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drastically different phenotypes.[1] In this 
process, tremendous incidences on the 
molecular and cellular levels take place, 
driving essential developmental activi-
ties such as lineage specifications, axis 
patterning, and organogenesis. Detailed 
understandings of the molecular mecha-
nisms of this process, such as the tran-
scriptome and epigenome, are critical for 
fundamental embryology study, manage-
ment of reproduction-related diseases, 
and regenerative medicine.[2] Given that 
embryonic cells are scarce yet highly het-
erogeneous, analysis with the single-cell 
resolution is thus essential for a complete 
knowledge of embryonic development. 
However, conventional cell analysis, such 
as DNA microarray, quantitative real-
time polymerase chain reaction (PCR), 
and sequencing, generally requires a 
sample of pooled cells and thus gauges 
the ensemble average, masking the cell 
heterogeneity among the tested sample. 
By performing analysis on individual 

cells separately, one could obtain analysis with single-cell 
resolution.

The single-cell analysis normally includes four steps: 1) 
single-cell isolation and manipulation, 2) sample preparation, 3)  
sequencing, and 4) data analysis.[3] In principle, single-cell 
analysis can be performed following the same testing mecha-
nisms as the bulk assays. However, there are a few challenges 
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1. Introduction

Embryonic development is one of the most fundamental yet 
mysterious biological processes. Starting from a single-celled 
zygote, the embryo goes through cleavage, implantation, gas-
trulation, and organogenesis, transforming from a single-
celled zygote to an organism with a large number of cells with 
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in translating assays from bulk to single cells.[4] First, due to 
cells’ small size and oftentimes vast number, a technique for 
efficient cell isolation, manipulation, and indexing with high 
throughput is necessary. Second, since each cell has only a 
minute amount of analyte, reliable analysis of such small sam-
ples requires high-performance analyte enrichment and reac-
tions.[5] Last, high-throughput single-cell analysis generates 
high-volume data; thus, a high-performance data analysis pipe-
line is needed.[6,7] As such, the development of single-cell anal-
ysis techniques requires collaborative innovations among biolo-
gists, biochemists, mechanical engineers, and data analysts.

Recent advances in microengineering, biochemistry, and 
computer science have greatly facilitated the progress of single-
cell analysis.[8,9] For example, microengineered wells and 
droplets have enabled efficient single-cell isolations, serving 
as high throughput single-cell manipulation platforms.[10–12] 
The next-generation sequencing (NGS) technology has drasti-
cally lowered the sequencing cost, pushing sequencing toward 
a common analysis practice.[13,14] Emergent computational 
hardware and algorithms provided easy access to high-volume 
sequencing data analysis. Consequently, there has been a con-
stant improvement in the performance of single-cell analysis 
and its biological and clinical applications are rapidly growing.

Seeking answers to biological questions in embryo develop-
ment using single-cell sequencing requires the understanding 
of the technology basics as well as the awareness of successful 
examples. Given the highly interdisciplinary nature of single-
cell sequencing, understanding such a technology could be 
challenging. A few reviews have summarized the technological 
aspects of single-cell sequencing.[6,15] However, narrating the 
technology in the applicational context of embryogenesis could 
potentially facilitate the understanding and adoption in specific 
research questions. Indeed, a few reviews have introduced the 
application of single-cell sequencing in germline cell devel-

opment,[16] cleavage,[17] lineage specification,[18] early embryo 
characterization,[19,20] and stem cell biology.[21] These works 
provided great overviews of the practical applications of single-
cell sequencing in embryo development-related research areas. 
However, given the fast progress of these research fields, reviews 
that summarize the most recent research progress in the tech-
nology of single-cell sequencing, as well as its application in 
each step of embryonic development, have been relatively inad-
equate. Given the extremely rich transcriptional and epigenetic 
modifications happening in embryonic development and the 
resultant cell heterogeneity, single cell analysis can be a pow-
erful tool in sketching the molecular landscape of this impor-
tant biological process. Such a review could potentially facilitate 
the adoption of single cell analysis and help solve these research 
questions. Therefore, this review consolidates the applications 
of single cell analysis in embryonic development and aims to 
provide perspectives on the implementation in the technical 
and biological aspects. As shown in Figure 1, we first review the 
basics of single cell analysis by discussing the available tech-
nologies on cell isolation, library construction, sequencing, and 
data analysis. We then present representative works of utilizing 
single-cell analysis in embryonic development in processes 
including preimplantation, peri-implantation, gastrulation, 
and organogenesis. We conclude the review with remarks on 
existing challenges and potential research directions.

2. Single-Cell Sequencing Technology

Single-cell analysis generally consists of four steps, namely, 
single-cell isolation, preparation of DNA library, sequencing, 
and data analysis. Tissues are first dissociated into dispersed 
single cells, and then individual cells are isolated to separate 
reactors, such as tubes, microwells, or microdroplets, and lysed 
to release the cellular content. Depending on the analyzed tar-
gets, such as mRNA or histone modification, specific chem-
istry is adopted, and a DNA library is then prepared from the 
released content. When the cell number is small, such as in the 
analysis of rare cells (e.g., circulating tumor cells) and the study 
of early embryo development, samples are prepared individually 
from each cell. However, for the sequencing of a vast number 
of cells, given that it is practically not feasible to sequence cells 
on an individual basis and normally a large number of cells 
need to be sequenced in one batch on the sequencer, it is nec-
essary to incorporate a labeling process and barcode each cell 
with a unique short DNA sequence, which can be “scanned” 
and analyzed from the sequencing results. The prepared library 
is then sent to a sequencer to read the sequences. Finally, the 
sequencing results are analyzed using bioinformatics tech-
niques, and biological insights are obtained if the analysis is 
successful. In this section, we present the existing methods of 
these four steps and discuss some representative works.

