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Abstract 

 The activation of dendritic cells (DC) during respiratory viral infections is central to 

directing the immune response and the pathologic outcome.  In these studies the effect of 

RSV infection on development of ER stress responses and the impact on innate immunity 

was examined.  The upregulation of ER stress was closely associated with the PERK 
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pathway through the upregulation of CHOP in RSV infected DC.  The inhibition of PERK 

corresponded with decreased EIF2a phosphorylation but had no significant effect on Nrf2 in 

DC, two primary pathways regulated by PERK.  Subsequent studies identified that by 

blocking PERK activity in infected DC an altered ER stress response and innate cytokine 

profile was observed with the upregulation of IFN and IL-12, coincident to the down 

regulation of IL-1. When mitochondria respiration was assessed in PERK deficient DC 

there were increased dysfunctional mitochondria after RSV infection that resulted in reduced 

oxygen consumption rates (OCR) and ATP production indicating altered cellular metabolism. 

Use of a CD11c targeted genetic deleted murine model, RSV infection was characterized by 

reduced inflammation and diminished mucus staining as well as reduced mucus-associated 

gene gob5 expression. The assessment of the cytokine responses showed decreased IL-13 

and IL-17 along with diminished IL-1 in the lungs of PERK deficient infected mice. When 

PERK-deficient animals were assessed in parallel for lung leukocyte numbers, animals 

displayed significantly reduced myeloid and activated CD4 and CD8 T cell numbers.  Thus, 

the PERK activation pathway may provide a rational target for altering the severe outcome of 

an RSV infection through modifying immune responses.  

Introduction 

 Respiratory syncytial virus (RSV) infection remains a leading cause of hospitalization 

in infants and older adults (1). While there is no effective vaccine to prevent RSV infection, 

prophylactic anti-RSV monoclonal antibody treatment is often administered to vulnerable 

infant populations such as those born prematurely, or with congenital heart defects (2, 3). 

Infants hospitalized for RSV infection present with severe inflammation and airway 

constriction that stems from an aberrant immune response to the virus (4-6). During severe 

RSV infection an inappropriate immune response skews toward Th2 and Th17 responses, 

which promotes significant mucus production and goblet cell hypertrophy leading to 
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pathogenic sequelae (7-11). Further, hospitalization due to RSV infection is associated with 

an increased susceptibility to asthma (12-16), suggesting that the effects of the skewed 

immune response are not limited to infancy, but rather cause long lasting airway changes 

and immune system alteration. Understanding the molecular mechanisms of RSV induced 

inflammation is key to identifying effective therapeutic targets during early life disease that 

may have long-term consequences. 

 It is known that cellular stress, such as endoplasmic reticulum (ER) stress and 

oxidative stress in the form of reactive oxygen species (ROS) production can promote 

inflammatory pathways that result in pathogenic responses (17-19). Although other studies 

have established the impact of ROS on RSV (20), the mechanisms in which ER- and 

oxidative stress themselves affect innate immunity to RSV are less clear (21).  Two 

mediators of the ER stress response are PKR-like endoplasmic reticulum kinase (PERK, 

gene eif2ak3), which is activated by ROS production, and inositol-requiring enzyme 1 (IRE-

1), which is activated upon RNAse activity. RSV infection leads to ROS production and can 

influence the intensity of the responses (20, 22, 23). PERK phosphorylates EIF2a, which 

signals for a reversible halt in translation, and Nrf2, a transcriptional repressor that 

constantly undergoes degradation when dephosphorylated. Interestingly, Nrf2 in particular 

may have protective roles during RSV infection but has several pathways that can activate 

its function (24-28).  Our results indicate that during RSV infection ER stress is induced and 

PERK is activated in dendritic cells, and appears to contribute to the pathogenic RSV 

immune response in several ways: 1) transcriptional regulation of key innate cytokines; 2) 

enhancement of EIF2a-phosphorylation signaling that leads to altered APC function; and 3) 

induction of CD4 T cell recruitment to the lung associated with IL-13 and IL-17 production.  

Our findings support these latter concepts and we present data that suggest that blocking 

the PERK activation pathways during RSV responses would alter pathogenesis in the lung. 
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Materials and Methods 

Mice 

C57BL/6J (BL6), B6; PERKf/f and C57BL/6J-Tg (Itgax-Cre-EGFP) 4097Ach/J (CD11c-Cre-

GFP) mice were purchased at 6-7 wk of age from The Jackson Laboratory (Bar Harbor, ME). 

