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Abstract

Subspace learning and matrix factorization techniques have many applications in science and engineering, and
efficient algorithms are critical as dataset sizes continue to grow. Many relevant problem formulations are non-convex,
and in a variety of contexts it has been observed that solving the non-convex problem directly is not only efficient
but reliably accurate. We discuss convergence theory for a particular method: first order incremental gradient descent
constrained to the Grassmannian. The output of the algorithm is an orthonormal basis for a d-dimensional subspace
spanned by an input streaming data matrix. We study two sampling cases: where each data vector of the streaming
matrix is fully sampled, or where it is undersampled by a sampling matrix At ∈ Rm×n with m � n. Our results
cover two cases, where At is Gaussian or a subset of rows of the identity matrix. We propose an adaptive stepsize
scheme that depends only on the sampled data and algorithm outputs. We prove that with fully sampled data, the
stepsize scheme maximizes the improvement of our convergence metric at each iteration, and this method converges
from any random initialization to the true subspace, despite the non-convex formulation and orthogonality constraints.
For the case of undersampled data, we establish monotonic expected improvement on the defined convergence metric
for each iteration with high probability.

This technical report was updated in February 2022 to match Dejiao Zhang’s PhD dissertation [33], which cor-
rected some errors. For the case with full observations (no compressed or missing data), the theoretical results herein
have been superseded by several other results in the literature, including results for the GROUSE algorithm itself [6].

1 Introduction
Low-rank matrix factorization is an essential tool for high-dimensional inference with fewer measurements than vari-
ables of interest, where low-dimensional models are necessary to perform accurate and stable inference. Many modern
problems fit this paradigm, where signals are undersampled because of sensor failure, resource constraints, or privacy
concerns. Suppose we wish to factorize a matrix M = UWT when we only get a small number of linear measure-
ments of M . Solving for the subspace basis U can be computationally burdensome in this undersampled problem
and related regularized problems. Many algorithms that attempt to speed up computation are solving a non-convex
optimization problem, and therefore come with few guarantees.

The Singular Value Decomposition (SVD) provides the solution to the non-convex matrix factorization problem
formulation with full data, and there are several highly successful algorithms for solving it [18]. Unfortunately, these
algorithms cannot easily be extended to problems with incomplete observations of the matrix. Recently, several
results have been published with first-of-their-kind guarantees for a variety of different gradient-type algorithms on
non-convex matrix factorization problems [2, 11, 14, 16, 20, 21, 35]. These new algorithms, being gradient-based,
are well-suited to extensions of the SVD where the matrix is not fully sampled and where we include different cost
functions or regularizers. For example, with gradient methods to solve the SVD we may be able to solve Robust
PCA [13, 19, 31], Sparse PCA [15], or even `1 PCA [12] with gradient methods as well. However, almost none of
these results gives guarantees in streaming problem, where data can only be accessed one partial column vector at a
time. This is a critical problem in the modern machine learning context with massive data and comparatively limited
memory, or in applications where data are collected continuously and must be processed in realtime. The existing
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theoretical results for the streaming problem significantly overestimate the number of samples needed for convergence
for typical algorithms.

Our contribution is to provide a global convergence result for d-dimensional subspace estimation using an incre-
mental gradient algorithm performed on the Grassmannian, the space of all d-dimensional subspaces of Rn, denoted
by G(n, d). Subspace estimation is a special case of matrix factorization with orthogonality constraints, where we seek
to estimate only the subspace spanned by the columns of the left matrix factor U ∈ Rn×d. Our result demonstrates
that, for fully sampled data without noise, this gradient algorithm converges globally to the global minimizer almost
surely, i.e., it converges from any random initialization to the global minimizer. For undersampled data, including
compressively sampled data and missing data, we provide results showing monotonic improvement in expectation on
the metric of convergence for each iteration.

This paper is organized as follows. The problem formulation and the GROUSE algorithm are described in Sec-
tion 2. The global convergence result for fully sampled data is presented in Section 4, the convergence behavior of
GROUSE with undersampled data is studied in Section 5, and the corresponding proofs are provided in Sections A.1,
A.2 and A.3. Experiment results are in Section 6.

2 Problem Setting
In this paper, we consider the problem of learning a low dimensional subspace representation from streaming data.
Specifically, we are given a sequence of observations xt = Atvt where At ∈ Rm×n (m ≤ n) are sampling matrices
that are given for each observation; vt ∈ Rn are drawn from a continuous distribution with support on the true
subspace, spanned by Ū ∈ Rn×d with orthonormal columns, i.e., vt = Ūst, st ∈ Rd. In this paper, we study three
different sampling frameworks: the fully sampled case with At being the identity matrix, the compressively sampled
case with At ∈ Rm×n (m � n) being random Gaussian matrices, and the missing data case where each row of At
(m� n) is uniformly sampled from the identity matrix.

We formulate subspace estimation as a non-convex optimization problem as follows. Let U ∈ Rn×d be a matrix
with orthonormal columns. Then we want to solve:

minimize
U∈Rn×d

T∑
t=1

min
wt
‖AtUwt − xt‖22 (1)

subject to span (U) ∈ G(n, d)

This problem is non-convex firstly because of the product of the two variables U and wt and secondly because the
optimization is over the Grassmannian G(n, d), the non-convex set of all d-dimensional subspaces in Rn. We study
an online algorithm to solve the above problem, where we process one observation at a time and perform a rank-one
update to generate a sequence of estimates Ut with the goal that R(Ut) → R(Ū), where R(·) denotes the column
range.

We can see the relationship between our problem and the well studied low-rank matrix recovery problem. Let
W ∈ Rd×T and M = [v1, . . . , vT ] ∈ Rn×T , then (1) is equivalent to

minimize
U∈Rn×d,W∈Rd×T

‖A (UW )−A (M) ‖22 (2)

subject to span (U) ∈ G(n, d)

where A : Rn×T → RmT is a linear operator. Our algorithm can be thought of as an incremental algorithm to
solve this problem as well. Fueled by the great deal of recent success of directly solving non-convex factorization
problems (as we discuss in related work below), we study the natural incremental gradient descent algorithm [10]
applied to (1) directly. Since the optimization variable in our problem is a subspace, we constrain the gradient descent
to the Grassmannian G(n, d). The resulting algorithm is called GROUSE (Grassmannian Rank-One Update Subspace
Estimation) algorithm and is described in Algorithm 1. This description differs from its initial introduction in [7] in
that it extends the missing data case to a more general sampling framework.
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Algorithm 1 GROUSE: Grassmannian Rank-One Update Subspace Estimation

Given U0, an n× d matrix with orthonormal columns, with 0 < d < n;
Set t := 0;
repeat

Given sampling matrix At : Rn → Rm and observation xt = Atvt;
Define wt := arg mina ‖AtUta− xt‖2;
Define pt := Utwt and r̃t := xt −Atpt, rt := ATt r̃t;
Using step size

θt = arctan

(
‖rt‖
‖pt‖

)
(3)

update with a gradient step on the Grassmannian:

Ut+1 := Ut +

(
yt
‖yt‖

− pt
‖pt‖

)
wTt
‖wt‖

(4)

where yt
‖yt‖2

=
pt
‖pt‖2

cos(θt) +
rt
‖rt‖2

sin(θt)

t := t+ 1;
until termination

2.1 Algorithm
At each step, the GROUSE algorithm receives a vector xt = Atvt, and tries to minimize the inconsistency between
R(U) and the true subspace R(Ū) with respect to the information revealed in the sampled vector xt, i.e.,

F (U ; t) = min
a
‖AtUa− xt‖2 (5)

In order to do so, GROUSE forms the gradient of F with respect to U evaluated at the current estimate Ut, and takes a
step in the direction of the negative gradient restricted to the Grassmannian. The derivation of the incremental gradient
descent update rule on the Grassmannian is found in [7, 5], and we summarize it here.

To compute the gradient of F on the Grassmannian, we first need to compute the derivative of F with respect to U
and evaluate it at Ut. As we will prove later, under mild conditions, AtUt has full column rank with high probability.
Therefore, the derivative is

dF
dU

= −2ATt r̃tw
T
t (6)

where r̃ := xt −AtUtwt denotes the residual vector with respect to the sampled vector xt, and wt is the least-squares
solution of (5). Using Equation (2.70) in [17], the gradient of F on the Grassmannian then follows as

∇F =
(
I − UtUTt

) dF
dU

= −2
(
I − UtUTt

)
ATt r̃tw

T
t

= −2ATt r̃tw
T
t . (7)

The final equality follows by r̃t ⊥ AtUt, which can be verified using the definitions of wt and r̃t. According to Eq
(2.65) in [17], a gradient step along the geodesic with tangent vector −∇F can be then formed as a function of the
singular values and singular vectors of ∇F . For this specific case of our rank one ∇F given in (7), the update rule
follows as

U(η) = Ut +

[
(cos (ηtσt)− 1)

Utwt
‖wt‖

+ sin (ηtσt)
ATt r̃t
‖ATt r̃t‖

]
wTt
‖wt‖

(8)

where ηt > 0 is the chosen step size at iteration t, pt := Utwt is the predicted value of the projection of the vector vt
onto R(Ut) and σt = ‖ATt r̃t‖‖pt‖. By leveraging the fact that r̃t ⊥ AtUt and pt ∈ R(Ut), it’s easy to verify that the
rank-one update (8) maintains orthogonality U(η)TU(η) = Id, and tilts R(Ut) to a new point on Grassmannian.

In summary, for each observation the GROUSE algorithm works as follows: it projects the data vector onto the
current estimate of the true subspace with respect to the sampling matrix At, to get either the exact (when At = In)
or approximated projection pt and residual rt = ATt r̃t. Then GROUSE updates the current estimate with a rank-one
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step as described by (4). In the present work, we propose an adaptive stepsize framework that sets the stepsize only
based on the sampled data and the algorithm outputs. More specifically, at each iteration a stepsize ηt is chosen such
that ηtσt = arctan

(
‖rt‖
‖pt‖

)
. As shown in Section 4, the proposed stepsize scheme is greedy for the fully sampled

data, i.e., it maximizes the improvement of our defined convergence metric at each iteration. For the undersampled
data, we establish a local convergence result by showing that, with the proposed stepsize, GROUSE moves the current
estimated subspace towards the true subspace with high probability despite the nonconvex nature of the problem and
undersampled data.

2.2 Related Work
Many recent results have shown theoretical support for directly solving non-convex matrix factorization problems
with gradient or alternating minimization methods. Among the incremental methods [16] is the one closest to ours,
where the authors consider recovering a positive semidefinite matrix with undersampled data. They propose a step
size scheme with which they prove global convergence results from a randomly generated initialization. However,
their convergence results contain a obscure term, and their choice of step size depends on the knowledge of some
parameters that are likely to be unknown in practical problems. Without this knowledge, the results only hold with
sufficiently small step size that implies significantly slower convergence.

In contrast, while our work applies more narrowly to the subspace estimation problem, we provide an explicit
expression for the expected improvement at each iteration, using a step size that only depends on the observations
and outputs of the algorithms. Based on that, we prove that with fully sampled data, the proposed stepsize scheme
maximizes the improvement of our convergence metric at each iteration, and GROUSE converges from any random
initialization to the true subspace, despite the non-convex formulation and orthogonality constraint global convergence.
We further posit a conjecture on the global convergence rate that better matches the practical observations for fully
sampled data. Although we have not yet established a complete proof of this conjecture, we present our current
approach in Appendix A.2.

Other work that has looked at incremental methods has focused only on fully sampled vectors. For example, [4]
invokes a martingale-based argument to derive the global convergence rate of the proposed incremental PCA method
to the single top eigenvector in the fully sampled case. In contrast, [3] estimates the best d-dimensional subspace in
the fully sampled case and provides a global convergence result by relaxing the non-convex problem to a convex one.
We seek to identify the d dimensional subspace by solving the non-convex problem directly.

