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Abstract
Purpose: Current methods for patient-specific voxel-level dosimetry in radionu-
clide therapy suffer from a trade-off between accuracy and computational effi-
ciency. Monte Carlo (MC) radiation transport algorithms are considered the
gold standard for voxel-level dosimetry but can be computationally expensive,
whereas faster dose voxel kernel (DVK) convolution can be suboptimal in the
presence of tissue heterogeneities. Furthermore, the accuracies of both these
methods are limited by the spatial resolution of the reconstructed emission
image.To overcome these limitations, this paper considers a single deep convo-
lutional neural network (CNN) with residual learning (named DblurDoseNet) that
learns to produce dose-rate maps while compensating for the limited resolution
of SPECT images.
Methods: We trained our CNN using MC-generated dose-rate maps that
directly corresponded to the true activity maps in virtual patient phantoms.
Residual learning was applied such that our CNN learned only the difference
between the true dose-rate map and DVK dose-rate map with density scaling.
Our CNN consists of a 3D depth feature extractor followed by a 2D U-Net,where
the input was 11 slices (3.3 cm) of a given Lu-177 SPECT/CT image and den-
sity map, and the output was the dose-rate map corresponding to the center
slice. The CNN was trained with nine virtual patient phantoms and tested on
five different phantoms plus 42 SPECT/CT scans of patients who underwent
Lu-177 DOTATATE therapy.
Results: When testing on virtual patient phantoms, the lesion/organ mean
dose-rate error and the normalized root mean square error (NRMSE) rela-
tive to the ground truth of the CNN method was consistently lower than DVK
and MC, when applied to SPECT images. Compared to DVK/MC, the average
improvement for the CNN in mean dose-rate error was 55%/53% and 66%/56%;
and in NRMSE was 18%/17% and 10%/11% for lesion and kidney regions,
respectively. Line profiles and dose–volume histograms demonstrated compen-
sation for SPECT resolution effects in the CNN-generated dose-rate maps.The
ensemble noise standard deviation, determined from multiple Poisson realiza-
tions, was improved by 21%/27% compared to DVK/MC. In patients, potential
improvements from CNN dose-rate maps compared to DVK/MC were illustrated
qualitatively, due to the absence of ground truth. The trained residual CNN took
about 30 s on a single GPU (Tesla V100) to generate a 512 × 512 × 130 dose-
rate map for a patient.
Conclusion: The proposed residual CNN, trained using phantoms generated
from patient images, has potential for real-time patient-specific dosimetry in
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clinical treatment planning due to its demonstrated improvement in accuracy,
resolution, noise, and speed over the DVK/MC approaches.
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1 INTRODUCTION

Accurate and computationally efficient methods for
patient-specific absorbed dose estimation are essen-
tial for clinical implementation of dosimetry-guided treat-
ment planning in radionuclide therapy. For example,
current Lu-177 DOTATATE therapy for neuroendocrine
tumors uses a fixed activity basis (four cycles of 7.4
GBq), whereas SPECT/CT imaging-based dosimetry
after one cycle can be used to individualize the next
administration to potentially enhance tumor response
while keeping toxicity to critical organs like kidney at
an acceptable level.1 Traditionally, the mean absorbed
doses in volumes of interest (VOIs) are the reported
quantity. However, voxel-level calculation enables con-
sideration of multiple alternative dose metrics, such
as statistics from dose-rate volume histogram (DRVH)
analyses that are potentially more relevant to treatment
planning. Explicit Monte Carlo (MC) radiation trans-
port using the patient’s emission (PET or SPECT) and
anatomical images (CT) as input is broadly accepted as
the gold standard for voxel-level patient-specific dosime-
try. However, it is computationally expensive to gener-
ate estimates with low statistical uncertainty. In con-
trast, faster and simpler dose voxel kernel (DVK) con-
volution methods2 can be inaccurate in the presence of
heterogeneous tissues, for example, at the liver–lung or
bone–marrow interfaces. Moreover, even though MC is
theoretically accurate, the dose accuracies of both MC
and DVK methods are degraded by reconstruction arti-
facts and the limited spatial resolution of SPECT and
PET images.

Over the past few years, deep learning methods have
been broadly used in many fields of medical imaging.3–7

For example, one of the most popular deep neural net-
works,the U-Net,8 achieved state-of -the-art accuracy on
the 2012 International Symposium on Biomedical Imag-
ing challenge for segmentation of neuronal structures in
electron microscopic stacks.Recently, there is increased
interest in studies that apply deep neural networks in
nuclear medicine applications.9–13 However,deep learn-
ing applications in radionuclide therapy dosimetry are
limited.14–17 Akhavanallaf et al.14 employed a modi-
fied ResNet18 that represented voxel S-values kernels2

to predict the distribution of the deposited energy in
whole-body organ-level dosimetry and demonstrated
comparable performance to the direct MC approach.
Lee et al.15 implemented a 3D U-Net8 that used PET
and CT-based density image patches to predict 3D

