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ABSTRACT2

For cursorial animals that maintain high speeds for extended durations of locomotion, transitions3
between footfall patterns (gaits) predictably occur at distinct speed ranges. How do transitions4
among gaits occur for non-cursorial animals? Jerboas (Jaculus jaculus) are bipedal hopping5
rodents that frequently transition between gaits throughout their entire speed range. It has6
been hypothesized that these non-cursorial bipedal gait transitions are likely to enhance their7
maneuverability and predator evasion ability. However, it is difficult to use the underlying dynamics8
of these locomotion patterns to predict gait transitions due to the large number of degrees of9
freedom expressed by the animals. To this end, we used empirical jerboa kinematics and10
dynamics to develop a unified Spring Loaded Inverted Pendulum model with defined passive11
swing leg motions. To find periodic solutions of this model, we formulated the gait search as a12
boundary value problem and described an asymmetrical running gait exhibited by the jerboas13
that emerged from the numerical search. To understand how jerboas change from one gait to14
another, we employed an optimization approach and used the proposed model to reproduce15
observed patterns of jerboa gait transitions. We then ran a detailed numerical study of the16
structure of gait patterns using a continuation approach in which transitions are represented by17
bifurcations. We found two primary mechanisms to increase the range of speeds at which gait18
transitions can occur. Coupled changes in the neutral leg swing angle alter leg dynamics. This19
mechanism generates changes in gait features (e.g., touchdown leg angle and timings of gait20
events) that have previously been shown to induce gait transitions. This mechanism slightly alters21
the speeds at which existing gait transitions occur. The model can also uncouple the left and22
right neutral leg swing angle, which generates asymmetries between left and right leg dynamics.23
New gait transitions emerge from uncoupled models across a broad range of speeds. In both24
the experimental observations and in the model, the majority of the gait transitions involve the25
skipping and asymmetrical running gaits generated by the uncoupled neutral leg swing angle26
mechanism. This simulated jerboa model is capable of systematically reproducing all biologically27
relevant gait transitions at a broad range of speeds.28
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1 INTRODUCTION
Despite vast differences in morphology, the locomotion patterns of many legged animals are strikingly30
similar (Alexander, 2002). Typically, these gait patterns can be characterized by repeated footfall sequences31
(Alexander, 1984; Hildebrand, 1989), the ground reaction force profile (Alexander, 2009) or by how32
gravitational, potential and kinetic energies are exchanged over the course of a stride (Cavagna et al.,33
1977). As the speed of locomotion increases, quadrupedal cursorial animals, such as horses or gazelles,34
switch from using a walking gait at low speeds to a trotting or pacing gait at intermediate speeds, and35
then a galloping gait at their highest speeds. Previous studies suggest that each gait minimizes oxygen36
consumption (Hoyt and Taylor, 1981; Minetti et al., 1999) and minimizes the loading impact on the37
musculoskeletal system (Lee et al., 2011; Farley and Taylor, 1991) at a distinct speed range. Therefore,38
transitioning between gaits as speed increases helps cursorial animals minimize the cost of sustained steady-39
state locomotion, thereby enhancing endurance at high speeds. Based on these fundamental principles, the40
speeds at which cursorial gaits occur can be predicted by the ratio of centripetal to gravitational force (as41
an animal moves over its supporting limb), or the Froude number (Alexander and Jayes, 2009).42

On the other hand, rapid and energetically costly changes in acceleration and direction of movement43
are important for small animals evading predators (Domenici et al., 2011; Chance and Russell, 2009;44
Biewener and Blickhan, 1988). Some quadrupedal and hexapedal prey animals temporarily rear up on45
hindlimbs and use bipedal locomotion to enhance acceleration during escape (Clemente, 2014; Full and46
Tu, 1991). Notably, jerboas (Dipodidae) are desert rodents that evolved obligately bipedal locomotion47
from quadrupedal ancestors. Although pentapedal (quadrupedal with additional support from the tail)48
locomotion occurs during in postnatal development (Eilam and Shefer, 1997), and quadrupedal locomotion49
is used infrequently at slower speeds (Happold, 1967), jerboas are the only hopping rodent to use multiple50
bipedal gaits as their primary mode of locomotion as adults (Moore et al., 2017). The hopping, skipping,51
and running gaits are used throughout the entire jerboa speed ranges, with frequent (≈ 50% of all recorded52
trials) transitions between gaits that are not predicted by the Froude equation (Moore et al., 2017). Because53
each gait is associated with a distinct range of acceleration, rather than speed, frequent gait transitions54
likely enhance the potential maneuverability and predator evasion ability of a jerboa (Moore et al., 2017).55
Thus, building models to characterize non-cursorial locomotion can help us understand more agile and56
maneuverable locomotion.57

The center of mass dynamics and kinematics for a wide variety of cursorial animals can be modeled using58
a simplified “template” approach with minimal degrees of freedom (Full and Koditschek, 1999). McGeer59
(1990) demonstrated that an Inverted Pendulum model (IP) with two rigid legs is capable of walking60
on a sloped ramp without the help of any additional controllers or actuators. A Spring-Loaded Inverted61
Pendulum (SLIP) model explains the kinetic and potential energy exchanges in running gaits (Blickhan,62
1989; Farley et al., 1993). These models have been shown to explain the locomotion of cursorial animals63
that differ greatly in size, leg number, or posture. The simplicity and broad applicability of these template64
models have made them invaluable for designing controllers for legged robots (DSCC, 2015; Hereid et al.,65
2014).66

Although these simplified models have been useful for generating single-gait controllers, efficient and67
reliable transitioning between gaits has been a consistent challenge for legged robotics. Many robots use a68
heuristic controller that initiates a gait transition by either stopping locomotion entirely and then performing69
a sequence of procedures to guide the system into another gait pattern or adding energy into the system by70
providing a thrust during the stance phases. These existing controllers usually generate abrupt changes71
in center of mass trajectories or leg speeds (Hyun et al., 2014, 2016). Most recently, reinforced learning72
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controllers (Hwangbo et al., 2019; Siekmann et al., 2020) have been proposed to enable smooth and stable73
gait changes. However, this approach not only requires a large amount of data gathered from a particular74
application, but very limited knowledge can be learned about why and how this type of controller might75
outperform its conventional counterparts. Empirical data from animals has informed theoretical models76
to explain how gait transitions can be initiated across a broad range of speeds, potentially reveal new77
methodologies for synthesizing switching controllers.78

