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ART I C L E

ER stress protein PERK promotes inappropriate innate immune
responses and pathogenesis during RSV infection
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Abstract

The activation of dendritic cells (DC) during respiratory viral infections is central to

directing the immune response and the pathologic outcome. In these studies, the effect

of RSV infection on development of ER stress responses and the impact on innate

immunitywas examined. The upregulation of ER stress was closely associatedwith the

PERK pathway through the upregulation of CHOP in RSV infected DC. The inhibition

of PERK corresponded with decreased EIF2a phosphorylation but had no significant

effect on Nrf2 in DC, two primary pathways regulated by PERK. Subsequent studies

identified that by blocking PERK activity in infected DC an altered ER stress response

and innate cytokineprofilewasobservedwith theupregulationof IFNβ and IL-12, coin-
cident to the down regulation of IL-1β. When mitochondria respiration was assessed

in PERK deficient DC there were increased dysfunctional mitochondria after RSV

infection that resulted in reduced oxygen consumption rates (OCR) and ATP produc-

tion indicating altered cellular metabolism. Use of a CD11c targeted genetic deleted

murine model, RSV infection was characterized by reduced inflammation and dimin-

ished mucus staining as well as reduced mucus-associated gene gob5 expression. The

assessment of the cytokine responses showed decreased IL-13 and IL-17 along with

diminished IL-1β in the lungs of PERK deficient infected mice. When PERK-deficient

animals were assessed in parallel for lung leukocyte numbers, animals displayed signif-

icantly reduced myeloid and activated CD4 and CD8 T cell numbers. Thus, the PERK

activation pathwaymay provide a rational target for altering the severe outcome of an

RSV infection throughmodifying immune responses.
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1 INTRODUCTION

Respiratory syncytial virus (RSV) infection remains a leading cause of

hospitalization in infants and older adults.1 While there is no effec-

tive vaccine to prevent RSV infection, prophylactic anti-RSV mono-

clonal antibody treatment is often administered to vulnerable infant

populations such as those born prematurely, or with congenital heart

defects.2,3 Infants hospitalized for RSV infection present with severe

inflammation and airway constriction that stems from an aberrant

immune response to the virus.4–6 During severe RSV infection an inap-

propriate immune response skews toward Th2 and Th17 responses,

which promotes significant mucus production and goblet cell hyper-

trophy leading to pathogenic sequelae.7–11 Further, hospitalization

due to RSV infection is associated with an increased susceptibility
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to asthma,12–16 suggesting that the effects of the skewed immune

response are not limited to infancy, but rather cause long lasting airway

changes and immune system alteration. Understanding the molecular

mechanisms of RSV-induced inflammation is key to identifying effec-

tive therapeutic targets during early life disease that may have long-

term consequences.

It is known that cellular stress, such as endoplasmic reticulum (ER)

stress and oxidative stress in the form of reactive oxygen species

(ROS) production can promote inflammatory pathways that result in

pathogenic responses.17–19 Although other studies have established

the impact of ROS on RSV,20 the mechanisms in which ER- and oxida-

tive stress themselves affect innate immunity to RSV are less clear.21

Two mediators of the ER stress response are PKR-like endoplasmic

reticulum kinase (PERK, gene eif2ak3), which is activated by ROS pro-

duction, and inositol-requiring enzyme 1 (IRE-1), which is activated

upon RNAse activity. RSV infection leads to ROS production and can

influence the intensity of the responses.20,22,23 PERK phosphorylates

EIF2a, which signals for a reversible halt in translation, and Nrf2, a

transcriptional repressor that constantly undergoes degradationwhen

dephosphorylated. Interestingly, Nrf2 in particular may have protec-

tive roles during RSV infection but has several pathways that can acti-

vate its function.24–28 Our results indicate that duringRSV infectionER

stress is induced and PERK is activated in dendritic cells, and appears

to contribute to the pathogenic RSV immune response in several ways:

(1) transcriptional regulation of key innate cytokines; (2) enhancement

of EIF2a-phosphorylation signaling that leads to altered APC function;

and (3) induction of CD4 T cell recruitment to the lung associated with

IL-13 and IL-17 production. Our findings support these latter concepts

and we present data that suggest that blocking the PERK activation

pathways during RSV responses would alter pathogenesis in the lung.