voxel-level dose-rate maps. Götz et al.16 proposed a
hybrid method based on a combination of a modified
U-Net and an empirical mode decomposition of den-
sity maps to enhance the accuracy/reliability of radiation
dose estimation. Götz et al.17 also trained a neural net-
work to predict dose voxel kernels (DVK) for dosimetry in
Lu-177 targeted radionuclide therapies. Despite promis-
ing results, a limitation of the training approaches in
these prior studies14–17 is that they used MC-generated
dose-rate maps derived from each patient’s measured
SPECT or PET images as the training label, which are
degraded by the camera spatial resolution and recon-
struction artifacts. Moreover, the concept of residual
learning can be adopted in a convolutional neural net-
work (CNN) dosimetry model by exploiting a fast DVK
convolution dose-rate map as an initial estimate. Resid-
ual learning for image denoising was first proposed to
improve the effectiveness and efficiency of a denoising
CNN19 and was further applied to low-dose PET and CT
reconstruction.20,21

The aim of this study was to develop a deep learning-
based absorbed dose-rate estimation method that can
overcome the accuracy-efficiency trade-off associated
with current voxel dosimetry methods and attempt to
learn to reduce the degrading effects of spatial reso-
lution and reconstruction artifacts. Specifically, we used
dose-rate estimates directly corresponding to phan-
tom (virtual patient) activity maps as the training label,
instead of the patient SPECT-derived dose-rate images
(Figure 1). Furthermore, unlike prior studies where a
CNN was trained to directly estimate the dose-rate
map or S-value kernels, we first used the approximate
physics-based fast Fourier transform (FFT) DVK con-
volution method (with density scaling) to produce ini-
tial estimates, and then trained the CNN to learn the
subtle residual differences between the initial estimate
and the true dose-rate maps. We trained and tested the
proposed CNN for SPECT/CT imaging-based dosimetry
following Lu-177 DOTATATE therapy of neuroendocrine
tumors (NETs).

2 MATERIALS AND METHODS

2.1 Virtual patient phantom generation
for training and testing

Figure 2 gives an overview of our data genera-
tion and training process. To define the true activity
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F IGURE 1 Illustration of blurring of dose-rate maps due to the limited resolution of the SPECT-based input activity map and the potential
for a learning-based method to outperform MC, the current gold-standard. The CNN* used in this illustration was trained and tested on different
XCAT22 phantoms

F IGURE 2 Overview of phantom data generation for training/testing and the network training process

maps of virtual patient phantoms, we chose to use
PET instead of SPECT-based activity maps because
PET offers substantially higher spatial resolution than
SPECT as evident in the top branch of Figure 2.

These images were readily available because, prior
to Lu-177 DOTATATE, patients underwent diagnostic
Ga-68 DOTATATE PET/CT imaging (Siemens Biograph
mCT) to determine eligibility for therapy. The Ga-68
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DOTATATE distribution in patients is expected to be sim-
ilar to the Lu-177 DOTATATE distribution and hence
our virtual patient phantoms can provide a reason-
able approximation to the activity distribution of Lu-177
patients. The PET images (of size 200 × 200 × 577,
voxel size is 4.073 × 4.073 × 2mm3) were obtained from
our Siemens mCT (resolution is 5–6 mm FWHM23)
and reconstructed using the standard clinic protocol:
3D ordered subset expectation maximization (OSEM)
with three iterations, 21 subsets that included resolu-
tion recovery, time-of -flight, and a 5 mm (FWHM) Gaus-
sian post-reconstruction filter. We selected 14 such PET
images from our clinic database to generate anthro-
pomorphic phantoms for training and testing, with Uni-
versity of Michigan Institutional Review Board (IRB)
approval for retrospective analysis. The selected cases
covered a diverse range with regard to sex (nine males
and five females), age (35–88 years), weight (49–
100 kg), and lesions of different sizes and locations
(within and outside the liver). The PET/CT images were
first extracted into 195 slices with 0.2 cm slice width
that covered the SPECT field-of -view (39 cm) with the
liver and kidney centered, which is the typical region
imaged following Lu-177 DOTATATE. Meanwhile, the
corresponding density maps were generated using an
experimentally derived CT-to-density calibration curve.

Next, Lu-177 SPECT projections corresponding to
each phantom’s activity/density maps were generated
using the SIMIND MC code24 (Figure 2, top branch)
simulating approximately 2 billion histories per projec-
tion. The SIMIND model parameters were based on Lu-
177 patient imaging in our clinic (Siemens Intevo with
medium energy collimators, a 5/8′′ crystal, a 20% pho-
topeak window at 208 keV, and two adjacent 10% scat-
ter windows). Poisson noise was simulated after the
128 projection views were scaled to a count-level in
the range of 3–20 million total counts, corresponding to
the range in post-therapy imaging. SPECT reconstruc-
tion used an in-house 3D OSEM algorithm with CT-
based attenuation correction, triple energy window scat-
ter correction and collimator-detector response mod-
eling (four subsets and 16 iterations, 128 × 128 × 81
matrix with voxel size 4.8 × 4.8 × 4.8 mm3, no Gaus-
sian smoothing). All images were finally registered
into CT image space (512 × 512 × 130 with voxel size
0.98 × 0.98 × 3 mm3).