For quadrupedal locomotion, gaits can be modeled as dynamical systems for which gaits with inter-limb79
coordination are stable attractors (Schöner et al., 1990). In these models, gait transitions associated with80
lack of coordination can be identified as bifurcations along gait system paths in parameter space. Genetic81
knockouts in pattern-generating neural pathways confirm that changes in synchronization between fore-hind82
and left-right leg pairs can induce a gait transition as speed increases (Danner et al., 2016). Breaking83
coordination between limbs has been successfully used as a mechanism to transition a quadrupedal robot84
from walking to trotting (Shinya et al., 2013). Previous studies have described how changes in gait features85
(i.e., leg contact angle, timing of gait events) result in gait transitions, it is difficult to translate these86
findings into robotic controllers but without understanding how model dynamics result in such changes in87
gait features. For bipedal locomotion, Geyer et al. (2006) found that a unified SLIP model can explain both88
bipedal walking and running gaits, which suggests that these two gaits are different oscillation modes of89
the same mechanical system with different energy levels. This insight has been useful for predicting gait90
transitions in cursorial bipeds (Gan et al., 2018b).91

Here, we built upon previous template models (Geyer et al., 2006; O’Connor, 2009; Shen and Seipel,92
2012) to provide the first insights into the factors determining the gait transitions of non-cursorial bipeds,93
such as jerboas. First, we experimentally measured Lesser Egyptian jerboa (Jaculus jaculus) kinematics94
and dynamics for each gait across a broad range of speeds. We used numerical optimization to match an95
extended SLIP model (Gan et al., 2018b) to the jerboa data. The resulting walking and running gaits were96
similar to the ones found in (Geyer et al., 2006). However, while the previous model required directly97
changing the angle of attack, the passive dynamics of the proposed model determine swing leg motion to98
generate different gaits. As a result, many other gaits, including those that require two different leg contact99
angles (e.g., asymmetrical bipedal skipping) emerge from the proposed model as a natural continuation100
from the gait search. We formally defined asymmetrical running, a jerboa gait that emerged from the101
numerical search. Using a detailed parameter scan, we identified two distinct mechanisms to induce a102
transition between these four gaits (walking, running, skipping and asymmetrical running). The proposed103
bipedal model that couples the neutral angle of both legs during the swing phase can change this angle104
to induce a gait transition. Alternatively, the model can uncouple the offset between the neutral angle of105
each leg during the swing phase to induce a gait transition. With these two mechanisms, the extended106
SLIP model is capable of matching the jerboa pattern of transitioning between gaits across a broad range107
of speeds. We also found that on the Poincaré section, the fixed points of the skipping gait are in close108
proximity to solutions found for all other gaits, which explains why jerboas transition to and from skipping109
gaits most frequently (Moore et al., 2017). Thus, this extended SLIP model matches empirical jerboa110
kinematics and dynamics, predicts gait transitions throughout a broad range of speeds, and provides a111
mechanism for initiating these gait transitions.112

Frontiers 3



Ding et al. A template model explains jerboa gait transitions

2 METHODS
2.1 Animal Experiments113

Details of the data collection procedure were reported in a previous publication in which the speeds and114
acceleration ranges associated with each gait were determined (Moore et al., 2017). Trials were collected115
from five captive male jerboas traveling along a narrow track (2 × 0.15 × 0.4 m3) over a two-axis force116
platform (0.06 × 0.12 m2) and past a high-speed video camera recording at 500 fps. We visually categorized117
the gait of each stride by footfall pattern. Both feet striking and lifting off simultaneously were considered118
hopping. Overlapping but non-simultaneous foot strikes were considered skipping, according to previous119
work (Moore et al., 2017). If the same leg maintained the leading foot position, this gait would be equivalent120
to a bipedal gallop, as defined in previous gait research (Schropfer et al., 1985; Gan et al., 2018b). An121
aerial phase between each foot strike was considered running if each aerial phase was approximately the122
same duration.123

To extract the kinematic data (i.e., center of mass (COM) locations and leg angles over one stride) from124
the video recordings, we used DeepLabCut, a markerless pose estimation framework leveraging a deep125
neural network (DNN) (Mathis et al., 2018). In this study, 35 videos that contained a whole stride of a126
single gait pattern were used to train the DNN. All three common jerboa gaits reported in (Moore et al.,127
2017) (i.e., hopping, skipping, running) were included in this study. Roughly 1/3 of the total frames of128
each video were selected as the training data set. In these frames, we manually labelled the location of129
the eye, the tail-base, and the two feet, as shown in Figure 1 A. We estimated the COM location as the130
midpoint between the eye and the tail-base. Then the leg angles were calculated as the orientation of the131
line segments connecting the COM to the feet.132

2.2 Model Description133

The proposed model used in this study consists of a point mass as the main body, with mass m, and two134
massless legs, as illustrated in Figure 1 B. The vertical and horizontal positions of the main body were135
defined by the variables x(t) and y(t), respectively. Left and right legs (with index i ∈ [l, r]) were modeled136
as massless linear springs with resting leg length lo and total spring stiffness k. Both legs were connected137
to the main body through frictionless rotational joints, with the joint angle αi(t) measured from the vertical138
axis (positive in the counterclockwise direction). Comparing with the convectional SLIP model, which139
ignores swing leg motions by setting the leg to predefined angles of attack immediately after lifting off,140
we added a torsional passive spring to control the leg swing motion during the flight phase of each leg.141
This is similar to the monopedal SLIP model with hip torque and leg damping proposed by (Shen and142
Seipel, 2012), in which active constant hip torques and leg dampings during the stance phase improved143
the stability and robustness of locomotion. In contrast, the torsional springs in our model provide passive144
torques enable the rotational motions of the swing legs to facilitate gait transitions. The torsional spring145
directly connected the leg to the main body at angle, φi (hereafter referred to as the neutral swing leg angle146
(NSLA), measured with respect to the vertical direction (Figure 1 B). By fixing the oscillation frequency147
ω, this torsional spring dictates the swing leg rotational speed and amplitude and determines the desired148
contact angle at the moment of touchdown. Because we can assume that the torsional spring stiffness and149
the foot mass have infinitesimal values, they do not affect stance leg kinematics or dynamics (Gan et al.,150
2018b).151