The results in this paper are very closely related to our previous work [9]. In [9], we prove that, within a local region
of the true subspace, an expected improvement of their defined convergence metric for each iteration of GROUSE can
be obtained. In contrast, we establish global convergence results to a global minimizer from any random initialization
for fully sampled data, and extend the local convergence results to compressively sampled data. We also expand the
local convergence results in [9] to a much less conservative region, and we provide a much simpler analysis framework
that can be applied to different sampling strategies. Moreover, for each iteration of the GROUSE algorithm, the
expected improvement on the convergence metric defined in [9] only holds locally in both theory and practice, while
our theoretical result provides a tighter bound for the global convergence behavior of GROUSE over a variety of
simulations. This suggests that our result has more promise to be extended to a global result for both missing data and
compressively sampled data.

Turning to batch methods, [27, 21] provided the first theoretical guarantee for an alternating minimization al-
gorithm for low-rank matrix recovery in the undersampled case. Under typical assumptions required for the matrix
recovery problems [26], they established geometric convergence to the global optimal solution. Earlier work [22, 24]
considered the same undersampled problem formulation and established convergence guarantees for a steepest descent
method (and a preconditioned version) on the full gradient, performed on the Grassmannian. [14, 11, 35] considered
low rank semidefinite matrix estimation problems, where they reparamterized the underlying matrix as M = UUT ,
and update U via a first order gradient descent method. However, all these results require batch processing and a de-
cent initialization that is close enough to the optimal point, resulting in a heavy computational burden and precluding
problems with streaming data. We study random initialization, and our algorithm has fast, computationally efficient
updates that can be performed in an online context.

Lastly, several convergence results for optimization on general Riemannian manifolds, including several special
cases for the Grassmannian, can be found in [1]. Most of the results are very general; they include global convergence
rates to local optima for steepest descent, conjugate gradient, and trust region methods, to name a few. We instead
focus on solving the problem in (1) and provide global convergence rates to the global minimum.
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Before we present the main results, we first call out the following notation which we use throughout this chapter.
For notational convenience, we will drop the iteration subscript except our convergence metric ζt defined in Definition
1 hereafter.

Notation We useR(M) to denote the column space of a matrixM and PM to denote the orthogonal projection onto
R(M). In denotes the identity matrix in Rn×n and Mi denotes the ith row of matrix M . In this paper, without speci-
fication, ‖ · ‖ denotes the `2 norm. R(Ū) and R(U) denote the true subspace and our estimated subspace respectively,
here both Ū and U are matrices in Rn×d with orthonormal columns. Also we use v‖ and v⊥ to denote the projection
and residual of the underlying full vector v ∈ Rn onto the estimated subspace R(U), i.e., v‖ = UUT v, v⊥ = v − v‖.
Note that these two quantities are in general unknown for the undersampled data case. We define them so as to re-
late the intermediate quantities, determined by the algorithm and sampled data, to the improvement on our defined
convergence metric.

3 Preliminaries
In this section, we first define our convergence metric and describe an assumption on the streaming data needed to
establish our results. Subsequently, we state a fundamental result that is essential to quantify the improvement on the
convergence metric over GROUSE iterates.

Definition 1 (Determinant similarity). Our measure of similarity between R(U) and R(Ū) is ζ ∈ [0, 1], defined as

ζ := det(ŪTUUT Ū) =

d∏
k=1

cos2 φk .

where φk denotes the kth principal angle between R(Ū) and R(U), where 0 ≤ φ1 ≤ · · · ≤ φd ≤ π/2 are defined by
cosφk = σk(ŪTU) with σk denoting the kth singular value of ŪTU (See [18, Section 6.4.3]).

The convergence metric ζ increases to one when our estimate R(U) converges to R(Ū), i.e., all principal angles
between the two subspaces equal zero. Compared to other convergence metrics defined either as ‖(I − Ū ŪT )U‖2F =

d−‖ŪTU‖2F =
∑d
k=1 sin2 φk or 1−‖ŪTU‖22 = sin2 φ1, our convergence metric ζ measures the similarity instead of

the discrepancy between R(U) and R(Ū). In other words, ζ achieves its maximum value one when R(U) converges
to R(Ū), while the typical subspace distance is zero when the subspaces are equal. Also note that ζ = 0 iff at least
one of the principal angles is a right angle. That is, all stationary points Ustat of the full data problem except the true
subspace have det

(
ŪTUstatU

T
statŪ

)
= 0 [32, 5].

Assumption 1. For the underlying data v = Ūs, we assume the entries of s are independent, and identically dis-
tributed symmetrically about zero, and each entry has zero-mean and unit variance.

Given this assumption, we have the following lemma which relates the projection v‖ and the projection residual
v⊥ to the improvement on our convergence metric ζt. As we will show in the following sections, this lemma is crucial
for us to establish the expected improvement on our defined convergence metric ζt for all the sampling frameworks
considered in this work. The proof is provided in Section A.1.

Lemma 1. Let v‖ and v⊥ denote the projection and residual of the full data sample v onto the current estimate R(U).
Then given Assumption 1, for each iteration of GROUSE we have

E
[
‖v⊥‖2

‖v‖‖2

∣∣∣∣U] ≥ E
[
‖v⊥‖2

‖v‖2

∣∣∣∣U] ≥ 1− ζt
d

. (9)

Although both projection (v‖) and projection residual (v⊥) are in general unknown for the undersampled data, we
can relate the approximated projection residual AT r̃ to the true one v⊥ by leveraging either random matrix theory or
the incoherence property of the underlying subspace R(Ū). Therefore, the above lemma provides a unifying step to
quantify the improvement on the convergence metric for all cases considered in the present work.
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4 Fully Sampled Data
In this section, we consider fully sampled data, i.e., A = In. The corresponding proofs for these results can be found
in Section A.2. We start by deriving a greedy step size scheme for each iteration t that maximizes the improvement on
our convergence metric ζt. For each update we prove the following:

ζt+1

ζt
=

(
cos θ +

‖v⊥‖
‖v‖‖

sin θ

)2

. (10)

It then follows that

θ∗ = arg max
θ

ζt+1

ζt
= arctan

(
‖v⊥‖
‖v‖‖

)
. (11)

This is equivalent to (3) in the fully sampled setting At = In. Using θ∗, we obtain monotonic improvement on the
determinant similarity that can be quantified by the following lemma.

Lemma 2 (Monotonicity for the fully sampled noiseless case). For fully sampled data, choosing step size θ∗ =

arctan
(
‖v⊥‖
‖v‖‖

)
, after one iteration of GROUSE we obtain

ζt+1

ζt
= 1 +

‖v⊥‖2

‖v‖‖2
≥ 1 .

To gain more insight into the improvement on ζt for each iteration of GROUSE, we call out the following lemma,
which is a natural result of Lemma 1 and Lemma 2.

Lemma 3 (Expected improvement on ζt). When fully sampled data satisfying Assumption 1 are input to the GROUSE
(Algorithm 1), the expected improvement after one update step is given as:

E
[
ζt+1

∣∣U] ≥ (1 +
1− ζt
d

)
ζt .

Under the mild assumption that each data vector is randomly sampled from the underlying subspace, we obtain
strict improvement on ζt for each iteration provided ‖v⊥‖ > 0 and ‖v‖‖ > 0. Therefore, Lemma 2 provides insight
into how the GROUSE algorithm converges to the global minimum of a non-convex problem formulation: GROUSE
is not attracted to stationary points that are not the global minimum. As we mentioned previously, all other stationary
points Ustat have det(ŪTUstatU

T
statŪ) = 0, because they have at least one direction orthogonal to Ū [5]. Therefore,

if the initial point U0 has determinant similarity with Ū strictly greater than zero, then we are guaranteed to stay away
from other stationary points, since GROUSE increases the determinant similarity monotonically, according to Lemma
2. This together with Lemma 3 yields the following convergence result of GROUSE.

Theorem 4 (Convergence of GROUSE). Initialize the starting point U0 of GROUSE such that ζ0 > 0. Let 1 ≥ ζ∗ ≥
ζ0 be the desired accuracy of our estimated subspace. Then for any ρ > 0, after

K ≥
(
d

ζ0
+ 1

)
log

(
1

ρ(1− ζ∗)

)
iterations of GROUSE Algorithm 1,

P (ζK ≥ ζ∗) ≥ 1− ρ .
.

Notice that if we initialize GROUSE with U0 drawn uniformly from the Grassmannian, e.g., as the orthonormal
basis of a random matrix V ∈ Rn×d with entries being independent standard Gaussian variables, this guarantees
ζ0 > 0 with probability one. Therefore, Theorem 4 provides a global convergence result of GROUSE despite the
non-convexity of our objective. However, with this randomly initialized U0, the value of the associated determinant
similarity ζ0 is O

((
d
n

)d)
. Thereby, GROUSE requires O

(
d
(
n
d

)d)
iterations to converge to the required precision,

which is quite pessimistic compared to the actual number of iterations required by GROUSE in numerical simulations.
To narrow this gap, we call out the following conjecture on the global convergence rate for GROUSE.
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Conjecture 1 (Global Convergence of GROUSE). Let 1 ≥ ζ∗ > 0 be the desired accuracy of our estimated subspace.
With the initialization (U0) of GROUSE as the range of an n × d matrix with entries being i.i.d standard normal
random variables, then for any ρ > 0, after

K ≥ K1 +K2

=

(
2d2

ρ
+ 1

)
τ0 log(n) + 2d log

(
1

2ρ(1− ζ∗)

)
iterations of GROUSE Algorithm 1,

P (ζK ≥ ζ∗) ≥ 1− 2ρ ,

where τ0 = 1 +
log

(1−ρ/2)
C +d log(e/d)

d logn with C be a constant approximately equal to 1.

This conjecture matches what we see in experimental results. We present a related theorem with additional assump-
tions in Section A.2. We show that the iteration complexity can potentially be a combination of iterations required by
two phases: K1 =

(
2d2

ρ + 1
)
τ0 log(n) is the number of iterations required by GROUSE to achieve ζt ≥ 1/2 from a

random initialization U0; and K2 = 2d log
(

1
2ρ(1−ζ∗)

)
is the number of additional iterations required by GROUSE to

converge to the given accuracy ζ∗ from ζK1
= 1/2.

We want to comment that conjecture 1 requires fully observed noiseless data, which is not very practical in many
cases. However, it would potentially be the first convergence guarantee for the Grassmannian gradient descent based
method for subspace estimation with streaming data. It is a very important initial step for further studies on more
general cases, including undersampled data and noisy data with outliers. In the following section, we will analyze the
convergence behavior of GROUSE for undersampled data. We leave the corrupted data case as future work.

5 Undersampled Data
In this section, we consider undersampled data where each vector v is subsampled by a sampling matrix A ∈ Rm×n
with the number of measurements being much smaller than the ambient dimension (m � n). We study two typical
cases, the compressively sampled data where A are random Gaussian matrices, and the missing data where each row
of A is uniformly sampled from the identity matrix, In ∈ Rn×n.

We first outline several elementary facts that can help us understand how the GROUSE algorithm navigates on the
Grassmannian with undersampled data. The proofs can be found in Section A.3.

Suppose AU has full column rank, then the projection coefficients w are found by the squares solution of w =:
arg mina ‖AUa− x‖

2, i.e., w = (UTATAU)−1UTATx. Note that x = Av, therefore we can further decompose the
projection coefficients w as w = w‖ + w⊥ where

w‖ =
(
UTATAU

)−1
UTATAv‖ , w⊥ =

(
UTATAU

)−1
UTATAv⊥ . (12)

This decomposition explicitly shows the perturbation induced by the undersampling framework, i.e., Av⊥ is not per-
pendicular toAU in general, though v⊥ is orthogonal toR(U). Now we are going to use this perturbation to show how
the approximated projection p and residual r deviate from the exact ones obtained by projecting the full data sample v
onto the current estimate R(U).