Out of 14 virtual patient phantoms, we randomly
selected nine for training and five for testing. Out of
the training dataset, to assess under/over-fitting,we ran-
domly selected 20% of the total slices to serve as a val-
idation dataset.

2.2 Patient data

In addition to the above virtual patients, our testing data
included a total of 42 scans from 12 patients imaged at

up to 4 time points during the first week following cycle 1
of standard Lu-177 DOTATATE (7.4 GBq). The images
were acquired as part of an ongoing University of Michi-
gan IRB approved research study, where all subjects
signed an informed consent form. SPECT acquisition
time was 25 min and all other SPECT imaging recon-
struction parameters were as described above for the
phantom simulation.The CT was performed in low-dose
mode (120 kVp; 15–80 mAs) with free breathing.

2.3 MC dosimetry and dose voxel
kernel convolution

2.3.1 Monte Carlo

The MC code that we used,called dose planning method
(DPM), was originally developed and validated for fast
dose-rate estimation in external beam radiotherapy.25

Previously, we adapted and benchmarked DPM for
internal radionuclide therapy applications.26 Because
DPM was optimized specifically for voxel-level elec-
tron/photon dose computations with full radiation trans-
port, it is faster than using general-purpose MC codes
for voxel-level dose estimation. We used DPM to gen-
erate the ground truth training labels (Figure 2) by sim-
ulating ∼1 billion histories to generate dose-rate maps
with reasonably low statistical uncertainty. For example,
with 1 billion histories for the phantom results shown
in Figures 4 and 5, the average statistical uncertainty
across the kidney and lesions was less than 0.1% for
both the ground truth MC run and the SPECT+MC run
(obtained from the uncertainty images available from
DPM).

2.3.2 DVK convolution with density
scaling

To provide DVK dose-rate maps for residual learning,
Lu-177 soft tissue (1.04 g∕cm3) voxel kernels were gen-
erated using DPM. The beta particle kernel size was
9 × 9 × 9 and the photon kernel size was 99 × 99 × 99
(both with voxel size 0.98 × 0.98 × 3mm3). We con-
volved the SPECT image with the DVKs using FFT-
convolution. Since using homogeneous soft tissue ker-
nels neglects tissue inhomogeneities, we applied den-
sity scaling that has been shown to be a reasonable cor-
rection in past reports.27 Here, after convolution, each
voxel was scaled by 1.04 (g∕cm3) and divided by the
local voxel density value (g∕cm3) derived from the CT
scan. Because our goal was to generate a reasonably
accurate and quick initial estimate for the residual learn-
ing process, we did not pursue other more sophisticated
approaches28,29 that account for tissue heterogeneities.
To address the very high dose-rate estimate in extra
low-density regions, for example, air gaps, we set the
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F IGURE 3 The architecture of our DblurDoseNet

dose-rate in regions where the density is less than 0.1
g∕cm3 to 0.

2.4 Network: DblurDoseNet

Our network design considers the decay properties of
Lu-177 and the physics of beta/photon interaction in tis-
sue. The mean energy of the emitted electrons in the
beta decay of Lu-177 is 134 keV and the maximum
energy is 497 keV, and the corresponding continuous
slowing down approximation ranges (in water) are 0.3
and 1.8 mm,respectively.30 The gamma-rays associated
with Lu-177 are low in intensity (113 (6.2%) and 208 keV
(10.4%)),and hence, the absorbed dose is dominated by
the beta component.

The input to the DVK method was an entire 3D SPECT
image volume and its output was a 3D dose-rate map.
In principle, a CNN could be designed similarly. How-
ever, for Lu-177 considering the short beta particle range
in tissue and the low photon contribution, we designed
a more memory efficient CNN that used a pack of 11
adjacent slices of the SPECT and density images at a
time to produce one output dose-rate map correspond-
ing to the middle slice of that pack.The CNN was applied
with an 11-slice sliding window to all axial slices using
padding that replicated the first and last slices at the top
and bottom boundaries, respectively. Thus, the input to
CNN was two arrays of size 512 × 512 × 11 (with voxel
size 0.98 × 0.98 × 3 mm3) and the output was an array
of size 512 × 512 that corresponded to the dosimetry
of the middle slice in the input arrays. During training
and testing, these 512 × 512 × 11 packs could be pro-
cessed sequentially, but GPU devices could accelerate
the processing by parallel computation.

As shown in Figure 3, we first concatenated the input
activity/density maps along the channel dimension, and

then applied three 3D convolutional layers (with ker-
nel size 7 × 7 × 5, 7 × 7× 3, 7 × 7× 3, respectively) to
extract depth features. Next, we implemented a 2D U-
Net that had four down-sample and up-sample layers,
where the first convolutional layer in the 2D U-Net had
16 filters. After each down-sample layer, the number of
filters at the next convolutional layer was increased by
a factor of two until it reached 128. We added the DVK
dose-rate map to the 2D U-Net output, as in the com-
mon residual learning approach.Finally,we obtained the
CNN dose-rate map estimate after setting the dose-rate
value in very low-density voxels (𝜌 < 0.1g∕cm3) to 0.
As discussed in Section 3, the residual CNN produced
consistently better dose-rate estimation accuracy than
a CNN without residual learning.