In our work, we ran optimizations to fit the trajectories of leg angles (Figure 2) to determine the oscillation152
frequency ω. The full set of parameters of the proposed model is denoted as pT := [m, lo, g, k, ω, φl, φr].153
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The total stride time was defined as T and its value was not known before finding a gait pattern of the154
proposed model. Without loss of generality, we chose the apex transition (ẏo = ẏ (T ) = 0

√
log) as the155

Poincaré section. This means that the beginning of each gait cycle was defined as the peak of the aerial156
phase, when the COM was highest off of the ground. To reproduce all observed bipedal gait patterns of157
jerboas and analyze their transitions, we did not prescribe a specific footfall pattern. Instead, we introduced158
four timing variables tji , (with index i ∈ [l, r], j ∈ [td, lo]) for the touchdown and liftoff events that are159
confined within the time interval of one stride [0, T ). Their values were determined and sorted through the160
gait finding process, as detailed in Section 2.4 . The full set of timing variables of the proposed model is161
encapsulated in a vector tT := [ttdl , tlol , t

td
r , tlor , T ].162

2.3 Equations of Motion163

Using the position and velocity vectors qT := [x, y, αl, αr], q̇T := [ẋ, ẏ, α̇l, α̇r] to describe the state164
of the system, we expressed the dynamics as a set of second-order time-varying differential equations165
q̈ = f (q, q̇, t,p) that is parameterized by p. The equations of motion (EOM) were defined for the main166
body as:167

ẍ = Fx/m, ÿ = Fy/m− g, (1)

where Fx and Fy represent the net forces and torques generated by the leg pairs. The dynamics of the leg168
pairs depended on whether the legs were in contact with the ground. During the swing phase, the leg was169
set to its uncompressed original length lo and the leg angular accelerations were defined by:170

α̈swing,i = 1/lo (ẍ cosαi + (g + ÿ) sinαi) + ω2m (αi − φi) , (2)

During stance, we assumed that the ground has infinite friction so that the stance foot did not slide on the171
ground. A holonomic constraint was introduced to make sure the horizontal position of the contact foot172
(xc,i) was stationary.173

xc,i − x− y tanαi = 0, (3)

Whenever a leg entered stance phase, the angular acceleration of that leg was determined by the accelerations174
of the main body, which was directly computed from the above ground constraint by taking the time175
derivative twice:176

α̈stance,i = −2 α̇i
2 tan (αi)−

2 α̇i ẏ

y
− ẍ+ ÿ tan (αi)

y sec2 (αi)
. (4)

In addition, at the moments of touch-down ttdi , the leg velocities were reset according to the holonomic177
constraint equation 3, resulting in additional discrete dynamics to ensure zero stance foot velocity when178
integrating equation 4. ttd+i and ttd−i were used to indicate the moments right after and before the touch-179
down event of a leg, respectively.180

q̇
(
ttd+i

)
= h

(
q
(
ttd−i

)
, q̇

(
ttd−i

))
. (5)

Posterior neutral leg swing angles usually induced a premature touchdown event during anterior swing181
leg motion, causing the leg to immediately rotate posteriorly and inducing a large angular velocity reset182
(Equation 5). Because this behavior is rarely seen in jerboa locomotion, we terminated the numerical search183
when this phenomenon was detected.184
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2.4 Gait Finding and Continuation185

Due to the nonlinearity and the hybrid nature of the EOM presented in Section 2.3, it was not possible to186
find explicit periodic solutions of the proposed model. Therefore, in this work we identified gait patterns as187
numerical solutions dictated by the initial condition of the continuous states qo, q̇o and system parameters188
pT . Because a gait of the system is a periodic motion, finding a bipedal gait in this model was equivalent to189
solving a root of the following set of constraint equations:190

find qo, q̇o, t (6)

such that:
q (T )− qo = 0,
q̇ (T )− q̇o = 0,

y(tji )− lo cos(αi(t
j
i )) = 0 for every i ∈ [l, r] , j ∈ [td, lo] .

This is a passive model with no additional controllers or actuators. When the parameters of the proposed191
model were fixed, there were 13 variables (qo, q̇o, t) and 12 constraints (equalities listed in equation192
6). For such a conservative model, the total energy stored in the system can be calculated as E =193
1
2mẋ2o +

1
2mẏ2o +mgyo, so varying the initial conditions is equivalent to changing the total energy. As194

a result, periodic solutions formed one-dimensional manifolds (hereafter referred to as branches) as195
the total energy stored in the system varied. We integrated the system over a complete stride using the196
Runge-Kutta-Fehlberg Method (RKF) (Fehlberg, 1969) and solved for roots of the above equalities using197
the fsolve function of Matlab. Finding the first periodic motion (gait) of the proposed model requires198
a good estimation of the initial states. It is the easiest to start with a solution of zero forward speed in199
which the horizontal position of COM, the leg angles, and leg angular velocities remain at zeros during the200
whole stride. Once one periodic motion was found, we ran numerical continuations using the predictor201
and corrector method (Gan et al., 2018a) to quickly explore the adjacent periodic solutions and their202
transitions to other gait patterns. Because most of the gait transitions appeared from the numerical search as203
a bifurcation point, at which one of the Floquet multipliers of the system is equal to +1, the corresponding204
eigenvector was approximately directed towards the solution with the new gait pattern (Gan et al., 2018b).205

