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High-Dimensional Quantile Regression:

Convolution Smoothing and Concave Regularization

Kean Ming Tan*, Lan Wang† and Wen-Xin Zhou‡

Abstract

ℓ1-penalized quantile regression is widely used for analyzing high-dimensional data

with heterogeneity. It is now recognized that the ℓ1-penalty introduces non-negligible

estimation bias, while a proper use of concave regularization may lead to estimators

with refined convergence rates and oracle properties as the signal strengthens. Al-

though folded concave penalized M-estimation with strongly convex loss functions

have been well studied, the extant literature on quantile regression is relatively silent.

The main difficulty is that the quantile loss is piecewise linear: it is non-smooth and

has curvature concentrated at a single point. To overcome the lack of smoothness and

strong convexity, we propose and study a convolution-type smoothed quantile regres-

sion with iteratively reweighted ℓ1-regularization. The resulting smoothed empirical

loss is twice continuously differentiable and (provably) locally strongly convex with

high probability. We show that the iteratively reweighted ℓ1-penalized smoothed quan-

tile regression estimator, after a few iterations, achieves the optimal rate of conver-

gence, and moreover, the oracle rate and the strong oracle property under an almost

necessary and sufficient minimum signal strength condition. Extensive numerical stud-

ies corroborate our theoretical results.

Keywords: Concave regularization; Convolution; Minimum signal strength; Oracle property; Quan-

tile regression

1 Introduction

Massive complex datasets bring challenges to data analysis due to the presence of outliers and het-

erogeneity. Consider regression of a scalar response y on a p-dimensional predictor x ∈ Rp. The

least squares method focuses on the conditional mean of the outcome given the predictor. Despite

its popularity in the statistical and econometric literature, it is sensitive to outliers and fails to cap-

ture heterogeneity in the set of important features. Moreover, in many applications, the scientific

question of interest may not be fully addressed by inferring the conditional mean. Since the seminal
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work of Koenker and Bassett (1978), quantile regression (QR) has gained increasing attention by

offering a set of complementary methods designed to explore data features invisible to the inveigle-

ments of least squares methods. Quantile regression is robust to data heterogeneity and outliers, and

also offers unique insights into the entire conditional distribution of the outcome given the predictor.

We refer to Koenker (2005) and Koenker et al. (2017) for an overview of quantile regression theory,

methods and applications.

In the high-dimensional setting in which the number of features, p, exceeds the number of obser-

vations, n, it is often the case that only a small subset of a large pool of features influences the con-

ditional distribution of the outcome. To perform estimation and variable selection simultaneously,

the standard approach is to minimize the empirical loss plus a penalty on the model complexity. The

ℓ1-penalty is arguably the most commonly used penalty function that induces sparsity (Tibshirani,

1996). Least squares methods with ℓ1-regularization have been extensively studied in the past two

decades. Because of the extremely long list of relevant literature, we refer the reader to the mono-

graphs Bühlmann and van de Geer (2011), Hastie, Tibshirani and Wainwright (2015), Wainwright

(2019), Fan et al. (2020), and the references therein. In the context of quantile regression, Belloni

and Chernozhukov (2011) provided a comprehensive analysis of the ℓ1-penalized quantile regres-

sion as well as post-penalized QR estimator. Since then, the literature on high-dimensional quantile

regression has grown rapidly, and we refer to Chapter 15 of Koenker et al. (2017) for an overview.

It is now a consensus that the ℓ1-penalty induces non-negligible bias (Fan and Li, 2001; Zou,

2006; Zhang and Zhang, 2012), due to which the selected model tends to include spurious variables

unless stringent conditions are imposed on the design matrix, such as the strong irrepresentable

condition (Zhao and Yu, 2006; Meinshausen and Bühlmann, 2006). To reduce the bias induced by

the ℓ1-penalty when the signal is sufficiently strong, various concave penalty functions have been

designed (Fan and Li, 2001; Zhang, 2010a,b). For concave penalized M-estimation with convex and

locally strongly convex losses, a large body of literature has shown that there exists a local solution

that possesses the oracle property, i.e., a solution that is as efficient as the oracle estimator obtained

by assuming the true active set is known a priori, under certain minimum signal strength condition,

also known as the beta-min condition. We refer the reader to Fan and Li (2001), Zou and Li (2008),

Kim, Choi and Oh (2008), Zhang (2010b), Fan and Lv (2011), Zhang and Zhang (2012), Kim and

Kwon (2012), Loh and Wainwright (2015), and Loh (2017) for more details.

Comparably, quantile regression with concave regularization is much less understood theoreti-

cally primarily due to the challenges in analyzing the piecewise linear quantile loss and the concave

penalty simultaneously. Let β∗ ∈ Rp be the s-sparse underlying parameter vector with support

S = {1 ≤ j ≤ p : β∗
j
, 0}, and define the minimum signal strength ‖β∗S‖min = min j∈S |β∗j |. Under

a beta-min condition ‖β∗S‖min ≫ n−1/2 max{s,
√

log(p)}, Wang, Wu and Li (2012) showed that the

oracle QR estimator belongs to the set of local minima of the non-convex penalized quantile objec-

tive function with probability approaching one. From a different angle, Fan, Xue and Zou (2014)

proved that the oracle QR estimator can be obtained via the one-step local linear approximation

(LLA) algorithm (Zou and Li, 2008) under a beta-min condition ‖β∗S‖min &
√

s log(p)/n, that is,

the minimal non-zero coefficient is of order
√

s log(p)/n in magnitude. We refer to Chapter 16 of

Koenker et al. (2017) for an overview of the existing results on non-convex regularized quantile

regression. Existing work on folded concave penalized QR either impose stringent signal strength

assumptions or only establish theoretical guarantees for some local optimum which, due to non-

convexity, is not necessarily the solution obtained by any practical algorithm. In other words, there
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is no guarantee that the solution obtained from a given algorithm will satisfy the desired statistical

properties, leaving a gap between theory and practice.

A natural way to resolve the non-differentiability issue is to smooth the piecewise linear quantile

loss using a kernel. The idea of kernel smoothing was first considered by Horowitz (1998) in the

context of bootstrap inference for median regression. Horowitz (1998) showed that the estimator

obtained from the smoothed quantile loss is asymptotically equivalent to that of the standard quan-

tile regression estimator. This motivates a series of work on smoothed quantile regression when the

number of features is fixed (Whang, 2006; Wu, Ma and Yin, 2015; Galvao and Kato, 2016). How-

ever, smoothing the piecewise linear loss directly yields a non-convex function for which global

minimum is not guaranteed. This poses even more challenges in the high-dimensional setting.
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Figure 1: Plots of a standard quantile loss, Horowitz’s smoothed quantile loss (Horowitz, 1998),

and a convolution-type smoothed quantile loss.

In this paper, we propose and study a new method for quantile regression in high-dimensional

sparse models, which is based on convolution smoothing and iteratively reweighted ℓ1-penalization.

To deal with non-smoothness, we smooth the piecewise linear quantile loss via convolution. The

idea is to smooth the subgradient of the quantile loss, and then integrate it to obtain a smoothed

loss function that is also convex. See Figure 1 for a visualization of Horowitz’s and convolution

smoothing methods. Fernandes, Guerre and Horta (2021) developed the traditional asymptotic the-

ory for convolution smoothing in the context of linear quantile regression when the sample size n

tends to infinity while p is kept fixed. For high-dimensional sparse models, we extend the one-

step LLA algorithm proposed by Zou and Li (2008), and propose a multi-step, iterative procedure

which solves a weighted ℓ1-penalized smoothed quantile objective function at each iteration. This

multi-step procedure consists of a sequence of convex programs, which is similar to the multi-stage

convex relaxation method for sparse regularization (Zhang, 2010b; Fan et al., 2018). Computa-

tionally, for different smoothing kernels, typified by the uniform and Gaussian kernels, we propose

efficient algorithms to minimize the weighted ℓ1-penalized smoothed quantile objective function

at each stage. Comparing with existing methods for fitting high-dimensional quantile regression,

the proposed gradient-based algorithms are more scalable to large-scale problems with either large

sample size or high dimensionality.

Since the proposed multi-step procedure delivers a sequence of solutions iteratively, to under-
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stand how these estimators evolve statistically, we provide a delicate analysis of the estimator at

each stage whose overall estimation error consists of three components: shrinkage bias, oracle rate,

and smoothing bias. The theoretical analysis in Zhang (2010b) and Fan et al. (2018) is primarily

suited for the quadratic case, although the method applies to more general loss functions. In this

work, we aim at establishing theoretical underpinnings of why and how convolution smoothing and

iteratively reweighted ℓ1-penalization help with achieving oracle properties for quantile regression.

In particular, we show that the solution for the first iteration, i.e., the ℓ1-penalized smoothed

quantile regression, is near minimax optimal, and coincide with those of existing results for ℓ1-

penalized QR estimator. Moreover, our analysis reveals that the multi-step, iterative algorithm

refines the statistical rate in a sequential manner: every relaxation step shrinks the estimation er-

ror from the previous step by a δ-fraction for some predetermined δ ∈ (0, 1). All the results are

non-asymptotic with explicit errors depending on (s, p, n), including the deterministic smooth-

ing bias and stochastic statistical errors. With a minimal requirement on the signal strength—

‖β∗S‖min &
√

log(p)/n, we show that after as many as ℓ & ⌈log(max{log(p), s})⌉ iterations, the

multi-step algorithm will deliver an estimator that achieves the oracle rate of convergence as well

as the strong oracle property. The latter implies variable selection consistency as a byproduct. To

our knowledge, these are the first statistical characterizations of computationally feasible concave

regularized quantile regression estimators.

The rest of the paper is organized as follows. In Section 2, we describe the convolution-type

smoothing approach for quantile regression, followed by an iteratively reweighted ℓ1-penalized pro-

cedure for fitting high-dimensional sparse models. At each stage, the problem boils down to min-

imizing a weighted ℓ1-penalized smoothed quantile objective function, for which we propose effi-

cient and scalable algorithms in Section 3 with a particular focus on uniform and Gaussian kernels.

In Section 4, we provide theoretical guarantees for the sequence of estimators obtained by the multi-

step method, including estimation error bounds (in high probability) and strong oracle property. A

numerical demonstration of the proposed method on simulated data and a real data application are

provided in Sections 5 and 6, respectively. The proofs of all theoretical results are given in the on-

line supplementary material. The Python code that implements the proposed iteratively reweighted

regularized quantile regression procedure is available at https://github.com/WenxinZhou/conquer.