2 MATERIALS AND METHODS

2.1 Mice

C57BL/6J (BL6), B6; PERKf/f and C57BL/6J-Tg (Itgax-Cre-EGFP)

4097Ach/J (CD11c-Cre-GFP) mice were purchased at 6–7 wk of age

from The Jackson Laboratory (Bar Harbor, ME). PERKf/f mice were

crossed to CD11c-Cre-GFP transgenic mice. Thus, Cre+ mice lack a

functional PERK in CD11chigh cells. PERKf/f-CD11c-Cre mouse breed-

ing took place in-house at the University of Michigan (Ann Arbor, MI)

with Cre- mice used as the wildtype control expressing normal PERK

levels. All work involving animals was reviewed and approved by the

University ofMichigan Committee on Care and Use of Animals.

2.2 BMDC culture

Bone marrow-derived DCs (BMDCs) were isolated from whole bone

marrow of naive C57BL/6 mice. Bone marrow cells were seeded into

tissue culture flasks containing RPMI 1640-based complete medium

supplemented with 15 ng GM-CSF/ml (R&D Systems, Minneapolis,

MN). C57BL/6 mouse-derived BMDCs were fed on days 3, 5, 7, 9, and

harvested on day 10, a time point by which cells were ≥85% CD11b+

CD11c+ BMDCs by flow cytometric analysis. In some experiments,

control and RSV infected BMDC were treated with PERK inhibitor

(PERKi (5uM,GSK2606414)) to block the downstream signaling of tar-

get molecules.

2.3 RSV growth

Line 19 RSV (antigenic subgroup A), originally obtained from a sick

infant at theUniversity ofMichiganHospital System,was shown in ani-

malmodels tomimic human infectionby eliciting airwaymucus produc-

tion upon inoculation with 1–3× 105 PFU RSV. RSVwas propagated in

our laboratory inHEp-2 cells (American Type Culture Collection).Mice

were infected intratracheally with 1.5 × 105 PFU RSV as previously

described.29

2.4 Quantitative PCR

Total RNA was isolated from BMDC culture using TRIzol reagent,

according to themanufacturer’s instructions (Invitrogen, Grand Island,

NY). RNA was reverse transcribed, and cytokine gene expression was

assessed using TaqMan Gene Expression Assay primer/probe sets on

an ABI Prism 7500 Sequence Detection System (Applied Biosystems,

Foster City, CA). Customprimerswere used to assess transcription lev-

els ofRSV-G, andRSV-F, as previously described.30 Fold changeexpres-

sion was calculated from gene expression values normalized to 18s

RNA.

2.5 Immunoblot analysis

Total cells lysates were prepared using 1× Cell Lysis Buffer (Cell Sig-

naling). The same amount of 3–10 μg of total proteins were separated
by Nu-PAGE (Invitrogen) and transferred on nitrocellulose membrane.

The primary Abs were diluted in 5%BSA in 1× TBST.

2.6 Histopathology and mucus assessment

Serial 6 um sections were cut from paraffin-embedded fixed lungs and

stained by periodic acid-Schiff (PAS) staining. PAS stained slides were

blindly scored for goblet cell hyperplasia and mucus plugging by light

microscopy. The following scoring systemwas used: 1, absent; 2, stain-

ing inmultiple airways; 3, staining inmultiple airways withmucus plug-

ging; 4, severemucus plugging inmultiple airways.

2.7 Flow cytometry

Cells were isolated from the left lungs by digestion in 200μg/ml Lib-

erase TM (Roche Applied Science, Indianapolis, IN) and 200U/mL

DNase I (Sigma-Aldrich) at 37C. After lysing RBCs, FcR-blocking was
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used to limit nonspecific staining. Cells were stained with Live/Dead

Fixable Yellow (Invitrogen), followed by fluorescent antibodies for

30min. Total numberof cells for eachpopulation in individual lungswas

calculated using gating percentage multiplied by total number of cells

in each lung preparation. Analysis was performed using FlowJo soft-

ware (TreeStar, AshlandOR).

2.8 Seahorse assay

The Seahorse XFe96 Analyzer (Agilent Technologies, Santa Clara, CA,

USA) was used to measure the mitochondrial function of BMDC.

Briefly, 1× 105 cells perwell, cultured in RPMI completemedia supple-

mented with 10% (v/v) heat-inactivated FBS were plated in a 96 well

Seahorse plate. BMDC were infected with RSV for 2 h, then washed

twice with Seahorse assay media (Agilent Technologies, Santa Clara,

CA, USA) and incubated for 30 min in a CO2 free incubator at 37◦C.

