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Abstract 

Purpose: Current methods for patient-specific voxel-level dosimetry in radionuclide therapy 

suffer from a trade-off between accuracy and computational efficiency. Monte Carlo (MC) 

radiation transport algorithms are considered the gold standard for voxel-level dosimetry but 
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can be computationally expensive, whereas faster dose voxel kernel (DVK) convolution can 

be sub-optimal in the presence of tissue heterogeneities. Furthermore, the accuracies of 

both these methods are limited by the spatial resolution of the reconstructed emission im-

age. To overcome these limitations, this paper considers a single deep convolutional neural 

network (CNN) with residual learning (named DblurDoseNet) that learns to produce dose-

rate maps while compensating for the limited resolution of SPECT images.  

Methods: We trained our CNN using MC-generated dose-rate maps that directly corre-

sponded to the true activity maps in virtual patient phantoms. Residual learning was applied 

such that our CNN learned only the difference between the true dose-rate map and DVK 

dose-rate map with density scaling. Our CNN consists of a 3D depth feature extractor fol-

lowed by a 2D U-Net, where the input was 11 slices (3.3 cm) of a given Lu-177 SPECT/CT 

image and density map, and the output was the dose-rate map corresponding to the center 

slice. The CNN was trained with 9 virtual patient phantoms and tested on 5 different phan-

toms plus 42 SPECT/CT scans of patients who underwent Lu-177 DOTATATE therapy. 

Results: When testing on virtual patient phantoms, the lesion/organ mean dose-rate error 

and the normalized root mean square error (NRMSE) relative to the ground truth of the CNN 

method was consistently lower than DVK and MC, when applied to SPECT images. Com-

pared to DVK/MC, the average improvement for the CNN in mean dose-rate error was 

55%/53% and 66%/56%; and in NRMSE was 18%/17% and 10%/11% for lesion and kidney 

regions, respectively. Line profiles and dose-volume histograms demonstrated compensa-

tion for SPECT resolution effects in the CNN-generated dose-rate maps. The ensemble 

noise standard deviation, determined from multiple Poisson realizations, was improved by 

21%/27% compared to DVK/MC. In patients, potential improvements from CNN dose-rate 

maps compared to DVK/MC were illustrated qualitatively, due to the absence of ground 

truth. The trained residual CNN took about 30 seconds on a single GPU (Tesla V100) to 

generate a 512 512 130 dose-rate map for a patient. 



 

 

 

 

This article is protected by copyright. All rights reserved. 

 
 

Conclusion: The proposed residual CNN, trained using phantoms generated from patient 

images has potential for real-time patient-specific dosimetry in clinical treatment planning 

due to its demonstrated improvement in accuracy, resolution, noise and speed over the 

DVK/MC approaches. 

Keywords: Deep learning, Voxel-level dosimetry, Lu-177 therapy, SPECT resolution effects 

 

Introduction 

Accurate and computationally efficient methods for patient-specific absorbed dose estima-

tion are essential for clinical implementation of dosimetry-guided treatment planning in radi-

onuclide therapy. For example, current Lu-177 DOTATATE therapy for neuroendocrine tu-

mors uses a fixed activity basis (4 cycles of 7.4 GBq), whereas SPECT/CT imaging-based 

dosimetry after one cycle can be used to individualize the next administration to potentially 

enhance tumor response while keeping toxicity to critical organs like kidney at an acceptable 

level [1]. Traditionally, the mean absorbed doses in volumes of interest (VOIs) are the re-

ported quantity. However, voxel-level calculation enables consideration of multiple alterna-

tive dose metrics, such as statistics from dose-rate volume histogram (DRVH) analyses that 

are potentially more relevant to treatment planning. Explicit Monte Carlo (MC) radiation 

transport using the patient’s emission (PET or SPECT) and anatomical images (CT) as input 

is broadly accepted as the gold standard for voxel-level patient-specific dosimetry; however, 

it is computationally expensive to generate estimates with low statistical uncertainty. In con-

trast, faster and simpler dose voxel kernel (DVK) convolution methods [2] can be inaccurate 

in the presence of heterogeneous tissues, e.g., at the liver-lung or bone-marrow interfaces. 

Moreover, even though MC is theoretically accurate, the dose accuracies of both MC and 

DVK methods are degraded by reconstruction artifacts and the limited spatial resolution of 

SPECT and PET images. 
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Over the past few years, deep learning methods have been broadly used in many fields of 

medical imaging [3-7]. For example, one of the most popular deep neural networks, the U-

Net [8], achieved state-of-the-art accuracy on the 2012 Intl. Syp. on Biomedical Imaging 

(ISBI) challenge for segmentation of neuronal structures in electron microscopic stacks. Re-

cently, there is increased interest in studies that apply deep neural networks in nuclear med-

icine applications [9-13]. However, deep learning applications in radionuclide therapy dosim-

etry are limited [14-17]. Akhavanallaf et al. [14] employed a modified ResNet [18] that repre-

sented voxel S-values kernels [2] to predict the distribution of the deposited energy in whole-

body organ-level dosimetry and demonstrated comparable performance to the direct MC ap-

proach. Lee et al. [15] implemented a 3D U-Net [8] that used PET and CT-based density im-

age patches to predict 3D voxel-level dose-rate maps. Götz et al. [16] proposed a hybrid 

method based on a combination of a modified U-Net and an empirical mode decomposition 

of density maps to enhance the accuracy/reliability of radiation dose estimation. Götz et al. 