Lemma 5. Given Eq (12), let p = p‖ + p⊥ with p‖ = Uw‖ and p⊥ = Uw⊥, then

p‖ = v‖ and r = ATAv⊥ −ATPAU (Av⊥) . (13)

Proof. Let a = UT v‖, then a is the unique solution to Uw = v‖ given that U has full column rank. Since AU also

has full column rank, b =
(
UTATAU

)−1
UTATAv‖ is also the unique solution to AUw = Av‖. It then follows

that AUa = Av‖ = AUb. Therefore, a = b. As for the second statement, it simply follows due to the fact that
Av‖ = AUw‖ ∈ R(AU). Hence r̃ = (Im − PAU )Av = (Im − PAU )Av⊥, recall that PAU denotes the orthogonal
projection operator onto the column space of AU . This together with r = AT r̃ completes the proof.
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Below we lower bound the improvement on ζt as a function of the key quantities r, r̃ and p. Compared to Lemma
2, Lemma 5 and Lemma 6 highlight the how the perturbations induced by the undersampling framework influence the
improvement on ζt for each iteration. Being able to analyze and bound the quantities that include the perturbations is
the key to establish the expected improvement on ζt for undersampled data.

Lemma 6. Suppose AU has full column rank, then for each iteration of GROUSE we have

ζt+1

ζt
≥ 1 +

2 ‖r̃‖2 − ‖r‖2

‖p‖2
+ 2

∆

‖p‖2
(14)

where ∆ = wT⊥
(
ŪTU

)−1
ŪT r with w⊥ =

(
UTATAU

)−1
UTATAv⊥.

The above lemma highlights the main hurdle in establishing global convergence for undersampled data. As is
indicated by (14), there is no guarantee on monotonicity of the improvement on ζt. Indeed, the uncertainty and per-
turbations introduced by the undersampling framework can even prevent us from establishing monotonically expected
improvement on ζt. However, we are still able to bound the key quantities in Lemma 6 and provide more insights on
the convergence behavior of GROUSE for both compressively sampled data and missing data.

5.1 Compressively Sampled Data
This section presents convergence results for compressively sampled data. We use an approach that merges linear
algebra with random matrix theory to establish an expected rate of improvement on the determinant similarity ζt at
each iteration. We show that, under mild conditions, the determinant similarity increases in expectation with a rate
similar to that of the fully sampled case, roughly scaled by m

n . Detailed proofs for this section are provided in Section
A.3.

Theorem 7. Suppose each sampling matrix A has i.i.d Gaussian entries distributed as N (0, 1/n). Let δ > 0 and let

φd denote the largest principal angle between R(U) and R(Ū). Then with probability exceeding 1− exp
(
−dδ

2

8

)
−

exp
(
−mδ

2

32 + d log
(

24
δ

))
− (4d+ 2) exp

(
−mδ

2

8

)
we obtain

Ev
[
ζt+1

∣∣U] ≥ (1 + γ1

(
1− γ2

d

m

)
m

n

1− ζt
d

)
ζt ,

where γ1 =
(1−δ)(1−2δ

√
m
n )(

1+
√

1+δ
1−δ

d
m

)2 and γ2 =

(
1 +

2 tan(φd)+δ d
cos(φd)

(1−2δ
√

m
n )
√

(1+δ)d/m

)
1+δ
1−δ . Now let β = 8(1+δ)

(1−δ)2(1−2δ)2 , further

suppose

m ≥ d ·max

{
32

δ2
log

(
24n2/d

δ

)
, β (tanφd + δ cosφdd)

(
tanφd + δ cosφdd+

1

2

)}
,

then with probability at least 1− 2/n2 − exp
(
−dδ2/8

)
we have

Ev
[
ζt+1

∣∣U] ≥ (1 +
1

2γ1

m

n

1− ζt
d

)
ζt .

This theorem implies that, for each iteration of GROUSE, expected improvement on ζt can be obtained with
high probability as long as the number of samples is enough. As shown in Theorem 7, our theory for GROUSE
requires more measurements when R(U) is far away from R(Ū), in which case cosφd =: ε is very small. In the
high dimensional setting where m � n, compared to the fully sampled data case, the expected improvement on ζt is
approximately scaled down by m

n . As we will show, this scaling factor is mainly determined by the relative amount
of effective information stored in the approximated projection residual. On the other hand, due to the perturbation
and uncertainty induced by the compressed sampling framework, the improvement on the determinant similarity given
by the lower bound in Lemma 6 is neither monotonic nor global. As mentioned before, this is the main hurdle to
pass before we can provide a global convergence result for undersampled data. However, despite of these difficulties,
we are still able to establish Theorem 7 which shows that, with reasonable number of measurements, the expected

8



improvement on the convergence metric is monotonic with high probability as long as our estimate R(U) is not too
far away from the true subspace R(Ū).

To prove Theorem 7, we provide the following intermediate results to quantify the key quantities in Lemma 6 with
high probability, where probability is taken with respect to the random Gaussian sampling matrix A.

Lemma 8. Under the same conditions as Theorem 7, with probability at least 1 − exp
(
−mδ

2
2

2

)
− exp

(
−mδ

2
1

8

)
−

exp
(
−dδ

2
1

8

)
we obtain

‖r̃‖22 ≥ (1− δ1)

(
1− β d

m

)
m

n
‖v⊥‖22 (15)

2‖r̃‖22 − ‖r‖22 ≥ (1− δ1)

(
1− 2δ2

√
m

n

)(
1− β d

m

)
m

n
‖v⊥‖22 (16)

where δ1, δ2 ∈ (0, 1), and β = 1+δ1
1−δ1 .

To interpret the above results, note that

‖r̃‖22 = ‖(Im − PAU )Av⊥‖22 = ‖Av⊥‖22 − ‖PAU (Av⊥)‖22 . (17)

where the first equality follows by the fact that (Im − PAU )Av‖ = 0 as we argued before, and the second equality
holds since PAU is an orthogonal projection onto R(AU). Then by leveraging the concentration property of random
projection, we can prove that ‖r̃‖22 concentrates around its expectation m−d

n ‖v⊥‖
2
2 with high probability. Also note

that ‖r‖22 ≤ ‖A‖22‖r̃‖22, hence the second statement (16) can be established by the concentration result of ‖r̃‖22 and
that of ‖A‖22 according to the random matrix theory.

Next we establish high probability bounds on ‖p‖22 and ∆. Then Theorem 7 follows naturally by first replacing
the key quantities in Lemma 6 with their high probability bounds, and then taking the expectation over the uncertainty
of the underlying full data vt.

Lemma 9. With the same conditions as Theorem 7, for any δ1 ∈ (0, 1), we have

‖p‖2 ≤

(
1 +

√
1 + δ1
1− δ1

d

m

)2

‖v‖2

with probability at least 1− exp
(
−dδ

2
1

8

)
− exp

(
−mδ

2
1

32 + d log
(

24
δ1

))
.

Lemma 10. With the same conditions as Theorem 7, let δ1, δ3 ∈ (0, 1), then

∆ ≤
√

1 + δ1
1− δ1

d

m

(
tan(φd) + δ3

d

cos(φd)

)
m

n
‖v⊥‖2

holds with probability at least 1− exp
(
−dδ

2
1

8

)
− exp

(
−mδ

2
1

32 + d log
(

24
δ1

))
− 4d exp

(
−mδ

2
3

8

)
.

Lemma 9 shows that ‖p‖22 doesn’t diverge significantly from ‖v‖22 as long as m ≥ d. This together with Lemma
6 and Lemma 8 imply that the required number of measurements in Theorem 7 is mainly determined by that required
by Lemma 10 so as to prevent ∆ diverging too far from m

n ‖v⊥‖
2
2. As a result, the improvement on the determinant

similarity is still dominated by the magnitude of the projection residual over that of the projection, which is propor-
tional to that of the full data case scaled by the sampling density. On the other hand, Lemma 10 implies that, in order
to guarantee ∆ to be much smaller than m

n ‖v⊥‖
2
2, the number of required measurements increases along with first

principal angle between the estimated subspace R(U) and the true subspace R(Ū).
For the sake of completeness, we sketch the proof of Theorem 7 here, and the detailed proof is provided in Section

A.3.

Proof sketch of Theorem 7. Let η1 = 1+δ
1−δ

d
m , η2 = (1− δ)

(
1− 2δ

√
m
n

)
and η3 = tan(φd) + δ d

cos(φd) , then plugging
in the results in Lemmas 8, 9 and 10 into Lemma 6 with δ1 = δ2 = δ3 = δ yields,

ζt+1

ζt
≥ 1 + γ1

(
1− γ2

d

m

)
m

n

‖v⊥‖2

‖v‖2
≥ 1 + γ1

(
1− γ2

d

m

)
m

n

1− ζt
d

(18)

9



where γ1 =
(1−δ)(1−2δ

√
m
n )(

1+
√

1+δ
1−δ

d
m

)2 and γ2 =

(
1 + 2

tan(φd)+δ3
d

cos(φd)

(1−2δ
√

m
n )
√

(1−δ2)d/m

)
1+δ
1−δ .

The first probability bound is obtained by taking the union bound of those quantities used to generate Lemma 8 to
Lemma 10, which can be lower bounded by

1− exp

(
−dδ

2

8

)
− exp

(
−mδ

2

32
+ d log

(
24

δ

))
− (4d+ 2) exp

(
−mδ

2

8

)
(19)

Next we establish the complexity bound on m. As we will prove in Section A.3, γ2
d
m < 1

2 is equivalent to the
following,

m ≥ 8(1 + δ)

(1− δ)2 (1− 2δ)
2

(
ε+ δ

√
1 + ε2d

)(
ε+ δ

√
1 + ε2d+

1

2

)
d (20)

To establish another bound on m, m ≥ 32
δ2 log

(
24n2/d

δ

)
d implies the following,

exp

(
−mδ

2

32
+ d log

(
24

δ

))
≤ exp(− log n2) =

1

n2
(21)

(4d+ 2) exp

(
−mδ

2

8

)
≤ (4d+ 2)

n8

(
δ

24

)4d

� 1

n2
(22)

(21) and (22) complete the proof for the bound onm and justify the simplification of the probability bound in (19).

5.2 Missing Data
In this section, we study the convergence of GROUSE for the missing data case. We show that within the local region
of the true subspace, we obtain an expected monotonic improvement on our defined convergence metric with high
probability. We use Ω to denote the indices of observed entries for each data vector, and we assume Ω is uniformly
sampled over {1, 2, . . . , n} with replacement. In other words, we assume each row of the sampling matrices A is
uniformly sampled from the rows of identity matrix In with replacement. We use the notation Av =: vΩ, AU =: UΩ.
Again our results are with high probability with respect to A, in this case with respect to the random draw of rows of
In, and in expectation with respect to the random data v. Please refer to Section A.3 for the proofs of this section.

Before we present our main results, we first call out the typical incoherence assumption on the underlying data.

Definition 2. A subspace R(U) is incoherent with parameter µ if

max
i∈{1,...,n}

‖PUei‖22 ≤
µd

n

where ei is the ith canonical basis vector and PU is the projection operator onto the column space of U .

Note that 1 ≤ µ ≤ n
d . According to the above definition, the incoherence parameter of a vector z ∈ Rn is defined

as:

µ(z) =
n‖z‖2∞
‖z‖22

(23)

In this section, we assume the true subspaceR(Ū) is incoherent with parameter µ0, and use µ(U), µ(v⊥) to denote the
incoherence parameter of R(U) and v⊥ respectively. We now show the expected improvement of ζt in a local region
of the true subspace.