2.1. Cell Isolation

The first step in the single-cell analysis is to break down tissue 
into disengaged single cells and capture/manipulate these 
single cells. Though these steps may appear straightforward, 

Figure 1.  Flow diagram of single-cell analysis for the study of embryo devel-
opment. In Section 2, we discuss specific steps in the single-cell analysis 
including cell isolation, library preparation, sequencing, and data analysis. 
In Section 3, we present representative works on the study of embryo devel-
opment using different models. Reproduced under the terms of the CC-BY 
license.[22] Copyright 2021, The Authors, published by Cell Press.
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cell dissociation is not trivial and may pose a profound effect on 
the experiment results.[4,23]

2.1.1. Cell Dissociation

Bulk tissues can be broken down into single cells using disso-
ciating enzymes, such as trypsin[24,25] and TrypLE,[26] as shown 
in Figure 2a. These enzymes digest the adhesions or extracel-
lular matrix and detach cells from the tissue microenviron-
ment. However, since the digestion of the extracellular matrix 
using these enzymes requires incubation at 37  °C, which 
is also the favorable temperature of other cellular activities, 
the transcriptome or other molecular signatures of the cells 
may change upon the enzyme treatment, leading to altered 
measurement.[4,27]

A few methods have been proposed to alleviate this issue. 
One method was to use transcription inhibitors (e.g., Actino-
mycin D and α-amanitin) and preserve the transcriptome land-
scape before applying the dissociating enzymes.[28] However, 
the flipside that this method brings about is the prolonged 
uptake of the inhibitors, during which RNA turnover could 
happen, altering the RNA content. A second method is to uti-
lize cold-adapted proteolytic enzymes.[29] For example, by using 
a code active protease from a soil bacterium isolated from Him-
alayan glaciers, the transcription of cells to be analyzed can be 
preserved.

In addition to enzymatic methods, single-cell can also be 
retrieved by physical methods, such as micromanipulation and 
laser capture microdissection (LCM), as shown in Figure 2b,c. 
Micromanipulation uses microcapillaries mounted on precision 
translation stages and applies negative pressure to manipulate 
single cells under the guidance of an optical microscope. As 
a standard technique in biological applications such as patch-
clamp and in vitro fertilization, micromanipulation provides 
instant supervision and immediate feedback on cell manipu-
lation, enabling direct monitoring of the cell status. Since 
a micromanipulator is a commercialized tool and requires 
little special expertise to operate, it is easy to be set up in dif-
ferent laboratories. Using this technique, the first single-cell 
sequencing experiment was achieved in 2009.[30,31] Individual 
blastomeres were picked from four-cell stage mouse embryos 
by glass capillary pipetting and the single-cell transcriptome 
was profiled. Other seminal works on single-cell sequencing, 
such as STRT-Seq,[32] CEL-Seq,[24] SMART-Seq,[33] and scRRBS-
Seq,[34] also utilized micromanipulation for cell isolation. In 
addition, a few other studies on early embryo development, 
where cell numbers are small, also used this cell isolation 
method.[35,36]

LCM utilizes a laser beam to cut out the region of interest 
from a thin layer of solid tissue and extracts the region for 
downstream analysis. LCM also enables real-time monitoring 
of the cell retrieving process, which is beneficial for quality 
control. In addition, LCM is built on an optical microscope, 
which is standard laboratory equipment, making it easily adopt-
able. Though LCM has been most commonly used to pro-
cure subpopulations of tissue with multiple cells, it has also 
been adapted to achieve single-cell resolution. For example, 
LCM-based single-cell RT-PCR was performed on individual 
CD38+ cells in inflammatory disease in the central nervous 
system[37] Recently, LCM-seq, an LCM-based full-length mRNA-
sequencing technology, was developed to study the transcrip-
tomics of neurons isolated from mouse and human tissues.[38,39] 
The authors showed that this technology could be adapted to 
achieve utility down to single captured cells. Despite the labo-
rious experimental process and the resultant low throughput, 
LCM-seq possessed two major merits: it excise-capture cells 
without the need for dissociation, which is particularly desirable 
in application settings where cells are susceptible to enzymes, 
and it preserves the spatial information of the cells.[40]

Despite the successful implementation of single-cell 
sequencing based on micromanipulation and LCM, these 
methods typically could only process tens of cells, which was 
labor-intensive and limited its wider adoption. Parallel analysis 
of tens of thousands of cells would enable the characterization 
of unknown cell types in complex tissues and tremendously 
facilitate the mechanistic study in cell state-related biology.[41] To 
this end, high throughput cell capturing techniques, especially 
those based on microfluidics, have been developed, bringing 
single-cell sequencing to a new chapter.

2.1.2. Cell Capturing and Indexing

To achieve single-cell sequencing with high throughput, two 
major challenges must be tackled. First, a large number of 
cells need to be captured into individual reactors with minimal 
human intervention. The cell content would then be released 
into each reactor and utilized for downstream biochemical 
analysis. Ideally, the cell capturing process should be efficient 
with minimal cell waste, allowing for the identification of rare 
cell subpopulations. Second, cells need to be indexed to enable 
cell identity recovery after pooled sequencing. Though the cost 
of sequencing has decreased drastically over the last decade, 
it still scales with the number of sequencing runs. As such, 
pooling the samples from individual cells and sequencing them 
in a single batch would significantly reduce the overall cost. In 
this part, we first present the basics of cell indexing and then 
discuss the reported cell capturing methods and corresponding 
indexing techniques for single-cell sequencing.