[17] also trained a neural network to predict dose voxel kernels (DVK) for dosimetry in Lu-

177 targeted radionuclide therapies. Despite promising results, a limitation of the training 

approaches in these prior studies [14-17] is that they used MC-generated dose-rate maps 

derived from each patient’s measured SPECT or PET images as the training label, which are 

degraded by the camera spatial resolution and reconstruction artifacts. Moreover, the con-

cept of residual learning can be adopted in a CNN dosimetry model by exploiting a fast DVK 

convolution dose-rate map as an initial estimate. Residual learning for image denoising was 

first proposed to improve the effectiveness and efficiency of a denoising CNN [27] and was 

further applied to low-dose PET and CT reconstruction [28, 29]. 

 

The aim of this study was to develop a deep learning-based absorbed dose-rate estimation 

method that can overcome the accuracy-efficiency trade-off associated with current voxel 

dosimetry methods and attempt to learn to reduce the degrading effects of spatial resolution 

and reconstruction artifacts. Specifically, we used dose-rate estimates directly corresponding 
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to phantom (virtual patient) activity maps as the training label, instead of the patient SPECT-

derived dose-rate images (Fig. 1). Furthermore, unlike prior studies where a CNN was 

trained to directly estimate the dose-rate map or S-value kernels, we first used the approxi-

mate physics-based fast Fourier transform (FFT) DVK convolution method (with density scal-

ing) to produce initial estimates, and then trained the CNN to learn the subtle residual differ-

ences between the initial estimate and the true dose-rate maps. We trained and tested the 

proposed CNN for SPECT/CT imaging-based dosimetry following Lu-177 DOTATATE thera-

py of neuroendocrine tumors (NETs). 

 

Material and Methods 

Virtual patient phantom generation for training and testing 

 

Fig. 2 is an overview of our data generation and training process. To define the true activity 

maps of virtual patient phantoms, we chose to use PET instead of SPECT-based activity 

maps because PET offers substantially higher spatial resolution than SPECT as evident in 

the top branch of Fig. 2. These images were readily available because, prior to Lu-177 DO-

TATATE, patients underwent diagnostic Ga-68 DOTATATE PET/CT imaging (Siemens Bio-

graph mCT) to determine eligibility for therapy. The Ga-68 DOTATATE distribution in pa-

tients is expected to be similar to the Lu-177 DOTATATE distribution and hence our virtual 

patient phantoms can provide a reasonable approximation to the activity distribution of Lu-

177 patients. The PET images (of size 200 200 577, voxel size is 4.073 4.073 2   ) 

were obtained from our Siemens mCT (resolution is 5-6mm FWHM [19]) and reconstructed 

using the standard clinic protocol: 3D ordered subset expectation maximization (OSEM) with 

3 iterations, 21 subsets that included resolution recovery, time-of-flight (TOF), and a 5mm 

(FWHM) Gaussian post-reconstruction filter. We selected 14 such PET images from our clin-

ic database to generate anthropomorphic phantoms for training and testing, with University 
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of Michigan Institutional Review Board (IRB) approval for retrospective analysis. The select-

ed cases covered a diverse range with regards to sex (9 males and 5 females), age (35 to 

88 years), weight (49 kg to 100 kg), and lesions of different sizes and location (within and 

outside the liver). The PET/CT images were first extracted into 195 slices with 0.2 cm slice 

width that covered the SPECT field-of-view (39 cm) with the liver and kidney centered, which 

is the typical region imaged following Lu-177 DOTATATE. Meanwhile, the corresponding 

density maps were generated using an experimentally derived CT-to-density calibration 

curve. 

 

Next, Lu-177 SPECT projections corresponding to each phantom’s activity/density maps 

were generated using the SIMIND MC code [20] (Fig. 2 top branch) simulating approximately 

2 billion histories per projection. The SIMIND model parameters were based on Lu-177 pa-

tient imaging in our clinic (Siemens Intevo with medium energy collimators, a 5/8’’ crystal, a 

20% photopeak window at 208 keV and two adjacent 10% scatter windows). Poisson noise 

was simulated after the 128 projection views were scaled to a count-level in the range of 3 to 

20 million total counts, corresponding to the range in post-therapy imaging. SPECT recon-

struction used an in-house 3D OSEM algorithm with CT-based attenuation correction, triple 

energy window scatter correction and collimator-detector response modeling (4 subsets and 

16 iterations, 128 128 81 matrix with voxel size 4.8 4.8 4.8   , no Gaussian smooth-

ing). All images were finally registered into CT image space (512 512 130 with voxel size 

0.98 0.98 3   ). 

 

Out of 14 virtual patient phantoms, we randomly selected 9 for training and 5 for testing. Out 

of the training dataset, to assess under/over-fitting, we randomly selected 20% of the total 

slices to serve as a validation dataset. 

 



 

 

 

 

This article is protected by copyright. All rights reserved. 