Theorem 11. Suppose
∑d
k=1 sin2 φk ≤ dµ0

16n and |Ω|= m. If

m > max

{
128dµ0

3
log
(√

2dn
)
, 64µ(v⊥)2 log (n) , 52

(
1 + 2

√
µ(v⊥) log(n)

)2

dµ0

}
then with probability at least 1− 3

n2 we have

Ev
[
ζt+1

∣∣U] ≥ (1 +
1

4

m

n

1− ζt
d

)
ζt .

10



This theorem shows that, within the local region of the true subspace, expected improvement on ζt can be obtained
with high probability. As is implied by the theorem, this local region gets enlarged if the true subspace is more
coherent, which may seem at first counterintuitive. However, the required number of measurements also increases as
we increase µ0. In the extreme case, when m increases to n, the local convergence results can be extended to a global
result, as we proved for the full data case in Section 4. On the other hand, compared to Theorem 7, the convergence
result for the missing data case holds within a more conservative local region of the true subspace. This gap is induced
by the challenge of maintaining the incoherence property of our estimates R(U), for which we had to consider the
worst case. We leave the extension of the local convergence results to global results as future work.

In order to compare our result to the local convergence result in [Corollary 2.15, [9]], consider the following
corollary.

Corollary 12. Define the determinant discrepancy as κt = 1− ζt, then under the same conditions as Theorem 11, we
have

Ev
[
κt+1

∣∣κt] ≤ (1− 1

4

(
1− dµ0

16n

)
m

nd

)
κt

with probability exceeding 1− 3/n2.

Recall that 1 ≤ µ0 ≤ n
d , therefore the expected linear decay rate of κt is at least 1 − 9

16
m
nd . In [9] (Corollary

2.15), a similar linear convergence result is established in terms of the Frobenius norm discrepancy between R(Ū)

and R(U), denoted as εt =
∑d
i=1 sin2 φd. However, their result only holds when εt ≤ (8× 10−6) m

n3d2 which is more
conservative than our assumption in Theorem 11. Moreover, as we mentioned previously, empirical evidence shows
the lower bound in Theorem 11 holds for every iteration from any random initialization. In contrast, in [9], even for
numerical results expected linear improvements only hold within the local region of the true subspace.

Now we present the following intermediate results for the proof of Theorem 11. Note that in this missing data
case, the projection residual rΩ of vΩ onto UΩ is mapped back to Rn by zero padding the entries at the indices that are
not in Ω. Therefore, unlike Lemma 10 of the compressively sampled data case, here ‖r̃‖ = ‖r‖ = ‖rΩ‖. Therefore,
(14) becomes

ζt+1

ζt
≥ 1 +

‖rΩ‖2

‖p‖2
+ 2

∆

‖p‖2
. (24)

Now similarly to the compressively sampled data case, we proceed by establishing concentration results for the key
quantities ‖r‖22, ‖p‖22 and ∆ respectively.

Lemma 13 ([8], Theorem 1). Let δ > 0, and suppose m ≥ 8
3dµ(U) log (2d/δ). Then, with probability exceeding

1− 3δ,

‖rΩ‖2 ≥ (1− α0)
m

n
‖v⊥‖2

where α0 =
√

2µ(v⊥)2

m log
(

1
δ

)
+ (β1+1)2

1−γ1

dµ(U)
m , β1 =

√
2µ(v⊥) log

(
1
δ

)
, and γ1 =

√
8dµ(U)

3m log (2d/δ).

Lemma 14. Let δ > 0. Under the same condition on m as Lemma 13, with probability at least 1− 2δ we have

‖p‖2 ≤

(
1 +

β1 + 1

1− γ1

√
dµ(U)

m

)2

‖v‖2

where β1 and γ1 equal to those defined in Lemma 13.

Lemma 15. Let δ > 0. Under the same condition on m as Lemma 13, with probability at least 1− 3δ we have

|∆| ≤ η3

cosφd

√
sin2 φd +

dµ0

m

√
dµ(U)

m

m

n
‖v⊥‖2

where η3 = (1+β1)(1+β2)
1−γ1

, β2 =
√

2µ(v⊥) log
(

1
δ

)
dµ0

dµ0+m sin2 φd
, and β1 and γ1 equal to those defined in Lemma 13.
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Lemma 13 shows that the concentration of ‖r‖22 = ‖rΩ‖22 does not only depend on the sampling framework, but
also on the incoherence property of the current estimate and the true projection residual, i.e., µ(U) and µ(v⊥). To see
this clearly, recall that ‖rΩ‖22 = ‖v⊥,Ω‖22 − ‖PUΩ

(v⊥,Ω)‖22, hence the incoherence property of v⊥ and R(U) directly
influences the concentration of ‖rΩ‖22. On the other hand, for compressive data, the Gaussian distributed sampling
matrices yield tight concentration results for ‖p‖22, ‖rΩ‖22 and ∆. Therefore, the upper bounds of the key quantities
established in Lemmas 13, 14 and 15 are not as tight as those for the compressive data except the extreme case where
µ(U) = µ(v⊥) = 1, i.e., both R(U) and v⊥ are incoherent.

As shown in the above lemmas, in order to establish concentration of the key quantities in (24), it is essential for
the subspaces generated by GROUSE to be incoherent over iterates. It has been proven in [9] that within the local
region of R(Ū), the incoherence of R(U) can be bounded by that of R(Ū).

Lemma 16 ([9], Lemma 2.5). Suppose
∑d
k=1 sin2 φk ≤ d

16nµ0, then µ(U) ≤ 2µ0.

Now we are ready to prove Theorem 11. We sketch the proof here, and a detailed proof is provided in Section A.3.

Proof sketch of Theorem 11. Given the condition required by Theorem 11, we have sinφd ≤
√
dµ0/16n and cosφd ≥√

1− dµ0/16n. This together with Lemma 16 and Lemma 15 yield |∆| ≤ 11
5 η3

dµ0

n ‖v⊥‖
2. Also for β2 in Lemma

15, β2 ≤
√

2µ(v⊥) log(1/δ) = β1. Hence,

|∆| ≤ 11

5

(1 + β1)2

1− γ1

dµ0

n
‖v⊥‖2 . (25)

Letting η2 = (1+β1)2

1−γ1

dµ0

m and α1 =
√

2µ(v⊥)2

m log
(

1
δ

)
, then applying this definition together with Lemma 16 to

Lemma 14 and Lemma 13 yields

‖p‖2 ≤
(

1 +

√
2η2

1− γ1

)2

‖v‖2 (26)

‖rΩ‖2 ≥ (1− α1 − 2η2)
m

n
‖v⊥‖2 (27)

Now applying (25), (26) and (27) to (24) we have

ζt+1

ζt
≥ 1 +

(1− α1 − 32
5 η2)

(1 +
√

2η2/(1− γ1))2

m

n

‖v⊥‖2

‖v‖2
(28)

with probability at least 1 − 3δ. The probability bound is obtained by taking the union bound of those generating
Lemmas 13, 14 and 15, as we can see in the proofs in Section A.3 this union bound is at least 1− 3δ.

Letting η1 =
(1−α1− 32

5 η2)

(1+
√

2η2/(1−γ1))2
, then η1 > 0 is equivalent to 1 − α1 − 32

5 η2 > 0. This further gives that if m

satisfies the condition in Theorem 11, then η1 >
1
4 . Now taking expectation with respect to v yields,

Ev
[
ζt+1

∣∣U] ≥ (1 +
1

4

m

n
E
[
‖v⊥‖2

‖v‖2
∣∣U]) ζt ≥ (1 +

1

4

m

n

1− ζt
d

)
ζt (29)

where the last inequality follows from Lemma 1. Finally choosing δ to be 1/n2completes the proof.

6 Numerical Results
In this section, we demonstrate that our theoretical results match the empirical convergence behavior of GROUSE. We
generate the underlying data matrix M =

[
v1 v2 . . . vT

]
as M = ŪW . For both the fully sampled data case

and compressively sampled data case, the underlying signals are generated from a sparse subspace, demonstrating that
incoherence assumptions are not required by our results for these two cases. Specifically, the underlying subspace
of each trial is set to be a sparse subspace, as the range of an n × d matrix Ū with sparsity on the order of log(n)

n .
For the missing data case, we generate the underlying subspace as the range of an n × d matrix with i.i.d standard
normal distribution. The entries of the coefficient matrix W for all three cases are generated as i.i.dN (0, 1) satisfying
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Figure 1: Illustration of the bounds on K in Conjecture 1 compared to their values in practice, averaged over 50 trials
with different n and d. We show the ratio of K to the bound d2 log(n) + d log(1− ζ∗).
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Figure 2: Illustration of expected improvement on ζ given by Theorem 7 (left) and Theorem 11 (right) over 50 trials.
We set n = 5000, d = 10. The diamonds denote the lower bound on expected convergence rates described in Theorem
7 and Theorem 11.

Assumption 1. We also want to mention that we run GROUSE with random initialization for all of the plots in this
section.

We first examine our global convergence result, i.e., Theorem 4 and Conjecture 1, for the fully sampled data in
Figure 1. We run GROUSE to convergence for a required accuracy ζ∗ = 1 − 1e-4 and show the ratio of K to
the simplified bound of Conjecture 1, d2 log(n) + d log 1

1−ζ∗ . We run GROUSE over 50 trials and show the mean
and variance. We can see that, for fixed n, despite the conjecture’s tighter convergence rate than the theorem’s, it
becomes loose as we increase the dimension of the underlying subspace. However, compared to the empirical mean,
the empirical variance is very small. This indicates that the relationship between our conjectured upper bounds and
the actual iterations required by GROUSE is stable.

Next we examine our theoretical results (Theorem 7 and Theorem 11) for the expected improvement on ζt for the
undersampled case in Figure 2. We set n = 5000 and d = 10. We run GROUSE over different sampling numbers m.
The plots are obtained by averaging over 50 trials. We can see that our theoretical bounds on the expected improvement
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Figure 3: Illustration of our heuristic bounds on K (the actual iterations required by GROUSE to converge to the
given accuracy) over different d, m and n, averaged over 20 trials. In this simulation, we run GROUSE from a
random initialization to convergence for a required accuracy ζ∗ = 1 − 1e-3. We show the ratio of K to the heuris-
tic bound n

m

(
d2 log(n) + d log(1− ζ∗)

)
. In (a) and (b), we set d = 50 and examine K over m and n for both

missing data (a) and compressively sampled data (b). In (c) and (d), we set n = 10000 and examine K over m and d
for both missing data (c) and compressively sampled data (d). In these plots, we use the dark red to indicate the failure
of convergence.

on ζt for both missing data and compressively sampled data are tight from any random initialization, although we have
only established local convergence results for both cases. Also note that Theorem 7 and Theorem 11 indicate that the
expected improvement on the determinant similarity has a similar form to that of the fully sampled case roughly scaled
by the sampling density (m/n). These together motivate us to approximate the required iterations to achieve a given
accuracy as that required by the fully sampled case times the reciprocal of sampling density, n/m:

(n/m) ·
(
d2 log(n) + d log(1− ζ∗)

)
.

As we see in Figure 3, when m is slightly larger than d, the empirical mean of the ratio of the actual iterations required
by GROUSE to our heuristic bound is similar to that of the full data case. We leave the rigorous proof of this heuristic
as future work.
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7 Conclusion
In this paper, we analyze a manifold incremental gradient descent algorithm applied to a particular non-convex op-
timization formulation for recovering a low-dimensional subspace from streaming data sampled from that subspace.
We provide a simplified analysis as compared to [34], showing global convergence of the algorithm to the global
minimizer for fully sampled data. However, the convergence rate we have established in theory is loose compared to
what we observed in practice. A future direction is to narrow the gap between our theory and the actual performance
of GROUSE, for which Conjecture 1 shows great promise.

