
x ) with ρx ∈ {0.2, 0.5}. We then transform the count

data into sub-compositional data, i.e., zk,i,j = wk,i,j/
∑pk

j=1wk,i,j, k = 1 . . . , K; i = 1, . . . , n,

where wk,i,j is the count of the j-th taxon within the k-th group of the i-th subject. To see the

potential effect of the existence of highly abundant taxon on the group inference results, we

select the first and the sixth group as two predictive groups, and let rank(B∗
1) = rank(B∗

6) = 1

with all the other groups have no contribution. After further rescaling B∗
k to make its

largest entry to be 0.2, we obtain Y from (2) with SNR ∈ {0.2, 0.4, 0.8}. The noise level

estimation results and the testing results for two predictive groups and two irrelevant groups

are summarized from 300 replications.

F.2 Simulation with real compositional data

The data collected from the preterm infant study have the following structure, p = 62,

q = 10, K = 11 and the group size is (p1, . . . , pK) = (3, 2, 3, 4, 7, 15, 2, 9, 3, 2, 12). From

all the 11 groups, we select the first and the sixth group to be predictive to the response

with r∗1 = r∗6 = 1, and all the remaining groups have no prediction contribution, i.e., r∗k =

0, k /∈ {1, 6}. To control the signal strength, we make the largest entry in B∗ to be 0.2.

By resampling with replacement, each time we obtain a dataset with sample size n = 300
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and then apply the proposed method. The whole procedure is repeated 300 times, and the

results are displayed in Web Table 1. In general, when the dataset has a weak signal strength,

the test power is low; when the signal strength becomes larger, the power of the test also

increases. Moreover, the multivariate method has a larger test power than the univariate

method. As expected, the magnitude of d1(Pk(In−Qk)) affects the performance of the test.

Specifically, groups 1, 2, 3, 7, 9, 10 have smaller d1(Pk(In−Qk)) values than groups 4, 5, 6,

8, 11 whose d1(Pk(In −Qk)) values are close to 1. The magnitude of inflation of the false

positive rate for the groups with larger d1(Pk(In−Qk)) values is larger than that for groups

with smaller d1(Pk(In−Qk)) values. Therefore, it is necessary to pay more attention to the

groups that have large d1(Pk(In −Qk)) values.

Web Table 1 Simulation results based on the resampled real microbiome compositional data
across 300 replications. The performance of noise level estimation is displayed in terms of the mean
(×100) and standard error (×100, in parenthesis) of σ̂/σ − 1 and |σ̂/σ − 1|, respectively. Each
group is denoted as “G” followed by its group number.

SNR σ̂/σ − 1 |σ̂/σ − 1| G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11
TP FP FP FP FP TP FP FP FP FP FP

Multivariate Inference
0.25 0.74 (1.36) 1.23 (0.94) 0.05 0.06 0.05 0.06 0.06 0.14 0.06 0.07 0.05 0.07 0.10
0.50 3.65 (1.40) 3.66 (1.37) 0.09 0.04 0.04 0.07 0.04 0.55 0.05 0.09 0.03 0.07 0.37
1.00 6.18 (5.61) 6.36 (5.41) 0.32 0.04 0.02 0.05 0.03 1.00 0.06 0.22 0.02 0.07 0.63

Univariate Inference (Bonferroni)
0.25 0.05 0.04 0.04 0.05 0.02 0.10 0.03 0.06 0.04 0.05 0.06
0.50 0.07 0.03 0.04 0.04 0.02 0.31 0.03 0.07 0.04 0.05 0.19
1.00 0.28 0.02 0.02 0.06 0.03 0.98 0.03 0.16 0.02 0.08 0.86

Univariate Inference (HMP)
0.25 0.04 0.04 0.05 0.06 0.02 0.10 0.03 0.07 0.04 0.05 0.07
0.50 0.07 0.04 0.03 0.05 0.02 0.33 0.03 0.07 0.04 0.05 0.21
1.00 0.29 0.02 0.02 0.06 0.03 0.99 0.03 0.17 0.02 0.07 0.91

Web Appendix G Additional Application Results

Web Table 2 lists the estimated coefficients of the control variables from the overall model. In

terms of the sub-scale stress/abstinence, the signs of the estimated coefficients are the same

as the results from Sun et al. (2020). Stress/abstinence is the amount of stress and abstinence
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Web Table 2 Estimated coefficients of control variables from the overall model (coefficient of birth
weight is multiplied by 1000 and all other coefficients are multiplied by 10).