In nature, jerboas move with step-to-step changes in stride length, direction, gait, and speed and rarely206
demonstrate exact periodic gait patterns. In this work, we assume they are utilizing a stabilizing controller207
for a desired limit cycle, which is changed discretely each step. We also assume that the state of the208
jerboa is always within the region of attraction of the controller and the desired limit cycles. Additionally,209
we only explored gaits with a left-leg phase advance because the motions of the left-advanced gaits and210
right-advanced gaits were identical when the leg parameters were the same and the two legs were switched.211
Thus, although they occurred in the animals, we did not mathematically explore gait transitions between212
left-advanced and right-advanced skipping gaits.213

2.5 Parameter Identification214

To reduce the number of free parameters and identify their values in the proposed model, we normalized215
all values in the model in terms of the total mass of the system, m, the uncompressed leg length, lo, and216
the gravity on earth, g (Hof, 1996). The estimation of leg stiffness was based on the assumptions that legs217
were massless and that they behaved as simple linear springs. The period of the oscillation around the leg218
was therefore dictated by the spring stiffness, according to

√
k/m. To estimate the swing leg oscillation219

frequency ω, and to determine how well the proposed model can explain the empirical motions of jerboas,220
we proposed the following optimization framework.221
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By solving equation 6, the simulated model trajectories of positions and velocities of a periodic solution222
can be represented by a 3-tuple X := (q⋆, q̇⋆, t⋆). For the n-th experimental trial, the residual function223
Cn (X,p) quantifies how well the model with a specific parameter set p predicted the kinematics of the224
locomotion pattern in jerboas. The empirical positions and velocities of jerboas from the n-th experimental225
trial were denoted by qen and q̇en, respectively. The value of this cost function was minimized as a nonlinear226
optimization problem with an optimal set of parameters, p:227

Copt = min
X ,p

{
Cn :=

∫ T ⋆

0
∥q⋆ (t,p)− qen (t)∥

2 + ∥q̇⋆ (t,p)− q̇en (t)∥
2
dt

}
. (7)

This algorithm was implemented in Matlab using sequential quadratic programming (SQP). Each228
optimization problem can be solved on a regular desktop computer with an Intel Core i7 3.4 GHz processor229
in a few minutes.230

3 RESULTS
In this study we created a high-fidelity template model that can accurately reproduce jerboa gait transitions.231
First we demonstrate a simulated skipping gait pattern from the template model using the proposed232
optimization algorithm. Next, Section 3.2 formally defines the symmetric and asymmetric jerboa gaits,233
including the first description of the asymmetrical running gait. Then, we analyze the effects of varying234
NLSA in two different scenarios. In Section 3.3, the NLSA of both legs are varied together and thereafter235
referred as the coupled leg model. In Section 3.4, we allow offset, or differences, in the right and left236
NLSA and call it the uncoupled leg model. In the last section, we validate our model by comparing our237
predictions to empirical gait transition data from jerboas.238

3.1 Optimized model parameters recreate empirical observations239

As mentioned in the previous sections, the full set of parameters of the proposed model was denoted240
as pT := [m, lo, g, k, ω, φl, φr]. All values were normalized and m, the uncompressed leg length, lo, and241
the gravity on earth, g which were all set to a value of one. Based on the methods in Section 2.5, the242
mean value and the standard deviation of the leg spring stiffness was estimated at k = 19.24± 2.43mg/lo.243
Swing leg oscillation frequency ω varied minimally across trials for each jerboa (e.g., 6.77± 0.18

√
g/lo244

for j30, 5.75± 0.65
√

g/lo for j38). Because the deviations of both leg stiffness and swing leg oscillation245
frequency were relatively small in our entire data set, we assumed they were not the major contributors to246
the gait transitions in jerboas. Thus, we set leg stiffness to 20 mg/lo for the subsequent simulations and247
used 6.5

√
g/lo. For a given set of parameters, we exhaustively searched for solutions, which resulted in a248

maximum forward speed of 29
√
glo. Although these branches included unrealistic speeds, all gait transitions249

emerged below 8
√
glo. The optimized parameters (Table 1) produced trajectories that closely match the250

empirical jerboa COM location and both leg angles (coefficient of determination 0.83 < R-squared < 0.99,251
Figure 2).252

3.2 Symmetrical and asymmetrical gaits lie on two distinct continua253

Based on the numerical search described in Section 2.4, we found periodic solutions for five different254
gait patterns: walking, hopping, skipping, symmetrical running, and asymmetrical running (Figure 3). The255
definitions of the first four gait patterns follow the conventions described in Section 2.1 and in previous256
research (Eilam and Shefer, 1997; Happold, 1967; Moore et al., 2017), while asymmetrical running is a257
novel gait presented this study (Section 3.2.2).258
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3.2.1 The nominal model has neutral leg swing angles of zero259

All the identified locomotion patterns form one-dimensional branches connected to one another through260
bifurcation points on the Poincaré section (Figure 4). These solution branches are hereafter referred to as261
the gait structure. Just as in our previous SLIP model (Gan et al., 2018a), setting both the neutral leg262
swing angles to zero results in a nominal gait structure symmetric about the plane αl0 = 0 rad.263

Symmetrical gaits, walking and running, form one continuum (purple and yellow in Figure 4). For264
symmetrical gaits, identical leg movements are out of phase by half a stride (|tjl − tjr|= T/2) (Hildebrand,265
1967). Walking (purple in Figure 4) appears only at low speeds and is characterized by a lack of aerial266
phase (i.e., 0 < ttdr < tlol < ttdl < tlor < T ). When the forward speed reaches ẋo = 1.21

√
glo (diamonds267

in Figure 4), one leg strikes the ground at the exact moment when the other leg leaves the ground, i.e.268
ttdi = tlo

ī
where i ∈ [l, r] and ī denotes the index of the opposite leg. As speed further increases, liftoff of269

one foot occurs before touchdown of the other foot and walking smoothly transitions to running with aerial270
phases between each footfall, i.e. 0 < ttdr < tlor < ttdl < tlol < T (Figure 3 D, yellow in Figure 4).271