PERKf/f mice were crossed to CD11c-Cre-GFP transgenic mice. Thus, Cre+ mice lack a 

functional PERK in CD11chigh cells. PERKf/f-CD11c-Cre mouse breeding took place in-house 

at the University of Michigan (Ann Arbor, MI) with Cre- mice used as the wildtype control 

expressing normal PERK levels. All work involving animals was reviewed and approved by 

the University of Michigan Committee on Care and Use of Animals. 

BMDC culture 

Bone marrow-derived DCs (BMDCs) were isolated from whole bone marrow of naive 

C57BL/6 mice. Bone marrow cells were seeded into tissue culture flasks containing RPMI 

1640-based complete medium supplemented with 15ng GM-CSF/ml (R&D Systems, 

Minneapolis, MN). C57BL/6 mouse-derived BMDCs were fed on days 3, 5, 7, 9 and 

harvested on day 10, a time point by which cells were ≥ 85% CD11b+ CD11c+ BMDCs by 

flow cytometric analysis.  In some experiments control and RSV infected BMDC were treated 

with PERK inhibitor (PERKi (5uM, GSK2606414)) to block the downstream signaling of 

target molecules.    

RSV Growth 

Line 19 RSV (antigenic subgroup A), originally obtained from a sick infant at the University of 

Michigan Hospital System, was shown in animal models to mimic human infection by 

eliciting airway mucus production upon inoculation with 1-3 × 105 PFU RSV. RSV was 
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propagated in our laboratory in HEp-2 cells (American Type Culture Collection). Mice were 

infected intratracheally with 1.5 × 105 PFU RSV as previously described (29). 

Quantitative PCR 

Total RNA was isolated from BMDC culture using TRIzol reagent, according to the 

manufacturer’s instructions (Invitrogen, Grand Island, NY). RNA was reverse transcribed, 

and cytokine gene expression was assessed using TaqMan Gene Expression Assay 

primer/probe sets on an ABI Prism 7500 Sequence Detection System (Applied Biosystems, 

Foster City, CA). Custom primers were used to assess transcription levels of RSV-G, and 

RSV-F, as previously described (30). Fold change expression was calculated from gene 

expression values normalized to 18s RNA. 

Immunoblot Analysis 

Total cells lysates were prepared using 1X Cell Lysis Buffer (Cell Signaling). Same amount 

of 3~10 ug of total proteins were separated by Nu-PAGE (Invitrogen) and transferred on 

nitrocellulose membrane. The primary Abs were diluted in 5% BSA in 1X TBST. 

Histopathology and Mucus Assessment 

Serial 6 um sections were cut from paraffin-embedded fixed lungs and stained by periodic 

acid-Schiff (PAS) staining.  PAS stained slides were blindly scored for goblet cell hyperplasia 

and mucus plugging by light microscopy. The following scoring system was used: 1, absent; 

2, staining in multiple airways; 3, staining in multiple airways with mucus plugging; 4, severe 

mucus plugging in multiple airways. 

Flow Cytometry 

Cells were isolated from the left lungs by digestion in 200μg/ml Liberase TM (Roche Applied 

Science, Indianapolis, IN) and 200U/ml DNase I (Sigma-Aldrich) at 37C. After lysing RBCs, 
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FcR-blocking was used to limit nonspecific staining. Cells were stained with Live/Dead 

Fixable Yellow (Invitrogen), followed by fluorescent antibodies for 30 min. Total number of 

cells for each population in individual lungs was calculated using gating percentage 

multiplied by total number of cells in each lung preparation. Analysis was performed using 

FlowJo software (TreeStar, Ashland OR). 

Seahorse Assay 

The Seahorse XFe96 Analyzer (Agilent Technologies, Santa Clara, CA, USA) was used to 

measure the mitochondrial function of BMDC. Briefly, 1x105 cells per well, cultured in RPMI 

complete media supplemented with 10% (v/v) heat-inactivated FBS were plated in a 96 well 

Seahorse plate. BMDC were infected with RSV for 2h, then washed twice with Seahorse 

assay media (Agilent Technologies, Santa Clara, CA, USA) and incubated for 30 min in a 

CO2 free incubator at 37°C. Oxygen consumption rate (OCR) was determined using a cell 