The CNN was trained by minimizing the mean square
error between the ground-truth and CNN dose-rate
maps using a batch size of 32. We used the Adam
optimizer31 with a dynamic learning rate (an initial value
0.001 with ReduceOnPlateau management strategy)
and trained our CNN for 200 epochs on two Nvidia Tesla
V100 GPUs.The training/validation loss converged visu-
ally to 288/410 after 4 h of training (Figure S1). To
cover different input count levels, we normalized each
SPECT activity map so that all its voxels summed to
one, and then inversely scaled the dose-rate map esti-
mate accordingly. To potentially improve convergence
during training, we also scaled the normalized SPECT
and dose-rate maps with a constant value so that they
have a similar range as the density maps.

2.5 Evaluation in test phantoms

In test phantoms, we used MC with the phantom activity
and density maps to calculate the ground truth dose-
rate maps for performance evaluation. The estimated
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dose-rate maps generated from SPECT/CT with the
DVK (with density scaling), MC (with 1 billion histories),
and CNN methods were evaluated qualitatively by visual
comparison of images, line profiles, and DRVHs with
those corresponding to the ground truth. For quantita-
tive evaluations, we used the following metrics.

2.5.1 Dose-rate error

For each VOI, the dose-rate error is the absolute error
across the whole VOI calculated relative to the ground
truth. This error was calculated for the mean absorbed
dose and DRVH statistics (DR10, DR30, DR70, DR90),
corresponding to the minimum dose-rate to 10%, 30%,
70%, and 90% of the VOI, respectively.

2.5.2 Normalized root mean square error

The normalized root mean square error (NRMSE) is
defined as

NRMSE =

√
1

np

∑np

j=1

(
x̂j − xj

)2

√
1

np

∑np

j=1 x2
j

,

where np denotes the total number of voxels in the
VOI. Subscript j, for example, xj , denotes the jth voxel
in the image. The true and estimated dose-rate image
are denoted by x and x̂, respectively.

2.5.3 Ensemble noise

The ensemble noise in spherical VOIs defined in non-
tumoral liver or spleen was calculated across 3 (M = 3)
Poisson noise realizations as:

Noise =

√
1

np

∑
j∈VOI

(
1

M−1

∑M
m=1

(
x̂m [j] − 𝜇j

)2)

1

np

∑
j∈VOI 𝜇j

× 100%,

where 𝜇j =
1

M

∑M
m = 1 x̂m[j],np is the total number of vox-

els in the VOI, and x̂m[j] denotes the jth voxel in the esti-
mated dose-rate image of the mth Poisson noise real-
ization.

The lesion VOIs for these quantitative evaluations
were defined manually on CT of SPECT/CT guided
by baseline diagnostic CT or MRI by a radiologist
with abdomen imaging expertise. Organ contours were
defined using semiautomatic CT segmentation tools.

The healthy liver was defined as liver minus lesions in
the liver.

3 RESULTS

3.1 Virtual patient phantom test results

3.1.1 Qualitative assessment

Generally, there was a better visual agreement between
CNN dose-rate maps and the ground truth than between
DVK/MC dose-rate maps and the ground truth. The
example images and line profiles in Figures 4 and 5 and
the DRVHs in Figure 6 provide qualitative evidence of
the superior performance of the CNN across multiple
regions (kidney, abdominal lesion, lung lesion).

3.1.2 Quantitative assessment

Table S1 reports the mean dose-rate values for
organs/lesions across five test phantoms. Figure 7 com-
pares the mean dose-rate error and NRMSE in lesions
and organs across all test phantoms. Similar to the
results of the qualitative assessment (Figures 4–6), the
CNN also consistently showed superior results com-
pared to DVK and MC in quantitative evaluations (Fig-
ure 7).For instance,compared to DVK and MC, the CNN
estimates showed an average improvement (in mean
dose-rate error) of 52%/20%, 55%/53%, 66%/50%,
66%/62%, 48%/49%, and 58%/39% in healthy liver,
lesion, left kidney, right kidney, spleen, and lumbar ver-
tebra, respectively. The NRMSE was also substantially
lower for the CNN than for DVK and MC across all
VOIs (Figure 7). The average improvement (in NRMSE)
demonstrated by the CNN compared to DVK/MC was
10%/9%, 18%/17%, 11%/12%, 9%/10%, 26%/27%, and
18%/10% in healthy liver, lesion, left kidney, right kid-
ney, spleen, and lumbar vertebra, respectively. In addi-
tion to the improvement in the average values, the maxi-
mum errors (denoted by the error bars in Figure 7) were
also consistently lower with CNN compared to DVK and
MC. In Figure 7, all three methods showed the high-
est errors for lesion and lumbar vertebra regions. This
was attributed to the smaller size of these VOIs com-
pared to other organs and the corresponding increase
in partial volume effects. In the case of lumbar verte-
bra, relevant to bone marrow dosimetry, the very low
uptake in these regions also contributed to higher dose-
rate errors. For lesions and lumbar vertebra that had
a relatively large sample size (15 and 18), a paired t-
test demonstrated that the differences of mean dose-
rate error and NRMSE between CNN and MC (DVK),as
shown in Figure 7,were statistically significant (Table S2
shows p-values). Moreover, DRVHs statistics (DR10,
DR30, DR70, DR90) as demonstrated in Figures 8
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F IGURE 4 One slice of the test virtual patient phantom #2. The top two branches show the true activity map defined based on Ga-68 PET,
SPECT, and CT images, the ground truth dose-rate map, and the dose-rate images from the different methods (DVK, MC, and CNN). The bottom
branch shows line profiles across the kidney and the residual map (the difference between CNN and DVK dose-rate map). The dose-rate units
were normalized to 1 MBq in the field-of -view in all figures