 
 

Patient Data 

In addition to the above virtual patients, our testing data included a total of 42 scans from 12 

patients imaged at up to 4 time points during the first week following cycle 1 of standard Lu-

177 DOTATATE (7.4 GBq). The images were acquired as part of an ongoing University of 

Michigan IRB approved research study, where all subjects signed an informed consent form. 

SPECT acquisition time was 25 minutes and all other SPECT imaging reconstruction pa-

rameters were as described above for the phantom simulation. The CT was performed in 

low-dose mode (120 kVp; 15 – 80 mAs) with free breathing. 

 

Monte Carlo dosimetry and dose voxel kernel convolution 

Monte Carlo 

The Monte Carlo code that we used, called Dose Planning Method (DPM), was originally 

developed and validated for fast dose-rate estimation in external beam radiotherapy [21]. 

Previously, we adapted and benchmarked DPM for internal radionuclide therapy applications 

[22]. Because DPM was optimized specifically for voxel-level electron/photon dose computa-

tions with full radiation transport, it is faster than using general-purpose MC codes for voxel-

level dose estimation. We used DPM to generate the ground truth training labels (Fig. 2) by 

simulating ~1 billion histories to generate dose-rate maps with reasonably low statistical un-

certainty. For example, with 1 billion histories for the phantom results shown in Fig. 4 and 

Fig. 5, the average statistical uncertainty across the kidney and lesions was less than 0.1% 

for both the ground truth MC run and the SPECT+MC run. (Obtained from the uncertainty 

images available from DPM).  
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DVK convolution with density scaling 

To provide DVK dose-rate maps for residual learning, Lu-177 soft tissue (1.04     ⁄ ) voxel 

kernels were generated using DPM. The beta particle kernel size was 9 9 9 and the pho-

ton kernel size was 99 99 99 (both with voxel size 0.98 0.98 3   ). We convolved the 

SPECT image with the DVKs using fast Fourier transform (FFT)-convolution. Since using 

homogeneous soft tissue kernels neglects tissue inhomogeneities, we applied density scal-

ing that has been shown to be a reasonable correction in past reports [23]. Here, after con-

volution, each voxel was scaled by 1.04 (    ⁄ ) and divided by the local voxel density value 

(    ⁄ ) derived from the CT scan. Because our goal was to generate a reasonably accurate 

and quick initial estimate for the residual learning process, we did not pursue other more so-

phisticated approaches [24, 25] that account for tissue heterogeneities. To address the very 

high dose-rate estimate in extra low-density regions, e.g., air gaps, we set the dose-rate in 

regions where the density is less than 0.1     ⁄  to zero. 

 

Network: DblurDoseNet 

Our network design considers the decay properties of Lu-177 and the physics of beta/photon 

interaction in tissue. The mean energy of the emitted electrons in the beta decay of Lu-177 is 

134 keV and the maximum energy is 497 keV, and the corresponding continuous slowing 

down approximation (CSDA) ranges (in water) are 0.3 mm and 1.8 mm, respectively [26]. 

The gamma-rays associated with Lu-177 are low in intensity (113 keV (6.2%) and 208 keV 

(10.4%)), and hence, the absorbed dose is dominated by the beta component. 

 

The input to the DVK method was an entire 3D SPECT image volume and its output was a 

3D dose-rate map. In principle, a CNN could be designed similarly. However, for Lu-177 

considering the short beta particle range in tissue and the low photon contribution, we de-
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signed a more memory efficient CNN that used a pack of 11 adjacent slices of the SPECT 

and density images at a time to produce one output dose-rate map corresponding to the 

middle slice of that pack. The CNN was applied with an 11-slice sliding window to all axial 

slices using padding that replicated the first and last slices at the top and bottom boundaries, 

respectively. Thus, the input to CNN was two arrays of size 512 512 11 (with voxel size 

0.98 0.98 3   ) and the output was an array of size 512 512 that corresponded to the 

dosimetry of the middle slice in the input arrays. During training and testing, these 

512 512 11 packs could be processed sequentially, but GPU devices could accelerate the 

processing by parallel computation. 

 

As shown in Fig. 3, we first concatenated the input activity/density maps along the channel 

dimension, and then applied three 3D convolutional layers (with kernel size 7 7 5, 7 7 3, 

7 7 3, respectively) to extract depth features. Next, we implemented a 2D U-Net that had 4 

down-sample and up-sample layers, where the first convolutional layer in the 2D U-Net had 

16 filters. After each down-sample layer, the number of filters at the next convolutional layer 

was increased by a factor of 2 until it reached 128. We added the DVK dose-rate map to the 

2D U-Net output, as in the common residual learning approach. Finally, we obtained the 

CNN dose-rate map estimate after setting the dose-rate value in very low-density voxels 

(         ⁄ ) to zero. As discussed in the “Results” section, the residual CNN produced 

consistently better dose-rate estimation accuracy than a CNN without residual learning. 