With undersampled data, we show that expected improvement on our defined convergence metric can be obtained
with high probability for each iteration. We prove that, comparing with fully sampled data, the expected improvement
on determinant similarity is roughly proportional to the sampling density. With compressively sampled data this
expected improvement holds from any random initialization, while it only holds within the local region of the true
subspace for the missing data case. The limitation on the convergence of missing data arises due to the challenge of
maintaining the incoherence property of our estimates in theory. Crossing this fundamental hurdle and extending the
local convergence with missing data to a global result would be an interesting and valuable future direction.

A Supplementary material

A.1 Preliminaries
We start by providing the following lemma that we will use regularly in the manipulation of the matrix ŪTU . It also
provides us with more insight into our metric of determinant similarity between the subspaces. The proof can be found
in [28].

Lemma 17 ([28], Theorem 5.2). Let U, Ū ∈ Rn×d with orthonormal columns, then there are unitary matrices Q, Ȳ ,
and Y such that

QŪȲ :=


d

d I
d 0
n− 2d 0

 and QUY :=


d

d Γ
d Σ
n− 2d 0


where Γ = diag (cosφ1, . . . , cosφd),Σ = diag (sinφ1, . . . , sinφd) with φi being the ith principal angle between
R(U) and R(Ū) defined in Definition 1.

Now we are going to prove Lemma 1, which is essential for us to establish expected improvement on the deter-
minant similarity for each iteration in the various sampling cases we consider. Before that, we present the following
lemmas that are requried for the proof.

Lemma 18. Given any matrixQ ∈ Rd×d, suppose thatw ∈ Rd is a random vector whose componentswi, i = 1, . . . , d
are zero-mean, independent, and identically distributed symmetrically about zero (i.e., the distribution of wi is an even
function). Then

E

[
wTQw

wTw

]
=

1

d
tr(Q) .

Proof of Lemma 18.

E

[
wTQw

wTw

]
=
∑
i 6=j

E

[
wiwjQij
wTw

]
+

d∑
i=1

E

[
w2
iQii
wTw

]

=

d∑
i=1

QiiE

[
w2
i

wTw

]
(30)

=
1

d
trQ , (31)
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where Eqs (30) and (31) hold by the following two arguments. For Eq (30), let f(w1, . . . , wd) be the joint distribution
among the coordinates, and without loss of generality let i = 1 and j 6= 1, then

E

[
w1wjQ1j

wTw

]
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

w1wjQij
wTw

f(w1, . . . , wd)dw1dw2 · · · dwd

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

w1wjQ1j

w2
1 +

∑
k 6=i w

2
k

f(w1)f(w2) · · · f(wd)dw1dw2 · · · dwd

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

(∫ ∞
−∞

w1

w2
1 +

∑
k 6=i w

2
k

f(w1)dw1

)
wjQ1jf(w2) · · · f(wd)dw2 · · · dwd

= 0

where the last inequality holds since w1

w2
1+
∑
k 6=i w

2
k

is an odd function of w1 and f(w1) is an even function of w1,
thereby the term in parentheses will integrate to zero. We note that if wi is a discrete random variable, the argument
would be similar.

To get Eq (31) we note that

1 = E

[∑
i w

2
i∑

j w
2
j

]
=
∑
i

E

[
w2
i

wTw

]
= dE

[
w2
i

wTw

]
, i = 1, . . . , d ,

where the last step holds because each wi is identically distributed.

Lemma 19 ([16], Lemma 16). Let X = [X1, · · · , Xd] with Xi ∈ [0, 1], i = 1, . . . , d, then

d−
d∑
i=1

Xi ≥ 1−Πd
i=1Xi

Proof of Lemma 1. According to Lemma 18 and Lemma 19 we have the following

E
[
‖v⊥‖2

‖v‖2

∣∣∣∣U] = E
[
‖Ūs‖2 − ‖UUT Ūs‖2

‖Ūs‖2

∣∣∣∣U] ϑ1= E
[
sT Ȳ (I − Γ2)Ȳ T s

sT s

∣∣∣∣U]
ϑ2=

1

d
tr
(
I − Γ2

) ϑ3

≥ 1− ζt
d

(32)

where ϑ1 follows by Lemma 17 and ‖Ūs‖2 = ‖s‖2, ϑ2 from Lemma 18, and ϑ3 from Lemma 19 with Xi =
cos2 φi.

A.2 Proof of Fully Sampled Data
In this section we prove the results of Section 4. We start by proving Eq 10, the deterministic expression for the
change in determinant similarity from one step of the GROUSE algorithm to the next. Using this expression, we
prove the GROUSE monotonic improvement of Lemma 2, expected improvement of Lemma 3, and finally the global
convergence conjecture 1.

Recall that y
‖y‖ = cos(θ)

v‖
‖v‖‖

+ sin(θ) v⊥
‖v⊥‖ in Algorithm 1. Then according to the GROUSE update in 4 we have
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det
(
ŪTUt+1

)
= det

(
ŪTU +

(
ŪT y

‖y‖
−
ŪT v‖

‖v‖‖

)
wT

‖w‖

)
ϑ1= det

(
ŪTU

)(
1 +

wT (ŪTU)−1

‖w‖

(
ŪT y

‖y‖
−
ŪT v‖

‖v‖‖

))
ϑ2= det

(
ŪTU

) wT (ŪTU)−1ŪT y

‖y‖‖w‖
ϑ3= det

(
ŪTU

)(
cos θ +

‖v⊥‖
‖v‖‖

sin θ

)
(33)

where ϑ1 follows from the Schur complement, i.e., that for any invertible matrix M we have det
(
M + abT

)
=

det(M)
(
1 + bTM−1a

)
; ϑ2 and ϑ3 hold since ‖v‖‖2 = ‖Uw‖2 = ‖w‖2 and the following

wT (ŪTU)−1ŪT v‖
w=UT Ūs

= vT v‖ = ‖v‖‖2 (34a)

wT (ŪTU)−1ŪT v⊥
w=UT Ūs

= vT v⊥ = ‖v⊥‖2. (34b)

Given this, the proof of Lemma 2 follows directly from the above proof and the greedy step size derived in Eq. 11.

Proof of Lemma 2. By using θ = arctan
(
‖v⊥‖
‖v‖‖

)
, we have cos θ =

‖v‖‖
‖v‖ and sin θ = ‖v⊥‖

‖v‖ . This together with 33

gives det
(
ŪTUt+1

)
= det

(
ŪTU

) ‖v‖
‖v‖‖

. Therefore, ζt+1

ζt
=

det(ŪTUt+1)
2

det(ŪTU)
2 = ‖v‖2

‖v‖‖2
= 1 + ‖v⊥‖2

‖v‖‖2
.

Proof of Lemma 3. Lemma 3 follows directly from 1 and 2, i.e.,

E
[
ζt+1

ζt

∣∣∣∣U] = 1 + E
[
‖v⊥‖2

‖v‖‖2

∣∣∣∣U] ≥ 1 + E
[
‖v⊥‖2

‖v‖2

∣∣∣∣U]
≥ 1 +

1− ζt
d

(35)

Note that, given U , ζt is a constant, hence completes the proof.

With the above results, we are ready to prove Theorem 4.

Proof of Theorem 4. Let κt = 1 − ζt denote the determinant discrepancy between R(Ū) and R(U). According to
Lemma 3 we have the following:

E
[
κt+1

κt

∣∣∣∣U] ≤ 1− 1− κt
d

(36)

Now according to Lemma 2, κt ≤ 1− ζ0 for all t ≥ 0. So using Eq (36) we have the following:

E
[
κt+1

∣∣U] ≤ (1− 1− κt
d

)
κt ≤

(
1− ζ0

d

)
κt .

Taking expectation of both sides, we have

E [κt+1] ≤
(

1− ζ0
d

)
E [κt] .

After K ≥ d
ζ0

log 1
ρ(1−ζ∗) ≥

d
ζ0

log
E[ηK1

]

ρ(1−ζ∗) iterations of GROUSE we obtain

E [κt+K1
] ≤

(
1− ζ0

d

)K
E[κ0] ≤

(
1− ζ0

d

) d
ζ0

log
E[κ0]

ρ(1−ζ∗)

E[κ0] ≤ ρ(1− ζ∗) .
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Therefore

P (ζK ≥ ζ∗) = 1− P (κK ≥ 1− ζ∗) ≥ 1− E [κK ]

1− ζ∗
≥ 1− ρ . (37)

To get full convergence results, we need the following lemma, which gives us guarantees for a random initial point.

Lemma 20. [25] Initialize the starting point U0 of GROUSE as the orthonormalization of an n×d matrix with entries
being standard normal random variables. Then

E[ζ0] = E
[
det(UT0 Ū Ū

TU0)
]

= C

(
d

ne

)d
where C > 0 is a constant.

Now we will show a result that gives evidence for Conjecture 1.

Theorem 21 (Global Convergence of GROUSE: Evidence for Conjecture 1). Let 1 ≥ ζ∗ > 0 be the desired accuracy
of our estimated subspace. Let ρ be any number within the range (0, 1]. Let ζ̄t be a non-decreasing sequence with
E[ζ̄0] = E[ζ0] such that

E
[
ζ̄t+1

∣∣U] ≥ (1 +
ρ

2d

)
ζ̄t .

Assume the ζt produced by GROUSE converges faster than ζ̄t, i.e.,

E [ζK1
] ≥ E

[
ζ̄K1

]
≥ 1− ρ

2
(38)

Suppose the initialization for GROUSE (U0) is the range of an n × d matrix with entries being i.i.d standard normal
random variables. Then after

K ≥ K1 +K2

=

(
2d2

ρ
+ 1

)
τ0 log(n) + 2d log

(
1

2ρ(1− ζ∗)

)
iterations of GROUSE Algorithm 1,

P (ζK ≥ ζ∗) ≥ 1− 2ρ ,

where τ0 = 1 +
log

(1−ρ/2)
C +d log(e/d)

d logn with C a constant approximately equal to 1.

Proof of Theorem 21. Let κt = 1 − ζt denote the determinant discrepancy between R(Ū) and R(U). According to
Lemma 3 we have the following:

E
[
ζt+1

ζt

∣∣∣∣U] ≥ 1 +
1− ζt
d

(39a)

E
[
κt+1

κt

∣∣∣∣U] ≤ 1− 1− κt
d

(39b)

Therefore, the expected convergence rate of ζt is faster when R(U) is far away from R(Ū), while that of κt is faster
whenR(U) is close toR(Ū). This motivates us to split the analysis into two phases, bounding the number of iterations
in each phase. We first use Eq (39a) to get the necessary K1 iterations for GROUSE to converge to a local region of
global optimal point from a random initialization. From there, we obtain the necessary K2 iterations for GROUSE to
converge to the required accuracy by leveraging Eq (39b).

As in the assumptions, let ρ be any number within the range (0, 1]. Let ζ̄t be a non-decreasing sequence with
E[ζ̄0] = E[ζ0] and the expected increase rate being lower bounded as

E
[
ζ̄t+1

∣∣U] ≥ (1 +
ρ

2d

)
ζ̄t .

18



Taking expectation of both sides, we obtain the following:

E
[
ζ̄t+1

]
≥
(

1 +
ρ

2d

)
E[ζ̄t]

Therefore after K1 ≥ (2d/ρ+ 1) log
1− ρ2
E[ζ0] steps we have

E
[
ζ̄K1

]
≥
(

1 +
ρ

2d

)K1

E[ζ0] ≥
((

1 +
ρ

2d

) 2d
ρ +1

)log
1− ρ

2
E[ζ0]

E[ζ0]

≥ E[ζ0]e
log

1− ρ
2

E[ζ0] = 1− ρ

2
(40)

Now we apply the assumption in (38), that the ζt produced by GROUSE converges faster than ζ̄t. Therefore,

P
(
ζK1 ≥

1

2

)
= 1− P

(
1− ζK1 ≥

1

2

)
ϑ1

≥ 1− E[1− ζK1
]

1/2
≥ 1− ρ (41)

where ϑ1 follows by applying Markov inequality to the nonnegative random variable 1− ζ̄K1
.