Cell Indexing: Cell indexing, or cell barcoding, is usually 
achieved by adding unique DNA sequences (cell barcodes) to 
the samples during the preparation step of the sequencing 
samples. After sequencing, the cell barcodes appear in each 
read and enable the tracing of the cell origin of each read. For 
the sake of sequencing accuracy, DNA samples are normally 
amplified through reactions such as PCR to increase the DNA 
concentration. The amplification process is oftentimes biased, 

Figure 2.  a–c) Cell dissociation techniques adopted in the single-cell 
analysis as indicated.

Adv. Biology 2022, 6, 2101151



www.advancedsciencenews.com

© 2021 Wiley-VCH GmbH2101151  (4 of 21)

www.advanced-bio.com

which could mask the number of each DNA/RNA in the orig-
inal samples. As such, unique molecular identifiers (UMIs), 
which serve as barcodes of each DNA/RNA in the original sam-
ples, are oftentimes introduced in the sample preparation steps 
and facilitate the tracing of each read to the original DNA/RNA. 
Consequently, in each read of the sequencing data, there exists 
a cell barcode and a UMI: the cell barcode identifies all the 
reads from the same cell and the UMI identifies all the reads 
from the same original DNA/RNA within that cell.

Cell and molecule indexing is normally achieved during 
DNA or RNA synthesis based on base-pairing in sample prepa-
ration steps, as shown in Figure 3a. Taking scRNA-seq as an 
example, the indices can be added through reverse transcrip-
tion, where each primer is specifically designed to contain 
poly(T) as a priming site, along with a UMI and a cell barcode. 
After reverse transcription, the cDNA would contain the UMI 
and cell barcode. Additionally, the barcode can also be added 
to the DNA samples through adaptor ligation. With specifi-
cally designed adaptor sequences as the indices, DNA samples 
can be tagged with barcode sequences, which would appear in 
the sequencing result. Furthermore, another strategy of cell 
indexing is implemented by tagging plasma membrane with 
barcoded oligonucleotide sequences, which can be identified in 
the sequencing data for demultiplexing.[42]

Cell Capturing: Fluorescence-activated cell sorting (FACS): 
The initial high-throughput single-cell sequencing methods 
utilized FACS for single-cell capturing, partly due to its wide 
use and easy access. As shown in Figure 3b, upon cell dissocia-
tion, the cell suspension is fed into the FACS instrument and 
travel in a microchannel, which only allows a single cell to pass 
through. An electric field is then applied to divert the cells into 
a designated path based on the fluorescence signal detected. In 
addition to fluorescence signals, the forward-scattered and side-

scattered signals can be simultaneously collected, providing 
information on the size of the cells and offering the opportunity 
to exclude clusters of multiple cells. In 2013, Sasagawa et  al. 
reported a scRNA-Seq named Quartz-Seq, which used FACS 
to sort mouse embryonic stem cells (MESCs) and collected 
the sorted cells in PCR tubes. Combined with the technical 
improvement in whole transcriptome amplification, the investi-
gators analyzed up to 96 cells and successfully detected expres-
sion heterogeneity between cells with good reproducibility.[43]

Modern FACS can analyze tens of thousands of cells per 
second, which is suitable for high throughput single-cell anal-
ysis. To accommodate the high-speed sorting, the FACS instru-
ment is typically coupled with an automatic translation stage to 
sequentially direct single cells into individual tubes or wells on 
microtiter plates. In addition, automated liquid handling plat-
forms are sometimes adopted to reduce the workload of manual 
pipetting and increase the throughput. For example, Jaitin et al. 
utilized 384-well plates as reactors for individual cells and Agi-
lent Bravo for the automation of liquid handling and developed 
a novel scRNA-seq platform named MARS-Seq.[44] The primers 
for reverse transcription contained UMIs and barcodes, which 
were then passed to the resultant cDNA and served as cell and 
molecule index. Based on this platform, they analyzed 1536 
single cells from spleens and demonstrated the powerful appli-
cation of this tool in the investigation of cell diversity. Similar 
performance was also achieved in other studies based on sim-
ilar sorting and indexing techniques.[45]

Compared to micromanipulation and LCM, FACS and 
cell plate-based single-cell sequencing techniques have sig-
nificantly improved the analysis throughput. However, since 
each cell requires an individual compartment, the number of 
cells that can be processed is limited by the number of wells, 
which could rarely go beyond a few thousand. To address this 

Figure 3.  a,b) Techniques for cell indexing and capturing.
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problem, Cao et  al. developed combinatorial indexing and 
reported sci-RNA-seq, which showed the capability of analyzing 
more than 50 000 cells.[46] Cells were sorted into the first cell 
plate for the first round of barcoding, with each well containing 
10–100 cells, before cells were pooled and randomly sorted into 
the second cell plate for the second round of barcoding. In this 
way, multiple cells can be processed in the same compartment, 
which drastically increased the cell numbers. Notably, instead 
of using FACS to cell dispensing, combinatorial index could be 
implemented by simply splitting and pooling samples by pipet-
ting, as reported in SPLit-seq by Rosenberg et al.[26] Using this 
method, more than 156 000 cells were analyzed simultaneously.