A distinct continuum connects the three asymmetrical gaits: hopping, skipping, and asymmetrical272
running (red, blue, and green lines in Figure 4), for which the phase shift between legs is not equal273
to half a stride (|tjl − tjr|≠ T/2) (Hildebrand, 1977). Along the hopping branch (Figure 3 A, red in274
Figure 4), leg motions are synchronized, i.e. 0 < ttdr = ttdl < tlor = tlol < T . This synchronization is275
broken, via hopf bifurcations (Hassard et al., 1981, Chapter 1), at two different speeds (circles in Figure276
4 B), both leading to skipping (Figure 3 B, blue in Figure 4 B) with overlapping footfall patterns (i.e.277
0 < ttdr < ttdl < tlor < tlol < T ).278

3.2.2 Definition of Asymmetrical Running279

At skipping speeds ẋo = 7.72
√
glo or 28.06

√
glo (triangles in Figure 4), previously overlapping280

touchdown and liftoff events occur simultaneously (e.g., ttdl = tlor ). At intermediate speeds, a short281
aerial phase emerges in the middle of the stride. As opposed to symmetrical running, gaits in which two282
aerial phases are unequal in duration (Figure 3 C) are asymmetrical running, with distinct contact angles283
for each leg and footfall pattern 0 < ttdr < tlor < ttdl < tlol < T . In the following sections we will show that284
the asymmetrical running gait plays an important role in gait transitions and appears ubiquitously in the285
gait structure as we sweep the parameter space spanned by neutral leg swing angles.286

3.3 Coupled changes in neutral leg swing angle shift the speeds of existing gait287
transitions288

3.3.1 Anterior shifts in coupled neutral leg swing angle preserve symmetrical gait structure289

As we increased the values of φl = φr, the legs immediately rotated anteriorly at liftoff (see the inset at290
the top right corner of Figure 5 A). After reaching the maximum anterior position, the legs would rotate291
posteriorly prior to ground contact, i.e. swing leg retraction (Seyfarth et al., 2003). Despite this change in292
kinematics, the transitions to walking (diamonds in Figure 6) remained approximately at the same speed,293
1.2

√
glo.294

On the other hand, negative neutral leg swing angles (posteriorly shifted) induced changes in the shape of295
the gait branches. As shown in Figure 5 B, at low speeds, there were no viable solutions for walking or296
running because the swing legs failed to maintain a positive leg angle at the moment of touch-down, which297
is required to keep moving in the positive horizontal direction.298

At higher speeds, the curved regions of the branches, corresponding to solutions that include swing leg299
retraction, disappeared. Instead, higher speed running solutions involved swing legs rotating forward at the300
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moment of touch-down, which induced an angular velocity reset and large plastic collision losses. When301
we further decreased the value of neutral leg swing angles, the entire running branch shrank towards the302
mid-speed region, eventually vanishing at approximately φi = −0.8 rad.303

3.3.2 As coupled NLSA varies, the speed of higher speed transitions changes more than lower304
speed transitions305

Hopping solutions were found in the range of −0.8 < φi < 1.5 rad (Figure 7 A). Minor changes in306
the shape of hopping branches were observed as we varied φi in the positive direction. However, as we307
gradually decreased the values of the NLSA, periodic hopping gaits were only identified at mid-speed308
ranges with reduced landing impact. As in running gaits, hopping with emergent swing leg retractions were309
identified only at moderate speeds.310

For all hopping branches with different NLSA values (red curves in Figure 7 A), there was always at least311
one hop - skip transition point (circles in Figure 7 A, B) and no transitions to asymmetrical running. As the312
hopping branch crosses a bifurcation point, the symmetry in the leg motions is broken, desynchronizing313
motions of the leg pair to generate skipping gaits with a staggered timings of touchdown events (see Figure314
3 A, B). One hop - skip transition usually occurred at lower speeds and another at higher speeds, near the315
turning points. The location of the low speed hop - skip transition point varied minimally as the NLSA316
were altered. In contrast, the higher speed hop - skip transition point showed more variation in speed with317
changes in NLSA than the lower speed transition point (Figure 7 A). For negative φi, the swing leg angular318
velocity reset occurred before the high speed transition points could be found.319

Starting from the hop - skip transitions points (circles), skipping gaits bifurcated from the hopping320
branches and emerged at discontinuous locations on the Poincaré section (Figure 7 B). The lower speed321
branch was shorter than the higher speed branches for positive neutral leg swing angles. The branches with322
higher average forward speeds disappeared very quickly because of the impractical swing leg behavior323
with a maximal forward speed around 29

√
glo. The asymmetrical running gait provided a smooth transition324

branch that bridged the two isolated skipping branches for the same neutral leg swing angle (Figure 7 C).325

Skipping solutions were found in the range of −0.7 < φi < 1.0 rad. However, when the NLSA were326
larger than +0.4 rad, the maximum value during swing motion of the legs exceeded a value of 1.7 rad (π/2),327
which would be biologically unrealistic. Therefore, only results from φl = φr ∈ [−0.4,+0.4] are shown.328
The skip - asymmetrical run transitions showed a similar pattern to the hop - skip transitions. The lower329
speed skip - asymmetrical run transitions always occurred when the forward speed reached approximately330
8
√
glo. For the higher speed transitions, the locations varied more with positive changes in neutral leg331

swing angle. As soon as the neutral leg swing angles became negative, higher speed transitions between332
skipping and asymmetrical running were no longer viable.333

3.4 Uncoupled changes in neutral leg swing angle introduce new transitions334

Uncoupling the neutral swing angles for each leg, i.e. φl ̸= φr, resulted in drastic changes in both gait335
structure and the locations of gait transitions (Figure 8). Without symmetry, skipping and asymmetrical336
running became the only two feasible gait patterns. Furthermore, the model symmetry between left-leg-337
advanced and right-leg-advanced solutions were no longer preserved for more offset values, |φl − φr|> 0,338
of the uncoupled model because simply switching the leg angles would not result in identical COM motion.339
For clarity, only the left-leg-advanced solutions for small offset values were included in the analysis.340