Now with probability at least 1− ρ, ζt ≥ 1
2 for all t ≥ K1, i.e., κt ≤ 1

2 for all t ≥ K1. So using Eq (39b) we have
the following:

E
[
κt+1

∣∣U] ≤ (1− 1− κt
d

)
κt ≤

(
1− 1

2d

)
κt .

Taking expectation of both sides, we have

E [κt+1] ≤
(

1− 1

2d

)
E [κt] .

After K2 ≥ 2d log 1/2
ρ(1−ζ∗) ≥ 2d log

E[ηK1
]

ρ(1−ζ∗) additional iterations of GROUSE we obtain

E [κt+K1
] ≤

(
1− 1

2d

)K2

E[κK1
] ≤

(
1− 1

2d

)2d log
E[κK1

]

ρ(1−ζ∗)

E[κK1
] ≤ ρ(1− ζ∗) .

Hence following a similar argument as before we have

P (ζK1+K2
≥ ζ∗) = 1− P (κK1+K2

≥ 1− ζ∗) ≥ 1− E [κK1+K2
]

1− ζ∗
≥ 1− ρ . (42)

(41) and (42) together complete the proof.

Although we still need more rigorous analysis to justify our assumption, this proof provides the form of the
convergence rate we can expect. We also want to emphasize that the above proof provides the local convergence rate
for GROUSE. Specifically, as is indicated by the proof of the second phase, GROUSE requires at most 2d log 1/2

ρ(1−ζ∗)
iterations to converge from ζt = 1/2 to any required accuracy ζ∗ ∈ (1/2, 1).

A.3 Proof of Undersampled Data
In this section, we prove our main results for undersampled data. We again start by proving a result for the deterministic
expression for the change in determinant similarity from one step of the GROUSE algorithm to the next, in this case a
lower bound given by Lemma 6.

Proof of Lemma 6. Note that,

wT (ŪTU)−1ŪT p = wT (ŪTU)−1ŪTUw = ‖p‖2 (43a)

wT1 (ŪTU)−1ŪT r
ϑ1= sT ŪTU(ŪTU)−1ŪT r = vTAT r̃

ϑ2= ‖r̃‖2 (43b)
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where ϑ1 follows by Lemma 5 and ϑ2 holds since vTAT r̃ = vTAT (Im − PAU ) r̃ = ‖r̃‖2. As a consequence, we
have the following

det
(
ŪTUt+1

)
= det

(
ŪTU + ŪT

(
p+ r

‖p+ r‖
− p

‖p‖

)
wT

‖w‖

)
ϑ3= det(ŪTU)

wT (ŪTU)−1ŪT (p+ r)

‖p‖
√
‖p‖2 + ‖r‖2

= det(ŪTU)
‖p‖2 + ‖r‖2 + ‖r̃‖2 − ‖r‖2 + ∆

‖p‖
√
‖p‖2 + ‖r‖2

where ∆ = wT2
(
ŪTU

)−1
ŪT r; and ϑ3 follows by the Schur complement det

(
M + abT

)
= det(M)

(
1 + bTM−1a

)
for any invertible M ∈ Rn×n and a, b ∈ Rn. Hence

ζ̄t+1

ζt
=

(
det
(
ŪTUt+1

)
det
(
ŪTU

) )2
ϑ4

≥ 1 +
‖r‖2

‖p‖2
+ 2
‖r̃‖ − ‖r‖2

‖p‖2
+ 2

∆

‖p‖2

where ϑ4 holds since (c+ d)2 ≥ c2 + 2cd with c = ‖p‖2+‖r‖2

‖p‖
√
‖p‖2+‖r‖2

, d = ‖r̃‖2−‖r‖2+∆

‖p‖
√
‖p‖2+‖r‖2

.

In the following sections, we proceed by establishing the convergence results of missing data and compressively
sampled data by bounding the key quantities in Lemma 6.

Proof for Compressively Sampled Data We start by showing how the results on the key quantities in Lemmas 8, 9
and 10 lead to the main result of the compressively sampled data case.

Proof of Theorem 7. Let η1 = 1+δ
1−δ

d
m , η2 = (1− δ)

(
1− 2δ

√
m
n

)
and η3 = tan(φd) + δ d

cos(φd) , then plugging in the
results in Lemma 8 to Lemma 10 into Lemma 6 with δ1 = δ2 = δ3 = δ yields,

ζt+1

ζt
≥ 1 +

2 ‖r̃‖2 − ‖r‖2

‖p‖2
+ 2

∆

‖p‖2

≥ 1 +
1(

1 +
√
η1

)2 (η2(1− η1)− 2
√
η1η3)

m

n

‖v⊥‖2

‖v‖2

= 1 + γ1

(
1− γ2

d

m

)
m

n

‖v⊥‖2

‖v‖2

=

(
1 + γ1

(
1− γ2

d

m

)
m

n

)
1− ζt
d

(44)

where γ2 =
(

1 + 2 η3

η2
√
η1

)
1+δ
1−δ =

(
1 + 2

tan(φd)+δ3
d

cos(φd)

(1−2δ
√

m
n )
√

(1−δ2)d/m

)
1+δ
1−δ , γ1 = η2

(1+
√
η1)

2 =
(1−δ)(1−2δ

√
m
n )(

1+
√

1+δ
1−δ

d
m

)2 , and the

last equality follows from Lemma 1.
The probability bound is obtained by taking the union bound of those quantities (in Lemma 22, Lemma 25, Lemma

24, Corollary 27, Lemma 35) used to generate Lemma 8 to Lemma 10. As we can see, this union bound is

1− exp

(
−mδ

2

2

)
− exp

(
−dδ

2

8

)
− exp

(
−mδ

2

32
+ d log

(
24

δ

))
− (4d+ 1) exp

(
−mδ

2

8

)
> 1− exp

(
−dδ

2

8

)
− exp

(
−mδ

2

32
+ d log

(
24

δ

))
− (4d+ 2) exp

(
−mδ

2

8

)
(45)

To get the complexity bound onm, let ε = tan(φd), α1 = ε+δ
√

1 + ε2d, α2 = 1+δ
1−δ and α3 =

(
1− 2δ

√
m
n

)√
1 + δ,
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then according to 54 we have γ2
d
m < 1

2 is equivalent to the following,

α2d+
2α1α2

√
d

α3

√
m <

m

2

⇔

(√
m

2
− α1α2

√
d

α3

)2

>

(
α2 +

α2
1α

2
2

α2
3

)
d

ϑ1⇐ m ≥ 8
α2

1α
2
2

α2
3

d+ 4
√
α2
α1α2

α3
d

ϑ2⇐ m ≥ β
(
ε+ δ

√
1 + ε2d

)(
ε+ δ

√
1 + ε2d+

1

2

)
d (46)

where ϑ1 follows from
√(

α2 +
α2

1α
2
2

α2
3

)
d <
√
α2d+ α1α2

α3

√
d; and ϑ2 follows by β = 8(1+δ)

(1−δ)2(1−2δ)2 .

To establish another bound on m we can see that m ≥ 32
δ2 log

(
24n2/d

δ

)
d implies the following,

exp

(
−mδ

2

32
+ d log

(
24

δ

))
≤ exp(− log n2) =

1

n2
(47)

(4d+ 2) exp

(
−mδ

2

8

)
≤ (4d+ 2)

n8

(
δ

24

)4d

→ 0 (48)

Eqs (47) and (48) complete the proof for the bound on m and justify the simplification of the probability bound in Eq
(45).

Next we are going to prove the intermediate lemmas in Section 5.1, i.e., bound the key quantities in Lemma 6, for
which we need the following concentration results.

Lemma 22. Let A ∈ Rm×n with entries being i.i.d Gaussian random variables distributed as N (0, 1/n), v ∈ Rn is
an vector. Then for any δ ∈ (0, 1), with probability at least 1− 2 exp−mδ

2/8, we have

P
(
‖Av‖22 > (1 + δ)

m

n
‖v‖22

)
< exp

(
−mδ

2

8

)
,

P
(
‖Av‖22 < (1− δ)m

n
‖v‖22

)
< exp

(
−mδ

2

8

)
.

Proof. Note that Av is a random vector with i.i.d entries distributing as N
(
0, ‖v‖22/n

)
. Therefore, n‖Av‖

2
2

‖v‖22
is a chi-

squared distribution with m degrees of freedom, which yields,

P

[
n ‖Av‖22
m‖v‖22

− 1 > δ

]
< exp

(
−mδ2/8

)
P

[
n ‖Av‖22
m‖v‖22

− 1 < −δ

]
< exp

(
−mδ2/8

)

Lemma 23. Let A ∈ Rm×n be a random matrix whose entries are independent and identically distributed Gaussian
random variables with mean zero, and variance γ . Let z1, z2 ∈ Rn such that z1 ⊥ z2, then Az1 and Az2 are
independent of each other.

Proof. Let aTi denote the ith row of A and M = Az1z
T
2 A

T . Then we have

E[M ]ii = E
[
aTi z1z

T
1 ai
]

= zT1 E[aia
T
i ]z2 = γzT1 z2 = 0

E[M ]ij = E
[
aTi z1z

T
1 aj

]
= zT1 E[aia

T
j ]z2 = 0

Therefore Az1 and Az2 are uncorrelated. This together with the fact that both Az1 and Az2 are Gaussian distributed
random vectors imply that Az1 and Az2 are independent.
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Lemma 24 ([30], Corollary 5.35). LetA be an n×m matrix (n ≥ m) whose entries are independent standard normal
random variables. Then for every h ≥ 0, with probability at least 1− 2 exp

(
−h2/2

)
one has

√
n−
√
m− h ≤ σmin(A) ≤ σmax(A) ≤

√
n+
√
m+ h (49)

where σmin, σmax denote the smallest and largest singular values of A.

With the above results, we are able to call out the following intermediate result to quantify ‖PAU (Av⊥)‖22, which
is a key quantity that will be used for proving Lemmas 8, 9 and 10.

Lemma 25. Let A ∈ Rm×n with entries being i.i.d Gaussian random variables distributed as N (0, 1/n), then for
any δ ∈ (0, 1) we have

‖PAUAv⊥‖22 ≤ (1 + δ)
d

n
‖v⊥‖22

hold with probability at least 1− exp
(
−dδ

2

8

)
.

Proof. Note that Av⊥ is a Gaussian random vector with i.i.d entries distributed as N
(
0, ‖v⊥‖22/n

)
, and AU is a

Gaussian random matrix with i.i.d entries distributed as N (0, 1/n). Then according to Lemma 23, AU and Av⊥
are independent of each other. Therefore, y = PAU (Av⊥) is the projection of Av⊥ onto a independent random d-
dimensional subspace. According to the rotation invariance property of Av⊥, ‖PAU (Av⊥)‖ is equivalent to the length
of projecting Av⊥ onto its first d coordinates. Hence,

P

(
‖PAU (Av⊥)‖22 =

d∑
k=1

y2
k ≤ (1 + δ)

d

n
‖v⊥‖22

)
≥ 1− exp

(
−dδ

2

8

)
(50)

Similar to the proof for Lemma 22, here the probability bound is followed from the concentration bound for Chi-
squared distribution with degree d.

Now we start by proving that Lemma 8 follows directly from Lemma 22 and Lemma 24.