Microfluidics is the technology that manipulates fluids and 
particles on the micron scale, which is also the dimension of 
most cells, giving it great potential in manipulations on the 
cellular level.[47] Indeed, tremendous effort has been devoted 
to developing microfluidics-based technologies for single-cell 
manipulation in applications such as blood fractionation,[48] 
circulating tumor cell isolation,[49] single-cell immunopheno-
typing,[12] etc. Compared to other single-cell manipulation tech-
nologies, microfluidics possesses the advantages of automated 
operation, reduced reagent consumption, and parallel pro-
cessing with ultrahigh throughput.[50] Among various microflu-
idic tools, microvalves, microwells, and droplets are relatively 
successful in the applications of single-cell sequencing.[51]

Microvalves: Microvalves are pneumatic valves integrated into 
microfluidic devices and offer a means for exquisite fluid con-
trol. These microfluidic devices are usually composed of two 
functional layers, namely a flow-channel layer and a control-
channel layer.[52] The channels on the two layers are specifically 
designed such that flow channels can be shut on/off by pressur-
izing/releasing certain control channels. A reaction chamber 
on the flow-channel layer can thus be formed by closing two 
adjacent valves. By consecutively switching on/off adjacent 
valves, fluid operations such as peristatic pumping and mixing 
can be achieved. Using this powerful tool, highly integrated 
microfluidic devices have been developed for the single-cell 
genome, transcriptome, and epigenome profiling. In 2011, a 
microfluidic device was reported to separate and amplify indi-
vidual chromosomes from a single human cell based on such 
pneumatic valves.[53] Though the analyzing rate was one cell 
per device, this work demonstrated the great potential of micro-
fluidic automation in single-cell analysis. Parallelization was 
later demonstrated with increased complexity in the genomic 
analysis of single human sperm.[54] In this work, 24 single cells 
were analyzed in one single device on average, which greatly 
increased the throughput. With further iteration in both device 
integration and sample processing,[55] the throughput and sen-
sitivity of this technology were further improved. Despite that, 
this technology required specialized equipment such as pumps 
and controllers, and the device fabrication, assembly, and oper-
ation required extensive expertise in microfluidics and control, 
making it very difficult to be adopted by biology laboratories. 
This problem was alleviated by the commercialization of the 
technology (Fluidigm), which can analyze up to 800 cells per 
device with high automation. Applications in single-cell RNA-
sequencing[56] and single-cell assays for transposase-accessible 
chromatin using sequencing of embryonic stem cells with high 
throughput were also demonstrated,[57] which analyzed 800 and 

1632 cells, respectively. Following up on these seminal works, 
several improvements were made aiming at reducing contami-
nation from cell debris[58] and simplified operation.[59]

The advantage of valve-based microfluidics is that it can 
simultaneously process hundreds of cells with limited human 
intervention. Nevertheless, besides the system complexity and 
high technical barrier, the efficiency of cell capturing is highly 
dependent on the distribution of cell sizes and studying cell 
types with different sizes may require different device designs, 
which increased the fabrication cost. In addition, the valves take 
up significant portions of the chip space, limiting the number 
of cell chambers that can be integrated.

Microwells: Microwells were proposed as another cell 
capturing method to enable single-cell profiling with high 
throughput. A surface with arrays of microwells, typically with 
diameters of 30  µm, was fabricated using microfabrication 
techniques before cell suspension is loaded onto the surface 
and cells fall into microwells. The incidence of doublets criti-
cally depends on the cell density following Poisson distribution. 
Thus, cell density is normally low to ensure that most wells 
receive only one cell or no cell at all. Typically, only 10% of the 
microwells receive single cells. After cell capturing, each micro-
well with a cell serves as a reactor, and cells inside are lysed to 
release the molecule to be analyzed. To index the analytes, such 
as mRNA, two methods have been proposed. Fan et  al. devel-
oped CytoSeq and loaded barcoded beads into the microwells 
to capture and index the mRNAs.[60] The beads were function-
alized with oligonucleotides which incorporate cell label, UMI, 
and oligo-dT to capture the polyA tail of mRNA. The diameter 
of the beads was about 20  µm, which guaranteed that each 
microwell could only fit in one bead. After mRNAs had hybrid-
ized on beads, beads were collected, and reverse transcription, 
amplification, and sequencing were performed. It was shown 
that on average 1250 cells could be processed in each experi-
ment, though the throughput could be scaled to 10 000s cells 
or even more per experiment by simply increasing the size of 
the microwell array. A similar method, termed Microwell-seq, 
was developed by Han et al. to map the mouse cell atlas by ana-
lyzing more than 400 000 cells from different tissues, showing 
the great applicability of microwell-based single-cell sequencing 
technology.[61]

Instead of overlaying the microwell array with cell suspen-
sion and having cells randomly sediment into individual wells, 
another work used a multisample nanodispenser to dispense 
a droplet of cell suspension into each microwell.[62] After that, 
microwells were imaged to identify those containing single 
cells, and further processing would be limited to those wells. 
Since this method could recognize and actively exclude microw-
ells with doublets, the cell density of the cell suspension could 
be higher and up to one-third of the microwells contained 
single cells, which was much higher than methods relying on 
gravitational sedimentation (≈10%).[60,61] Active dispensing also 
offered the opportunity to functionalize the bottom of each 
microwell with a specifically designed oligonucleotide sequence 
for mRNA capturing and indexing, which eliminated the use of 
beads. Using this platform, Goldstein et al. characterized more 
than 1000 human and mouse cells and identified the cell types. 
Nevertheless, the volume of the microwells in this platform was 
about 150 nL, which was much larger compared to that of 20 pL 
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in other works, increasing the reagent consumption and lim-
iting the level of microwell integration.