Oxygen consumption rate (OCR) was determined using a cell Mito

Stress Test kit (Agilent Technologies, Santa Clara, CA, USA) according

to manufacturer’s instructions. Oligomycin (2 mM); FCCP (Carbonyl

cyanide 4-(trifluoromethoxy) phenylhydrazone) (1.5 mM); Rotenone

(0.5 mM), and Antimycin (0.5 mM) were used in the assay. Oligomycin

is used to block ATP synthase to deplete the cells of their capacity

to make ATP. FCCP is then added and allows the inner mitochon-

drial membrane to be permeable for protons and maximum electron

flux through the electron transport chain to promote maximal respi-

ration. Addition of Rotenone and antimycin A inhibit complex I and III,

respectively, to measure spare respiratory capacity. Calculation of the

responses by Seahorse allows the measurement of baseline and maxi-

mummitochondrial respiration and ATP synthesis.

2.9 Statistical analysis

Data were analyzed and graphed using the GraphPad Prism 7 soft-

ware (San Diego, CA). Statistical significance was determined by one-

way analysis of variance and Student’s post-test to obtain p-values.

Adjusted p-values below 0.05 are considered statistically significant.

3 RESULTS

3.1 RSV infection induces PERK activity and
downstream effects on cytokine gene expression in
dendritic cells

Previous studies in our laboratory and others have indicated that den-

dritic cells (DC) are central to driving the pathogenic responses in the

lungs of RSV infected animals31–45 and therefore a better understand-

ing of their activationmay provide new therapeutic direction. ER stress

responses during infectious processes havebeen suggested to enhance

immunopathology. DCs infected with RSV for 1–24 h showed little up-

regulation of IRE1 or PERK (Eif2ak3)mRNA (Figure 1). However, when

F IGURE 1 Bonemarrow-derived DC (BMDC) infected by RSV
upregulate CHOP expression related to the PERK pathway. BMDC
were infected by RSV (MOI= 1.0) andmRNAwas isolated in a
temporal fashion to examine the expression of ER stress related
proteins and their downstream targets XBP-1 and CHOP for IRE-1
and PERK, respectively. Quantitative PCRwas used to assess the
significant increase each of mRNA targets and compared to time 0
expression levels at each of the 5 time points. Data represent the
mean± SE of 3 repeated independent BMDC cell lines

we examined the activation of critical downstream targets of ER stress

activation, CHOP (Ddit3) and XBP1, we observed a significant upregu-

lation of only CHOP but not XBP1, suggesting that the PERK pathway

was a primary pathway initiated by RSV infection. These results pro-

vided initial data suggesting ER stress was increased during RSV infec-

tion of DC andmay promote additional activation of the DC.

The PERK activation pathway initiates downstream signaling via

phosphorylation of Eif2ak3 as well as increased Nrf2 levels that mod-

ify gene expression, both of which were observed at 2 hours post-

RSV infection (Figure 2A). When PERK was inhibited (PERKi (5uM,

GSK2606414)) phosphorylation of Eif2α compared to total Eif2α was

significantly decreased, while Nrf2 levels were also decreased with

PERK inhibition but did not reach significance. Nrf2 levels are con-

trolled by ubiquitin-mediated degradation such that there is high

turnover due to its chaperone Keap1 and may be beneficial for infec-

tious disease pathways inducedbymultiple pathways.46–48 Thus, PERK

independent pathways likely promote the activation of Nrf2 stabi-

lization suggesting why PERK inhibition may not be specific for Nrf2.

When RSV-infected DCs were treated with the PERK inhibitor (5uM,

GSK2606414), the innate cytokine gene expression profiles were also

altered (Figure 2B). PERK inhibition during RSV infection resulted

in decreased expression of downstream ER stress proteins, atf6 and

Chop, with increased expression of critical antiviral innate cytokines

IL-12 and Type-I IFN-β and reduced expression of IL-1β. This altered
cytokine expression profile indicated a role for ER stress and PERK in