and 9 also show the superiority of the CNN compared
to DVK.

3.1.3 Noise evaluation

Table 1 shows a consistent reduction of ensemble noise
in background VOIs with an average of 21% and 27%
improvement demonstrated by the CNN compared to
DVK and MC (running 1 billion histories), where MC
had the highest level of noise due to its statistical
nature.

3.2 Patient results

In patients where there was no known ground truth,
results were instead compared visually. Figures 8
and 9 show examples of dose-rate maps correspond-
ing to high-count (day 1 post-therapy) and low-count
(day 7 post-therapy) imaging conditions post-Lu-177
DOTATATE. Although concrete conclusions could not
be drawn, as there was no known ground truth; visual
inspections implied potential reduction of SPECT
spatial resolution effects on dose-rate accuracy by
our DblurDoseNet. For instance, with the CNN, the

enlarged kidney map and line profiles of Figure 8 show
a larger decrease in dose-rate in the medulla and renal
pelvis areas, which could be due to the expected lower
physiological Lu-177 uptake in this part of the kidney
compared to the cortex region. In addition, in Figure 9,
the lesion with a necrotic center demonstrated a larger
drop in dose-rate at the center with the CNN compared
to DVK or MC, which could be due to the expected
lower uptake associated with necrosis. Moreover, to
demonstrate the generalizability of our CNN on patient
data, we tested our CNN using 42 SPECT/CT scans
of 12 patients and then compared with DVK and MC
dose-rate maps in terms of the mean dose-rate and
DRVH statistics (DR10,DR30,DR70,and DR90) across
lesions and kidneys. As demonstrated in Table 2, there
was a strong agreement between CNN and MC for
mean dose-rate in kidneys; and for mean dose-rate in
lesions, CNN showed higher values than MC, which
could be partially due to the compensation of SPECT
resolution effects. For DRVH statistics shown in Fig-
ure 6, the CNN and MC results also agreed well in
kidney; but for lesions, the CNN measurement showed
a lower dose-rate value in DR70 (DR90) and a higher
dose-rate value in DR30 (DR10), compared to MC and
DVK. The DRVHs in the lesions might be improved
because the blurring effects caused by the limited
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F IGURE 5 One slice of the test virtual patient phantom #5. The top two branches show the true activity map defined based on Ga-68 PET,
SPECT, and CT images, the ground truth dose-rate map, and the dose-rate images from the different methods (DVK, MC, and CNN). The bottom
branch shows line profiles across the kidney and the residual map (the difference between the CNN and DVK dose-rate maps)

SPECT camera resolution would lead to a higher DR70
(DR90) and a lower DR30 (DR10), but concrete conclu-
sions could not be made due to the absence of ground
truth.

3.3 Comparing performance with a
nonresidual network and a 2D network

To demonstrate the effectiveness of residual learning
and the 3D convolutional feature extractor that we imple-
mented, we also compared our proposed CNN with a
CNN that had the same architecture but without resid-
ual learning (not adding the DVK dose-rate map to the
output of 2D U-Net), and to a CNN without 3D fea-
ture extractor (a purely 2D U-Net where we treated
the depth dimension of input as channels). The non-
residual CNN and the 2D CNN were trained using the
same hyperparameters and the same training data as
for the proposed CNN. All the testing used the same
test phantoms demonstrated in the previous section.
As shown in Table 3, quantitative comparisons across
all test phantoms showed superior results of our pro-
posed CNN (DblurDoseNet) for almost all VOIs except
for some cases where all the networks show com-
parable results. Based on these promising results, we
believed the idea of residual learning was effective and

it was beneficial to include a few 3D convolutional lay-
ers to extract 3D information rather than using only 2D
convolutions.

3.4 Time cost

We compared the computation times of the different
methods for generating a dose-rate map corresponding
to the typical 512 × 512 × 130 patient SPECT/CT image
size on CPU (Intel Core i9 @2.3 GHz) or GPU (Tesla
V100). DVK with density scaling took ∼20 s on the CPU
and ∼10 s on the GPU. DPM MC code took ∼60 min
simulating 1 billion histories (for both ground truth and
test phantoms/patients) on the CPU while running DPM
on a GPU is not an option at this time (we are unaware
of any MC code for internal therapy running on a GPU).
The CNN took ∼20 min on the CPU and ∼20 s using the
GPU.After considering the DVK precomputation time for
the residual learning network, the total GPU time cost for
the CNN with residual learning is ∼20 + 10 s.