Droplet Microfluidics: The throughput of valve- and microwell-
based platforms were nevertheless limited by the available 
space on the microfluidic chips. In contrast, droplet micro-
fluidics could generate hundreds to thousands of droplets per 
second, providing almost unlimited reaction chambers.[63,64] 
By encapsulating a single cell inside, along with an indexing 
bead, each droplet serves as a compartment for cell analysis, 
before the droplets are pooled to perform amplification and 
sequencing. In 2015, Macosko et  al. reported the successful 
implementation of droplet microfluidics for single-cell tran-
scriptome profiling, named Drop-seq.[41,65] In this work, resin 
beads were functionalized and linked with oligonucleotide 
sequences, incorporating PCR handle, cell barcode, UMI, and 
oligo-dT for mRNA capture. Drop-seq was able to capture 
7000 cells for analysis in each experiment on average, which 
allowed the authors to analyze about 45 000 mouse retinal cells 
and identify the subpopulations. A major technical hurdle lay 
in the cell and bead encapsulation process. To obtain reliable 
analysis results, the encapsulation of cell doublets should be 
minimal. The encapsulation followed Poisson distribution: 
to reduce doublets, the cell and bead concentration should be 
reduced. Consequently, the encapsulation efficiency was com-
promised and typically less than 10% of the original cells were 
effectively encapsulated, which could be problematic for experi-
ments where cell utilization is vital. To address this problem, 
inertial microfluidics was utilized to line up cells and beads 
before entering the droplet generation region.[66,67] The spe-
cifically designed spiral and serpentine channels generated sec-
ondary flows, which forced cells and beads to order on a line 
with regular intervals instead of being distributed across the 
channel randomly. As a result, the incidence of multiple encap-
sulations was reduced, and the encapsulation efficiency was 
improved. Aside from improvement from a hydrodynamic per-
spective, preindexing cells before encapsulation were shown to 
enable cell overloading in droplets, thus greatly improving the 
cell utilization rate.[68] Another strategy was to separately encap-
sulate cells and beads, pair cell-encapsulated droplets with the 
bead-encapsulated droplet, and merge them. Droplet merging 
was commonly achieved by sequentially injecting two types of 
droplets in a flow and using an electric field to destabilize the 
interface and induce coalescing. Though this method has been 
successfully implemented for single-cell analysis,[69] sequencing 
small samples could be challenging since the droplet synchro-
nization steps required a considerable number of cells to flow 
by. Chung et  al. designed microwells within a microfluidic 
channel to trap a bead-encapsulated droplet and a cell-encapsu-
lated droplet before perfluorobutanol was flowed into the device 
and triggered merging.[70,71] The designated shape and dimen-
sion of the microwells ensured that exactly one bead-encapsu-
lated droplet and one cell-encapsulated droplet could fit into the 
microwells. The authors showed this platform was capable of 
single-cell expression profiling of rare samples at a very high 
yield.[72] In another study, to lower the equipment demand of 
Drop-seq, a low-cost microfluidic instrument was reported.[73]

Another seminal work on droplet microfluidics-based single-
cell analysis used hydrogel microspheres in lieu of resin bead 
for cell barcoding.[74] Similarly, hydrogel microspheres were 

linked with cell barcode, UMI, and oligo-dT, along with a photo
cleavable spacer for the release of primers. Since the hydrogel 
microspheres were intrinsically soft and deformable, they could 
be closely packed in the injecting channel, which allowed for 
microsphere feeding at a regular interval and ensured that 
nearly all droplets contained a single microsphere. Using 
inDrop, the authors achieved cell encapsulation rates up to  
12 000 per hour and investigated the cell heterogeneity of 
mouse embryonic stem cells after the withdrawal of leukemia 
inhibitory factor by profiling over 10 000 cells. Using a similar 
principle, Zheng et al. developed a more standardized platform 
with a much faster gel loading speed and integrated 8 channels 
in a single chip, allowing for the simultaneous processing of 8 
samples and capturing of thousands of cells in ≈6 min in each 
channel with a capturing efficiency of ≈50%.[75] Nevertheless, 
these platforms still required the coencapsulation of a bead 
with a single cell, which could only be achieved by limiting 
dilution of cells and compromising the throughput. To address 
this problem, Datlinger et al. adopted combinatorial indexing[46] 
and preindexed the cells before performing cell/bead encapsu-
lation, which permitted the encapsulation of multiple cells in 
a single droplet.[68] As a result, cells could be loaded at a much 
higher concentration and the throughput was improved to 
15-fold. Using this method, the authors achieved the analysis 
of up to 150 000 cells per channel, which demonstrated its great 
potential in massive-scale single-cell analysis.

In addition to transcriptome analysis, droplet microfluidics 
has also been applied in genome and epigenome analysis. For 
example, Lan and colleagues developed single-cell genomic 
sequencing (SiC-seq), which used droplet microfluidics to 
first generate barcode droplets and cell-encapsulated hydrogel 
microspheres, before the two types of droplets were merged 
along with PCR mix in another microfluidic device.[76] Since 
the hydrogel microspheres were permeable to a wide range of 
molecules, this encapsulation strategy permitted more flexible 
sample processing while keeping each genome confined in a 
compartment. The authors demonstrated that SiC-seq could 
process more than 50 000 cells per run in a few hours. In 
another study, Rotem et  al. implemented chromatin immuno-
precipitation followed by sequencing (ChIP-seq) using droplet 
microfluidics for high throughput single-cell chromatin pro-
filing, termed Drop-ChIP.[77] Cells were first encapsulated 
in droplets along with a solution containing lysis buffer and 
micrococcal nuclease, which lysed the cells and cut accessible 
linker DNA. The cell-containing droplets were then merged 
with droplets containing unique barcodes for labeling, before 
the combined contents were immunoprecipitated, amplified, 
and sequenced. Since only 1152 unique barcodes were designed 
in this study, each collection was limited to 100 cells to ensure 
that less than 5% of cells shared the same barcode. However, 
the overall throughput was not compromised since a “collect 
index” could further be added before sequencing.