Mito Stress Test kit (Agilent Technologies, Santa Clara, CA, USA) according to 

manufacturer's instructions. Oligomycin (2mM); FCCP (Carbonyl cyanide 4-

(trifluoromethoxy) phenylhydrazone) (1.5mM); Rotenone (0.5 mM), and Antimycin (0.5 mM) 

were used in the assay. Oligomycin is used to block ATP synthase to deplete the cells of 

their capacity to make ATP. FCCP is then added and allows the inner mitochondrial 

membrane to be permeable for protons and maximum electron flux through the electron 

transport chain to promote maximal respiration.  Addition of Rotenone and antimycin A 

inhibit complex I and III, respectively, to measure spare respiratory capacity.  Calculation of 

the responses by Seahorse allows the measurement of baseline and maximum 

mitochondrial respiration and ATP synthesis.  

Statistical analysis 
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Data were analyzed and graphed using the GraphPad Prism 7 software (San Diego, CA). 

Statistical significance was determined by one-way analysis of variance and Students post-

test to obtain p-values. Adjusted p-values below 0.05 are considered statistically significant. 

 

Results 

RSV infection induces PERK activity and downstream effects on cytokine gene 

expression in dendritic cells  

Previous studies in our laboratory and others have indicated that dendritic cells (DC) 

are central to driving the pathogenic responses in the lungs of RSV infected animals (31-45) 

and therefore a better understanding of their activation may provide new therapeutic 

direction. ER stress responses during infectious processes have been suggested to enhance 

immunopathology.  DCs infected with RSV for 1-24 hours showed little upregulation of IRE1 

or PERK (Eif2ak3) mRNA (Figure 1). However, when we examined the activation of critical 

downstream targets of ER stress activation, CHOP (Ddit3) and XBP1, we observed a 

significant upregulation of only CHOP but not XBP1, suggesting that the PERK pathway was 

a primary pathway initiated by RSV infection. These results provided initial data suggesting 

ER stress was increased during RSV infection of DC and may promote additional activation 

of the DC.  

 The PERK activation pathway initiates downstream signaling via phosphorylation of 

Eif2ak3 as well as increased Nrf2 levels that modify gene expression, both of which were 

observed at 2 hours post-RSV infection (Figure 2A). When PERK was inhibited (PERKi 

(5uM, GSK2606414)) phosphorylation of Eif2 compared to total Eif2 was significantly 

decreased, while Nrf2 levels were also decreased with PERK inhibition but did not reach 

significance.  Nrf2 levels are controlled by ubiquitin-mediated degradation such that there is 
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high turnover due to its chaperone Keap1 and may be beneficial for infectious disease 

pathways induced by multiple pathways (46-48). Thus, PERK independent pathways likely 

promote the activation of Nrf2 stabilization suggesting why PERK inhibition may not be 

specific for Nrf2. When RSV-infected DCs were treated with the PERK inhibitor (5uM, 

GSK2606414), the innate cytokine gene expression profiles were also altered (Figure 2B). 

PERK inhibition during RSV infection resulted in decreased expression of downstream ER 

stress proteins, atf6 and Chop, with increased expression of critical anti-viral innate 

cytokines IL-12 and Type-I interferon IFN-β and reduced expression of IL-1β. This altered 

cytokine expression profile indicated a role for ER stress and PERK in regulating the innate 

immune response to RSV infection modifying the anti-viral responses. 

PERK-deficient DC have altered mitochondrial respiration during RSV infection  

 In order to further understand how PERK was regulating the innate immune response 

isolated DC from PERKf/f-CD11c Cre- and PERKf/f-CD11c Cre+ were grown in vitro and 

assessed for their cellular metabolic differences. Initial analyses assessed whether there 

were differences in the reactive oxygen species (mROS) that are generated during stress 

and shown to increase after RSV infection (49, 50). Using Flow cytometry-based Mitosox 

staining, indicative of mitochondrial dysfunction, increased staining was observed in RSV 

infected PERKf/f-CD11c Cre- (WT) DC and were further significantly increased in PERKf/f-

CD11c Cre+ (PERK-deficient) DC compared to the WT RSV infected DC (Figure 3A).  This 

indicates that PERK signaling may partially preserve mitochondria function in RSV-infected 

DCs. 