Notation: For every integer k ≥ 1, we use Rk to denote the the k-dimensional Euclidean space, and

write [k] = {1, . . . , k}. The inner product of any two vectors u = (u1, . . . , uk)T,v = (v1, . . . , vk)T ∈ Rk

is defined by uTv = 〈u,v〉 = ∑k
i=1 uivi. Moreover, let u◦v = (u1v1, . . . , ukvk)T denote the Hadamard

product of u and v. For a subset S ⊆ [k] with cardinality |S|, we write uS ∈ R|S| as the subvector of

u that consists of the entries of u indexed by S. We use ‖ · ‖p (1 ≤ q ≤ ∞) to denote the ℓq-norm in

R
k: ‖u‖q = (

∑k
i=1 |ui|q)1/q and ‖u‖∞ = max1≤i≤k |ui|. For k ≥ 2, Sk−1 = {u ∈ Rk : ‖u‖2 = 1} denotes

the unit sphere in Rk. For any function f : R 7→ R and vector u = (u1, . . . , uk)T ∈ Rk, we write

f (u) = ( f (u1), . . . , f (uk))T ∈ Rk.

Throughout this paper, we use bold uppercase letters to represent matrices. For k ≥ 2, Ik

represents an k × k identity matrix. For any k × k symmetric, positive semidefinite matrix A ∈ Rk×k,

we use γ(A) ∈ Rk to denote its vector of eigenvalues, ordered as γ1(A) ≥ · · · ≥ γp(A) ≥ 0, and let

‖A‖2 = γ1(A) be the operator norm of A. Moreover, let ‖ · ‖A denote the vector norm induced by A:

‖u‖A = ‖A1/2u‖2 for u ∈ Rk. For any two real numbers u and v, we write u ∨ v = max(u, v) and

u∧v = min(u, v). For two sequences of non-negative numbers {an}n≥1 and {bn}n≥1, an . bn indicates
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that there exists a constant C > 0 independent of n such that an ≥ Cbn; an & bn is equivalent to

bn . an; an ≍ bn is equivalent to an . bn and bn . an. For two numbers C1 and C2, we write

C2 = C2(C1) if C2 depends only on C1.

2 Sparse quantile regression: convolution smoothing and iterative reg-

ularization

2.1 Penalized quantile regression

We consider a scalar response variable y ∈ R and a p-dimensional feature vector x = (x1, . . . , xp)T ∈
R

p such that the τ-th conditional quantile of y given x is modeled as F−1
y|x(τ|x) = xTβ∗ for some

0 < τ < 1, where β∗ = (β∗
1
, . . . , β∗p)T ∈ Rp. Let {(yi,xi)}ni=1

be a random sample from (y,x). The

preceding model assumption is equivalent to

yi = xT

i β
∗ + εi and P(εi ≤ 0 |xi) = τ. (2.1)

Throughout the paper, we set x1 ≡ 1 so that β∗
1

denotes the intercept. To avoid notational clutter, the

dependence of β∗ and εi on τ will be assumed without displaying.

Given a random sample {(yi,xi)}ni=1
, a penalized QR estimator is generally defined as either the

global optimum or one of the local optima to the optimization problem

minimize
β=(β1,...,βp)T∈Rp

{
1

n

n∑

i=1

ρτ(yi − xT

i β)

︸                 ︷︷                 ︸
=:Q̂(β)

+

p∑

j=1

qλ(|β j|)
}
, (2.2)

where ρτ(u) = u{τ − ✶(u < 0)} is the τ-quantile function, also referred to as the check function, and

qλ(·) : [0,∞)→ [0,∞) is a sparsity-inducing penalty function parametrized by λ > 0.

Due to convexity, the ℓ1-penalized method for which qλ(t) = λt (t ≥ 0) has dominated the

literature on high-dimensional statistics. Work in the context of quantile regression include that of

Wang, Li and Jiang (2007), Belloni and Chernozhukov (2011), Bradic, Fan and Wang (2011), Wang

(2013), and Zheng, Peng and He (2015), Sivakumar and Banerjee (2017), among others. Various

algorithms can be employed to solve the resulting ℓ1-penalized problem (Bach et al., 2012; Boyd

et al., 2010; Koenker et al., 2017; Gu et al., 2018). To alleviate the non-negligible bias induced

by the ℓ1 penalty, folded concave penalties have been used in, for example, Wang, Wu and Li

(2012) and Fan, Xue and Zou (2014), leading to non-convex optimization problems. Together,

the non-differentiable quantile loss and the non-convex penalty bring fundamental statistical and

computational challenges.

Statistical theory of non-convex regularized quantile regression is relatively underdeveloped.

Most of the existing results are developed either under stringent minimum signal strength condi-

tions, or for the hypothetical global optimum (or one of the local optima). Motivated from the

algorithmic approaches developed by Zou and Li (2008) and Fan et al. (2018), we consider a multi-

step iterative method that solves a sequence of convex problems, which bypasses the computational

issues from solving the non-convex problem (2.2) directly. Theoretically, a major difficulty is that

the quantile loss is piecewise linear, so that its “curvature energy” is concentrated in a single point.

This is in contrast to many popular loss functions considered in the statistical literature, such as
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the squared, logistic, or Huber loss, which are at least locally strongly convex. Therefore, a proper

smoothing scheme that creates smoothness and local strong convexity is the key to the success of

the proposed framework.

2.2 Convolution-type smoothing approach

Let Fε|x(·) be the conditional distribution of ε given x. The population quantile loss can then be

written as

Q(β) = Ex

{∫ ∞

−∞
ρτ(u − 〈x,β − β∗〉) dFε|x(u)

}
,

where Ex(·) is the expectation taken with respect to x. Provided that the conditional distribution

Fε|x(·) is sufficiently smooth, Q(β) is twice differentiable and strongly convex in a neighborhood of

β∗. For every β ∈ Rp, let F̂(·;β) be the empirical cumulative distribution function (ECDF) of the

residuals {ri(β) := yi − xT

i
β}n

i=1
, i.e., F̂(u;β) = (1/n)

∑n
i=1 ✶{ri(β) ≤ u} for any u ∈ R. Then, the

empirical quantile loss Q̂(·) in (2.2) can be expressed as

Q̂(β) =

∫ ∞

−∞
ρτ(u) dF̂(u;β). (2.3)

Since the ECDF F̂(·;β) is discontinuous, the standard empirical quantile loss Q̂(·) has the same

degree of smoothness as ρτ(·). This motivates Fernandes, Guerre and Horta (2021) to use a kernel

CDF estimator. Given the residuals ri(β) = yi − xT

i
β and a smoothing parameter/bandwidth h =

hn > 0, let F̂h(·;β) be the distribution function of the classical Rosenblatt–Parzen kernel density

estimator:

F̂h(u;β) =

∫ u

−∞
f̂h(t;β) dt with f̂h(t;β) =

1

n

n∑

i=1

Kh

(
t − ri(β)

)
,

where K : R → [0,∞) is a symmetric, non-negative kernel that integrates to one, and Kh(u) :=

(1/h)K(u/h) for u ∈ R. Replacing F̂(u;β) in (2.3) with its kernel-smoothed counterpart F̂h(u;β)

yields the following smoothed empirical quantile loss

Q̂h(β) :=

∫ ∞

−∞
ρτ(u) dF̂h(u;β) =

1

nh

n∑

i=1

∫ ∞

−∞
ρτ(u)K

(u + xT

i
β − yi

h

)
du. (2.4)

Define the integrated kernel function K̄ : R → [0, 1] as K̄(u) =
∫ u

−∞ K(t) dt. As will be shown in

Section 4.1, the smoothed empirical quantile objective function Q̂h(β) is twice continuously dif-

ferentiable with gradient ∇Q̂h(β) = (1/n)
∑n

i=1{K̄(−ri(β)/h) − τ}xi and Hessian matrix ∇2Q̂h(β) =

(1/n)
∑n

i=1 Kh(−ri(β))xix
T

i
. Moreover, we will show that the smoothed objective function Q̂h(·) is

strongly convex in a cone local neighborhood of β∗ with high probability; see Proposition 4.2.

Remark 2.1. For a given kernel function K(·) and bandwidth h > 0, the smoothed quantile loss

Q̂h(·) defined in (2.4) can be equivalently written as Q̂h(β) = (1/n)
∑n

i=1 ℓh(yi − xT

i
β), where

ℓh(u) = (ρτ ∗ Kh)(u) =

∫ ∞

−∞
ρτ(v)Kh(v − u) dv, u ∈ R. (2.5)

Here ∗ denotes the convolution operator. To better understand this smoothing mechanism, we com-

pute the smoothed loss ℓh = ρτ ∗ Kh explicitly for several widely used kernel functions. Recall that

ρτ(u) = |u|/2 + (τ − 1/2)u.
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(i) (Uniform kernel) For the uniform kernel K(u) = (1/2)✶(|u| ≤ 1), which is the density function

of the uniform distribution on [−1, 1], the resulting smoothed loss takes the form ℓh(u) =

(h/2)U(u/h)+ (τ− 1/2)u, where U(u) = (u2/2+ 1/2)✶(|u| ≤ 1)+ |u|✶(|u| > 1) is a Huber-type

loss. Convolution plays a role of random smoothing in the sense that ℓh(u) = (1/2)E(|Zu|) +
(τ−1/2)u, where for every u ∈ R, Zu denotes a random variable uniformly distributed between

u − h and u + h.

(ii) (Gaussian kernel) For the Gaussian kernel K(u) = φ(u), the density function of a standard nor-

mal distribution, the resulting smoothed loss is ℓh(u) = (1/2)E(|Gu|)+ (τ− 1/2)u, where Gu ∼
N(u, h2). Note that |Gu| follows a folded normal distribution (Leone, Nelson and Nottingham,

1961) with mean E|Gu| = (2/π)1/2he−u2/(2h2)+u{1−2Φ(−u/h)}. Hence, the smoothed loss can

be written as ℓh(u) = (h/2)G(u/h)+ (τ− 1/2)u, where G(u) = (2/π)1/2e−u2/2 + u{1− 2Φ(−u)}.

(iii) (Laplacian kernel) In the case of the Laplacian kernel K(u) = e−|u|/2, we have ℓh(u) = ρτ(u)+

he−|u|/h/2.

(iv) (Logistic kernel) In the case of the logistic kernel K(u) = e−u/(1 + e−u)2, the resulting

smoothed loss is ℓh(u) = τu + h log(1 + e−u/h).

(v) (Epanechnikov kernel) For the Epanechnikov kernel K(u) = (3/4)(1 − u2)✶(|u| ≤ 1), the

resulting smoothed loss is ℓh(u) = (h/2)E(u/h) + (τ − 1/2)u, where E(u) = (3u2/4 − u4/8 +

3/8)✶(|u| ≤ 1) + |u|✶(|u| > 1).