Proof of Lemma 8. According to Lemmas 22 and 25, we have

‖r̃‖22 = ‖ (Im − PAU )Av⊥‖22 = ‖Av⊥‖22 − ‖PAU (Av⊥)‖22

≥ (1− δ1)
m

n
‖v⊥‖22 − (1 + δ1)

d

n
‖v⊥‖22

= (1− δ1)

(
1− 1 + δ1

1− δ1
d

m

)
m

n
‖v⊥‖22 (51)

hold with probability at least 1− exp
(
−mδ

2
1

8

)
− exp

(
−dδ

2
1

8

)
. As for the second part of Lemma 8, we have

2‖r̃‖22 − ‖r‖22 = 2‖r̃‖22 − ‖AT r̃‖22 ≥ (2− σ2
max(AT ))‖r̃‖22

ϑ1

≥
(

1− 2δ2

√
m

n

)
‖r̃‖22

≥
(

1− 2δ2

√
m

n

)
(1− δ1)

(
1− 1 + δ1

1− δ1
d

m

)
m

n
‖v⊥‖22 (52)

here ϑ1 follows from Lemma 24 with Aij ∼ N (0, 1/n) and h = δ
√
m/n. The probability bound 1− exp

(
−mδ

2
1

8

)
−

exp
(
−dδ

2
1

8

)
− exp

(
−mδ

2
2

2

)
is obtained by taking the union bound over 51 and ϑ1.

To prove Lemma 9 and Lemma 10, we need the following extra results which are implied by Lemma 22. The
corresponding proofs are provided at the end of this section.
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Corollary 26. Under the conditions of Lemma 22, for x, y ∈ Rn and δ, with probability exceeding 1− 4e−mδ
2/8 we

have
m

n

(
xT y − δ‖x‖‖y‖

)
≤ xTATAy ≤ m

n

(
xT y + δ‖x‖‖y‖

)
Corollary 27. Under the condition of Lemma 22, for any vector v ∈ R(U) we have

P
(
‖Av‖22 > (1 + δ)

m

n
‖v‖22

)
< exp

(
−mδ

2

32
− d log(δ) + d log(24)

)
,

P
(
‖Av‖22 < (1− δ)m

n
‖v‖22

)
< exp

(
−mδ

2

32
− d log(δ) + d log(24)

)
.

Given Lemma 26 and Corollary 27, we prove Lemma 9 and Lemma 10 by first proving the following intermediate
results to bound the key components of p and ∆.

Lemma 28. Let w2 =
(
UTATAU

)−1
UTATAv⊥, then

P

(
‖w2‖ ≤

√
1 + δ1
1− δ2

d

m
‖v⊥‖

)

≥ 1− exp

(
−dδ

2
1

8

)
− exp

(
−mδ

2
2

8
− d log(δ2) + d log(24)

)

Proof. Given the fact that U ∈ Rn×d with columns being orthonormal, we have ‖w2‖ = ‖Uw2‖. It then follows that,

‖Uw2‖
ϑ1

≤ ‖AUw2‖√
(1− δ2)m/n

ϑ2

≤
√

1 + δ1
1− δ2

d

m
‖v⊥‖

where ϑ1 follows from Corollary 27, and ϑ2 followed by Lemma 25, i.e.,

‖AUw2‖ = ‖PAU (Av⊥)‖ ≤
√

(1 + δ1)
d

n
‖v⊥‖2

The probability bound is obtained by applying the union bound over ϑ1 and ϑ2.

Lemma 29. Let φd denote the largest principal angle between R(U) and R(Ū), then

P
(∥∥ŪTATAv⊥∥∥ ≤ (sinφd + dδ)

m

n
‖v⊥‖

)
≥ 1− 4d exp

(
−mδ

2

8

)

Proof of Lemma 29. Let ūk denote the kth column of Ū , and δ ∈ (0, 1). Then∥∥ŪTATAv⊥∥∥ =
∥∥∥ŪT (ATA− m

n
In
)
v⊥ +

m

n
ŪT v⊥

∥∥∥
≤ m

n

∥∥ŪT v⊥∥∥+
∥∥∥ŪT (ATA− m

n
In
)
v⊥

∥∥∥
=
m

n

∥∥ŪT v⊥∥∥+

√√√√ d∑
k=1

(
ūTkA

TAv⊥ −
m

n
ūTk v⊥

)2

ϑ1

≤ m

n

∥∥ŪT v⊥∥∥+

√√√√ d∑
k=1

(
δ
m

n
‖ūk‖‖v⊥‖

)2

ϑ2

≤ sinφd
m

n
‖v⊥‖+

m

n
dδ‖v⊥‖ (53)

where ϑ1 follows from Lemma 26; ϑ2 holds from Lemma 35 and the fact that
√∑d

k=1

(
δmn ‖ūk‖‖v⊥‖

)2 ≤
dδmn ‖ūk‖‖v⊥‖; and the probability bound is obtained by taking the union bound of that in Lemma 26.
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We are ready to prove Lemma 9 and Lemma 10.

Proof of Lemma 9. Let η =
√

1+δ1
1−δ1

d
m , then according to Lemma 28 we have

‖p‖2 = ‖Uw1 + Uw2‖2 ≤
(
‖v‖‖+ ‖Uw2‖

)2
≤
(
‖v‖‖+ η‖v⊥‖

)2
≤ (1 + η)2‖v‖2

with probability at least

1− exp

(
−mδ

2
1

32
− d log(δ1) + d log(24)

)
− exp

(
−dδ

2
1

8

)
.

Here the probability bound is obtained by choosing δ1 = δ2 in Lemma 28, hence completes the proof.

Proof of Lemma 10. According to the definition of ∆, we can see Lemma 10 is a direct results of Lemma 28 and
Lemma 35, that is

|∆| = wT2
(
ŪTU

)−1
ŪTAT (Im − PAU )Av⊥

≤
∥∥wT2 ∥∥∥∥∥(ŪTU)−1

∥∥∥∥∥ŪTAT (Im − PAU )Av⊥
∥∥

ϑ1

≤ ‖w2‖
∥∥∥(ŪTU)−1

∥∥∥∥∥ŪTATAv⊥∥∥
ϑ2

≤ 1

cos(φd)

√
1 + δ1
1− δ1

d

m
‖v⊥‖

(
sinφd

m

n
+
m

n
dδ3

)
‖v⊥‖

=
1

cos(φd)

√
1 + δ1
1− δ1

d

m
(sin(φd) + dδ3)

m

n
‖v⊥‖2 (54)

where ϑ1 holds since
∥∥ŪTAT (Im − PAU )Av⊥

∥∥ ≤ ∥∥ŪTATAv⊥∥∥; ϑ2 followed by Lemma 28 and Lemma 29; and
the probability bound is obtained by taking the union bound that in Lemma 28 and Lemma 29.

Finally, we are going to prove the auxiliary results Corollary 27 and Lemma 26. The key idea for proving Corollary
27 is using the covering numbers argument and applying Lemma 8 to a given d-dimensional subspace R(U). This is
a common strategy used for compress sensing.

Proof of Corollary 27. Without loss of generality we restrict ‖v‖ = 1. From covering numbers [29], there exists a
finite set Q with at most

(
24
δ

)d
points such that Q ⊂ R(U), ‖q‖ = 1,∀q ∈ Q, and for all x ∈ R(U) with ‖v‖ = 1 we

can find a q ∈ Q such that
‖v − q‖ ≤ δ/8

Now applying Lemma 22 to the points in Q with ε = δ/2 and using the standard union bound, then with probability
at least 1− 2

(
24
δ

)d
exp

(
− δ

2

32m
)

we have

(1− δ/2)
m

n
‖v‖2 ≤ ‖Ax‖2 ≤ (1 + δ/2)

m

n
‖v‖2

which gives √
1− δ/2

√
m

n
‖v‖ ≤ ‖Ax‖ ≤

√
1 + δ/2

√
m

n
‖v‖ (55)

Since ‖v‖ = 1, we define γ as the smallest number such that

‖Ax‖ ≤
√

1 + γ

√
m

n
∀x ∈ R(U) (56)
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Since for any x ∈ R(U) with ‖v‖ = 1 we can find a q ∈ Q such that ‖x− q‖ ≤ δ/8, we have the following

‖Ax‖ ≤ ‖Aq‖+ ‖A(x− q)‖ ≤
√

1 + δ/2

√
m

n
+
√

1 +H

√
m

n
δ/8

Since γ is the smallest number (56) holds, we have
√

1 + γ ≤
√

1 + δ/2 +
√

1 + γδ/8.

√
1 + γ ≤

√
1 + δ/2

1− δ/8
≤
√

1 + δ (57)

Similarly, the lower bound follows by

‖Ax‖ ≥ ‖Aq‖ − ‖A(x− q)‖ ≥
√

1− δ/2
√
m

n
−
√

1 + γ
δ

8

√
m

n

≥
(√

1− δ/2−
√

1 + δ
δ

8

)√
m

n

≥
√

1− δ
√
m

n

This completes the proof.

Proof of Lemma 26. Note that,

xTATAy

‖x‖‖y‖
=

1

4

(∥∥∥∥A( x

‖x‖
+

y

‖y‖

)∥∥∥∥2

−
∥∥∥∥A( x

‖x‖
− y

‖y‖

)∥∥∥∥2
)

Applying Lemma 22 on both terms separately and applying the union bound we have

P
[
xTATAy

‖x‖‖y‖
≤ m

n

(
xT y

‖x‖‖y‖
− δ
)]

= P

[
xTATAy

‖x‖‖y‖
≤ 1

4

(
(1− δ)m

n

∥∥∥∥ x

‖x‖
+

y

‖y‖

∥∥∥∥2

− (1 + δ)
m

n

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)]

< 2 exp

(
−mδ

2

8

)
(58)

Similarly,

P
[
xTATAy

‖x‖‖y‖
≥ m

n

(
xT y

‖x‖‖y‖
+ δ

)]
= P

[
xTATAy

‖x‖‖y‖
≥ 1

4

(
(1 + δ)

m

n

∥∥∥∥ x

‖x‖
+

y

‖y‖

∥∥∥∥2

− (1− δ)m
n

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)]

< 2 exp

(
−mδ

2

8

)
(59)

holds with probability no more than 58 and 59 complete the proof.

Proof of Missing Data Here we again bound the quantities in Lemma 6, Equation 14, this time assuming A repre-
sents an entry-wise observation operation and assuming incoherence on the signals of interest. As we show below, in
the proof of Theorem 11, we put together bounds given by Lemmas 13, 14 and 15, which are all proved in this section
too, along with Lemma 16 for completeness. We start by proving the main result for missing data.

Proof of Theorem 11. Given the condition required by Theorem 11, we have sinφd ≤
√
dµ0/16n and cosφd ≥√

1− dµ0/16n. This together with Lemma 16 and Lemma 15 yield |∆| ≤ η3

√
1+ m

16n√
1−dµ0/16n

2dµ0

n ‖v⊥‖
2 ≤
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2η3

√
1+ 1

16√
1− 1

16

dµ0

n ‖v⊥‖
2 ≤ 11

5 η3
dµ0

n ‖v⊥‖
2. Also for β2 in Lemma 15 we have β2 ≤

√
2µ(v⊥) log(1/δ) = β1. There-

fore,

|∆| ≤ 11

5

(1 + β1)2

1− γ1

dµ0

n
‖v⊥‖2 . (60)

Letting η2 = (1+β1)2

1−γ1

dµ0

m and α1 =
√

2µ(v⊥)2

m log
(

1
δ

)
, then applying this definition together with Lemma 16 to

Lemma 14 Lemma 13 yields

‖p‖2 ≤
(

1 +

√
2η2

1− γ1

)2

‖v‖2 (61)

‖rΩ‖2 ≥ (1− α1 − 2η2)
m

n
‖v⊥‖2 (62)

Now applying 60, 61 and 62 to 24 we obtain

ζt+1

ζt
≥ 1 +

(1− α1 − 2η2)

(1 +
√

2η2/(1− γ1))2

m

n

‖v⊥‖2

‖v‖2
− 22

5

η2

(1 +
√

2η2/(1− γ1))2

m

n

‖v⊥‖2

‖v‖2

≥ 1 +
(1− α1 − 32

5 η2)

(1 +
√

2η2/(1− γ1))2

m

n

‖v⊥‖2

‖v‖2
(63)

which holds with probability at least 1 − 3δ. The probability bound is obtained by taking the union bound of those
generating Lemmas 13, 14 and 15, as we can see in the proofs of them in this Section, this union bound is at least
1− 3δ.