4 DISCUSSION

Reliable voxel-level dosimetry requires reliable dose-
rate images at multiple timepoints as well as dependable
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F IGURE 6 Tumor and kidney differential and cumulative dose-rate volume histograms corresponding to DVK, MC, CNN and the
ground-truth dose-rate maps of virtual patient phantoms. The sizes of tumors 1 and 2 are 4 and 65 ml, respectively

co-registration and fitting of the dose-rate versus time
data estimated at the voxel level. Performing reliable
voxel-level co-registration and fitting to generate dose
maps can be challenging, but the feasibility has been
demonstrated.32,33 In this work, we focused on gen-
erating reliable dose-rate maps. With evaluation both
on virtual patient phantoms that covered clinically rel-
evant conditions and patients who underwent Lu-177
DOTATATE therapy in our clinic, we demonstrated that
our CNN using residual learning framework could pro-
vide fast and accurate dose-rate estimation. Despite
using only a moderate amount of training data, Dblur-

DoseNet provided consistently superior performance
over conventional voxel dosimetry in terms of resolu-
tion, accuracy, and noise across multiple regions includ-
ing kidneys, lumbar vertebra, and lesions in soft tissue
and lung. Importantly, for clinical implementation, the
CNN voxel dose-rate map for a 512 × 512 × 130 patient
image could be generated in ∼30 s,which was a fraction
of the time associated with running MC, the current gold
standard. Although generating the ground-truth labels
for training by MC was computationally expensive, this
effort was needed only once at training time, for a given
SPECT imaging system.
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F IGURE 7 Mean dose-rate error, NRMSE, and error in DRVH statistics (DR10, DR30, DR70, DR90) comparison of DVK, MC, and CNN
relative to ground-truth dose-rate map across all test phantoms. Median (range) VOI volumes are as follows: healthy liver (liver minus lesions):
1607 ml (1164–2262 ml); lesion: 16 ml (4–181 ml); left kidney: 177 ml (98–211 ml); right kidney: 156 ml (76–249 ml); spleen: 191 ml
(131–467 ml); lumbar vertebra L2 to L5: 54 ml (34–68 ml)
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F IGURE 8 One slice across kidney of the input images (SPECT, CT) and output DVK, MC, and CNN dose-rate maps and line profiles for a
patient imaged after Lu-177 DOTATATE (at day 1 post-therapy). The residual map is the difference between CNN and DVK dose-rate map

The main limitation to accurate voxel-level patient-
specific dose-rate estimation with nonlearning-based
methods is the poor spatial resolution associated with
the input SPECT (or PET) images. This issue was evi-
dent in our results where the theoretically accurate MC-
based calculation only slightly outperformed DVK with
density scaling. In contrast, by using the true activity
map-based dose-rate estimates for training, our CNN
has the ability to “learn” the physics of dose deposition
and to compensate for the SPECT resolution effects that
both lead to blurring of the conventional (nonlearning-
based) dose-rate maps, as demonstrated in the phan-
tom results (Figures 4–7, Table 1). In patient studies,
potential mitigation of SPECT resolution effects was
demonstrated empirically. In Figure 8, the CNN-based
estimates show sharper line profiles and larger drops
in dose-rate over the medulla area of the kidney, analo-
gous to the illustration of Figure 1. In Figure 9, the larger
drop of dose-rate in the necrotic center of a tumor may
reflect what is expected based on physiology. Although
test results were promising over 42 scans originating
from 12 patients, further testing is planned as more

patient images become available.We did not investigate
training with more virtual patients, because simulating
Lu-177 SPECT projections by full MC simulation was
computationally expensive. Furthermore, we found that
our CNN, trained by nine virtual patient phantoms, was
able to generate promising dose-rate estimates across
a diverse range of test cases. We expect that applying
self/weakly supervised training may address the com-
putational inefficiency of simulating Lu-177 SPECT pro-
jections in the future. In addition, due to the lack of
ground truth, we were unable to make concrete conclu-
sions about the performance of our CNN on test patient
data. But the uncertainty of our CNN can be quanti-
fied by generating confidence maps34–36 using Bayesian
networks,37 an ensemble of multiple networks,38 or an
extension of the probabilistic U-Net,39 which can be one
direction to investigate in the future.

The mean dose-rate errors shown in Figure 7, espe-
cially for lesions, were generally lower than one would
expect based on reported activity recovery in quantita-
tive Lu-177 SPECT phantom studies. For example, for
72 OSEM updates, activity recovery of only 80% was
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F IGURE 9 One slice across lesion of the input images (SPECT, CT) and output DVK, MC, and CNN dose-rate maps and line profiles for a
patient imaged after Lu-177 DOTATATE (at day 7 post-therapy). The residual map is the difference between CNN and DVK dose-rate map

TABLE 1 Ensemble noise from three realizations for DVK, MC,
and CNN across all test phantoms. The number of voxels ranged
from 2527 to 23,411