2.3 Iteratively reweighted ℓ1-penalized method

Let {(yi,xi)}ni=1
be independent data vectors from the conditional quantile model (2.1) with a sparse

target parameter β∗ ∈ Rp. Extending the one-step LLA algorithm proposed by Zou and Li (2008),

we consider a multi-step, iteratively regularized method as follows. Let qλ(·) be a prespecified

penalty function that is differentiable almost everywhere. Starting at iteration 0 with an initial

estimator β̂(0), for ℓ = 1, 2, . . ., we iteratively update the previous estimator β̂(ℓ−1) by solving

β̂(ℓ) = (̂β
(ℓ)
1
, . . . , β̂

(ℓ)
p )T ∈ argmin

β=(β1,...,βp)T

{
Q̂h(β) +

p∑

j=1

q′λ(|̂β(ℓ−1)

j
|)|β j|

}
, (2.6)

where q′λ(·) is the first-order derivative of qλ(·), and Q̂h(·) is the convolution smoothed quantile

objective function defined in (2.4). To avoid notational clutter, we suppress the dependence of

{β̂(ℓ) = β̂
(ℓ)
h

(τ, λ)}ℓ≥0 on the quantile index τ, bandwidth h, and penalty level λ.

The penalty function qλ(·), or its derivative to be exact, plays the role of producing sparse solu-

tions. We consider a class of penalty functions that satisfies the following conditions.

(A1) The penalty function qλ is of the form qλ(t) = λ2q(t/λ) for t ≥ 0, where q : [0,∞) 7→ [0,∞)

satisfies: (i) q is non-decreasing on [0,∞) with q(0) = 0; (ii) q(·) is differentiable almost

everywhere on (0,∞), 0 ≤ q′(t) ≤ 1 and limt↓0 q′(t) = 1; (iii) q′(t1) ≤ q′(t2) for all t1 ≥ t2 ≥ 0.

Examples of penalties that satisfy Condition (A1) include:

1. ℓ1-penalty: q(t) = |t|. In this case, q′(t) = 1 for all t > 0. Therefore, β̂(1) defined in (2.6) with

ℓ = 1 is the ℓ1-penalized SQR estimator, and the procedure stops after the first step.
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2. Smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001): The function q(·)
is defined through its derivative q′(t) = ✶(t ≤ 1) +

(a−t)+
a−1

✶(t > 1) for t ≥ 0 and some a > 2,

and q(0) = 0. Fan and Li (2001) suggested a = 3.7 by a Bayesian argument.

3. Minimax concave penalty (MCP) (Zhang, 2010a): The function q(·) is defined through its

derivative q′(t) = (1 − t/a)+ for t ≥ 0 and some a ≥ 1, and q(0) = 0.

4. Capped-ℓ1 penalty (Zhang, 2010b): q(t) = min(a/2, t) and q′(t) = ✶(t ≤ a/2) for t ≥ 0 and

some a ≥ 1.

If we start the multi-step procedure using any penalty qλ that satisfies Condition (A1) and a

trivial initialization β̂(0) = 0, then q′λ(|̂β(0)

j
|) = q′λ(0) = λ for j = 1, . . . , p, and hence the first step

is essentially computing an ℓ1-penalized smoothed QR estimator. At each subsequent iteration, the

subproblem (2.6) can be expressed as a weighted ℓ1-penalized smoothed quantile loss minimization:

minimize
β∈Rp

{
Q̂h(β) + ‖λ ◦ β‖1

}
, (2.7)

where λ = (λ1, . . . , λp)T is a p-vector of regularization parameters with λ j ≥ 0, and ◦ denotes the

Hadamard product. We summarize this iteratively reweighted ℓ1-penalized method in Algorithm 1.

Algorithm 1 Iteratively Reweighted ℓ1-Penalized Smoothed QR.

Input: Data vectors {(yi,xi)}ni=1
, quantile index τ ∈ (0, 1), bandwidth h > 0, and an initial estimator β̂(0) ∈ Rp.

For ℓ = 1, 2, . . ., repeat

1. Set λ
(ℓ−1)

j
= q′λ(|̂β(ℓ−1)

j
|) for j = 1, . . . , p;

2. Compute

β̂(ℓ) ∈ argmin
β∈Rp

{
Q̂h(β) + ‖λ(ℓ−1) ◦ β‖1

}
; (2.8)

until convergence.

In Section 4, we will establish non-asymptotic statistical theory for the sequence of estimators

{β̂(ℓ)}ℓ≥0 initialized with β̂(0) = 0 when the penalty qλ(t) = λ2q(t/λ) obeys Condition (A1). In order

to reduce the (regularization) bias when the signal is sufficiently strong, we are particularly inter-

ested in the concave penalty q(·), which not only satisfies Condition (A1) but also has a redescending

derivative, i.e., q′(t) = 0 for all sufficiently large t.

Another widely applicable idea for bias reduction is adaptive Lasso (Zou, 2006), which is a

one-step procedure that solves, in the context of quantile regression,

β̃ ∈ argmin
β∈Rp

{
Q̂(β) + λ

p∑

j=1

w(|̃β(0)

j
|)|β j|

}
, (2.9)

where β̃(0) = (̃β
(0)

1
, . . . , β̃

(0)
p )T is an initial estimator of β∗, say the ℓ1-QR (or QR-Lasso) estimator

(Belloni and Chernozhukov, 2011), and w(t) := t−γ for t > 0 and some γ > 0. Note that the weight

function λw(·) for adaptive Lasso is quite different from q′λ(·) = λq′(·/λ) in (2.6). As discussed

in Fan and Lv (2008), an advantage of the concave penalty, such as SCAD and MCP, is that zero

is not an absorbing state: once a coefficient is shrunk to zero, it will remain zero throughout the

remaining iterations. As a result, any true positive that is left out by the initial Lasso estimator will

be missed in the second stage as well. The aforementioned is an important phenomenon which was

empirically verified by Fan et al. (2018).

8

This	article	is	protected	by	copyright.	All	rights	reserved



Remark 2.2. In practice, it is common to leave a subset of parameters, such as the intercept and

coefficients which correspond to features that are already viewed relevant, unpenalized throughout

the multi-step procedure (2.6). Given a predetermined index set R ⊆ [p], we can modify Algo-

rithm 1 by taking λ(ℓ) = (λ
(ℓ)
1
, . . . , λ

(ℓ)
p )T (ℓ ≥ 0) to be λ

(ℓ)
j
= 0 for j ∈ R and λ

(ℓ)
j
= q′λ(|̂β(ℓ)

j
|) for

j < R. Theoretically, we will study the sequence of estimates {β̂(ℓ)}ℓ≥1 obtained from Algorithm 1

because a special treatment of leaving parameters indexed byR unpenalized only makes things more

convoluted and does not bring new insights from a theoretical viewpoint.

3 Algorithm

As discussed in Section 2.3, the multi-step convex relaxation method leads to a sequence of iter-

atively reweighted ℓ1-penalized problems. Computationally, it suffices to develop efficient algo-

rithms for solving the convex problem (2.8). For several commonly used kernels, explicit forms of

the smoothed check loss functions are given in Remark 2.1. In the following sections, we present

specialized algorithms for two representative kernel functions: the uniform kernel and the Gaussian

kernel.

3.1 A coordinate descent algorithm for uniform kernel

First we describe a coordinate descent algorithm for solving (2.8) with the uniform kernel, i.e.,

K(u) = 1/2 for |u| ≤ 1. The coordinate descent algorithm is an iterative method that minimizes

the objective function with respect to one variable at a time while fixing the other variables. To

implement the algorithm, we calculate the partial derivative of the loss function in (2.8) with respect

to each variable, and derive the corresponding update for each variable while keeping the others

fixed.

The gradient of the loss function in (2.8) involves K̄(·). For the uniform kernel, we have

K̄

(xT

i
β − yi

h

)
=



1 if xT

i
β − yi ≥ h,

1
2

(xT
i
β−yi

h
+ 1

)
if |xT

i
β − yi| ≤ h,

0 if xT

i
β − yi ≤ −h.

Let C1 = {i : xT

i
β − yi ≤ −h}, C2 = {i : |xT

i
β − yi| ≤ h}, and C3 = {i : xT

i
β − yi ≥ h}. Then, the

first-order optimality condition of minimizing β j → Q̂h(β) + ‖λ(ℓ−1) ◦ β−‖1 can be written as

−τ
n∑

i=1

xi j +
1

2

∑

i∈C2

xi j +
∑

i∈C3

xi j +
1

2h

∑

i∈C2

(xT

i β − yi)xi j + nλ
(ℓ−1)

j
ẑ j = 0,

where ẑ j ∈ ∂|̂β j| is the subgradient. This leads to the following closed-form solution for β̂ j:

β̂ j = S


2hτ

∑n
i=1 xi j − 2h

∑n
i∈C3

xi j − h
∑n

i∈C2
xi j +

∑
i∈C2

xi j(yi − 〈xi,− j,β− j〉)
∑

i∈C2
x2

i j

,
2nhλ

(ℓ−1)

j∑
i∈C2

x2
i j


,

where S (a, b) = sign(a) max(|a| − b, 0) denotes the soft-thresholding operator. Therefore, a solu-

tion of (2.8) can be obtained by iteratively updating each β̂ j until convergence. The details are

summarized in Algorithm 2.
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Algorithm 2 Coordinate Descent Algorithm for Solving (2.8) with Uniform Kernel.

Input quantile level τ, smoothing parameter h, regularization parameter λ(ℓ−1), and convergence criterion ǫ.

Initialization β̂(0) = 0.

Iterate the following until the stopping criterion ‖β̂(t) − β̂(t−1)‖2 ≤ ǫ is met, where β̂(t) is the value of β

obtained at the tth iteration. That is, for each j = 1, . . . , p:

1. Set C1 = {i : xT

i
β − yi ≥ h}, C2 = {i : |xT

i
β − yi| ≤ h}, and C3 = {i : xT

i
β − yi ≤ −h}, where we use β to

denote the updated solution at the current iteration.

2. Set

β̂
(t)

j
= S


2hτ

∑n
i=1 xi j − 2h

∑n
i∈C3

xi j − h
∑n

i∈C2
xi j +

∑
i∈C2

xi j(yi − 〈xi,− j,β− j〉)
∑

i∈C2
x2

i j

,
2nhλ

(ℓ−1)

j∑
i∈C2

x2
i j


,

where S (a, b) = sign(a) max(|a| − b, 0) is the soft-thresholding operator.

Output the estimated parameter β̂(t).

Compared to the existing algorithms for solving ℓ1-regularized quantile regression, Algorithm 2

is computationally efficient especially for large-scale problems. The computational complexity is

similar to that of the coordinate descent algorithm for Lasso.