With uncoupled neutral leg swing angles, more skipping and asymmetrical running gait solutions became341
possible by slightly disrupting the symmetry of the symmetrical running and hopping gaits. With positive342
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offset in the left neutral leg swing angle (φl − φr > 0), the asymmetrical running branch elongated by343
closely matching the symmetrical running gait (see Figure 8A). In contrast to the skipping branch of the344
coupled leg model, which connected directly to the hopping branch (opaque blue curve in Figure 8 A), the345
uncoupled skipping branch continued to the lower speed regions in which the flight phases became shorter346
and shorter until they were replaced by a double stance phase.347

On the other hand, with negative offset, the skipping branch (blue curve in Figure 8 B) higher speed348
regions closely resemble the symmetrical hopping gait (red curve). When speeds were too fast or too slow,349
these skipping gaits joined with the asymmetrical running branch and formed the 1-dimensional manifold350
as a closed loop. The size of this loop decreased with the value of the left neutral leg angle. No solutions351
were found past φl = −0.14 rad, where the solution branch became a single dot.352

Combining positive and negative variations in neutral leg angle offset shows that asymmetrical gaits353
spanned the gaps between symmetrical running branches (Figure 9). Thus, changing the offset between left354
and right neutral leg angles effectively enables transitions between symmetrical and asymmetrical gaits.355
Even within the asymmetrical gait structure, skipping-asymmetrical running transition points (triangles356
in Figure 9) spanned nearly the entire range of speed in response to small variations in neutral leg swing357
angles. Specifically, the forward speed of transition points varied from 1.30 to 29.26

√
glo, while the left leg358

neutral leg swing angle only varied from −0.06 to 0.14 rad (Figure 9 B). In comparison to the large gaps359
between gait transitions in the coupled model (Section 3.3), the uncoupled model finds abundant solutions360
for gait transitions throughout the full range of speeds (Figure 10).361

3.5 Validation362

To validate our model, we compared our predictions to empirical gait transition data from jerboas. We363
found that jerboas swing each leg with a different, non-zero neutral leg swing angle. Specifically, jerboas364
tend to fix the neutral swing leg angle of one leg while varying the neutral swing leg angle of the other365
leg. For instance, for j38 (column 5-8 in Table 1) the neutral swing leg angle φr for its right leg was366
−0.08± 0.31 rad while φl was 0.00± 0.06 rad. As shown in Figure 4, with the same set of parameters,367
pT = [m, lo, g, k, ω, φl, φr], our model can reproduce five bipedal gaits simply by regulating the initial368
states and altering the total energy. From our experimental data set, there were four gait transitions between369
skipping and asymmetrical running (T1 to T4 in Figure 11) and four transitions from hopping to other gaits370
(T5 to T8 in Figure 11). These transitions occurred when the NLSA (φr) were close to 0.2 rad and were371
thus compared to model predictions with similar NLSA values (shaded region in Figure 9 C). In both T1372
and T3, neither the uncoupled nor the coupled model accurately predicts the behavior of the transition373
(i.e., the empirical transition line from cross to circle does not cross the model transition line). A closer374
examination of the video data revealed that these trials involved a jerboa decelerating to a stop, which375
could be a multiple - step process and is a behavior that has not been investigated by our model. The376
other two transitions from skipping to asymmetrical running (T2 and T4), however, clearly fell into the377
regions predicted by our uncoupled model and crossed the uncoupled transition line as expected. Four378
transitions from hopping to other gaits (T5 to T8) were observed through the range of speeds from 4.19379
to 5.47

√
glo. Because of the short recording window and the large stride lengths of the jerboas at higher380

speeds, the apex transitions of the stride after hopping are not visible, but the kinematic data suggest that381
these are transitions either to skipping or asymmetrical running. All of these trials passed the gait transition382
line suggested by our uncoupled leg model within one stride (the black line connected through hollow383
triangles) rather than the coupled leg model (black line connected through the solid triangles), matching384
our observation that jerboas tend to uncouple leg NLSA during locomotion. These results suggest that for385
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non - stopping behaviors, our proposed model dynamics generate biologically relevant predictions of gait386
transitions.387

4 DISCUSSION
We present the first computational model to reproduce the locomotion patterns and gait transitions of the388
non-cursorial jerboa. By adding a torsional spring to a unified SLIP-like model, we varied the model swing389
leg dynamics to match jerboa locomotion patterns. This model accurately reproduced previously described390
hopping, symmetrical running, and skipping gaits and enabled the formal characterization of walking and391
asymmetrical running gaits for the first time. The discovery of the asymmetrical running gait describes392
previously unused data recorded of jerboa locomotion that did not fit into the pre-existing gait categories.393
Furthermore, the results of this study suggest there exist two distinct mechanisms (i.e., coupled leg motions394
in Section 3.3 and uncoupled leg motions in Section 3.4) for gait transitions. This modeling approach can395
be used to shed light on the underlying dynamics of other non-cursorial or previously uncharacterized396
locomotion and can inform the design of robotic controllers capable of smoothly transitioning between397
gaits.398

In the coupled leg model, the number of gait transitions and the unique pairs of gaits between which399
transitions can occur remain invariant to changes in neutral leg angle. Because they lie on distinct continua,400
symmetrical and asymmetrical gaits can only transition to gaits of the same type, rather than across types.401
The existing high-speed transition between asymmetrical gaits occurs at a slightly broader range of speeds402
when the coupled neutral leg swing angle changes. For asymmetrical gaits, all transitions involve the403
skipping gait; there are no smooth transitions directly between hopping and asymmetrical running.404

Our model suggests that by uncoupling the motions of a leg pair, jerboas can greatly vary the range405
of speeds at which gait transitions can occur and introduce novel transitions between asymmetrical and406
symmetrical gaits. As shown in Figure 10 C, by varying the φl by merely +0.08 rad (4.6 degree), the speed407
at which the skip - asymmetrical run transition occurs increases from 0 to 7.5