Ensemble noise Background region DVK MC CNN

Phantom #1 Liver and spleen 4.6% 6.1% 3.4%

Phantom #2 Liver 12.6% 13.3% 9.2%

Phantom #3 Liver 14.0% 14.6% 12.9%

Phantom #4 Liver 20.3% 19.6% 14.8%

Phantom #5 Spleen 7.1% 7.6% 5.8%

reported for a 26.5 ml volume “hot” sphere in a “warm”
background region.40 The results of the current study
showed lower errors because, unlike in a physical phan-
tom, the assigned “true” activity values at the boundary
of the structures in our PET-based virtual patients did
not drop off sharply,and instead,were blurred out.More-
over, in Figure 7, all three methods showed the largest
mean dose-rate error for lesions and lumbar vertebra,
as expected due to the relatively smaller sizes of these
structures compared to other organs, and hence partial
volume effects associated with SPECT resolution were
higher. The large error for the lumbar region with DVK
(∼25%) was likely to be due to the heterogeneous tissue
within this region, which includes cortical bone, trabec-
ula bone, and yellow and red marrow. Regarding DVK,

the simple density scaling that was performed in our
study was potentially inadequate for this region.Further-
more, the Lu-177 uptake in a lumbar region was very
low, so the cross-dose contribution to dose-rate there,
including the photon cross-dose, could be significant.
Our 99 × 99 × 99 photon kernel may have been insuf-
ficient to capture the full photon cross dose contribution
to the lumbar vertebra. Our study did not include stan-
dard partial volume correction using volume-dependent
recovery coefficients (RCs) because such methods pro-
vide only a mean dose, not a voxel-level correction. Fur-
thermore, the limitations of standard RC methods due
to dependence on object shape, activity distribution and
target-to-background ratios are well known. Voxel-level
partial volume correction is much more challenging41

and their applications in SPECT are not well established.
Our results demonstrated that training using true dose-
rate maps could reduce the need for such corrections to
compensate for resolution effects.

To define our virtual patient activity maps, we chose
to use Ga-68 DOTATATE PET/CT to exploit the avail-
ability of these images that had finer resolution than
SPECT and showed similar uptake patterns as Lu-177
DOTATATE. Despite the standard practice of using Ga-
68 PET or Lu-177 SPECT as a theranostic pair, some
differences between the two distributions were to be
expected, but we did not expect this to impact our CNN
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TABLE 2 Dose-rate values (mean dose-rate and DRVH statistics) for DVK, MC, and CNN methods averaged across all 42 scans from 12
patients

Dose-rate* (nGy/MBq-sec)
DVK MC CNN

Lesion Mean dose-rate 13.7 (0.2–87.9) 13.9 (0.3–88.9) 14.4 (0.3–88.8)

DR10 25.1 (0.4–177) 25.4 (0.4–179) 27.8 (0.5–188)

DR30 15.8 (0.3–122) 16.1 (0.3–123) 16.9 (0.3–127)

DR70 8.2 (0.2–48.1) 8.3 (0.3–48.5) 8.1 (0.3–48.8)

DR90 5.4 (0.1–17.1) 5.6 (0.1–19.3) 5.0 (0.1–22.9)

Left kidney Mean dose-rate 3.7 (0.7–8.6) 3.8 (0.7–8.7) 3.8 (0.7–8.3)

DR10 6.0 (1.4–12.7) 6.1 (1.4–12.8) 5.8 (1.4–12.3)

DR30 4.6 (1.0–10.7) 4.7 (1.0–11.0) 4.6 (1.0–10.7)

DR70 2.7 (0.2–7.0) 2.7 (0.2–7.0) 2.8 (0.2–7.0)

DR90 1.6 (0.1–3.8) 1.7 (0.1–3.8) 1.6 (0.1–3.6)

Right kidney Mean dose-rate 4.2 (0.7–9.1) 4.3 (0.8–9.2) 4.2 (0.8–9.1)

DR10 7.1 (1.5–17.2) 7.2 (1.6–17.2) 7.0 (1.8–15.2)

DR30 5.2 (1.0–11.8) 5.3 (1.1–11.8) 5.3 (1.1–12.2)

DR70 2.8 (0.2–7.3) 2.9 (0.2–7.3) 2.8 (0.2–7.7)

DR90 1.6 (0.1–4.4) 1.7 (0.1–4.5) 1.5 (0.1–4.0)

Note: Minimum and maximum values are shown in parenthesis. The medians (ranges) for the VOI volumes are as follows: Lesion: 15 ml (2.3–582 ml); left kidney:
192 ml (105–275 ml); right kidney: 180 ml (122–259 ml).
*Reported dose-rates are normalized to 1 MBq in field-of -view.