3.2 An alternating direction method of multiplier algorithm for Gaussian kernel

Next we consider the case of smoothing via the Gaussian kernel function. In this case, we have

K̄

(xT

i
β − yi

h

)
= Φ

(xT

i
β − yi

h

)
,

where Φ(·) is the cumulative distribution function of the standard normal distribution. The coor-

dinate descent approach in the previous section can no longer be employed, at least trivially, to

solve (2.8) since there is no closed-form solution of minimizing β j → Q̂h(β) + ‖λ(ℓ−1) ◦ β−‖1 with

the Gaussian kernel. To address this issue, we introduce an alternating direction method of multi-

plier (ADMM) algorithm to solve (2.8) by decoupling terms that are difficult to optimize jointly. A

similar approach has been considered in Gu et al. (2018) for solving standard quantile regression

with ℓ1-regularization. Let r = (r1, . . . , rn)⊺ with ri = yi − 〈xi,β〉. Optimization problem (2.8) can

then be rewritten as

minimize
β∈Rp,r∈Rn

{
Q̂h(r) + ‖λ(ℓ−1) ◦ β−‖1

}
,

subject to r = y − Xβ. (3.1)

The augmented Lagrangian for (3.1) is

Lρ(β, r,η) = Q̂h(r) + ‖λ(ℓ−1) ◦ β−‖1 + 〈η, r − y + Xβ〉 + ρ
2
‖r − y + Xβ‖22, (3.2)

where η is the Lagrange multiplier and ρ is a tuning parameter for the ADMM algorithm. Updates

for the ADMM can be derived by minimizing each parameter while keeping the others fixed. We

summarize the details in Algorithm 3.

The updates for β involves solving a Lasso regression problem for which efficient software is

available. Alternatively, one can also linearize the loss function as in Gu et al. (2018) to obtain
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Algorithm 3 ADMM Algorithm for Solving (2.8) with Gaussian Kernel.

Input quantile parameter τ, smoothing parameter h, regularization parameter λ(ℓ−1), and the convergence

criterion ǫ.

Initialize the primal variables β̂(0) = r̂(0) = 0 and the dual variable η̂(0) = 0.

Iterate the following until the stopping criterion ‖β̂(t) − β̂(t−1)‖2 ≤ ǫ is met:

1. Update β as

β̂(t) = argmin
β∈Rp


ρ

2

∥∥∥∥∥∥y − r̂(t−1) − 1
√
ρ
η̂(t−1) − Xβ

∥∥∥∥∥∥
2

2

+ ‖λ(ℓ−1) ◦ β−‖1

 .

2. Iterate the following until convergence: for each i = 1, . . . , n, update ri by solving

τ − Φ
(−ri

h

)
+ η̂

(t−1)

i
+ ρ

(
ri − yi + 〈xi, β̂

(t)〉) = 0.

3. Update η as

η̂(t) = η̂(t−1) + ρ
(
r̂(t) − y + Xβ̂(t)).

Output the estimated parameter β̂(t).

a closed-form solution. The updates for r can be obtained using coordinate descent algorithm by

updating each coordinate of r using standard numerical methods such as the bisection method. See

Algorithm 3 for details.

4 Statistical theory

In this section, we provide a comprehensive analysis of the sequence of regularized quantile re-

gression estimators {β̂(ℓ)}ℓ≥1 obtained by solving (2.6) iteratively, initialized with β̂(0) = 0. For

simplicity, we restrict our attention to a fixed quantile level τ ∈ (0, 1) of interest. We first char-

acterize the (deterministic) bias induced by convolution smoothing described in Section 4.1. In

Section 4.2, we provide high probability bounds (under ℓ1- and ℓ2-errors) for the one-step estimator

β̂(1), i.e., the ℓ1-penalized smoothed QR estimator (ℓ1-SQR) which is of independent interest. With

a flexible choice of the bandwidth h, these error bounds for β̂(1) are near-minimax optimal (Wang

and He, 2021), and coincide with those of the ℓ1-QR estimator Belloni and Chernozhukov (2011).

In Section 4.3, we analyze β̂(ℓ) (ℓ ≥ 2) whose overall estimation error consists of three parts: shrink-

age bias, oracle rate, and smoothing bias. Our analysis reveals that the multi-step iterative algorithm

refines the statistical rate in a sequential manner: every relaxation step shrinks the estimation error

from the previous step by a δ-fraction for some δ ∈ (0, 1). Under a necessary beta-min condition, we

show that the multi-step estimator β̂(ℓ) with ℓ & log{log(p)} achieves the oracle rate of convergence,

i.e., it shares the convergence rate of the oracle estimator that has access to the true active set. Under

a sub-Gaussian condition on the feature vector and a stronger sample size requirement, we further

show in Section 4.4 that the multi-step estimator β̂(ℓ) with ℓ & log(s) coincides with the oracle

estimator with high probability, and hence achieves variable selection consistency. Throughout, we

use the notation “.” to indicate “≤” up to constants that are independent of (s, p, n).
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4.1 Smoothing bias

To begin with, note that the smoothed quantile objective Q̂h(·) defined in (2.4) can be written as

Q̂h(β) = (1 − τ)

∫ 0

−∞
F̂h(u;β) du + τ

∫ ∞

0

{1 − F̂h(u;β)} du.

Recall the integrated kernel function K̄(u) =
∫ u

−∞ K(t) dt, which is non-decreasing and takes values

in [0, 1]. With ri(β) = yi − xT

i
β, the gradient vector and Hessian matrix of Q̂h(β) are, respectively,

∇Q̂h(β) =
1

n

n∑

i=1

{
K̄
(−ri(β)/h

) − τ}xi and ∇2Q̂h(β) =
1

n

n∑

i=1

Kh(−ri(β))xix
T

i . (4.1)

To examine the bias induced by smoothing, define the expected smoothed loss function Qh(β) =

E{Q̂h(β)}, β ∈ Rp, and the pseudo parameter

β∗h = (β∗h,1, . . . , β
∗
h,p)T ∈ argmin

β∈Rp

Qh(β), (4.2)

which is the population minimizer of the smoothed quantile loss and varies with h. In general,

β∗
h

differs from β∗ – the unknown parameter vector in model (2.1). The latter is identified as the

unique minimizer of the population quantile objective Q(β) := E{Q̂(β)}. However, as the smoothed

quantile loss ℓh(·) in (2.5) approximates the quantile loss ρτ(·) as h = hn → 0, β∗
h

is expected to

converge to β∗, and we refer to ‖β∗
h
− β∗‖2 as the approximation error or bias due to smoothing.

The following result provides upper bounds of the smoothing bias under mild conditions on the

random covariates x ∈ Rp, the conditional density of ε given x, and the kernel function. Throughout

Section 4, we assume that the second moment Σ = (σ jk)1≤ j,k≤p = E(xxT) of x = (x1, . . . , xp)T (with

x1 ≡ 1) exists and is positive definite. Moreover, let γ1 = γ1(Σ) ≥ 1, γp = γp(Σ) ∈ (0, 1], and

σ2
x = max1≤ j≤p σ j j.

(B1) The conditional density of ε given x, denoted by fε|x, satisfies fl ≤ fε|x(0) ≤ fu almost

surely (over x) for some fu ≥ fl > 0. Moreover, there exists a constant l0 > 0 such that

| fε|x(u) − fε|x(v)| ≤ l0|u − v| for all u, v ∈ R almost surely (over x).

(B2) The kernel function K : R → [0,∞) is symmetric around zero, and satisfies
∫ ∞
−∞ K(u) du = 1

and
∫ ∞
−∞ u2K(u) du < ∞. For ℓ = 1, 2, . . ., let κℓ =

∫ ∞
−∞ |u|

ℓK(u) du be the ℓ-th absolute moment

of K(·).

Proposition 4.1. Assume that Conditions (B1) and (B2) hold, and µ3 := supu∈Sp−1 E|zTu|3 < ∞
with z = Σ

−1/2x. Provided 0 < h < fl/(c0l0), β∗
h

is the unique minimizer of β 7→ Qh(β) and

satisfies

‖β∗h − β
∗‖Σ ≤ c0l0 f −1

l h2, (4.3)

where c0 = (µ3 + κ2)/2 + κ1. In addition, assume κ3 < ∞ and fε|x has an l1-Lipschitz continuous

derivative almost everywhere for some l1 > 0. Then

∥∥∥∥∥Σ
−1J(β∗h − β

∗) +
1

2
κ2h2 ·Σ−1

E
{
f ′ε|x(0)x

}∥∥∥∥∥
Σ

≤ Ch3, (4.4)

where J = E{ fε|x(0) · xxT}, and C > 0 depends only on ( fl, l0, l1, µ3) and the kernel K.
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Proposition 4.1 is a non-asymptotic version of Theorem 1 in Fernandes, Guerre and Horta

(2021), and explicitly captures the dependence of the bias on several model-based quantities. Note

that the p × p matrix J = E{ fε|x(0) · xxT} is the Hessian of the population quantile objective Q(·)
evaluated at β∗, i.e., J = ∇2Q(β∗). Under Condition (B1), flγp(Σ) ≤ γp(J) ≤ γ1(J) ≤ fuγ1(Σ). An

interesting implication of Proposition 4.1 is that, when both fε|x(0) and f ′
ε|x(0) are independent of

x (i.e., fε|x(0) = fε(0) and f ′
ε|x(0) = f ′ε(0)), the bias decomposition bound (4.4) simplifies to

∥∥∥∥∥∥ fε(0)(β∗h − β
∗) + 0.5 f ′ε(0)κ2h2


1

0p−1


∥∥∥∥∥∥
Σ

≤ Ch3.

In other words, the smoothing bias is concentrated primarily on the intercept. To some extent, this

observation further certifies the benefit of smoothing in variable selection of which the main focus

is on the slope coefficients rather than the intercept.

4.2 ℓ1-penalized smoothed quantile regression

Given a bandwidth h > 0 and a regularization parameter λ > 0, let β̂h = β̂h(τ, λ) be the ℓ1-penalized

SQR (ℓ1-SQR) estimator, defined as the solution to the following convex optimization problem:

min
β∈Rp

{
Q̂h(β) + λ‖β‖1

}
. (4.5)

In this section, we characterize the estimation error of β̂h ∈ Rp under ℓ2- and ℓ1-norms. First we

impose a moment condition on the (random) covariate vector x = (x1, . . . , xp)T ∈ Rp with x1 ≡ 1.

Without loss of generality, assume µ j = E(x j) = 0 for 2 ≤ j ≤ p; otherwise, consider a change of

variable (β1, β2, . . . , βp)T 7→ (β1 +
∑p

j=2
µ jβ j, β2, . . . , βp)T so that the obtained results apply to model

F−1
y|x(τ) = β♭

0
+

∑p

j=2
(x j − µ j)β

∗
j
, where β♭

0
= β∗

0
+

∑p

j=2
µ jβ
∗
j
.