 

The CNN was trained by minimizing the mean square error between the ground-truth and 

CNN dose-rate maps using a batch size of 32. We used the Adam optimizer [30] with a dy-

namic learning rate (an initial value 0.001 with ReduceOnPlateau management strategy) and 

trained our CNN for 200 epochs on two Nvidia Tesla V100 GPUs. The training/validation 

loss converged visually to 288/410 after 4 hours of training (Fig. S.1). To cover different input 
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count levels, we normalized each SPECT activity map so that all its voxels summed to one, 

and then inversely scaled the dose-rate map estimate accordingly. To potentially improve 

convergence during training, we also scaled the normalized SPECT and dose-rate maps 

with a constant value so that they have a similar range as the density maps. 

 

Evaluation in Test Phantoms 

In test phantoms, we used MC with the phantom activity and density maps to calculate the 

ground truth dose-rate maps for performance evaluation. The estimated dose-rate maps 

generated from SPECT/CT with the DVK (with density scaling), MC (with 1 billion histories) 

and CNN methods were evaluated qualitatively by visual comparison of images, line profiles 

and dose-rate-volume histograms (DRVHs) with those corresponding to the ground truth. 

For quantitative evaluations, we used the following metrics:  

 

Dose-rate error. For each volume of interest (VOI), the dose-rate error is the absolute error 

across the whole VOI calculated relative to the ground truth. This error was calculated for the 

mean absorbed dose and DRVH statistics (DR10, DR30, DR70, DR90), corresponding to 

the minimum dose-rate to 10%, 30%, 70%, 90% of the VOI, respectively. 

 

NRMSE. The normalized root mean square error (NRMSE) is defined as 
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where    denotes the total number of voxels in the VOI. Subscript  , e.g.,   , denotes the  th 

voxel in the image. The true and estimated dose-rate image are denoted by   and  ̂, respec-

tively.  
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Ensemble noise. The ensemble noise in spherical VOIs defined in non-tumoral liver or 

spleen was calculated across 3 (   ) Poisson noise realizations as:  
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   ,    is the total number of voxels in the VOI, and  ̂ [ ] denotes the 

 th voxel in the estimated dose-rate image of the  th Poisson noise realization. 

 

The lesion VOIs for these quantitative evaluations were defined manually on CT of 

SPECT/CT-guided by baseline diagnostic CT or MRI by a radiologist with abdomen imaging 

expertise. Organ contours were defined using semi-automatic CT segmentation tools. The 

healthy liver was defined as liver minus lesions in the liver.  

 

Results 

Virtual patient phantom test results 

Qualitative Assessment. Generally, there was better visual agreement between CNN dose-

rate maps and the ground-truth than between DVK/MC dose-rate maps and the ground-

truth. The example images and line profiles in Figs. 4 and 5 and the DRVHs in Fig. 6 provide 

qualitative evidence of the superior performance of the CNN across multiple regions (kidney, 

abdominal lesion, lung lesion). 

 

Quantitative Assessment. Table S.1 reports the mean dose-rate values for organs/lesions 

across 5 test phantoms. Fig. 7 compares the mean dose-rate error and NRMSE in lesions 
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and organs across all test phantoms. Similar to the results of the qualitative assessment 

(Fig. 4-6), the CNN also consistently showed superior results compared to DVK and MC in 

quantitative evaluations (Fig. 7). For instance, compared to DVK and MC, the CNN esti-

mates showed an average improvement (in mean dose-rate error) of 52%/20%, 55%/53%, 

66%/50%, 66%/62%, 48%/49% and 58%/39% in healthy liver, lesion, left kidney, right kid-

ney, spleen and lumbar vertebra, respectively. The NRMSE was also substantially lower for 

the CNN than for DVK and MC across all VOIs (Fig. 7). The average improvement (in NRM-

SE) demonstrated by the CNN compared to DVK/MC was 10%/9%, 18%/17%, 11%/12%, 

9%/10%, 26%/27% and 18%/10% in healthy liver, lesion, left kidney, right kidney, spleen 

and lumbar vertebra, respectively. In addition to the improvement in the average values, the 

maximum errors (denoted by the error bars in Fig. 7) were also consistently lower with CNN 

compared to DVK and MC. In Fig. 7, all three methods showed the highest errors for lesion 

and lumbar vertebra regions. This was attributed to the smaller size of these VOIs compared 

to other organs and the corresponding increase in partial volume effects. In the case of lum-

bar vertebra, relevant to bone marrow dosimetry, the very low uptake in these regions also 

contributed to higher dose-rate errors. For lesions and lumbar vertebra that had a relatively 

large sample size (15 and 18), a paired t-test demonstrated that the differences of mean 

dose-rate error and NRMSE between CNN and MC (DVK), as shown in Fig. 7, were statisti-

cally significant (Table S.2 shows p-values). Moreover, DRVHs statistics (DR10, DR30, 

DR70, DR90) as demonstrated in Fig. 8 and Fig. 9 also show the superiority of the CNN 

compared to DVK. 

 

Noise Evaluation. Table 1 shows a consistent reduction of ensemble noise in background 

VOIs with an average of 21% and 27% improvement demonstrated by the CNN compared to 

DVK and MC (running 1 billion histories), where MC had the highest level of noise due to its 

statistical nature. 
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Patient results 

In patients, where there was no known ground-truth, results were instead compared visually. 