√
glo. This demonstrates408

how at any speed, a jerboa can change its swing leg behavior and instantaneously transition to another409
gait pattern within one step. Moreover, changing the neutral leg angle anteriorly causing a shift of the410
whole gait branch to low speed regions and vice versa. This uncoupled swing leg strategy provides a411
mechanistic explanation for the observation that jerboas use gait transitions to quickly accelerate, decelerate,412
or regularize its forward speed (Moore et al., 2017). Another key observation of this study is that the413
skipping gait and asymmetrical running gait played critical roles in bridging the symmetrical gaits and414
asymmetrical gaits. For example, in Figure 8 A, when the left neutral leg angle shifted anteriorly, the415
asymmetrical running (green curve) approached the vicinity of the running branch (opaque yellow curve).416
With posterior shifts in neutral leg swing angle, as shown in Figure 8 B, the skipping gait (blue curves)417
approached the bipedal hopping gait (red transparent curve) across a broad range of speeds. Throughout418
this process, skipping and asymmetrical running remained on the same continuum with each other.419

The results from our model reflect two mathematical definitions of gait asymmetry (Ian and Golubitsky,420
1993, Chapter 8) — temporal asymmetry creates phase desynchronization between the legs (which can occur421
either with coupled or uncoupled changes in NLSA), while model asymmetry (e.g., uncoupled changes in422
NLSA) generates distinct leg behaviors. The model behaviors that arise from this mathematical distinction423
provide a useful framework to identify the mechanisms by which genes control motion coordination424
(Andersson et al., 2012).425

Although previous work with conventional SLIP models succeeded in eliciting gait transitions (Geyer426
et al., 2006), a gait identified by providing a pre-defined leg contact angle provides no intuitive explanation427
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for the system dynamics that generate the necessary changes in contact angle. In our proposed model, we428
add a torsional spring so that changes in leg contact angles become governed by the passive dynamics of429
the system. Thus, gait structure emerges as a result of model parameters, which provide a mechanistic430
explanation for the resulting gait transitions. This distinction can further enhance our understanding of431
animal gaits and lay the foundation for better legged robot controller design.432

For example, as shown in Figure 11, in some cases (Figure 11, T4 & T7) jerboas may transition from one433
fixed point to another fixed point on the same gait structure. This would mean that the jerboa kept using the434
same set of parameters (including the same NLSAs) and only altered the total energy in a single step. In435
other cases (Figure 11, T3 & T5), transitions between branches would indicate that both the total energy436
and the NLSAs have been altered to facilitate these transitions.437

Our work can also inform controller design because it suggests that we can use virtual constraints438
(Westervelt et al., 2018, Chapter 1) that control leg swing behavior by modeling it as a pendulum with a439
torsional spring. Then we can modulate the total energy in the system to accelerate, decelerate, or switch440
gaits, while compensating for energy losses through joint friction or collisions. One can also use our441
solution branches as “a lookup table” in the design of locomotion controllers as proposed in our previous442
work (Cnops et al., 2015). To dynamically and efficiently change locomotion pattern at any desired gait or443
speed, if the current states of the application are known, the controller can search for an optimal trajectory444
to plan either a one - step or multiple - step process without performing any expensive calculation.445

Many of the solutions found in the proposed bipedal model can be directly applied to quadrupedal446
locomotion. According to the idea of dynamic similarity (Alexander and Jayes, 1983), when quadrupedal447
animals synchronize their leg motions in pairs (i.e., trotting, pacing, and bounding), the leg pair behaves as448
a unified leg with a greater stiffness. As discussed in our previous work (Gan et al., 2018a), the running449
and hopping branches in the gait structure of the bipeds are functionally identical to the trotting and450
pronking gaits of quadrupeds. Similarly, the shapes of skipping and asymmetrical running branches in the451
bipedal model will closely resemble bounding and galloping in the quadrupedal model. However, in the452
quadrupedal model, because legs pairs are connected to the torso at different locations, the asymmetrical453
gaits with different sequences of leg touchdowns will create unbalanced moments about the COM of the454
main body and cause the torso to rotate. As a result, the actual bounding and galloping branches of the455
quadrupedal model will also depend on the inertial properties of the torso. In general, when the quadrupedal456
model shares similar parameter values to those of the proposed bipedal model, we expect similar transitions457
will happen among these quadrupedal gaits, based on the gait structure shown in Section 3.2.458

In our future work, we plan to extend our model by adding another pair of legs to find transitions between459
quadrupedal and bipedal locomotion, as observed in the escape behaviors of lizards, rodents, cockroaches,460
and during the locomotor development of jerboas (Clemente, 2014; Marlow, 1969; Full and Tu, 1991;461
Eilam and Shefer, 1997). A combined quadrupedal and bipedal model can provide novel insights into the462
neurological changes that likely facilitate the evolution of ephemeral and obligate bipedal locomotion.463
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Figure 1. (A) shows how the proposed model relates to a jerboa. The COM location is approximated as
the midpoint between the eye and the tail-base. The leg angles are estimated by the orientation of the line
segments connecting the COM to the feet. (B) illustrates the proposed SLIP model with passive swing
leg motion. There are four continuous states (shown in blue) including the position of the torso (x, y) as
well as the leg angles (αl0 , αr0). Model parameters are highlighted in red, including total body mass, m,
uncompressed leg length, lo, gravity, g, and leg stiffness, k. Adding a torsional spring to a SLIP model
enables motion of passive swing leg. The rotational speeds of both swing legs are determined by ω and the
neutral leg angle are φl and φr respectfully. Note that the neutral leg swing angle for the right leg, φr, is
different from that of the left leg, demonstrating an uncoupled model. A simplified version of the model
showing the range of the swing leg motion is also shown in the top-right corner.