(B3) Σ = E(xxT) is positive definite and z = Σ
−1/2x ∈ Rp is sub-exponential: there exist con-

stants υ0, c0 ≥ 1 such that P(|zTu| ≥ υ0‖u‖2 · t) ≤ c0e−t for all u ∈ Rp and t ≥ 0. For

convenience, we assume c0 = 1, and write σ2
x = max1≤ j≤p E(x2

j
).

Moreover, for r, l > 0, define the (rescaled) ℓ2-ball and ℓ1-cone as

BΣ(r) = {δ ∈ Rp : ‖δ‖Σ ≤ r} and CΣ(l) =
{
δ ∈ Rp : ‖δ‖1 ≤ l‖δ‖Σ

}
. (4.6)

Our theoretical analysis of the ℓ1-SQR estimator depends crucially on the following “good” event,

which is related to the local restricted strong convexity (RSC) of the empirical smoothed quantile

loss function. We refer the reader to Negahban et al. (2012) and Loh and Wainwright (2015) for

detailed discussions of the restricted strong convexity for regularized M-estimation in high dimen-

sions.

Definition 4.1. (Local Restricted Strong Convexity) Given radius parameters r, l > 0 and a curva-

ture parameter κ > 0, define the event

Ersc(r, l, κ) =


〈∇Q̂h(β) − ∇Q̂h(β∗),β − β∗〉

‖β − β∗‖2
Σ

≥ κ for all β ∈ β∗ + BΣ(r) ∩ CΣ(l)

 . (4.7)
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Our first result shows that, with suitably chosen (r, l, κ), the event Ersc(r, l, κ) occurs with high

probability. In order for the local RSC condition to hold, the radius parameter r has to be of the

same order as, or possibly smaller than the bandwidth h.

Proposition 4.2. Assume Conditions (B1)–(B3) hold, and κl = min|u|≤1 K(u) > 0. Moreover, let

(r, l, h) and n satisfy

20υ2
0 r ≤ h ≤ fl/(2l0) and n ≥ Cσ2

x fu f −2
l (l/r)2h log(2p) (4.8)

for a sufficiently large constant C. Then, the local RSC event Ersc(r, l, κ) with κ = (κl fl)/2 occurs

with probability at least 1 − (2p)−1.

Remark 4.1. We do not claim that the values of the constants appearing in Proposition 4.2 are

optimal. They result from non-asymptotic probabilistic bounds which reflect worst-case scenarios.

The condition min|u|≤1 K(u) > 0 is only for theoretical and notational convenience. If the kernel

K(·) is compactly supported on [−1, 1], we may rescale it to obtain Ka(u) = (1/a)K(u/a) for some

a > 1. Then, Ka(·) is supported on [−a, a] with min|u|≤1 K(u) > 0. For example,

(i) (Gaussian kernel) if K(u) = (2π)−1/2e−u2/2 is the Gaussian kernel, we have κl = (2πe)−1/2 ≈
0.242 and κ2 = 1;

(ii) (Uniform kernel) if K(u) = (1/2)✶(|u| ≤ 1) is the uniform kernel, we may consider its rescaled

version K3/2(u) = (1/3)✶(|u| ≤ 3/2). In this case, κl = 1/3 and κ2 = 3/4.

Throughout, we view (κl, κ2) as absolute constants.

Theorem 4.1. Under the conditional quantile model (2.1) with β∗ ∈ Rp being s-sparse, assume

Conditions (B1)–(B3) hold with κl = min|u|≤1 K(u) > 0. Then, the ℓ1-SQR estimator β̂ = β̂h with

λ ≍ σx

√
τ(1 − τ) log(p)/n satisfies the bounds

‖β̂ − β∗‖2 ≤ C1 f −1
l s1/2λ and ‖β̂ − β∗‖1 ≤ C2 f −1

l sλ (4.9)

with probability at least 1 − p−1, provided that the bandwidth satisfies

max

(
σx

fl

√
s log p

n
,
σ2
x fu

f 2
l

s log p

n

)
. h ≤ min

{
fl/(2l0), (s1/2λ)1/2},

where the constants C1,C2 > 0 depend only on (l0, υ0, γp, κl, κ2).

The above theorem shows that with a proper yet flexible choice of the bandwidth, the ℓ1-

penalized smoothed QR estimator achieves the same rate of convergence as the ℓ1-QR estimator

under both ℓ1- and ℓ2-errors (Belloni and Chernozhukov, 2011). Technically, we assume the ran-

dom feature vector is sub-exponential, which is arguably the weakest moment condition in high-

dimensional regression analysis under random design (Wainwright, 2019). This preliminary result

is of independent interest, and more importantly, it paves the way for further analysis of smoothed

quantile regression with iteratively reweighted ℓ1-regularization.
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4.3 Concave regularization and oracle rate of convergence

In this section, we derive rates of convergence for the solution path {β̂(ℓ)}ℓ=1,2,... of the multi-step

iterative algorithm defined in (2.6). Starting from β̂(0) = 0, we note that β̂(1) is exactly the ℓ1-SQR

estimator studied in the previous section; see Theorem 4.1. For subsequent β̂(ℓ)’s, we first state the

result as a deterministic claim in Theorem 4.2, but conditioned on some “good” event regarding the

local RSC property and the gradient of Q̂h(·) at β∗. Under Condition (B3) on the random covariate

vector, probabilistic claims enter in certifying that this “good” event holds with high probability

with a suitable choice of λ and h; see Theorem 4.3.

Recall the event Ersc(r, l, κ) defined in (4.7) on which a local RSC property of the smoothed

quantile objective Q̂h(·) holds, where κ is a curvature parameter. Moreover, define

w∗h = wh(β∗) ∈ Rp and b∗h = ‖Σ
−1/2∇Qh(β∗)‖2, (4.10)

where wh(β) = ∇Q̂h(β) − ∇Qh(β) is the centered score function, and b∗
h
≥ 0 quantifies the bias

induced by smoothing. For the standard quantile loss, we have ∇Q(β∗) = 0. Under Conditions (B1)

and (B2), examine the proof of Proposition 4.1 yields b∗
h
≤ l0κ2h2/2, that is, the smoothing bias

has magnitude of the order h2. To refine the statistical rate obtained in Theorem 4.1, which is

near-minimax optimal for estimating sparse targets, we need an additional beta-min condition on

‖β∗S‖min = min j∈S |β∗j |, where S = {1 ≤ j ≤ p : β∗
j
, 0} is the active set of β∗. For a deterministic

analysis, we first derive the contraction property of the solution path {β̂(ℓ)}ℓ≥1 conditioned on some

“good” event.

Theorem 4.2. Given κ > 0 and a penalty function q(·) satisfying (A1), assume that there exists

some constant α0 > 0 such that

α0√
1 + {q′(α0)/2}2

>
1

κγp

and q′(α0) > 0. (4.11)

Let the penalty level λ and bandwidth h satisfy b∗
h
≤ (s/γp)1/2λ. Moreover, define ropt = γ

1/2
p α0cs1/2λ

and l = {(2 + 2
q′(α0)

)(c2 + 1)1/2 + 2
q′(α0)
}(s/γp)1/2, where the constant c > 0 is defined through the

equation

0.5q′(α0)(c2 + 1)1/2 + 2 = α0κγp · c. (4.12)

Then, for any r ≥ ropt, conditioned on the event Ersc(r, l, κ) ∩ {‖w∗
h
‖∞ ≤ 0.5q′(α0)λ}, the sequence

of solutions {β̂(ℓ)}ℓ≥1 to programs (2.6) satisfies

‖β̂(ℓ) − β∗‖Σ ≤ δ · ‖β̂(ℓ−1) − β∗‖Σ + κ−1γ
−1/2
p

{‖q′λ((|β∗S| − α0λ)+)‖2 + ‖w∗h,S‖2
}

︸                                                 ︷︷                                                 ︸
=:rora

+ κ−1b∗h, (4.13)

where δ =
√

1 + {q′(α0)/2}2/(α0κγp) ∈ (0, 1) and u+ = max(u, 0). In addition,

‖β̂(ℓ) − β∗‖Σ ≤ δℓ−1ropt + (1 − δ)−1(rora + κ
−1b∗h

)
for any ℓ ≥ 2. (4.14)

Theorem 4.2 reveals how iteratively reweighted ℓ1-penalization refines the statistical rate in a

sequential manner: every relaxation step shrinks the estimation error from the previous step by a

δ-fraction. The error term that does not vary with reweighted penalization consists of
∥∥∥q′λ

(
(|β∗S| − α0λ)+

)∥∥∥
2︸                    ︷︷                    ︸

shrinkage bias

,
∥∥∥w∗

h,S
∥∥∥

2︸   ︷︷   ︸
oracle rate

, and b∗h︸︷︷︸
smoothing bias

.
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The first term ‖q′λ((|β∗S| − α0λ)+)‖2 is known as the shrinkage bias induced by the folded-concave

penalty function (Fan et al., 2018). For the ℓ1-norm penalty, i.e., qλ(t) = λ|t| and q′λ(t) = λ sign(t),

the shrinkage bias can be as large as s1/2λ. Without any prior knowledge on the signal strength,

we have ‖q′λ((|β∗S| − α0λ)+)‖2 ≤ ‖q′λ(0S)‖2 = s1/2λ for any penalty qλ satisfying Condition (A1).

Assume qλ(t) = λ2q(t/λ) is a concave penalty defined on R+ with α∗ := inf{α > 0 : q′(α) = 0} < ∞.

Given a regularization parameter λ > 0, consider the decomposition S = S0 ∪ S1, where

S0 =
{
j ∈ S : |β j| < (α0 + α∗)λ

}
and S1 =

{
j ∈ S : |β j| ≥ (α0 + α∗)λ

}

have cardinalities s0 and s1, respectively. The shrinkage bias term can then be bounded by

‖q′λ((|β∗S| − α0λ)+)‖2 ≤ ‖q′λ(0S0
)‖2 = s

1/2
0
λ.

Under the beta-min condition ‖β∗S‖min ≥ (α0 + α∗)λ, the shrinkage bias vanishes, and hence the

final rate of convergence is determined by ‖w∗
h,S‖2 and b∗

h
. As previously noted, the latter is the

smoothing bias term, and satisfies b∗
h
≤ l0κ2h2/2.