Letting η1 =
(1−α1− 32

5 η2)

(1+
√

2η2/(1−γ1))2
, then η1 > 0 is equivalent to 1−α1− 32

5 η2 > 0, for which we have the following:

if

m > max

128dµ0

3
log

(
2d

δ

)
, 32µ(v⊥)2 log

(
1

δ

)
, 52dµ0

(
1 +

√
2µ(v⊥) log

(
1

δ

))2
 (64)

then η1 >
1
4 .

Under this condition, taking expectation with respect to v yields,

Ev
[
ζt+1

ζt

∣∣U] ≥ 1 +
1

4

m

n
E
[
‖v⊥‖2

‖v‖2

∣∣∣∣U] ≥ 1 +
1

4

m

n

1− ζt
d

(65)

where the last inequality follows from Lemma 1. Finally choosing δ to be 1/n2completes the proof.

We then prove Corollary 12, the result that allows comparison between our convergence rate and that in [9].

Proof of Corollary 12. Let X = [X1, . . . , Xd] with Xi = sin2 φi. Let f(X) = 1 −
∑d
i=1Xi − Πd

i=1(1 − Xi),
then ∂f(X)

∂Xi
= −1 + Πj 6=i(1 − Xj) ≤ 0. That is, f(X) is a decreasing function of each component. Therefore,

f(X) ≤ f(0) = 0. It follows that

ζt = Πd
i=1(1−Xi) ≥ 1−

d∑
i=1

Xi ≥ 1− dµ0

16n
(66)

With a slight modification of Theorem 11 we obtain

E
[
κt+1

∣∣κt] ≤ (1− 1

4

m

n

ζt
d

)
κt . (67)

(66) and (67) together complete the proof.

We now focus on proving the key lemmas for establishing Theorem 11, for which we need the following lemmas
(the proofs can be found in [8]).
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Lemma 30. [8] Let δ > 0. Suppose m ≥ 8
3dµ(U) log (2d/δ), then

P
(∥∥∥(UTΩUΩ

)−1
∥∥∥ ≤ n

(1− γ1)m

)
≥ 1− δ

where γ1 =
√

8dµ(U)
3m log (2d/δ).

Lemma 31 ([8], Lemma 1). Let α =
√

2µ(v⊥)2

m log(1/δ), then

P
(
‖v⊥,Ω‖2 ≥ (1− α)

m

n
‖v⊥‖2

)
≥ 1− δ

Lemma 32 ([8], Lemma 2). Let µ(U), µ(v⊥) denote the incoherence parameters of R(U) and v⊥, and let δ ∈ (0, 1)
and β1 =

√
2µ(v⊥) log (1/δ), then

P
(∥∥UTΩ v⊥,Ω∥∥2 ≤ (β1 + 1)2m

n

dµ(U)

n
‖v⊥‖2

)
≥ 1− δ

Now we are ready for the proof of Lemmas 13, 14 and 15.

Proof of Lemma 13. According to Lemmas 31, 32 and 30, we have

‖rΩ‖2 = ‖v⊥,Ω‖2 − vT⊥,ΩUΩ

(
UTΩUΩ

)−1
UTΩ v⊥,Ω

≥ ‖v⊥,Ω‖2 −
∥∥∥(UTΩUΩ

)−1
∥∥∥ ‖UTΩ v⊥,Ω‖2

ϑ1

≥
(

1− α− (β1 + 1)2

1− γ1

dµ(U)

m

)
m

n
‖v⊥‖2

with probability at least 1− 3δ.

Proof of Lemma 14. Lemma 32 and Lemma 30 together give the following

‖Uw2‖2 =
∥∥∥(UTΩUΩ

)−1
UTΩ v⊥,Ω

∥∥∥2

≤
∥∥∥(UTΩUΩ

)−1
∥∥∥2 ∥∥UTΩ v⊥,Ω∥∥2

≤ (β1 + 1)2

(1− γ1)2

dµ(U)

m
‖v⊥‖2

holds with probability exceeding 1− 2δ. Therefore,

‖p‖2 ≤
(
‖v‖‖+ ‖Uw2‖

)2 ≤ (1 +
β1 + 1

1− γ1

√
dµ(U)

m

)2

‖v‖2

We also need the following lemma for the proof of Lemma 15, the proof of which is provided at the end of this
section.

Lemma 33. Let β2 =
√

2µ(v⊥) log
(

1
δ

)
dµ0

dµ0+m sin2 φd
, where again µ0 denoting the incoherence parameter of R(Ū).

Then

P

∥∥ŪTΩ v⊥,Ω∥∥ ≤ (1 + β2)

√
m

n

dµ0

n

√
m sin2 φd
dµ0

+ 1‖v⊥‖

 ≥ 1− δ
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Proof of Lemma 15. Note that |∆| = ‖∆‖, for which we have the following,

‖∆‖ =
∥∥wT2 (ŪTU)−1ŪT r

∥∥
=
∥∥∥vT⊥,ΩUΩ

(
UTΩUΩ

)−1 (
ŪTU

)−1
ŪTΩ (I − PUΩ

) v⊥,Ω

∥∥∥
≤
∥∥vT⊥,ΩUΩ

∥∥ ∥∥∥(UTΩUΩ

)−1
∥∥∥∥∥∥(ŪTU)−1

∥∥∥ ∥∥ŪTΩ (I − PUΩ
) v⊥,Ω

∥∥
ϑ1

≤ 1

cosφd

∥∥vT⊥,ΩUΩ

∥∥∥∥∥(UTΩUΩ

)−1
∥∥∥∥∥ŪTΩ v⊥,Ω∥∥

≤ 1

cosφd
(β1 + 1)

√
m

n

dµ(U)

n
(1 + β2)

√
m

n

dµ0

n

√
m sin2 φd
dµ0

+ 1
n

m(1− γ1)
‖v⊥‖2

ϑ2

≤ (1 + β1)(1 + β2)

(1− γ1) cosφd

√
m sin2 φd
dµ0

+ 1

√
dµ0

n

√
dµ(U)

n
‖v⊥‖2

where ϑ1 holds since from the following:∥∥ŪTΩ (I − PUΩ
) v⊥,Ω

∥∥ ≤ ∥∥ŪTΩ v⊥,Ω∥∥ , ∥∥∥(UTΩUΩ

)−1
∥∥∥ ≤ 1

cosφd

and ϑ2 follows by putting Lemmas 32, 30 and 33 together.

We also prove Lemma 16 for completeness. Before that we first call out the following lemma, the proof of which
can be found in [9].

Lemma 34. [9] There exists an orthogonal matrix V ∈ Rd×d such that

d∑
k=1

sin2 φk ≤
∥∥ŪV − U∥∥2

F
≤ 2

d∑
k=1

sin2 φk

Proof of Lemma 16. According to Lemma 34 we have

‖Ui‖2 ≤
∥∥Ūi∥∥2

+
∥∥ŪiV − Ui∥∥2

≤
∥∥Ūi∥∥+

√√√√2

d∑
k=1

sin2 φk

≤
(

1 +
1

2
√

2

)√
dµ0

n

It hence follows that ‖Ui‖22 ≤ 2dµ0

n .

We need the following lemma and McDiarmid’s inequality to prove Lemma 35.

Lemma 35.
∥∥ŪT v⊥∥∥2 ≤ sin2(φd)‖v⊥‖2, where φd denotes the largest principal angle between R(Ū) and R(U).

Proof. According to the definition of v⊥ and Lemma 17, we have∥∥ŪT y∥∥2
=
∥∥ŪT (I− UUT ) Ūs∥∥2

= sT Ȳ Σ4Ȳ 4s

ϑ3

≤ sin2 φds
T Ȳ Σ2Ȳ T s = sin2 φd‖v⊥‖2

here Ȳ and Σ are the same as those defined in Lemma 17, and the last equality holds since ‖v⊥‖2 = ‖s‖2−vTUUT v =
sT Ȳ Σ2Ȳ T s.
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Theorem 36. (McDiarmid’s Inequality [23]). Let X1, . . . , Xn be independent random variables, and assume f is a
function for which there exist ti, i = 1, . . . , n satisfying

sup
x1,...,xn,x̂i

|f(x1, . . . , xn)− f(x1, . . . , x̂i, . . . , xn)| ≤ ti

where x̂i indicates replacing the sample value xi with any other of its possible values. Call f(X1, . . . , Xn) := Y .
Then for any ε > 0,

P [Y ≥ EY + ε] ≤ exp

(
− 2ε2∑n

i=1 t
2
i

)
P [Y ≤ EY − ε] ≤ exp

(
− 2ε2∑n

i=1 t
2
i

)

Proof of Lemma 33. We use McDiarmid’s inequality to prove this. For the simplicity of notation denote
v⊥ as y. Let Xi = ŪΩ(i)yΩ(i) ∈ Rd, and f(X1, . . . , Xm) = ‖

∑m
i=1Xi‖2 =

∥∥ŪTΩ v⊥,Ω∥∥2
, then

|f(x1, . . . , xn)− f(x1, . . . , x̂i, . . . xn| can be bounded via∣∣∣∣∣∣
∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
2

−

∥∥∥∥∥∥
m∑
i6=k

Xi + X̂k

∥∥∥∥∥∥
2

∣∣∣∣∣∣ ≤
∥∥∥Xk − X̂k

∥∥∥
2
≤ ‖Xk‖2 + ‖X̂k‖2

≤ 2‖y‖∞
√
dµ0/n (68)

We next calculate E [f(X1, . . . , Xm)] = E
[
‖
∑m
i=1Xi‖2

]
. Note that

E

∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
2
 = E

 m∑
i=1

‖Xi‖2 +

m∑
i=1

∑
j 6=i

XT
i Xj

 (69)

Recall that we assume the samples are taken uniformly with replacement. This together with the fact that
∥∥Ūi∥∥2

=

‖PR(Ū)(ei)‖ ≤
√
dµ0/n yield the following

E

[
m∑
i=1

‖Xi‖2
]

=

m∑
i=1

E
[∥∥UΩ(i)yΩ(i)

∥∥2
]

=

m∑
i=1

n∑
k=1

‖Ūk‖2y2
kP{Ω(i)=k} ≤

m

n

dµ0

n
‖y‖2 (70)

E

 m∑
i=1

∑
j 6=i

XT
i Xj

 =

m∑
i=1

∑
j 6=i

n∑
k1=1

n∑
k2=1

yk1Ū
T
k1
Ūk2yk2P(Ωj = k2)P(Ωi = k1)

=
m2 −m
n2

‖ŪT y‖2 ≤ m2

n2
sin2 φd‖y‖2 (71)

where the last inequality holds by Lemma 35.
Eqs (69) (70) and (71) together with the Jensen’s inequality imply

E

[∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
]
≤
√
m

n

√
m

n
sin2 φd +

dµ0

n
‖y‖ =

√
m

n

dµ0

n

√
m sin2 φd
dµ0

+ 1‖y‖ (72)
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Let ε = β2

√
m
n
dµ0

n

√
m sin2 φd
dµ0

+ 1‖y‖, then (68) and (72) together with Theorem 36 give

P

‖UΩyΩ‖ ≥ (1 + β2)

√
m

n

dµ0

n

√
m sin2 φd
dµ0

+ 1‖y‖


≤ exp

−2β2
2
m
n
dµ0

n

(
m sin2 φd
dµ0

+ 1
)
‖y‖2

4m‖y‖2∞
dµ0

n


= exp

−β2
2

(
m sin2 φd
dµ0

+ 1
)
‖y‖2

2n ‖y‖2∞

 = δ (73)

where the last inequality follows by submitting our definition of µ(y) Eq (23) and β2.
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