2.2. Library Preparation

After cells have been isolated, cells are lysed and DNA libraries 
can be prepared for the subsequent step of sequencing. 
Depending on the experimental goal, libraries of different 
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cellular aspects can be prepared following specific protocols.[78] 
In the study of embryonic development, transcriptome and 
epigenome are commonly assessed to reveal the status of gene 
expression. Transcriptome reveals the status of gene expression 
and thus provides critical knowledge on tissue differentiation. 
Epigenome unveils the chemical changes to the chromosome 
and thus the underlying machinery of gene expression. Epi-
genome mainly includes the status of histone modification, 
DNA methylation, and chromatin accessibility. In this section, 
we discuss the protocols that have been reported for single-cell 
transcriptomic and epigenomic analysis, respectively.

2.2.1. Transcriptome

The library of single-cell transcriptome can be prepared using 
the technology of single-cell RNA sequencing (scRNA-seq).[79] 
The library preparation in scRNA-seq usually consists of three 
steps, namely, mRNA capturing, cDNA synthesis, and cDNA 
amplification.

In mammalian cells, mRNA makes up only 5% of the total 
RNA, with the majority being rRNA and tRNA, making the 
enrichment of mRNA very challenging. Fortunately, in eukar-
yotes, mRNA usually consists of a poly(A) tail, which can be 
targeted for mRNA capture. Indeed, most scRNA-seq chose 
poly(A) as the priming site for mRNA capturing and subse-
quent reverse transcription. However, given the low abundance 
of mRNA, the transcript capturing follows Poisson sampling, 
leading to the observation that only 10–20% of the transcripts 
are captured by the primers and reverse transcribed into first-
strand cDNA.[80] cDNA can be synthesized using two different 
approaches, namely, poly(A) tailing and template switching. 
In poly(A) tailing, after reverse transcription, poly(A) tails are 
added to the 3′ end of the first-strand cDNA, which serves as 
the priming site for the second strand cDNA (Figure 4a).[30,44] 
The shortcoming of poly(A) tailing is that the polyadenyla-
tion sometimes happens before synthesis of the first-strand 

cDNA has reached the end of the mRNA, resulting in 3′ bias. 
To achieve full-length cDNA synthesis, template switching has 
been adopted. Template switching utilizes a special reverse 
transcriptase, namely, Moloney murine leukemia virus (MMLV) 
reverse transcriptase, and a template-switching oligonucleotide 
(TSO), as shown in Figure 4b. MMLV reverse transcriptase adds 
a few nucleotides as it reaches the end of the mRNA during 
the synthesis of first-strand cDNA, and TSO uses these newly 
added nucleotides as the anchoring site and serves as the tem-
plate to synthesize the additional sequences on the first-strand 
cDNA, as shown in Figure  4b. Consequently, the cDNA con-
tains the full length of the mRNA, and it avoids the underrepre-
sentation of the 5′ end of mRNA.

The resultant cDNA needs to be amplified before being 
sequenced. The polymerase chain reaction is commonly 
adopted for cDNA amplification. However, PCR is a nonlinear 
amplification process, and the amplification bias is drastically 
amplified after tens of amplification cycles. This issue can be 
alleviated by using a different amplification strategy of in vitro 
transcription (IVT). IVT generates multiple copies of mRNAs 
based on the synthesized cDNA linearly and avoids bias ampli-
fication. The disadvantage is that IVT requires an additional 
step of reverse transcription, leading to an extra 3′ bias.

2.2.2. Epigenome

Histone modification can both promote and repress gene 
expression. For example, trimethylation of H3K4 marks the 
start sites of active genes, while trimethylated H3K9 indi-
cates inactive genes.[82] Histone modifications are commonly 
detected using chromatin precipitation (ChIP) and have been 
adapted to achieve single-cell epigenomic profiling by com-
bining droplet microfluidics (Figure 5a)[77] and combinatorial 
indexing.[83] In addition, a method named Cleavage Under 
Targets & Tagmentation (CUT&Tag) was reported to perform 
single-cell epigenomic profiling.[84] Briefly, antibodies were used 

Figure 4.  a,b) Library preparation of transcriptome profiling. Library preparation techniques for single-cell transcriptome profiling, including poly(A) 
tailing and template switching, as indicated. a) Reproduced with permission.[30,81] Copyright 2009, Springer Nature. b) Reproduced with permis-
sion.[30,81] Copyright 2014, Springer Nature.
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to target specific chromatin protein, and Protein A-Tn5 trans-
posase fusion protein was subsequently supplemented to cleave 
the chromatin. Other methods based on a similar principle but 
different indexing strategies have also been reported.[85]

Chromatin accessibility is usually measured based on the 
differential susceptibility to enzymatic cleavage or methylation 
in accessible and inaccessible regions.[87] Enzymes, including 
DNase, hyperactive transposase (Tn5), and Micrococcal nuclease 
(MNase), preferentially cleave the accessible regions, generating 
a DNA library predominantly composed of accessible regions. 
The library is subsequently amplified and sequenced. Methods 
based on these enzymes were named DNase-seq, ATAC-seq, 
and MNase-seq, respectively, and single-cell accessibility has 
been successfully measured by integrating barcoding strategies, 
as shown in Figure 5b.[57,88,89] Another method, named nucleo-
some occupancy and methylome sequencing (NOMe-seq), 
uses GpC methyltransferase to methylate accessible GpC sites 
without cleaving the open regions, and the subsequent bisulfite 
conversion leaves marks in the sequencing results. This method 
has also been adapted to achieve single-cell resolution.[90]