The terminology “oracle” stems from the “oracle estimator”, defined as the QR estimator that

knows in advance the true subset of the important features. For a better comparison, we define the

oracle smoothed QR estimator as

β̂ora = argmin
β∈Rp:βSc=0

Q̂h(β) = argmin
β∈Rp:βSc=0

1

n

n∑

i=1

ℓh(yi − xT

i,SβS), (4.15)

where ℓh(·) is the smoothed quantile loss given in (2.5). As we will show in Section 4.4, the oracle

SQR estimator β̂ora satisfies the bound

‖β̂ora − β∗‖2 . ‖w∗h,S‖2 + h2

with high probability, and ‖w∗
h,S‖2 is of order

√
s/n.

Theorem 4.2 is a deterministic result. Probabilistic claims enter in certifying that the local RSC

condition holds with high probability (see Proposition 4.2), and in verifying that the “good” event

{‖w∗
h
‖∞ ≤ 0.5q′(α0)λ} occurs with high probability with a specified choice of λ. The following

theorem states, under a necessary beta-min condition, the iteratively reweighted ℓ1-penalized SQR

(IRW-ℓ1-SQR) estimator β̂(ℓ), after a few iterations, achieves the estimation error of the oracle that

knows the sparsity pattern of β∗.

Theorem 4.3. In addition to Conditions (A1), (B1)–(B3), assume there exist α1 > α0 > 0 such that

q′(α0) > 0,
α0√

4 + {q′(α0}2
> (κl flγp)−1 and q′(α1) = 0, (4.16)

where κl = min|u|≤1 K(u) > 0. Moreover, let the regularization parameter λ and bandwidth h satisfy

λ ≍ σx

√
τ(1 − τ) log(p)/n and

max

(
σx

fl

√
s log p

n
,
σ2
x fu

f 2
l

s log p

n

)
. h . (s1/2λ)1/2.

For any t ≥ 0, under the beta-min condition ‖β∗S‖min ≥ (α0+α1)λ and scaling n & max{s log(p), s+t},
the IRW-ℓ1-SQR estimator β̂(ℓ) with ℓ & ⌈log{log(p)}/ log(1/δ)⌉ satisfies the bounds

‖β̂(ℓ) − β∗‖2 . f −1
l

(√
s + t

n
+ h2

)
and ‖β̂(ℓ) − β∗‖1 . f −1

l s1/2

(√
s + t

n
+ h2

)
(4.17)

with probability at least 1 − p−1 − e−t, where δ =
√

4 + {q′(α0)}2/(α0κl flγp) ∈ (0, 1).
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Remark 4.2 (Oracle rate of convergence and high-dimensional scaling). The conclusion of Theo-

rem 4.3 is referred to as the weak oracle property: the IRW-ℓ1-SQR estimator achieves the con-

vergence rate of the oracle β̂ora when the support set S were known a priori. Starting from

β̂(0) = 0, the one-step estimator β̂(1) (ℓ1-SQR) has an estimation error (under ℓ2-norm) of order√
s · log(p)/n (see Theorem 4.1). Under an almost necessary and sufficient beta-min condition—

‖β∗S‖min &
√

log(p)/n, a refined near-oracle statistical rate
√

s/n+h2 can be attained by a multi-step

iterative procedure, which solves a sequence of convex programs. Here,
√

s/n is referred to as the

oracle rate, and the h2-term quantifies the smoothing bias (Proposition 4.1). In order to certify

the local RSC property of the smoothed objective function, the bandwidth should have magnitude at

least of the order
√

s log(p)/n. If we choose a bandwidth h ≍
√

s log(p)/n, the ℓ2-error of the multi-

step estimator will be of order
√

s/n + s log(p)/n under the high-dimensional scaling n & s log(p).

Intuitively, the main reason for having an extra term s log(p)/n is that even if the underlying vector

β∗ is s-sparse, the population parameter β∗
h
∈ Rp corresponding to the smoothed objective function

(see (4.2)) may be denser. As a result, there is a statistical price to pay for smoothing.

Remark 4.3 (Minimum signal strength and oracle rate). In a linear regression model y = xTβ∗ + ε

with a Gaussian error ε ∼ N(0, σ2), consider the parameter space Ωs,a = {β ∈ Rp : ‖β‖0 ≤
s,min j:β j,0 |β j| ≥ a} for a > 0. Assuming that the design matrix X = (x1, . . . ,xn)T ∈ Rn×p satisfies

a restricted isometry property and has normalized columns (each column has an ℓ2-norm equal

to
√

n), Ndaoud (2019) derived the following sharp lower bounds for the minimax risk ψ(s, a) :=

inf
β̂

supβ∗∈Ωs,a
E‖β̂ − β∗‖2

2
: for any ǫ ∈ (0, 1),

ψ(s, a) ≥ {1 + o(1)}2σ
2s log(ep/s)

n
for any a ≤ (1 − ǫ)σ

√
2 log(ep/s)

n

and

ψ(s, a) ≥ {1 + o(1)}σ
2s

n
for any a ≥ (1 + ǫ)σ

√
2 log(ep/s)

n
,

where the limit corresponds to s/p→ 0 and s log(ep/s)/n→ 0. The minimax rate 2σ2s log(ep/s)/n

can be attained by both Lasso and Slope (Bellec, Lecué and Tsybakov, 2018), while the oracle rate

σ2s/n can only be achieved when the magnitude of the minimum signal is of order σ
√

log(p/s)/n.

For estimating an s-sparse vector β∗ ∈ Rp in the conditional quantile model (2.1), Wang and He

(2021) proved the lower bound
√

s log(p/s)/n for the minimax estimation error under ℓ2-norm.

In order to achieve the refined oracle rate, Fan, Xue and Zou (2014) required a stronger beta-min

condition, i.e., ‖β∗S‖min &
√

s log(p)/n, and a stringent independence assumption between ε and x

in the conditional quantile model (2.1). The beta-min condition imposed in Theorems 4.2 and 4.3

is almost necessary and sufficient, and is the weakest possible up to constant factors.

4.4 Strong oracle property

In this section, we establish the strong oracle property for the multi-step estimator β̂(ℓ) when ℓ is

sufficiently large, i.e., β̂(ℓ) equals the oracle estimator β̂ora with high probability (Fan and Lv, 2011).

To this end, we define a similar local RSC event to Ersc(r, l, κ) given in (4.7). Recall that S ⊆ [p] is

the support of β∗. Given radius parameters r, l > 0 and a curvature parameter κ > 0, define

Grsc(r, l, κ) =


〈Q̂h(β1) − ∇Q̂h(β2),β1 − β2〉

‖β1 − β2‖2Σ
≥ κ for all (β1,β2) ∈ Λ(r, l)

 , (4.18)
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where Λ(r, l) := {(β1,β2) : β1 ∈ β2 +BΣ(r)∩CΣ(l),β2 ∈ β∗ +BΣ(r/2), supp(β2) ⊆ S}. Similarly

to (4.10), we define the oracle score

wora
h = ∇Q̂h(β̂ora) ∈ Rp, (4.19)

where β̂ora is defined in (4.15). By the optimality of β̂ora, we have wora
h,S = (−1/n)

∑n
i=1 ℓ

′
h
(yi −

xT

i,Sβ̂
ora
S )xi,S = 0s. Like Theorem 4.2, the following result is also deterministic given the stated

conditioning.

Theorem 4.4. Assume Condition (A1) holds, and for some predetermined δ ∈ (0, 1) and κ > 0,

there exist constants α1 > α0 > 0 such that

q′(α0) > 0,
α0√

1 + {q′(α0)/2}2
>

1

δκγp

and q′(α1) = 0. (4.20)

Moreover, let r ≥ γ1/2
p α0c1s1/2λ and l = {2 + 2

q′(α0)
}(c2

1
+ 1)1/2(s/γp)1/2, where c1 > 0 is a constant

determined by

0.5q′(α0)(c2
1 + 1)1/2 + 1 = α0κγpc1. (4.21)

Assume the beta-min condition ‖β∗S‖min ≥ (α0 + α1)λ holds. Then, conditioned on the event

{‖wora
h ‖∞ ≤ 0.5q′(α0)λ

} ∩ {‖β̂ora − β∗‖Σ ≤ r/2
} ∩ Grsc(r, l, κ)

∩
‖β̂

ora − β∗‖∞ ≤
α0 −

√
1 + {q′(α0)/2}2

δκγp

 λ
 , (4.22)

the strong oracle property holds: β̂(ℓ) = β̂ora provided ℓ ≥ ⌈log(s1/2/δ)/ log(1/δ)⌉.

Our next goal is is to control the probability of the events in (4.22). To this end, we need the

following statistical properties of the oracle estimator β̂ora, including a deviation bound and a non-

asymptotic Kiefer-Bahadur representation that are of independent interest. The latter requires a

slightly stronger moment condition on the random feature.

(B1′) In addition to Condition (B1), assume supu∈R | fε|x(u)| ≤ fu < ∞ almost surely over x.

(B2′) In addition to Condition (B2), assume supu∈R K(u) ≤ κu for some κu ∈ (0, 1].

(B3′) The (random) covariate vector x = Σ
1/2z ∈ Rp is sub-Gaussian: there exists some υ1 ≥ 1

such that P(|zTu| ≥ υ1‖u‖2 · t) ≤ 2e−t2/2 for all u ∈ Rp and t ≥ 0.

Note that the oracle β̂ora ∈ Rp with β̂ora
Sc = 0 is essentially an unpenalized smoothed QR estima-

tor in the low-dimensional regime “s ≪ n”. We refer to Fernandes, Guerre and Horta (2021) for a

comprehensive asymptotic analysis when s is fixed, and He et al. (2020) for a finite sample theory

when s is allowed to grow with n. This paper concerns the case where both s (intrinsic dimension)

and p (ambient dimension) can grow with sample size n. We therefore summarize the estimation

bound and Bahadur representation for β̂ora
S by He et al. (2020) in the following proposition. Let

S = E(xSx
T

S) and D = E{ fε|x(0) · xSxT

S} (4.23)

be, respectively, the s × s sub-matrices of Σ and J indexed by the true support S ⊆ [p].
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Proposition 4.3. Assume Conditions (B1′)–(B3′) hold. For any t ≥ 0, suppose the sample size n

and the bandwidth h = hn are such that n & s+ t and
√

(s + t)/n . h . 1. Then, the oracle estimator

β̂ora defined in (4.15) satisfies

‖β̂ora − β∗‖Σ = ‖(β̂ora − β∗)S‖S . f −1
l

(√
s + t

n
+ h2

)
(4.24)

with probability at least 1 − 2e−t. Moreover,

∥∥∥∥∥D(β̂ora − β∗)S +
1

n

n∑

i=1

{
K̄(−εi/h) − τ}xi,S

∥∥∥∥∥
S−1
.

s + t

h1/2n
+ h

√
s + t

n
+ h3 (4.25)

with probability at least 1 − 3e−t.