Fig. 8 and Fig. 9 show examples of dose-rate maps corresponding to high count (day 1 post-

therapy) and low-count (day 7 post-therapy) imaging conditions post-Lu-177 DOTATATE. 

Although concrete conclusions could not be drawn, as there was no known ground truth; 

visual inspections implied potential reduction of SPECT spatial resolution effects on dose-

rate accuracy by our DblurDoseNet. For instance, with the CNN, the enlarged kidney map 

and line profiles of Fig. 8 show a larger decrease in dose-rate in the medulla and renal pelvis 

areas, which could be due to the expected lower physiological Lu-177 uptake in this part of 

the kidney compared to the cortex region. In addition, in Fig. 9, the lesion with a necrotic 

center demonstrated a larger drop in dose-rate at the center with the CNN compared to DVK 

or MC, which could be due to the expected lower uptake associated with necrosis. Moreo-

ver, to demonstrate the generalizability of our CNN on patient data, we tested our CNN using 

42 SPECT/CT scans of 12 patients and then compared with DVK and MC dose-rate maps in 

terms of the mean dose-rate and DRVH statistics (DR10, DR30, DR70 and DR90) across 

lesions and kidneys. As demonstrated in Table 2, there was a strong agreement between 

CNN and MC for mean dose-rate in kidneys; and for mean dose-rate in lesions, CNN 

showed higher values than MC, which could be partially due to the compensation of SPECT 

resolution effects. For DRVH statistics shown in Fig. 6, the CNN and MC results also agreed 

well in kidney; but for lesions, the CNN measurement showed a lower dose-rate value in 

DR70 (DR90) and a higher dose-rate value in DR30 (DR10), compared to MC and DVK. The 

DRVHs in the lesions might be improved because the blurring effects caused by the limited 

SPECT camera resolution would lead to a higher DR70 (DR90) and a lower DR30 (DR10), 

but concrete conclusions could not be made due to the absence of ground truth. 
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Comparing Performance with a Non-residual network and a 2D network 

To demonstrate the effectiveness of residual learning and the 3D convolutional feature ex-

tractor that we implemented, we also compared our proposed CNN with a CNN that had the 

same architecture but without residual learning (not adding the DVK dose-rate map to the 

output of 2D U-Net); and to a CNN without 3D feature extractor (a purely 2D U-Net where we 

treated the depth dimension of input as channels). The non-residual CNN and the 2D CNN 

were trained using the same hyper-parameters and the same training data as for the pro-

posed CNN. All the testing used the same test phantoms demonstrated in the previous sec-

tion. As shown in Table 3, quantitative comparisons across all test phantoms showed supe-

rior results of our proposed CNN (DblurDoseNet) for almost all VOIs except for some cases 

where all the networks show comparable results. Based on these promising results, we be-

lieved the idea of residual learning was effective and it was beneficial to include a few 3D 

convolutional layers to extract 3D information rather than using only 2D convolutions. 

 

Time cost 

We compared the computation times of the different methods for generating a dose-rate 

map corresponding to the typical             patient SPECT/CT image size on CPU 

(Intel Core i9 @2.3 GHz) or GPU (Tesla V100). DVK with density scaling took ~20 seconds 

on the CPU and ~10 seconds on the GPU. DPM MC code took ~60 minutes simulating 1 

billion histories (for both ground truth and test phantoms/patients) on the CPU while running 

DPM on a GPU is not an option at this time (we are unaware of any MC code for internal 

therapy running on a GPU). The CNN took ~20 minutes on the CPU and ~20 seconds using 

the GPU. After considering the DVK pre-computation time for the residual learning network, 

the total GPU time cost for the CNN with residual learning is ~20+10 seconds. 
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Discussion 

Reliable voxel-level dosimetry requires reliable dose-rate images at multiple timepoints as 

well as dependable co-registration and fitting of the dose-rate vs. time data estimated at the 

voxel-level. Performing reliable voxel-level co-registration and fitting to generate dose maps 

can be challenging, but the feasibility has been demonstrated [31, 32]. In this work, we fo-

cused on generating reliable dose-rate maps. With evaluation both on virtual patient phan-

toms that covered clinically relevant conditions and patients who underwent Lu-177 DOTA-

TATE therapy in our clinic, we demonstrated that our CNN using residual learning framework 

could provide fast and accurate dose-rate estimation. Despite using only moderate amount 

of training data, DburDoseNet provided consistently superior performance over conventional 

voxel dosimetry in terms of resolution, accuracy and noise across multiple regions including 

kidneys, lumbar vertebra and lesions in soft-tissue and lung. Importantly, for clinical imple-

mentation, the CNN voxel dose-rate map for a             patient image could be gen-

erated in ~30 seconds, which was a fraction of the time associated with running MC, the cur-

rent gold standard. Although generating the ground-truth labels for training by MC was com-

putationally expensive, this effort was needed only once at training time, for a given SPECT 

imaging system. 