regulating the innate immune response to RSV infectionmodifying the

anti-viral responses.
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F IGURE 2 RSV infection induces phosphorylation of eif2a and increased Nrf2 in BMDC cultures: PERK inhibition alters innate cytokine
expression. (A) BMDC grown from naïvemice were infected with RSV (MOI= 1.0) with or without PERK inhibitor (5uM, GSK2606414) were
examined byWestern blot for the ratio of phosphorylation of eif2α/total eif2α and ratio of Nrf2/βActin after 24 hrs of infection. Data are expressed
in bar graphs as mean± SE from the 3 repeat cultures of 106 BMDCs. (B) The expression of downstream ER stress proteins and cytokines in RSV
infected DC are altered by inhibition of PERK correlating to eif2a phosphorylation. Data represent mean± SE from 3 repeat cultures
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F IGURE 3 The deletion of PERK in RSV infected BMDC alters mitochondria stabilization and function. (A) BMDC from PERKf/f-CD11c Cre+
mice (PERK-/-) were stained for ROS expression usingMitosox and assessed by Flow cytometry for increased fluorescence. (B-D) Seahorse-based
cell Mito Stress Test was used to assessWT or PERK-/- BMDCwith or without RSV infection at baseline andwithmaximummitochondrial stress
(FCCP). (E) ATP production was calculated based upon the Seahorse analysis with or without RSV infection in theWT and PERK-/- BMDC. Data
represents mean± SE from 3 repeated cell lines

3.2 PERK-deficient DC have altered
mitochondrial respiration during RSV infection

In order to further understand how PERK was regulating the

innate immune response isolated DC from PERKf/f-CD11c Cre- and

PERKf/f–CD11c Cre+ were grown in vitro and assessed for their cel-

lular metabolic differences. Initial analyses assessed whether there

were differences in the reactive oxygen species (mROS) that are gen-

erated during stress and shown to increase after RSV infection.49,50

Using Flow cytometry-basedMitosox staining, indicative of mitochon-

drial dysfunction, increased staining was observed in RSV infected

PERKf/f-CD11c Cre- (WT) DC andwere further significantly increased

in PERKf/f–CD11c Cre+ (PERK-deficient) DC compared to the WT

RSV infected DC (Figure 3A). This indicates that PERK signal-

ing may partially preserve mitochondria function in RSV-infected

DCs.

A primary source of ROS generation is the mitochondrial electron

transport chain and as it is indicative of dysfunctional mitochondria,

we examined mitochondria function in the PERK-deficient DC popula-

tion compared to WT during RSV infection. Using the Seahorse-based

cellMito Stress Testwe found that the oxygen consumption rate (OCR)

was significantly reduced in the PERK-deficient DC at maximal res-

piration when OXPHOS was uncoupled with FCCP treatment. Rela-

tive to WT DCs, maximal respiration OCR in PERK-deficient DCs was

further reduced upon RSV infection (Figure 3B and 3C). Importantly,

oxygen consumption rate (OCR), a measure of mitochondrial oxidative

phosphorylation, was reduced in PERK-deficient DCs relative to WT

at baseline only upon RSV infection but not at baseline. This suggests

that RSV infection prompted the defective mitochondrial response in

PERK-deficient cells. The significant decreased OCR (directly reflec-

tive of ATP production capacity to provide for increased cellular

use) in the PERK deficient DC resulted in decreased ATP production

(Figure 3D). Thus, the absence of PERK to alleviate the ER stress

appears to promote increased dysfunctional mitochondria upon RSV

infection that results in altered energy balance in DCwhile at the same

time initiates amodified cytokine activation profile.



384 NARAYANAN ET AL.

F IGURE 4 PERK deficient animals have reduced RSV-associated lung pathology and altered cytokine responses. (A)WT (PERKf/f-CD11c Cre-)
or PERK-/- (PERKf/f-CD11cCre+) mice were infected with RSV (2× 105 pfu) and harvested on day 8 of infection with lungs stained for histology
with periodic acid Schiff (PAS) stain (red) for mucus. Sections are representative of 5mice/group. As an indication of themucus production, a
blinded assessment of the slides was done based upon a 4 point scale with 1 being nomucus to 4 being completely filled airways (seeMaterials and
Methods). (B) The left lobe of the lung was processed for mRNA analysis for key cytokine genes, IL-13, IL-17, and IL-1 along with goblet/mucus
associated gob5 expression. Data represent mean± SE of fold increase relative to uninfectedmice of 5mice/group

3.3 RSV infection results in PERK-mediated
inflammatory cytokine response and mucus
production in vivo associated with CD4 T cells

In order to more specifically examine the role of PERK in DC and

immune activation during RSV infection PERKf/f-CD11c Cre- and

PERKf/f–CD11c Cre+ mice were infected with RSV for eight days.