Finally, with the above preparations, we are able to establish the strong oracle property of β̂(ℓ)

when ℓ is sufficiently large.

Theorem 4.5. Assume Conditions (B1′)–(B3′) and (A1) hold with κl = min|u|≤1 K(u) > 0 and

max
j∈Sc
‖J jS(JSS)−1‖1 ≤ A0. (4.26)

for some A0 ≥ 1. For a prespecified δ ∈ (0, 1), suppose there exist constants α1 > α0 satisfying

(4.20) with κ = κl fl/2, and the beta-min condition ‖β∗S‖min ≥ (α0 + α1)λ. Choose the bandwidth

h and penalty level λ as h ≍ {log(p)/n}1/4 and λ ≍
√

log(p)/n. Then, with probability at least

1 − 2p−1 − 5n−1, β̂(ℓ) = β̂ora for all ℓ ≥ ⌈log(s1/2/δ)/ log(1/δ)⌉, provided that the sparsity s and

ambient dimension p obey the growth condition max{s2 log(p), s8/3/(log p)} . n.

As stated in Theorem 4.5, in addition to the beta-min condition ‖β∗S‖min &
√

log(p)/n, we

need an extra assumption (4.26) to establish the strong oracle property. Informally speaking, if we

regress every spurious (density-weighted) feature fε|x(0) · x j ( j ∈ Sc) on the important (density-

weighted) features fε|x(0) · xS, (4.26) requires the ℓ1-norm of the resulting regression coefficient

vector to be bounded by A0. It is worth noting that assumption (4.26) is much weaker than the

irrepresentable condition, which is sufficient and nearly necessary for model consistency of the

Lasso (Zhao and Yu, 2006; Meinshausen and Bühlmann, 2006; Lahiri, 2021) in the conditional

mean model. A population version of the irrepresentable condition is that, for some α ∈ (0, 1),

max j∈Sc ‖Σ jS(ΣSS)−1‖1 ≤ α.

For conditional mean regression with heavy-tailed errors, Loh (2017) established the strong

oracle property for any local stationary point of the folded concave penalized optimization problem

(2.2) subject to an ℓ1-ball constraint, when the loss function is twice differentiable. The required

growth condition on (s, p) is max{s log(p), s2} . n; see Theorem 2 in Loh (2017). For sparse

quantile regression, our result requires a slightly stronger scaling max{s2 log(p), s8/3/(log p)} . n

due to the non-smoothness of the quantile loss. Intuitively, the strong oracle property is related to

the second-order accuracy and efficiency: the oracle estimator is asymptotically normal provided

that the sparsity s does not grow too fast with the sample size. For Huber’s M-estimator, He and

Shao (2000) proved the asymptotic normality for its linear functionals under the scaling s2 log(s) =

o(n); while in the context of quantile regression, the same asymptotic results usually hold under

stronger growth conditions due to both non-linearity and non-smoothness of the problem, such as

s3(log n)2 = o(n) (Welsh, 1989; He and Shao, 2000) and s8/3 = o(n) (He et al., 2020). To some

extent, this explains why the high-dimensional scaling in our Theorem 4.5 is slightly stronger than

those needed for regularized M-estimators with smooth loss functions.
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5 Numerical study

We perform numerical studies to assess the performance of the proposed regularized quantile re-

gression method using ℓ1 and SCAD penalties. The SCAD penalty (Fan and Li, 2001) is defined

through its derivative that takes the form q′λ(t) = λ✶(t ≤ λ) + (a − 1)−1(aλ − t)+✶(t > λ) for t ≥ 0,

where we pick a = 3.7 as suggested in Fan and Li (2001), although it may not be the optimal value

for quantile regression. We use uniform and Gaussian kernels to smooth the quantile loss, and then

employ the multi-stage convex relaxation method described in Algorithm 1 with ℓ = 3 iterations.

We will show later in this section that for moderately large p, ℓ = 3 iterations is often sufficient and

that more iterations will lead to little to no improvement in terms of estimation accuracy.

We compare our proposal—iteratively reweighted ℓ1-penalized smoothed quantile regression,

with the standard Lasso implemented by the R packageg glmnet, and both ℓ1- and folded con-

cave penalized quantile regressions implemented by the R package FHDQR (Gu et al., 2018). As a

benchmark, we also compute the oracle estimator by fitting unpenalized quantile regression using

the important covariates. The regularization parameter λ for Lasso and penalized QR is selected

via five-fold cross-validation; for the latter, we use the check loss to define the validation error.

Specifically, we choose the λ value that yields the minimum cross-validation error under the ℓ2-loss

and check loss for Lasso and penalized QR, respectively. The proposed method involves a smooth-

ing parameter h, which can also be tuned via cross-validation in practice. Recall that convolution

smoothing facilitates optimization through a balanced trade-off between statistical accuracy and

computational complexity. Our numerical experiments show that the results are rather insensitive to

the choice of the bandwidth provide that it is in a reasonable range (neither too small nor too large).

The default value of h is set to be max{0.05,
√
τ(1 − τ){log(p)/n}1/4}. We note that this particular

choice of h is by no means optimal numerically.

For all the numerical experiments, we generate synthetic data {(yi,xi)}ni=1
from a linear model

yi = xT

i
β∗+εi with β∗ = (1.8, 0, 1.6, 0, 1.4, 0, 1.2, 0, 1, 0,−1, 0,−1.2, 0,−1.4, 0,−1.6, 0,−1.8, 0p−19)T,

and xi ∼ Np(0,Σ) with Σ = (0.7| j−k|)1≤ j,k≤p. The random error follows one of the following four

distributions: (i) standard normal distribution N(0, 1); (ii) t-distribution with 1.5 degrees of free-

dom; (iii) standard Cauchy distribution; and (iv) a mixture of normal distributions – 0.7N(0, 1) +

0.3N(0, 25).

To evaluate the performance across different methods, we report the true and false positive

rates (TPR and FPR), defined as the proportion of correctly estimated nonzeros and the proportion

of falsely estimated nonzeros, respectively. We also report the sum of squared errors (SSE), i.e.,

‖β̂ − β∗‖2
2
. Results for four different noise distributions under moderate (n = 500, p = 400) and

high-dimensional settings (n = 500, p = 1000), averaged over 100 replications, are displayed in

Tables 1–4.

Under the Gaussian random noise, we see from Table 1 that all methods have similar TPR and

FPR. The Lasso has the lowest SSE compared to QR-Lasso and SQR-Lasso, which coincides with

the fact that quantile regression does lose some efficiency in a normal model. For both standard

and smoothed quantile regressions, iteratively reweighted regularization with the SCAD penalty

considerably reduces the estimation error, is proximate to the oracle procedure. Similar results

hold when the minimax concave penalty is used. This supports our theoretical results on SQR

that concave regularization improves the estimation error from
√

s log(p)/n to the near-oracle rate√
{s + log(p)}/n. Among all regularized quantile regression methods, the proposed procedure—
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iteratively reweighted ℓ1-penalized SQR with either uniform or Gaussian kernel smoothing—has

the best overall performance.

Table 1: Numerical comparisons under Gaussian model. The empirical average (and standard error)

of the true and false positive rates (TPR and FPR) as well as the sum of squared errors (SSE), over

100 simulations, are reported.

Moderate Dimension (n = 500, p = 400) High Dimension (n = 500, p = 1000)

Methods TPR FPR Error TPR FPR Error

Lasso 1 (0) 0.067 (0.003) 0.147 (0.006) 1 (0) 0.033 (0.001) 0.167 (0.006)

SCAD 1 (0) 0.055 (0.003) 0.062 (0.012) 1 (0) 0.026 (0.001) 0.051 (0.003)

QR-Lasso 1 (0) 0.119 (0.006) 0.240 (0.009) 1 (0) 0.068 (0.003) 0.284 (0.009)

QR-SCAD 1 (0) 0.112 (0.006) 0.183 (0.014) 1 (0) 0.069 (0.004) 0.161 (0.010)

SQR-Lasso (uniform) 1 (0) 0.066 (0.003) 0.224 (0.013) 1 (0) 0.036 (0.002) 0.234 (0.007)

SQR-SCAD (uniform) 1 (0) 0.057 (0.004) 0.129 (0.011) 1 (0) 0.032 (0.002) 0.116 (0.008)

SQR-Lasso (Gaussian) 1 (0) 0.072 (0.004) 0.191 (0.007) 1 (0) 0.034 (0.002) 0.223 (0.007)

SQR-SCAD (Gaussian) 1 (0) 0.056 (0.003) 0.131 (0.010) 1 (0) 0.028 (0.002) 0.108 (0.007)

Oracle 1 (0) 0 (0) 0.049 (0.003) 1 (0) 0 (0) 0.053 (0.003)

Next, we examine the performance of different methods when outliers are present. From Ta-

ble 2 we see that the Lasso has the highest SSE with TPR merely above 0.5 in both moderate-

and high-dimensional settings. In contrast, regularized quantile regression methods have high TPR

while maintain low FPR. The FPR and SSE for SQR are further reduced by a visible margin when

the SCAD penalty is used. This corroborates our main message that high-dimensional quantile re-

gression significantly benefits from smoothing and non-convex regularization. Similar results can

be found in Table 3 and 4 for Cauchy and a mixture normal error distributions.

Table 2: Numerical comparisons under t1.5 model.

Moderate Dimension (n = 500, p = 400) High Dimension (n = 500, p = 1000)

Methods TPR FPR Error TPR FPR Error

Lasso 0.908 (0.016) 0.052 (0.002) 4.615 (0.401) 0.854 (0.022) 0.023 (0.001) 5.668 (0.524)

SCAD 0.842 (0.020) 0.044 (0.002) 7.138 (0.739 0.790 (0.024) 0.019 (0.001) 8.253 (0.762)

QR-Lasso 1 (0) 0.112 (0.005) 0.417 (0.015) 1 (0) 0.065 (0.003) 0.541 (0.021)

QR-SCAD 1 (0) 0.103 (0.005) 0.346 (0.024) 1 (0) 0.062 (0.003) 0.362 (0.022)

SQR-Lasso (uniform) 0.999 (0.001) 0.067 (0.004) 0.387 (0.032) 1 (0) 0.032 (0.002) 0.433 (0.017)

SQR-SCAD (uniform) 0.999 (0.001) 0.055 (0.004) 0.266 (0.028) 1 (0) 0.028 (0.002) 0.230 (0.017)

SQR-Lasso (Gaussian) 1 (0) 0.066 (0.003) 0.332 (0.012) 1 (0) 0.030 (0.001) 0.420 (0.017)

SQR-SCAD (Gaussian) 1 (0) 0.048 (0.003) 0.238 (0.018) 1 (0) 0.024 (0.001) 0.220 (0.015)

Oracle 1 (0) 0 (0) 0.065 (0.004) 1 (0) 0 (0) 0.074 (0.004)

Lastly, we assess more closely the effects of iteratively reweighted ℓ1-regularization; see Al-

gorithm 1. We keep the above model settings and focus on three different noise distributions: (i)

t distribution with 1.5 degrees of freedom; (ii) standard Cauchy distribution; and (iii) a mixture

normal distribution. For simplicity, we set the tuning parameter λ = 0.5
√

log(p)/n. We run Algo-

rithm 1 with uniform kernel and stop after 7 iterations. Starting with β̂(0) = 0, recall that β̂(1) is the

SQR-Lasso estimator. To quantify the relative performance of the solution path, at ℓth iteration, we

define the relative improvement of β̂(ℓ) with respect to β̂(ℓ−1) as

‖β̂(ℓ−1) − β∗‖2
2
− ‖β̂(ℓ) − β∗‖2

2

‖β̂(1) − β∗‖2
2

, ℓ ≥ 2. (5.1)
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Table 3: Numerical comparisons under Cauchy model.