 A primary source of ROS generation is the mitochondrial electron transport chain and 

as it is indicative of dysfunctional mitochondria, we examined mitochondria function in the 

PERK-deficient DC population compared to WT during RSV infection.  Using the Seahorse-

based cell Mito Stress Test we found that the oxygen consumption rate (OCR) was 
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significantly reduced in the PERK-deficient DC at maximal respiration when OXPHOS was 

uncoupled with FCCP treatment. Relative to WT DCs, maximal respiration OCR in PERK-

deficient DCs was further reduced upon RSV infection (Figure 3B & 3C). Importantly, oxygen 

consumption rate (OCR), a measure of mitochondrial oxidative phosphorylation, was 

reduced in PERK-deficient DCs relative to WT at baseline only upon RSV infection but not at 

baseline. This suggests that RSV infection prompted the defective mitochondrial response in 

PERK-deficient cells. The significant decreased OCR (directly reflective of ATP production 

capacity to provide for increased cellular use) in the PERK deficient DC resulted in 

decreased ATP production (Figure 3D).  Thus, the absence of PERK to alleviate the ER 

stress appears to promote increased dysfunctional mitochondria upon RSV infection that 

results in altered energy balance in DC while at the same time initiates a modified cytokine 

activation profile. 

RSV infection results in PERK-mediated inflammatory cytokine response and mucus 

production in vivo associated with CD4 T cells  

 In order to more specifically examine the role of PERK in DC and immune activation 

during RSV infection PERKf/f-CD11c Cre- and PERKf/f-CD11c Cre+ mice were infected with 

RSV for eight days.  Lung tissue was harvested for histopathology and mRNA expression 

analyzed. PERK deficient (Cre+) animals exhibited decreased immunopathology, with lung 

tissue showing less mucus staining and decreased inflammatory cell infiltration compared to 

PERK sufficient (CRE-) mice (Figure 4A). A blinded assessment of mucus presence in the 

PAS stained histology slides showed decreased presence of mucus in the PERK deficient 

animals that is reflective of disease severity with RSV infection (Figure 4A).  In addition, 

when mRNA analysis was performed on whole lung mRNA a reduced expression of IL-1β, 

IL-13, and IL-17, as well as mucus associated gene gob5 was observed (Figure 4B). These 
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data demonstrate that inhibiting PERK activation reduced pathogenesis during RSV infection 

related to altered cytokine environments.  

 The local immune environment of the lung was significantly modified in the PERK 

deficient mice as indicated by both the intensity of the cytokine responses and the presence 

of mucus. Flow cytometry analysis was used to examine the intensity and severity of the 

inflammatory response. To identify the immune cell types affected by PERK signaling 

inhibition in CD11c+ cells during RSV infection, wild type and PERKfl/fl-CD11c-Cre mice were 

infected with RSV for 8 days. Lung tissue was harvested and dispersed for flow cytometry 

analysis to examine changes in myeloid and T cell populations that have been associated 

with the severity of RSV-induced pathology (51-55). The examination of DC and granulocyte 

populations indicated that the inflammatory DC (CD11b+CD11c+) were significantly reduced 

with the CD103+ DC showing a trend toward reduction (Figure 5A). When examining CD4+ 

and CD8+ activated T cell numbers there was a marked reduction in both the CD69+ T cell 

populations in PERKfl/fl-CD11c-Cre compared to wildtype mice (Figure 5B). In addition, the 

ILC2 population that has been associated with increased pathology during RSV infection 

were reduced but not significantly. In addition, IL-17 and IFN production from the CD4 T cells 

by intracellular cytokine staining was assessed to examine the outcome of the immune 

responses. While the number of activated CD4+CD69+ T cells were reduced in the PERKfl/fl-

CD11c-Cre mice, there was also a shift in the CD4 phenotype with a significant reduction in 

the IL-17+ and a relative increase in IFNg+ CD4 T cells (Figure 5C). Thus, there are 

changes in lymphoid cell populations that drive immunopathogenic responses that are 

differentially regulated by PERK-mediated pathways from DCs that reflect a more 

appropriate anti-viral immune environment.  
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Discussion 

 The present study identifies that DC activation induced by RSV is altered by the ER 

stress signaling molecule PERK leading to altered cytokine response and immunopathology. 