Lung tissue was harvested for histopathology and mRNA expres-

sion analyzed. PERK deficient (Cre+) animals exhibited decreased

immunopathology, with lung tissue showing less mucus staining and

decreased inflammatory cell infiltration compared to PERK sufficient

(CRE-) mice (Figure 4A). A blinded assessment of mucus presence in

the PAS stained histology slides showed decreased presence of mucus

in the PERK deficient animals that is reflective of disease severity

with RSV infection (Figure 4A). In addition, when mRNA analysis was

performed on whole lung mRNA a reduced expression of IL-1β, IL-
13, and IL-17, as well as mucus-associated gene gob5 was observed

(Figure 4B). These data demonstrate that inhibiting PERK activation

reduced pathogenesis during RSV infection related to altered cytokine

environments.
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F IGURE 5 Accumulation of activated T cell populations are reduced in PERK-/- mice infected with RSV. Uninfected and RSV infectedWT and
PERK-/- mice were examined for accumulation of specific innate and acquired cell populations. Lungs from 8-day infectedmice were dispersed by
enzyme digestion into single cell suspensions and stained for specific cell populations for flow cytometry analysis using antibodies as described in
theMaterials andMethods. (A)Myeloid cell populations were examined by flow cytometry including primary DC populations and granulocyte. (B)
Activated CD4 and CD8 T cell populations as well as ILC2were assessed by flow cytometry as described in theMethods. (C) Intracellular staining
for IL-17 and IFNγ in CD4+ T cells from lungs of RSV-infectedmice. Data represent mean± SE from 5mice/group

The local immune environment of the lung was significantly mod-

ified in the PERK deficient mice as indicated by both the intensity

of the cytokine responses and the presence of mucus. Flow cytom-

etry analysis was used to examine the intensity and severity of the

inflammatory response. To identify the immune cell types affected by

PERK signaling inhibition in CD11c+ cells during RSV infection, wild

type and PERKfl/fl-CD11c-Cremice were infected with RSV for 8 days.

Lung tissue was harvested and dispersed for flow cytometry analysis

to examine changes in myeloid and T cell populations that have been

associatedwith the severity ofRSV-inducedpathology.51–55 The exam-

ination of DC and granulocyte populations indicated that the inflam-

matory DC (CD11b+CD11c+) were significantly reduced with the

CD103+ DC showing a trend toward reduction (Figure 5A). When

examining CD4+ and CD8+ activated T cell numbers there was a

marked reduction in both the CD69+ T cell populations in PERKfl/fl-

CD11c-Cre compared to wild-type mice (Figure 5B). In addition, the

ILC2 population that has been associated with increased pathol-

ogy during RSV infection was reduced but not significantly. In addi-

tion, IL-17 and IFN production from the CD4 T cells by intracellular

cytokine staining was assessed to examine the outcome of the immune

responses. While the number of activated CD4+CD69+ T cells was

reduced in the PERKfl/fl-CD11c-Cre mice, there was also a shift in the

CD4phenotypewith a significant reduction in the IL-17+ and a relative

increase in IFNg+ CD4 T cells (Figure 5C). Thus, there are changes in
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lymphoid cell populations thatdrive immunopathogenic responses that

are differentially regulated by PERK-mediated pathways from DCs

that reflect a more appropriate anti-viral immune environment.

4 DISCUSSION

The present study identifies that DC activation induced by RSV is

altered by the ER stress signaling molecule PERK leading to altered

cytokine response and immunopathology. Previous studies have shown

that viral infection can promote ER stress that leads to the alteration

of cellular metabolism.21,33,56,57 In these studies mice with CD11c-

specific PERK deficiency have an altered immune phenotype with

decreased IL-13 and IL-17 alongwith reducedmucus production in the

lungs of RSV infected mice. IL-13 and IL-17 have been shown to be

pathogenic andpromote enhanceddamage in the lungs ofRSV infected

mice and associated with disease in infants.9,58–63 The reduction in IL-

13 and IL-17 gene expression in DC-targeted PERK-deficient animals

is consistent with the reduction in CD4+ T cells in the lungs of infected

mice. The diminished IL-17 responses also follow the IL-1 production

reduction that can drive Th17 cell differentiation.64,65 One of the pri-

mary mechanisms for ER stress-induced inflammasome activation and

inflammatory cytokine production is throughNLRP3 activation.57,66,67

NLRP3 activity is downstreamof PERK associated ER stress andwould

lead to increased IL-1 that correlates to multiple aspects of these

findings.68,57,69 IL-1 is a knownmediator of Th17 differentiation64 and

promotes inflammation and cytokine production.65,70,71 Thus, these

studies help to identify several integrated mechanisms during RSV-

induced pathology, including (1) the induction of ER stress in CD11c+

DC promotes pathogenic responses, (2) inhibition of PERK attenuates

pathogenic innate and acquired immune responses, and (3) the acti-

vation of PERK plays a pivotal role in generation of pathogenic T cell

immune responses. Importantly, the reduced inflammation and pathol-

ogy are accompanied by a shift in T cell cytokines that suggest a more

appropriate anti-viral response.