DNA methylation plays a significant role during embry-
onic development.[91] DNA methylation is usually detected 
by bisulfite sequencing (BS-seq), where nonmethylated Cs 
are converted to U by sodium bisulfite and subsequently 

sequenced as T. The methylome can then be analyzed from the 
sequencing data. To achieve single-cell methylome analysis, 
high throughput cell sorting and combinatorial indexing have 
been implemented with BS-seq, as reported in a few recent 
works, as shown in Figure 5c.[34,86,92,93]

2.3. Sequencing

The rapid progress in the study of single-cell analysis was 
also attributed to the dramatic progress that has been made 
in the sequencing technologies, with the throughput con-
stantly improving and the cost dropping down. As reported 
by the National Human Genome Research Institute, the cost 
of sequencing a human genome was 100 million US dollars in 
2001 and dropped to 10 million US dollars in 2007.[14] After that, 
owing to the emergence and wide application of next-genera-
tion sequencing technologies, the cost per human genome has 
dropped drastically. In 2019, the cost per human genome was 
as low as 1000 US dollars, enabling DNA sequencing as a rou-
tine laboratory and clinical testing tool.[94]

The initial sequencing technology adopted chain-termina-
tion sequencing, which is also known as Sanger sequencing, 
as shown in Figure 6a. Briefly, di-deoxynucleotides (ddNTPs), 

Figure 5.  a–c) Library preparation of epigenome profiling. Library preparation techniques for single-cell epigenome profiling. a) Reproduced with per-
mission.[57,77,86] Copyright 2015, Springer Nature. b) Reproduced with permission.[57,77,86] Copyright 2015, Springer Nature. c) Reproduced with permis-
sion.[57,77,86] Copyright 2018, Springer Nature.
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which are modified deoxynucleotides that terminate DNA 
strand elongation in chain polymerase reaction, are utilized 
in the amplification of single-stranded DNA template and ran-
domly incorporated in the elongation, resulting in multiple 
copies of the single-stranded DNA template with different 
lengths. The four ddNTPs, namely, ddATP, ddTTP, ddCTP, or 
ddGTP, are usually labeled with different fluorescent dyes. The 
resultant DNA fragments are then separated based on length 
using gel electrophoresis in a single lane capillary gel, and the 
fluorescent signals were detected and converted to sequence 
data. Though Sanger sequencing has made a significant contri-
bution in the initial works related to DNA sequencing, a typical 
throughput was only about 0.032 Mb h−1,[95] which hindered the 
wide application of sequencing in fundamental research and 
clinical diagnosis.

NGS performs sequencing in a massively parallel manner, 
wherein millions to billions of DNA fragments can be read in 
a single run, significantly increasing the throughput and low-
ering the cost. NGS technologies normally start with the frag-
mentation of the sample DNA into appropriate length, typically 
tens to hundreds of base pairs depending on the particular 
technologies, before adaptors are ligated to the DNA fragments. 
After that, there are two major steps followed, namely, template 
amplification and sequencing. The aim of template amplifica-
tion is to locally generate thousands of identical copies of DNA 
fragments and increase the signal in the following steps, and 
strategies include emulsion PCR, bridge amplification, tem-
plate walking, and rolling circle amplification. For sequencing, 
there are mainly two categories, namely, sequencing-by-ligation 
(SBL) and sequencing-by-synthesis (SBS). SBL utilizes DNA 
ligase and fluorescently labeled DNA probes with known bases 
to hybrid the template. Upon a complimentary binding and 
ligation, imaging is performed, and the bases are identified. In 
contrast, SBS uses polymerase and fluorescently labeled dNTP 
to synthesize a complimentary strand, wherein the addition of 
dNTP is imaged, and the base calls are made. Many NGS plat-
forms, such as SOLiD, BGISEQ, GeneReader, and Illumina, 

have shown success in sequencing with their own pros and 
cons. Here, we briefly introduce the technology of Illumina as 
an example, given that Illumina is the most commonly used 
platform.

In Illumina sequencing, purified DNA samples are first 
cut into short segments using transposases and tagged with 
adaptors on both ends, before additional motifs, including 
sequencing primer binding sites, indices, and terminal 
sequences, are added. The prepared samples are then intro-
duced into the flow cell, and the tagged DNA fragments were 
attached to the oligos coated on the flow cells (Figure 6b). DNA 
fragments are then clonally amplified through bridge amplifi-
cation, in a process called cluster generation. After that, DNA 
fragments are sequenced with SBS technology as aforemen-
tioned. After primer binding, fluorescently labeled dNTPs are 
added to the flow cell and pair with the template. dNTP addi-
tions lead to the detection of a characteristic fluorescent signal, 
which is then detected by imaging and used for the base call. 
The fluorescent dye is then cleaved, and the cycle is repeated. 
The sequences of the fragmented DNA are then further pro-
cessed to generate the sequence of the original DNA samples.

2.4. Data Analysis

To make sense of the sequencing data, a few steps are usually 
followed, including quality check (QC), read alignment, nor-
malization, and interpretation, as shown in Figure 7.[96] We talk 
about each step in the following section.