Frontiers 17



Ding et al. A template model explains jerboa gait transitions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

simulated 
simulated 
observed 
observed 

right leg neutral swing angle

left leg neutral swing angle

B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

simulated 
simulated 
observed 
observed 

single 
stance
phase       double 

stance phase

 single 
 stance
 phase

       flight
      phase

       flight
      phase

A

Figure 2. Trajectory optimization results, in solid lines, for (A) the COM position [x, y] and (B) the leg
angles [αl0 , αr0 ] of trial 1802 − j30 closely match the empirical data, in dashed lines. The fitting result
shows whole stride, starting from the apex transition, when t ∈ [0, T ] in the flight phase (white background).
The single stance phases are indicated by the lighter gray background and the double stance phases are
indicated by the darker gray background. Compared to the rotational motion of the left leg (dark blue),
the right leg rotations are translated anteriorly (light blue), which is reflected in our model by setting the
neutral leg swing angles to φl = 0.032 rad and φr = 0.137 rad, marked by horizontal dotted lines in (B).
The difference between φl and φr is the offset in uncoupled leg models.
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Figure 3. The the apex transitions, touchdowns, and liftoffs for one stride of four different gait patterns are
demonstrated by jerboas on the left, with inset gait diagrams showing footfall patterns, the corresponding
simulated gait patterns using our model are shown on the right. The right leg of jerboa is shown in white
and the left leg is in the same color as the corresponding gait branches shown in the inset gait diagram
and in Figure 4. The left leg of the model is shown in grey and the right leg is in white. (A) shows
hopping in which both feet strike and lift off simultaneously; (B) shows skipping with overlapping but
non-simultaneous foot strikes; (C) shows asymmetrical running with two different aerial phases; (D) shows
symmetrical running which contains two aerial phases with approximately the same duration. Blue curved
arrows indicate leg touchdown (ttdi ) and the gray curved arrows denote liftoff events (tloi ).
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Figure 4. The nominal model with neutral swing leg angles of zero, φl = φr = 0[rad], results in
symmetrical gait structures (all other parameters were fixed as described in Section 3.1). Each point on
the branches represents a distinct periodic motion, or a stationary point on (A) a 3D projection and (B) a
2D projection of the Poincaré section (ẏ = 0) with respect to the apex height yo, forward speed ẋo, and
left leg angle αl0 . Hopping to skipping, skipping to asymmetrical running, and walking to symmetrical
running transition are represented by circles, triangles, and diamonds respectively. For gait solutions with a
negative leg angle, the opposite leg has a phase advance.
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Figure 5. Coupled changes in the neutral leg swing angles affect the gait structure of the nominal model
(transparent lines) on the Poincaré section with respect to the apex height, yo, forward speed, ẋo, and left
leg angle, αl0 . (A) A positive neutral leg swing angle, φl = φr = 0.4 rad, preserves and translates gait
structure. (B) A negative neutral leg swing angle, φl = φr = −0.2 rad, alters gait structure. All other
parameters including leg stiffness, k, and swing leg oscillation frequency, ω, were fixed as described in
Section 3.1. In both plots, only gaits with left-leg-advanced are shown because symmetry is preserved. The
inset model diagrams show the range of leg rotational motions (dark grey sector for αr0 , light grey sector
for αl0) and the neutral leg angles.
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Figure 6. Symmetrical gait structures for φl = φr ∈ [−0.4,−0.2, 0,+0.2,+0.4] rad. Positive neutral leg
swing angles retain the running branch shape and transition speed. Negative neutral leg swing angles shrink
the running gait structure towards the mid-speed region, eliminating walking.
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Figure 7. Hopping (A), skipping (B), and asymmetrical running gait branches (C) with φl = φr ∈
[−0.4,−0.2, 0,+0.2,+0.4] rad. Thicker colored lines represent the nominal gait structure (Figure 4). Hop-
skip transitions are circles in (A) and (B), skip-running transitions are triangles in (C). Thin black lines
trace gait transitions across varying neutral leg swing angles. The higher speed hop - skip transition point
showed more variation in speed with changes in NLSA than the lower speed transition point.
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Figure 8. Uncoupling the neutral leg swing angles (φl ̸= φr) resulted in drastic changes in 3D gait
branch shape with respect to the nominal model (transparent curves from Figure 4). (A) An anterior
shift, φl = +0.06 rad, caused the asymmetrical running branch to subsume portions of the previously
symmetrical running branch (yellow). (B) A posterior shift, φl = −0.03 rad, caused the skipping branch to
subsume portions of the previously symmetrical hopping gait (red) to form a closed loop. The inset model
diagrams show the range of leg rotational motions (dark grey sector for αr0 , light grey sector for αl0) and
the neutral leg angles.
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Figure 11 
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Figure 9. The fixed neutral leg swing angle, φr, and the varying neutral leg swing angle, φl, interact to
affect asymmetrical gait structure in uncoupled models. In all plots, the coupled φl = φr ∈ [−0.2, 0,+0.2]
rad gait structures are shown as transparent curves. In all cases, skipping and asymmetrical running spanned
the gap between the hopping and symmetrical running branches. The gait transitions points (triangles)
spanned almost the entire speed range. Comparing A, B, and C, demonstrates that gait structure varies
greatly with neutral leg swing angle offset. The shadowed region in Figure 9.C is shown in Figure 11 as a
comparison between simulation solutions and experimental data.

Frontiers 25



Ding et al. A template model explains jerboa gait transitions

0 5 10 15 20 25 30 35 40

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Skip - AR (Coupled)

Skip - AR (Uncoupled)

Figure 10. The skip - asymmetrical run (AR) transitions for the coupled model, φr = φl ∈ [−0.5, 0.5],
vary slightly with speed and occur in two narrow ranges of speed. The uncoupled model, φr = [−0.2, 0, 0.2],
finds far more solutions for the same type of gait transition throughout a broader speed range.
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Figure 11. Transitions observed from the jerboa experiments (crosses to circles) in comparison to the
predicted gait structure in uncoupled models (colored branches from Figure 9.C) and the predicted transition
lines (solid triangles represent coupled transitions and hollow triangles represent uncoupled transitions,
the intersection of coupled and uncoupled transition is shown in half-solid and half-hollow ). The crosses
indicate the apex states before the transition, the hollowed circles are the apex state after transition, and
the arrows show the transition directions on the Poincaré section. T1 to T4 show skip - asymmetrical
run (AR) transitions, while T5 to T8 show transitions from hopping. The arrows pass through, or near,
hollow triangles, showing that the model with the uncoupled, rather than the coupled, NLSA mechanism
accurately predicts gait transitions that are observed in empirical data.
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