Moderate Dimension (n = 500, p = 400) High Dimension (n = 500, p = 1000)

Methods TPR FPR Error TPR FPR Error

Lasso 0.344 (0.032) 0.021 (0.003) 16.799 (0.522) 0.305 (0.033) 0.009 (0.001) 17.479 (0.953)

SCAD 0.297 (0.028) 0.020 (0.002) 20.382 (0.860) 0.272 (0.029) 0.009 (0.001) 19.526 (0.871)

QR-Lasso 1 (0) 0.118 (0.004) 0.546 (0.022) 1 (0) 0.060 (0.002) 0.709 (0.025)

QR-SCAD 1 (0) 0.112 (0.005) 0.585 (0.047) 1 (0) 0.058 (0.002) 0.473 (0.034)

SQR-Lasso (uniform) 0.990 (0.004) 0.054 (0.002) 0.628 (0.070) 0.999 (0.010) 0.030 (0.002) 0.588 (0.042)

SQR-SCAD (uniform) 0.992 (0.004) 0.045 (0.003) 0.391 (0.047) 0.998 (0.002) 0.026 (0.001) 0.308 (0.031)

SQR-Lasso (Gaussian) 1 (0) 0.058 (0.002) 0.434 (0.017) 1 (0) 0.028 (0.001) 0.533 (0.019)

SQR-SCAD (Gaussian) 1 (0) 0.042 (0.002) 0.298 (0.021) 1 (0) 0.022 (0.001) 0.276 (0.021)

Oracle 1 (0) 0 (0) 0.076 (0.004) 1 (0) 0 (0) 0.080 (0.004)

Table 4: Numerical comparisons under mixture normal model.

Moderate Dimension (n = 500, p = 400) High Dimension (n = 500, p = 1000)

Methods TPR FPR Error TPR FPR Error

Lasso 0.999 (0.001) 0.062 (0.003) 1.253 (0.058) 1 (0) 0.030 (0.001) 1.346 (0.047)

SCAD 0.996 (0.002) 0.048 (0.002) 0.606 (0.063) 0.995 (0.002) 0.025 (0.001) 0.746 (0.070)

QR-Lasso 1 (0) 0.126 (0.005) 0.507 (0.019) 1 (0) 0.059 (0.002) 0.559 (0.017)

QR-SCAD 1 (0) 0.121 (0.006) 0.546 (0.041) 1 (0) 0.057 (0.002) 0.361 (0.020)

SQR-Lasso (uniform) 0.999 (0.001) 0.070 (0.004) 0.496 (0.040) 1 (0) 0.030 (0.002) 0.462 (0.013)

SQR-SCAD (uniform) 1 (0) 0.060 (0.004) 0.366 (0.029) 1 (0) 0.026 (0.002) 0.244 (0.016)

SQR-Lasso (Gaussian) 1 (0) 0.072 (0.003) 0.405 (0.015) 1 (0) 0.029 (0.001) 0.443 (0.013)

SQR-SCAD (Gaussian) 1 (0) 0.054 (0.003) 0.346 (0.024) 1 (0) 0.024 (0.001) 0.242 (0.015)

Oracle 1 (0) 0 (0) 0.087 (0.005) 1 (0) 0 (0) 0.086 (0.004)

The relative improvement is a value between zero and one. A value close to zero indicates that

there is little improvement in estimation error and vice versa. The results for n = 500 and p ∈
{200, 400, 1000, 2000}, averaged over 100 replications, are summarized in Figure 2. We see that

running an additional iteration (ℓ = 2) leads to the most significant improvement. The estimator,

after ℓ = 3 iterations, can still be improved under the t and Cauchy models. In all the (n, p) settings

considered, running ℓ ≥ 4 iterations only shows marginal improvement, suggesting that the multi-

step procedure with ℓ = 3 is sufficient for moderate-scale datasets.

6 An application to gene expression data

We apply the proposed method to an expression quantitative trait locus (eQTL) dataset previously

analyzed in Scheetz et al. (2006), Kim, Choi and Oh (2008) and Wang, Wu and Li (2012). The

dataset was collected on a study that used eQTL mapping in laboratory rats to investigate and iden-

tify genetic variation in the mammalian eye that is relevant to human eye disease (Scheetz et al.,

2006). Following Wang, Wu and Li (2012), we study the association between gene TRIM32, which

was found to be associated with human eye disease, and the other expressions at other probes. The

data consists of expression values of 31,042 probe sets on 120 rats. After some data pre-processing

steps as described in Wang, Wu and Li (2012), the number of probes are reduced to 18,958. We

further select the top 500 probes that have the highest absolute correlation with the expression of

the response. We apply the proposed method using the uniform kernel and SCAD penalty, with

regularization parameter selected by ten-fold cross-validation. For comparisons, we also implement
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Figure 2: Plots of relative improvement defined in (5.1) versus number of iterations when n =

500 and p ∈ {200, 400, 1000, 2000}. The three panels correspond to models with different noise

distributions: (i) t distribution with 1.5 degrees of freedom; (ii) standard Cauchy distribution; and

(iii) a mixture normal distribution.

the ℓ1- and concave regularized quantile regression methods, denoted by QR-Lasso and QR-SCAD,

using the R package FHDQR.

Similar to Wang, Wu and Li (2012), we conduct 50 random partitions of the data by randomly

selecting the expression values for 80 rats as the training data and the remaining 40 rats as the testing

data. The selected model size and prediction error (under quantile loss), averaged over 50 random

partitions, are reported in Table 5. We observe from Table 5 that the SQR has consistently lower

prediction errors than the standard QR across all three quantile levels considered. The prediction

error is also improved for SQR when the SCAD penalty is used. In contrary, QR-SCAD exhibits no

improvement over QR-Lasso in prediction accuracy, which is in line with the observation in Wang,

Wu and Li (2012). One explanation may be that the lack of smoothness and strong convexity of

the quantile loss overshadows the bias-reducing property of the concave penalty. These results sug-

gest that high-dimensional quantile regression considerably benefits from smoothing and concave

regularization in terms of model selection ability, prediction accuracy and computational feasibility.

7 Discussions

In this paper we introduced a class of penalized convolution smoothed methods for fitting sparse

quantile regression models in high dimensions. Convolution smoothing turns the non-differentiable

check loss into a twice-differentiable and convex surrogate, and the resulting empirical loss is proven

to be locally strongly convex (with high probability). To reduce the ℓ1-regularization bias as the

signal strengthens, we considered a multi-step, iterative procedure which solves a weighted ℓ1-

penalized smoothed quantile objective function at each iteration. Statistically, we established the

oracle-like performance of the output of this procedure, such as the oracle convergence rate and vari-

able selection consistency, under an almost necessary and sufficient minimum signal strength con-

dition. From a computational perspective, together convolution smoothing and convex relaxation

enable the use of gradient-based algorithms that are much more scalable to large-scale datasets. In

summary, through convolution smoothing with a suitably chosen bandwidth, we aim to seek a bet-
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Table 5: The average selected model size and prediction error (under quantile loss), with standard

errors in the parenthesis, over 50 random partitions.

Methods Model Size Prediction Error

QR-Lasso (τ = 0.3) 38.28 (3.192) 0.225 (0.005)

QR-SCAD (τ = 0.3) 34.66 (3.291) 0.241 (0.006)

SQR-Lasso (τ = 0.3) 45.28 (1.866) 0.118 (0.003)

SQR-SCAD (τ = 0.3) 31.32 (1.827) 0.106 (0.003)

QR-Lasso (τ = 0.5) 33.76 (1.985) 0.222 (0.003)

QR-SCAD (τ = 0.5) 30.28 (2.114) 0.236 (0.004)

SQR-Lasso (τ = 0.5) 36.76 (1.533) 0.142 (0.003)

SQR-SCAD (τ = 0.5) 29.58 (2.006) 0.132 (0.003)

QR-Lasso (τ = 0.7) 29.66 (1.669) 0.195 (0.003)

QR-SCAD (τ = 0.7) 24.22 (1.942) 0.205 (0.003)

SQR-Lasso (τ = 0.7) 41.44 (2.262) 0.124 (0.003)

SQR-SCAD (τ = 0.7) 27.52 (2.269) 0.116 (0.004)

ter trade-off between statistical accuracy and computational precision for high-dimensional quantile

regression. The proposed procedures will be implemented in the R package conquer, available at

https://cran.r-project.org/web/packages/conquer/index.html.

The Python code is also publicly accessible at https://github.com/WenxinZhou/conquer, with an

option to perform post-selection-inference (via bootstrap).

There are several avenues for future work. When the parameter of interest arises in a matrix

form, the low-rankness is often used to capture its low intrinsic dimension. This falls into the

general category of ill-posed inverse problems, where the number of observations/measurements

is much smaller than the ambient dimension of the model. See Chandrasekaran et al. (2012) for

a general framework to convert notions of simplicity into convex penalty functions, resulting in

convex optimization solutions to linear, underdetermined inverse problems. The idea of concave

penalization can also be applied to low-rank matrix recovery problems. In essence, one can use a

concave function to penalize the vector of singular values of matrix Θ ∈ Rp1×p2 . We refer to Wang,

Zhang and Gu (2017) for a unified computational and statistical framework for non-convex low-rank

matrix estimation when the Frobenius norm is used as the data-fitting measure. We conjecture that

the proposed multi-step reweighted convex penalization approach and convolution smoothing will

lead to oracle statistical guarantees and fast computational methods for quantile matrix regression

and quantile matrix completion problems (Belloni et al, 2019). We leave this as future work.
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