Previous studies have shown that viral infection can promote ER stress that leads to the 

alteration of cellular metabolism (21, 33, 56, 57).  In these studies mice with CD11c-specific 

PERK deficiency have an altered immune phenotype with decreased IL-13 and IL-17 along 

with reduced mucus production in the lungs of RSV infected mice.  IL-13 and IL-17 have 

been shown to be pathogenic and promote enhanced damage in the lungs of RSV infected 

mice and associated with disease in infants (9, 58-63). The reduction in IL-13 and IL-17 

gene expression in DC targeted PERK-deficient animals is consistent with the reduction in 

CD4+ T cells in the lungs of infected mice. The diminished IL-17 responses also follow the 

IL-1 production reduction that can drive Th17 cell differentiation (64, 65). One of the primary 

mechanisms for ER stress-induced inflammasome activation and inflammatory cytokine 

production is through NLRP3 activation (57, 66, 67). NLRP3 activity is downstream of PERK 

associated ER stress and would lead to increased IL-1 that correlates to multiple aspects of 

these findings (68) (57, 69).  IL-1 is a known mediator of Th17 differentiation (64) and 

promotes inflammation and cytokine production (65, 70, 71). Thus, these studies help to 

identify several integrated mechanisms during RSV-induced pathology, including 1) the 

induction of ER stress in CD11c+ DC promotes pathogenic responses, 2) inhibition of PERK 

attenuates pathogenic innate and acquired immune responses, and 3) the activation of 

PERK plays a pivotal role in generation of pathogenic T cell immune responses. Importantly, 

the reduced inflammation and pathology is accompanied by a shift in T cell cytokines that 

suggest a more appropriate anti-viral response. 

 ER stress can be induced in a number of scenarios including the overproduction of 

ROS, bacterial toxins, unfolded protein response (UPR), and during viral infections. The ER 
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stress response attempts to bring the cellular process back to homeostasis by activating a 

number of protein pathways to address different aspects of the dysregulation, including IRE1 

and PERK.  Our data have previously shown that under conditions where autophagy is 

blocked (with LC3b-/- mice) the IRE1 pathway appears to be dominant and promotes the 

activation of similar pathologic processes as those identified as targets of PERK, Th2/Th17 

and inflammasome-induced IL-1 (33).  Targeting IL-1 (with soluble IL-1Ra receptor 

antagonist) in those latter studies reduced the Th2/Th17 acquired immune response and 

attenuated lung pathology.  In the present study PERK, which activates nrf2 and elf2a, 

appears to be a prominent inducer of the downstream activation pathways that promote 

disease when autophagy is functional.  The activation of these targets by PERK is 

responsible for translational arrest associated with unfolded protein responses (UPR) and 

allows the suppression of a number of innate cytokines (75).  Interestingly, in our in vitro 

studies the inhibition of PERK led to increased production of a number innate cytokines, 

including IFN and IL-12 that are critical anti-viral innate cytokines, while IL-1 expression 

was decreased. The outcome was reduced pathology and a relative shift to fewer IL-17 and 

more IFN producing CD4 T cells in the lungs.  Thus, the effects observed in vivo with the 

CD11c specific PERK deficient animals is consistent with the in vitro inhibition experiments. 

PERK-induced IL-1 is likely associated with inflammasome activation through eif2 

phosphorylation. Phosphorylation of eif2 leads to the dissociation of thioredoxin-interacting 

protein (TXNIP) from thioredoxin (a hallmark event of oxidative stress), and thereby 

facilitates ER stress-mediated inflammasome activation (74, 75). Importantly, without PERK 

there is a reduction in mitochondria function and ATP production that disrupts the 

metabolism of RSV-infected DC, thereby altering innate cytokine responses.  Interestingly, 

these findings demonstrate that while PERK is required for alleviating ER stress and 

optimizing mitochondrial ATP production, the PERK signaling pathway eif2 may also drive 
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unwanted changes in DC. Further studies are needed to explore the mitochondrial and 

metabolic changes in DCs during each stage of RSV infection, and the mechanisms that link 

DC metabolism to ER stress responses and innate immune regulation.  

 The CD11c-specific PERK deficiency appeared to have broad consequences on 

cytokine gene expression profiles, even though this was a DC/CD11c targeted deficiency 

rather than a full body knockout. This indicates that PERK is likely upstream from a number 

of immune signaling/activation processes. The lung cell analysis studies demonstrated that 

DC-targeted PERK-deficient animals had reduced accumulation of activated T cells.  In 

addition, there are indirect pathways implicated in other studies of PERK signaling and 

immunity. For example, PERK deficiency can decrease the degradation of the type I 

interferon receptor, IFNAR1, thus increasing type I interferon signaling leading to more 

efficient viral clearance (78). RSV infection hampers the anti-viral immune response by 

dampening type I interferon signaling (79, 80), possibly through the induction of ER stress 

responses. Thus, by targeting PERK-induced ER stress the resulting increased type I IFN 

and IL-12 could promote a more beneficial immune environment exemplified by decreased 