 

The main limitation to accurate voxel-level patient specific dose-rate estimation with non-

learning-based methods is the poor spatial resolution associated with the input SPECT (or 

PET) images. This issue was evident in our results where the theoretically accurate MC-

based calculation only slightly outperformed DVK with density scaling. In contrast, by using 

the true activity map-based dose-rate estimates for training, our CNN has the ability to 

“learn” the physics of dose deposition and to compensate for the SPECT resolution effects 

that both lead to blurring of the conventional (non-learning-based) dose-rate maps, as 

demonstrated in the phantom results (Figs. 4-7, Table 1). In patient studies, potential mitiga-
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tion of SPECT resolution effects was demonstrated empirically. In Fig. 8, the CNN-based 

estimates show sharper line profiles and larger drops in dose-rate over the medulla area of 

the kidney, analogous to the illustration of Fig. 1. In Fig. 9, the larger drop of dose-rate in the 

necrotic center of a tumor, may reflect what is expected based on physiology. Although test 

results were promising over 42 scans originating from 12 patients, further testing is planned 

as more patient images become available. We did not investigate training with more virtual 

patients, because simulating Lu-177 SPECT projections by full MC simulation was computa-

tionally expensive. Furthermore, we found that our CNN, trained by 9 virtual patient phan-

toms, was able to generate promising dose-rate estimates across a diverse range of test 

cases. We expect that applying self/weakly-supervised training may address the computa-

tional inefficiency of simulating Lu-177 SPECT projections in the future. In addition, due to 

the lack of ground truth, we were unable to make concrete conclusions about the perfor-

mance of our CNN on test patient data. But the uncertainty of our CNN can be quantified by 

generating confidence maps [33, 34, 35] using Bayesian networks [36], an ensemble of mul-

tiple networks [37], or an extension of the probabilistic U-Net [38], which can be one direction 

to investigate in the future. 

 

The mean dose-rate errors shown in Fig. 7, especially for lesions, were generally lower than 

one would expect based on reported activity recovery in quantitative Lu-177 SPECT phan-

tom studies. For example, for 72 OSEM updates, activity recovery of only 80% was reported 

for a 26.5 mL volume “hot” sphere in a “warm” background region [39]. The results of the 

current study showed lower errors because, unlike in a physical phantom, the assigned 

“true” activity values at the boundary of the structures in our PET-based virtual patients did 

not drop off sharply, and instead, were blurred out. Moreover, in Fig. 7, all 3 methods 

showed the largest mean dose-rate error for lesions and lumbar vertebra, as expected due 

to the relatively smaller sizes of these structures compared to other organs, and hence par-

tial volume effects associated with SPECT resolution were higher. The large error for the 
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lumbar region with DVK (~25%) was likely to be due to the heterogenous tissue within this 

region, which includes cortical bone, trabecula bone, yellow and red marrow. Regarding 

DVK, the simple density scaling that was performed in our study was potentially inadequate 

for this region. Furthermore, the Lu-177 uptake in a lumbar region was very low, so the 

cross-dose contribution to dose-rate there, including the photon cross-dose, could be signifi-

cant. Our          photon kernel may have been insufficient to capture the full photon 

cross dose contribution to the lumbar vertebra. Our study did not include standard partial 

volume correction using volume-dependent recovery coefficients (RCs) because such meth-

ods provide only a mean dose, not a voxel-level correction. Furthermore, the limitations of 

standard RC methods due to dependence on object shape, activity distribution and target-to-

background ratios are well known. Voxel-level partial volume correction is much more chal-

lenging [40] and their applications in SPECT are not well established. Our results demon-

strated that training using true dose-rate maps could reduce the need for such corrections to 

compensate for resolution effects. 

 

To define our virtual patient activity maps, we chose to use Ga-68 DOTATATE PET/CT to 

exploit the availability of these images that had finer resolution than SPECT and showed 

similar uptake patterns as Lu-177 DOTATATE. Despite the standard practice of using Ga-68 

PET or Lu-177 SPECT as a theranostic pair, some differences between the two distributions 

were to be expected, but we did not expect this to impact our CNN performance because the 

PET images were used only to define the virtual patient phantoms and not in the training 

process itself, as proposed in another study [41]. Ideally, however, images of higher resolu-

tion than clinical PET should be considered as the true representation of the activity map of 

patients when generating the virtual patient training set, but usually they are not readily 

available. To circumvent this issue, we also investigated using phantoms with piece-wise 

uniform uptake in CT-defined organs/lesions for training (such as XCAT [42] in Fig. 1), but 

we found that such training led to unnaturally uniform dose-rate maps when tested on patient 
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images. We also fed our CNN with an all-zero activity map, as a sanity check to our pro-

posed framework as well as implementation. The output dose-rate map, as expected, was all 

zeros. This illustrates that if there is no apparent signal in the reconstructed SPECT, then 

there will not be any unexpected nonzero values in the dose-rate map. A possible alternative 

to our PET-based virtual patient activity maps is to assign distributions based on high-

resolution animal models, for instance, ex-vivo autoradiography showing uptake distribution 

of DOTATATE in kidney [43].  

 

Our results also demonstrate the advantage of residual learning framework exploiting the 

fast DVK approach as an initial estimate, which was not utilized in the prior studies [14-17]. 