Intercept MBM Female Vaginal PROM SNAPPE-II Birth weight
Habituation 62.372 12.694 2.394 3.317 -3.020 0.069 -0.517
Attention 59.368 -8.039 1.308 10.392 5.081 -0.032 -1.103
Handling 4.907 -0.139 -0.739 -1.508 -0.441 0.015 0.132
Qmovement 39.393 4.187 -3.711 3.535 2.411 0.011 -0.067
Regulation 59.774 0.448 -2.745 4.578 3.821 -0.256 -0.665
Nonoptref 34.916 8.465 -4.702 -7.855 -4.039 0.264 0.998
Stress 1.901 -0.032 -0.088 -0.265 0.029 0.015 -0.029
Arousal 33.183 -3.236 3.362 2.113 -5.717 -0.081 0.189
Excitability 3.087 -13.781 7.811 -3.680 -9.722 0.179 2.397
Lethargy 7.598 34.721 -0.171 -23.384 -0.771 0.233 2.549

signs observed in the neurodevelopmental examination procedure (Lester and Tronick, 2004),

and a lower value indicates a better neurodevelopment situation. Based on the fitting results,

female infants generally perform better in the neurodevelopment examination than male

infants. Vaginal delivery and a higher percentage of feeding with mother’s breast milk also

bring benefit to the neurodevelopment of preterm infants. Moreover, the estimated coefficient

of birth weight is -0.029 after multiplying by 1000, which indicates that infants with larger

birth weights are more likely to have a better neurological development. SNAPPE-II is one

kind of illness severity score, and a higher SNAPPE-II score is often observed among expired

infants (Harsha and Archana, 2015). Thus, it is reasonable to observe that the SNAPPE-II

score is positively related to the stress/abstinence score. As for the PROM, it is a major cause

of premature birth and could be very dangerous to both mother and infant. The method

provides a positive coefficient estimate of PROM, which matches well with the intuition

that a pregnant who did not experience PROM is more likely to give birth to a healthier

baby. The effects of control variables on other sub-scale scores of NNNS can be similarly

interpreted based on the estimated coefficients.
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Web Appendix H Additional Tables and Figures

Web Table 3 d1(Pk(In −Qk)) values obtained in simulation studies. The results are displayed
in terms of the mean and standard error (in parenthesis) across 300 replications. Each group is
denoted as “G” followed by its group number.

Section 4.1: Setting 1
(Correlation type, ρx) G1 G2 G3
(within-group, 0.0) 0.355 (0.020) 0.353 (0.019) 0.354 (0.018)
(within-group, 0.5) 0.333 (0.020) 0.332 (0.019) 0.333 (0.019)
(among-group, 0.0) 0.355 (0.020) 0.353 (0.019) 0.354 (0.018)
(among-group, 0.5) 0.532 (0.030) 0.554 (0.023) 0.552 (0.024)

Section 4.1: Setting 2
(Correlation type, ρx) G1 G2 G3
(within-group, 0.0) 0.783 (0.009) 0.782 (0.009) 0.783 (0.010)
(within-group, 0.5) 0.743 (0.013) 0.742 (0.014) 0.742 (0.013)
(among-group, 0.0) 0.783 (0.009) 0.782 (0.009) 0.783 (0.010)
(among-group, 0.5) 0.754 (0.014) 0.762 (0.013) 0.762 (0.014)

Section 4.2: Simulation with Generated Compositional Data
(Correlation type, ρx) G1 G2 G6 G7
(among-group, 0.0) 0.994 (0.001) 0.994 (0.001) 0.433 (0.025) 0.434 (0.026)
(among-group, 0.5) 0.995 (0.000) 0.996 (0.000) 0.507 (0.034) 0.507 (0.033)
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Web Table 4 Simulation results with X being generated from the among-group correlation setup.
The performance of noise level estimation is displayed in terms of the mean (×100) and standard
error (×100, in parenthesis) of σ̂/σ − 1 and |σ̂/σ − 1|, respectively. In both settings, we have
r∗1 6= 0 and r∗2 = r∗3 = 0. Each group is denoted as “G” followed by its group number. For the
two univariate methods, we use “Bonf” to represent Bonferroni adjustment and use “HMP” to
represent the harmonic mean p-value test.