IL-17 and increased IFNg producing T cells in the lung.  This latter effect was observed both 

in vitro and in vivo with isolated DC that are a driving mechanism to the in vivo effect on T 

cells in the CD11c targeted deletion of PERK. Together, our studies demonstrate that the 

inhibition of PERK in dendritic cells results in a reduction of inflammation and mucus 

production in the lung. The inhibition of this pathway may provide a novel therapeutic target 

for mitigating the damaging airway inflammation induced by RSV infection and possibly 

subsequent disease sequelae through management of the overall immune responses. 
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Figure legends 

Figure 1- Bone marrow-derived DC (BMDC) infected by RSV upregulate CHOP expression 

related to the PERK pathway.  BMDC were infected by RSV (MOI=1.0) and mRNA was 

isolated in a temporal fashion to examine the expression of ER stress related proteins and 

their downstream targets XBP-1 and CHOP for IRE-1 and PERK, respectively.  Quantitative 

PCR was used to assess the significant increase each of mRNA targets and compared to 

time 0 expression levels at each of the 5 time points. Data represent the mean ± SE of 3 

repeated independent BMDC cell lines.  
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Figure 2- RSV infection induces phosphorylation of eif2a and increased Nrf2 in BMDC 

cultures: PERK inhibition alters innate cytokine expression.  (A) BMDC grown from naïve 

mice were infected with RSV (MOI= 1.0) with or without PERK inhibitor (5uM, GSK2606414) 

were examined by Western blot for the ratio of phosphorylation of eif2/total eif2 and ratio 

of Nrf2/Actin after 24 hrs of infection.  Data are expressed in bar graphs as mean ± SE from 

the 3 repeat cultures of 106 BMDCs. (B) The expression of downstream ER stress proteins 

and cytokines in RSV infected DC are altered by inhibition of PERK correlating to eif2a 

phosphorylation.  Data represent mean ± SE from 3 repeat cultures.  
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Figure 3- The deletion of PERK in RSV infected BMDC alters mitochondria stabilization and 

function.  (A) BMDC from PERKf/f-CD11c Cre+ mice (PERK-/-) were stained for ROS 

expression using Mitosox and assessed by Flow cytometry for increased fluorescence.  (B-

D) Seahorse-based cell Mito Stress Test was used to assess WT or PERK-/- BMDC with or 

without RSV infection at baseline and with maximum mitochondrial stress (FCCP).  (E) ATP 

production was calculated based upon the Seahorse analysis with or without RSV infection 

in the WT and PERK-/- BMDC.  Data represents mean ± SE from 3 repeated cell lines.   
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Figure 4- PERK deficient animals have reduced RSV-associated lung pathology and altered 

cytokine responses. (A) WT (PERKf/f-CD11c Cre-) or PERK -/- (PERKf/f-CD11cCre+) mice 

were infected with RSV (2 x 105 pfu) and harvested on day 8 of infection with lungs stained 

for histology with periodic acid Schiff (PAS) stain (red) for mucus. Sections are 

representative of 5 mice/group. As an indication of the mucus production, a blinded 

assessment of the slides was done based upon a 4 point scale with 1 being no mucus to 4 

being completely filled airways (see Materials and Methods). (B) The left lobe of the lung 

was processed for mRNA analysis for key cytokine genes, IL-13, IL-17 and IL-1 along with 

goblet/mucus associated gob5 expression.  Data represent mean ± SE of fold increase 

relative to uninfected mice of 5 mice/group.  
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Figure 5- Accumulation of activated T cell populations are reduced in PERK-/- mice infected 

with RSV.  Uninfected and RSV infected WT and PERK-/- mice were examined for 

accumulation of specific innate and acquired cell populations.  Lungs from 8-day infected 

mice were dispersed by enzyme digestion into single cell suspensions and stained for 

specific cell populations for flow cytometry analysis using antibodies as described in the 

Materials and Methods. A) Myeloid cell populations were examined by flow cytometry 

including primary DC populations and granulocyte. B) Activated CD4 and CD8 T cell 

populations as well as ILC2 were assessed by flow cytometry as described in the Methods. 

C) Intracellular staining for IL-17 and IFN in CD4+ T cells from lungs of RSV-infected mice. 

Data represents mean ± SE from 5 mice/group.  
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