ER stress can be induced in a number of scenarios including the

overproduction of ROS, bacterial toxins, unfolded protein response

(UPR), and during viral infections. The ER stress response attempts to

bring the cellular process back to homeostasis by activating a num-

ber of protein pathways to address different aspects of the dysregu-

lation, including IRE1 and PERK. Our data have previously shown that

under conditions where autophagy is blocked (with LC3b-/- mice) the

IRE1 pathway appears to be dominant and promotes the activation

of similar pathologic processes as those identified as targets of PERK,

Th2/Th17, and inflammasome-induced IL-1.33 Targeting IL-1 (with sol-

uble IL-1Ra receptor antagonist) in those latter studies reduced the

Th2/Th17 acquired immune response and attenuated lung pathology.

In the present study PERK, which activates nrf2 and elf2a, appears

to be a prominent inducer of the downstream activation pathways

that promote disease when autophagy is functional. The activation

of these targets by PERK is responsible for translational arrest asso-

ciated with unfolded protein responses (UPR) and allows the sup-

pression of a number of innate cytokines.75 Interestingly, in our in

vitro studies the inhibition of PERK led to increased production of

a number innate cytokines, including IFNβ and IL-12 that are critical

anti-viral innate cytokines, while IL-1 expression was decreased. The

outcome was reduced pathology and a relative shift to fewer IL-17

and more IFN producing CD4 T cells in the lungs. Thus, the effects

observed in vivo with the CD11c specific PERK deficient animals are

consistent with the in vitro inhibition experiments. PERK-induced IL-

1 is likely associated with inflammasome activation through eif2α
phosphorylation. Phosphorylation of eif2α leads to the dissociation of
thioredoxin-interacting protein (TXNIP) from thioredoxin (a hallmark

event of oxidative stress), and thereby facilitates ER stress-mediated

inflammasome activation.74,75 Importantly, without PERK there is a

reduction in mitochondria function and ATP production that disrupts

the metabolism of RSV-infected DC, thereby altering innate cytokine

responses. Interestingly, these findings demonstrate that while PERK

is required for alleviating ER stress and optimizing mitochondrial ATP

production, thePERKsignaling pathwayeif2αmayalsodriveunwanted

changes inDC. Further studies areneeded toexplore themitochondrial

and metabolic changes in DCs during each stage of RSV infection, and

the mechanisms that link DC metabolism to ER stress responses and

innate immune regulation.

The CD11c-specific PERK deficiency appeared to have broad con-

sequences on cytokine gene expression profiles, even though this was

aDC/CD11c targeted deficiency rather than a full-body knockout. This

indicates thatPERK is likely upstream fromanumberof immune signal-

ing/activation processes. The lung cell analysis studies demonstrated

that DC-targeted PERK-deficient animals had reduced accumulation

of activated T cells. In addition, there are indirect pathways impli-

cated in other studies of PERK signaling and immunity. For example,

PERK deficiency can decrease the degradation of the type I IFN recep-

tor, IFNAR1, thus increasing type I IFN signaling leading to more effi-

cient viral clearance.78 RSV infection hampers the anti-viral immune

response by dampening type I IFN signaling,79,80 possibly through the

induction of ER stress responses. Thus, by targeting PERK-induced ER

stress the resulting increased type I IFN and IL-12 could promote a

more beneficial immune environment exemplified by decreased IL-17

and increased IFNg producing T cells in the lung. This latter effect

was observed both in vitro and in vivo with isolated DC that are a

driving mechanism to the in vivo effect on T cells in the CD11c tar-

geted deletion of PERK. Together, our studies demonstrate that the

inhibition of PERK in dendritic cells results in a reduction of inflam-

mation and mucus production in the lung. The inhibition of this path-

way may provide a novel therapeutic target for mitigating the damag-

ing airway inflammation induced by RSV infection and possibly subse-

quent disease sequelae through management of the overall immune

responses.
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