We also conjectured that incorporating residual learning could not only improve performance 

on the test data, but also accelerate the training process. As shown in Fig. S.1, after 200 

epochs of training, the training/validation loss of residual CNN went down to 288/410 at the 

last 50 epochs, compared to 902/1250 without residual learning, which means fewer epochs 

are needed to train the residual CNN. Other than using a fast DVK approach for residual 

learning, an alternative was to generate a quick MC (low number of histories) estimate, 

which was not explored here. Another advantage of our network is that we first implemented 

a couple of depth feature extractor layers that shrink the 3D input into 2D at the beginning of 

our network. Compared to fully 3D approaches, this approach leads to a network having 

fewer parameters (because 2D kernels have fewer parameters than 3D kernels), so it is less 

likely to overfit the training data, avoiding a common problem in deep learning applications 

for medical imaging, where only moderate amount of training data is available. Another op-

tion that we did not investigate is to use 2.5D CNN architectures [44]. A potential drawback 

of our proposed CNN is possible discontinuity of pixel values in coronal slices; however, we 

did not observe such discontinuity as evident in the Fig. S.2, presumably due to the 11-slice 

sliding window. 
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We expect that training a single CNN, as we did in the current study, is simpler than training 

2 separate CNNs to learn the dosimetry and SPECT resolution effects. Typically, there will 

be 3 stages needed to train 2 separate CNNs; stage 1: training CNN-A for SPECT resolu-

tion; stage 2: training CNN-B for dosimetry; stage 3: jointly fine-tuning CNN-A and CNN-B. 

Compared to our proposed end-to-end network (DblurDoseNet), which only involves one 

training stage, such 3-stage of training will be more complex and potentially inefficient. How-

ever, only through comprehensive comparisons can one draw definite conclusions between 

these two approaches, which we expect to undertake in the future. Although our study only 

investigated Lu-177 dosimetry, we expect that by changing the training dataset and making 

minor modifications to the architecture, our CNN approach can be extended to other radio-

nuclides including Y-90 that is a pure-beta emitter and I-131 that has significant beta and 

gamma contributions to the dose-rate. 

 

Conclusion 

We constructed and tested a residual CNN that was trained on virtual patient phantom im-

ages to learn the mapping from SPECT/CT images to the corresponding dose-rate maps. 

We took the novel approach of using a single CNN to learn not only the dose-rate estimation 

but also to compensate for blurring of the dose-rate map due to poor SPECT resolution. 

Across multiple regions such as kidney, lumbar vertebra and lesions in both soft tissue and 

lung, the proposed residual DburDoseNet was able to outperform conventional voxel-level 

dosimetry methods, including the current “gold standard” MC, in terms of accuracy, noise 

and speed. Patient specific voxel-level dose rate maps can be generated in ~30 secs on 

GPU; hence the CNN approach has much promise for real-time clinical use in radionuclide 

therapy dosimetry for treatment planning. 
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Figure Captions 

Fig. 1. Illustration of blurring of dose-rate maps due to the limited resolution of the SPECT-based input 

activity map and the potential for a learning-based method to outperform MC, the current gold-

standard. The CNN* used in this illustration was trained and tested on different XCAT [42] phantoms. 
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Fig. 2. Overview of phantom data generation for training/testing and the network training process. 

 

 

Fig. 3. The architecture of our DblurDoseNet. 
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Fig. 4. One slice of the test virtual patient phantom #2. The top two branches show the true activity 

map defined based on Ga-68 PET, SPECT and CT images, the ground truth dose-rate map and the 

dose-rate images from the different methods (DVK, MC, CNN). The bottom branch shows line profiles 

across the kidney and the residual map (the difference between CNN and DVK dose-rate map). The 

dose-rate units were normalized to 1 MBq in the field-of-view in all figures. 
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Fig. 5. One slice of the test virtual patient phantom #5. The top two branches show the true activity 

map defined based on Ga-68 PET, SPECT and CT images, the ground truth dose-rate map and the 

dose-rate images from the different methods (DVK, MC, CNN). The bottom branch shows line profiles 

across the kidney and the residual map (the difference between the CNN and DVK dose-rate maps). 
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Fig. 6. Tumor & kidney differential and cumulative dose-rate volume histograms corresponding to 

DVK, MC, CNN and the ground-truth dose-rate maps of virtual patient phantoms. The sizes of tumor 1 

and tumor 2 are 4mL and 65 mL, respectively. 

 

  



 

 

 

 

This article is protected by copyright. All rights reserved. 

 
 

 

Fig. 7. Mean dose-rate error, NRMSE and error in DRVH statistics (DR10, DR30, DR70, DR90) com-

parison of DVK, MC and CNN relative to ground-truth dose-rate map across all test phantoms. Medi-

an (range) VOI volumes are: healthy liver (liver minus lesions): 1607mL (1164mL – 2262mL); lesion: 

16mL (4mL – 181mL); Left kidney: 177mL (98mL – 211mL); Right kidney: 156mL (76mL – 249mL); 

Spleen: 191mL (131mL – 467mL); Lumbar vertebra L2 to L5: 54mL (34mL – 68mL). 
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Fig. 8. One slice across kidney of the input images (SPECT, CT) and output DVK, MC, CNN dose-

rate maps and line profiles for a patient imaged after Lu-177 DOTATATE (at day 1 post-therapy). The 

residual map is the difference between CNN and DVK dose-rate map. 
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Fig. 9. One slice across lesion of the input images (SPECT, CT) and output DVK, MC, CNN dose-rate 

maps and line profiles for a patient imaged after Lu-177 DOTATATE (at day 7 post-therapy). The re-

sidual map is the difference between CNN and DVK dose-rate map. 
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Table 1. Ensemble noise from 3 realizations for DVK, MC and CNN across all test phantoms. Number 

of voxels ranged from 2527 to 23411. 