TABLE 3 Mean (maximum) dose-rate error and NRMSE comparison between CNN with and without residual learning and with 2D and 3D
networks evaluated across VOIs in all test phantoms

Mean dose-rate error NRMSE
3D w/ res
(DblurDoseNet) 3D w/o res 2D w/ res

3D w/ res
(DblurDoseNet) 3D w/o res 2D w/ res

Healthy liver 1.4% (2.3%) 5.5% (7.0%) 1.2% (3.1%) 19.6% (33.2%) 21.6% (35.1%) 23.2% (33.3%)

Lesion 5.3% (13.0%) 6.9% (12.5%) 6.0% (13.9%) 21.2% (32.5%) 21.4% (31.5%) 21.8% (38.0%)

Liver 1.9% (3.5%) 5.7% (7.6%) 1.9% (4.8%) 20.6% (26.3%) 21.6% (27.6%) 22.8% (26.6%)

Left kidney 0.9% (2.1%) 5.2% (6.5%) 1.8% (3.8%) 19.2% (22.9%) 20.1% (22.0%) 19.0% (20.8%)

Right kidney 1.8% (5.1%) 5.8% (12.6%) 2.6% (7.5%) 19.6% (21.5%) 20.5% (24.3%) 20.0% (23.6%)

Spleen 2.5% (6.2%) 6.3% (9.5%) 2.2% (6.4%) 13.1% (17.7%) 14.4% (19.9%) 13.2% (18.2%)

Lumbar vertebra 11.1% (27.4%) 10.5% (27.2%) 12.1% (30.6%) 33.0% (51.4%) 32.9% (49.1%) 32.7% (50.2%)

performance because the PET images were used only
to define the virtual patient phantoms and not in the
training process itself, as proposed in another study.42

Ideally,however, images of higher resolution than clinical
PET should be considered as the true representation of
the activity map of patients when generating the virtual
patient training set,but usually they are not readily avail-
able.To circumvent this issue,we also investigated using
phantoms with piece-wise uniform uptake in CT-defined
organs/lesions for training (such as XCAT22 in Figure 1),
but we found that such training led to unnaturally uniform
dose-rate maps when tested on patient images.We also
fed our CNN with an all-zero activity map, as a sanity
check to our proposed framework as well as implemen-
tation. The output dose-rate map, as expected, was all
zeros. This illustrates that if there is no apparent sig-

nal in the reconstructed SPECT, then there will not be
any unexpected nonzero values in the dose-rate map.
A possible alternative to our PET-based virtual patient
activity maps is to assign distributions based on high-
resolution animal models, for instance, ex-vivo autora-
diography showing uptake distribution of DOTATATE in
kidney.43

Our results also demonstrate the advantage of resid-
ual learning framework exploiting the fast DVK approach
as an initial estimate, which was not utilized in the prior
studies.14–17 We also conjectured that incorporating
residual learning could not only improve performance
on the test data,but also accelerate the training process.
As shown in Figure S1, after 200 epochs of training, the
training/validation loss of residual CNN went down to
288/410 at the last 50 epochs, compared to 902/1250
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without residual learning, which means fewer epochs
are needed to train the residual CNN. Other than using
a fast DVK approach for residual learning, an alterna-
tive was to generate a quick MC (low number of his-
tories) estimate, which was not explored here. Another
advantage of our network is that we first implemented
a couple of depth feature extractor layers that shrink
the 3D input into 2D at the beginning of our network.
Compared to fully 3D approaches, this approach leads
to a network having fewer parameters (because 2D ker-
nels have fewer parameters than 3D kernels), so it is
less likely to overfit the training data, avoiding a com-
mon problem in deep learning applications for medical
imaging,where only moderate amount of training data is
available.Another option that we did not investigate is to
use 2.5D CNN architectures.44 A potential drawback of
our proposed CNN is possible discontinuity of pixel val-
ues in coronal slices; however, we did not observe such
discontinuity as evident in Figure S2, presumably due to
the 11-slice sliding window.

We expect that training a single CNN, as we did in the
current study,is simpler than training two separate CNNs
to learn the dosimetry and SPECT resolution effects.
Typically, there will be three stages needed to train two
separate CNNs;stage 1: training CNN-A for SPECT res-
olution; stage 2: training CNN-B for dosimetry; stage 3:
jointly fine-tuning CNN-A and CNN-B. Compared to our
proposed end-to-end network (DblurDoseNet), which
only involves one training stage,such 3-stage of training
will be more complex and potentially inefficient.However,
only through comprehensive comparisons can one draw
definite conclusions between these two approaches,
which we expect to undertake in the future.Although our
study only investigated Lu-177 dosimetry,we expect that
by changing the training dataset and making minor mod-
ifications to the architecture, our CNN approach can be
extended to other radionuclides including Y-90 that is a
pure-beta emitter and I-131 that has significant beta and
gamma contributions to the dose-rate.

5 CONCLUSION

We constructed and tested a residual CNN that was
trained on virtual patient phantom images to learn the
mapping from SPECT/CT images to the corresponding
dose-rate maps. We took the novel approach of using a
single CNN to learn not only the dose-rate estimation
but also to compensate for blurring of the dose-rate map
due to poor SPECT resolution. Across multiple regions
such as kidney, lumbar vertebra and lesions in both soft
tissue and lung, the proposed residual DblurDoseNet
was able to outperform conventional voxel-level
dosimetry methods, including the current “gold standard”
MC, in terms of accuracy, noise, and speed. Patient-
specific voxel-level dose rate maps can be generated
in ∼30 s on GPU; hence the CNN approach has much

promise for real-time clinical use in radionuclide therapy
dosimetry for treatment planning.
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