Design
σ̂/σ − 1 |σ̂/σ − 1| Multivariate Univariate (Bonf) Univariate (HMP)

(SNR, ρx) G1 G2 G3 G1 G2 G3 G1 G2 G3
Setting 1

(0.1,0.0) 0.34 (1.44) 1.17 (0.90) 0.65 0.05 0.05 0.51 0.03 0.03 0.54 0.03 0.03
(0.1,0.0) 0.34 (1.44) 1.17 (0.90) 0.61 0.05 0.05 0.50 0.04 0.03 0.56 0.03 0.03
(0.2,0.0) 1.82 (1.45) 1.97 (1.23) 1.00 0.04 0.04 1.00 0.03 0.03 1.00 0.03 0.03
(0.2,0.0) 1.81 (1.45) 1.97 (1.23) 1.00 0.04 0.04 1.00 0.04 0.03 1.00 0.03 0.03
(0.4,0.0) 0.48 (1.51) 1.23 (1.00) 1.00 0.04 0.05 1.00 0.02 0.03 1.00 0.02 0.03
(0.4,0.0) 1.11 (1.61) 1.53 (1.22) 1.00 0.03 0.05 1.00 0.03 0.03 1.00 0.03 0.03

Setting 2
(0.1,0.0) 0.18 (1.61) 1.30 (0.96) 0.17 0.04 0.05 0.10 0.04 0.05 0.11 0.05 0.05
(0.1,0.5) 0.18 (1.61) 1.30 (0.95) 0.20 0.04 0.07 0.11 0.04 0.05 0.11 0.04 0.04
(0.2,0.0) 1.65 (1.63) 1.89 (1.34) 0.69 0.03 0.02 0.55 0.03 0.04 0.59 0.04 0.04
(0.2,0.5) 1.65 (1.62) 1.88 (1.34) 0.85 0.03 0.05 0.65 0.03 0.04 0.71 0.03 0.04
(0.4,0.0) 0.43 (1.65) 1.35 (1.03) 1.00 0.04 0.05 1.00 0.02 0.03 1.00 0.03 0.03
(0.4,0.5) 1.54 (1.71) 1.87 (1.33) 1.00 0.03 0.05 1.00 0.02 0.04 1.00 0.02 0.04

Web Table 5 Corrected p-values from the univariate analysis adjusted by using BH adjustment.
For each stage, we control the FDR of the tests related to the orders identified in multivariate
analysis based on the corrected p-values. The values highlighted with an asterisk are the significant
ones by controlling the FDR under 10%.

Overall Stage 2 Stage 3
Clostridiales Others Burkholderiales Actinomycetales

Habituation 0.334 0.334 0.214 0.136
Attention 0.231 0.231 0.247 0.168
Handling 0.471 0.531 0.002∗ 0.506
Qmovement 0.402 0.266 0.067∗ 0.451
Regulation 0.231 0.231 0.026∗ 0.074∗

Nonoptref 0.591 0.280 0.710 0.935
Stress 0.221 0.471 0.002∗ 0.074∗

Arousal 0.221 0.125 0.160 0.769
Excitability 0.231 0.257 0.000∗ 0.074∗

Lethargy 0.401 0.221 0.710 0.684
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Web Figure 1 Simulation results for setting 1 with ρx = 0 from 300 simulation runs: from left to
right are the Q-Q plots of

√
2nq(σ̂/σ−1) versus N (0, 1) with SNR = 0.1, 0.2, and 0.4, respectively.
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Web Figure 2 Simulation results for setting 1 with ρx = 0 from 300 simulation runs: from left to
right are the Q-Q plots of ‖P3E−Rem3‖2F /σ̂2 versus χ2

r′3q
with SNR = 0.1, 0.2, and 0.4, respectively.
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Web Figure 3 The identified predictive orders for each sub-scale score of NNNS when control the
FDR under 10% for each time-specific analysis. The selected orders are marked in red, while the
remaining orders are marked in pink.
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