Ensemble Noise Background Re-

gion 

DVK MC CNN 

Phantom #1 Liver & Spleen 4.6% 6.1% 3.4% 

Phantom #2 Liver 12.6% 13.3% 9.2% 

Phantom #3 Liver 14.0% 14.6% 12.9% 

Phantom #4 Liver 20.3% 19.6% 14.8% 

Phantom #5 Spleen 7.1% 7.6% 5.8% 
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Table 2. Dose-rate values (mean dose-rate and DRVH statistics) for DVK, MC and CNN methods 

averaged across all 42 scans from 12 patients. Minimum and maximum values are shown in paren-

thesis. The medians (ranges) for the VOI volumes are: lesion: 15 mL (2.3 mL – 582 mL); left kidney: 

192 mL (105 mL – 275 mL); right kidney: 180 mL (122 mL – 259 mL).  

  

Dose-rate* 

(nGy/MBq-sec) 

DVK MC CNN 

Lesion 

Mean dose-rate 13.7 (0.2 – 87.9) 13.9 (0.3 – 88.9) 14.4 (0.3 – 88.8) 

DR10 25.1 (0.4 - 177) 25.4 (0.4 - 179) 27.8 (0.5 - 188) 

       DR30 15.8 (0.3 – 122) 16.1 (0.3 – 123) 16.9 (0.3 – 127) 

  DR70 8.2 (0.2 – 48.1) 8.3 (0.3 – 48.5) 8.1 (0.3 – 48.8) 

DR90 5.4 (0.1 – 17.1) 5.6 (0.1 – 19.3) 5.0 (0.1 – 22.9) 

Left kidney 

Mean dose-rate 3.7 (0.7 – 8.6) 3.8 (0.7 – 8.7) 3.8 (0.7 – 8.3) 

DR10 6.0 (1.4 - 12.7) 6.1 (1.4 - 12.8) 5.8 (1.4 - 12.3) 

DR30 4.6 (1.0 – 10.7) 4.7 (1.0 – 11.0) 4.6 (1.0 – 10.7) 

DR70 2.7 (0.2 – 7.0) 2.7 (0.2 – 7.0) 2.8 (0.2 – 7.0) 

DR90 1.6 (0.1 – 3.8) 1.7 (0.1 – 3.8) 1.6 (0.1 – 3.6) 

Right kidney 

Mean dose-rate 4.2 (0.7 – 9.1) 4.3 (0.8 – 9.2) 4.2 (0.8 – 9.1) 

DR10 7.1 (1.5 - 17.2) 7.2 (1.6 - 17.2) 7.0 (1.8 - 15.2) 

DR30 5.2 (1.0 – 11.8) 5.3 (1.1 – 11.8) 5.3 (1.1 – 12.2) 

DR70 2.8 (0.2 – 7.3) 2.9 (0.2 – 7.3) 2.8 (0.2 – 7.7) 

DR90 1.6 (0.1 – 4.4) 1.7 (0.1 – 4.5) 
1.5 (0.1 – 4.0) 

*Reported dose-rates are normalized to 1 MBq in field-of-view. 
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Table 3. Mean (maximum) dose-rate error and NRMSE comparison between CNN with and without 

residual learning and with 2D and 3D networks evaluated across VOIs in all test phantoms. 

 

 Mean Dose-rate Error NRMSE 

 3D w/ res 

(DblurDoseNet) 

3D w/o res 2D w/ res 3D w/ res 

(DblurDoseNet) 

3D w/o res 2D w/ res 

Healthy liver 1.4% (2.3%) 5.5% (7.0%) 1.2% (3.1%) 19.6% (33.2%) 21.6% (35.1%) 23.2% (33.3%) 

Lesion 5.3% (13.0%) 6.9% (12.5%) 6.0% (13.9%) 21.2% (32.5%) 21.4% (31.5%) 21.8% (38.0%) 

Liver 1.9% (3.5%) 5.7% (7.6%) 1.9% (4.8%) 20.6% (26.3%) 21.6% (27.6%) 22.8% (26.6%) 

Left kidney 0.9% (2.1%) 5.2% (6.5%) 1.8% (3.8%) 19.2% (22.9%) 20.1% (22.0%) 19.0% (20.8%) 

Right kidney 1.8% (5.1%) 5.8% (12.6%) 2.6% (7.5%) 19.6% (21.5%) 20.5% (24.3%) 20.0% (23.6%) 

Spleen 2.5% (6.2%) 6.3% (9.5%) 2.2% (6.4%) 13.1% (17.7%) 14.4% (19.9%) 13.2% (18.2%) 

Lumbar verte-

bra 

11.1% (27.4%) 10.5% (27.2%) 12.1% (30.6%) 33.0% (51.4%) 32.9% (49.1%) 32.7% (50.2%) 

 