2.4.1. Quality Check

Raw data files from typical sequencers, including NextSeq, 
HiSeq, and NovaSeq, are in binary base call (BCL) format and 
then converted to FASTQ format files using conversion soft-
ware, such as Illumina bcl2fastq and bcl2fastq2 Conversion 

Figure 6.  a,b) Sequencing methods. Representative sequencing techniques as indicated. Reproduced with permission.[13] Copyright 2016, Springer Nature.
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Software. These FASTQ files will then go through a QC to 
remove low-quality bases (usually at the 3′ end) and sequencing 
adapters. Among QC tools, FastQC is a widely used one for the 
assessment of quality distributions over the entire reads. It pro-
vides a simple way to check raw sequencing data coming from 
high throughput sequencing pipelines. Jiang et  al. developed 
a single-cell RNA-seq Quality Control (SinQC) method and 
software tool to detect artifacts in sequencing samples by inte-
grating both gene expression patterns and data quality informa-
tion.[97] In another work, Liu et  al. developed scRNABatchQC 
and enabled the simultaneous comparison of multiple sample 
sets over different biological and technical features. The 
authors also demonstrated that scRNABatchQC was capable of 
identifying and characterizing sources of variability in single-
cell transcriptome data.[98]

2.4.2. Read Alignment

After the quality check, the resultant clean reads will undergo 
alignment. Read alignment is the process of mapping reads 
to a reference genome or transcriptome. STAR is a conven-
tional RNA-seq aligner that finds the longest possible sequence 
matching one or more sequences in the reference genome.[99] 
Bowtie2 is another full-text minute index alignment approach, 
which combines the strength of full-length index and dynamic 
programming algorithms to achieve high speed, sensitivity, and 
accuracy to find long, gapped alignments.[100] It is particularly 
efficient at aligning to relatively long genomes and aligning 
reads of about 50 to 1000 characters. TopHat and TopHat2 use 
Bowtie2 to align spliced reads, and they look into the unmapped 
reads and try to align using the information of splicing junc-
tions.[101,102] These alignment-based methods are conceptually 
simple, but the read-alignment step can be time-consuming 
and computationally intensive despite recent advancements 
in fast read aligners. Kallisto is a pseudoaligner that breaks 
reads into chunks of sequences called K-mers, which are then 
mapped to a reference transcriptome.[103] Compared to the tra-
ditional aligner, pseudoaligners are generally faster, making 
them conducive for single-cell studies. Compared to Kallisto, 
eXpress uses a streaming algorithm with linear run time to 
determine abundances of sequencing data in real time.[104] 
Patro et  al. developed a lightweight method for quantifying 
transcript abundance from RNA-seq read, namely, Sailfish[105] 
and Salmon.[106] Since Sailfish avoids read mapping, which is 
a time-consuming step, it provides much faster quantification 

estimates without losing accuracy. Salmon is another k-mer 
counting software that learns and corrects sequence-specific 
and GC biases.[106] It combines a new dual-phase parallel infer-
ence algorithm and feature-rich bias models with an ultrafast 
read mapping procedure. RNA-Skim, another RNA-seq quan-
tification method, partitions the transcriptome into disjoint 
transcript clusters based on sequence similarity and introduces 
the notion of sig-mers, which are a special type of k-mers.[107] 
Among all these methods, traditional alignment-based and 
alignment-free quantifications methods perform similarly for 
common gene targets, though alignment-free quantifications 
methods are much faster especially for long RNAs.

2.4.3. Normalization

After alignment, clean reads with high mapping quality will be 
considered for the generation of the gene expression matrix. 
Normalization is an essential step to remove cell-specific 
bias, which enables accurate comparisons of expression levels 
between and within samples. In protocols where (UMIs are uti-
lized, UMIs are first used to correct amplification-related bias, 
since reads with the same UMI sequence are most likely from 
the same RNA molecule. Therefore, after the read alignment, 
UMIs provide a means for molecule counting and quantifica-
tion of gene expression.[80,108] In addition, there are two widely 
used normalization approaches, namely, within-sample normal-
ization (WSN) and between-sample normalization (BSN). WSN 
allows the quantification of expression levels of each gene rela-
tive to other genes in the sample. The most widely used metrics 
include reads per kilobase million (RPKM),[109] fragments per 
kilobase million (FPKM),[109] and transcripts per kilobase mil-
lion (TPM).[110,111] RPKM is defined to compare experiments 
or different samples so that additional normalization is inte-
grated into the denominator term, which is expressed in mil-
lion. However, these WSN approaches are not sufficient when 
detecting differentially expressed genes.

To address this problem, BSN categorizes the sequencing 
results based on sequencing depth instead of all the reads. 
The most commonly used BSN approaches include trimmed 
mean of M-values (TMM),[112] relative log expression (RLE),[113] 
and upper quartile (UQ).[114,115] TMM is a scaling normaliza-
tion method for differential expression analysis of RNA-seq 
data, and it is based on the hypothesis that most genes are not 
differentially expressed. First, TMM picks a reference sample, 
and the other samples are considered test samples. For each 

Figure 7.  Typical data analysis pipelines for single-cell sequencing and available tools.
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test sample, the most expressed genes and the genes with the 
largest log ratios are first excluded, and then TMM is computed 
as the weighted mean of log ratios between the test and ref-
erence samples. RLE is another normalization method similar 
to TMM based on the same hypothesis regarding differential 
expression. The RLE scaling factor is calculated as the median 
of the ratio of its read counts to its geometric mean across 
for each gene in all the samples. UQ is another normaliza-
tion method that is calculated by applying the upper quartile 
of 0.75 to the gene counts of all runs. In this method, it first 
removes the genes that have zero read counts for all samples, 
and the remaining gene counts are divided by the upper quar-
tile of counts and multiplied by the mean upper quartile across 
all samples of the dataset.[115] Among all the different RNA-seq 
normalization methods, the commonly used ones perform well 
in simple normalization tasks. However, since the selection of 
variable genes is highly sensitive to normalization methods, it 
may affect the downstream data analysis, including dimension-
ality reduction and clustering analysis. The potential for com-
bining SWN and BSN methods has recently been explored by 
Risso et  al.,[116] recommending the use of within-sample GC-
content normalization in combination with BSN.

2.4.4. Interpretation

After preprocessing of the raw data, the normalized data is 
ready for further analysis. However, interpreting single-cell RNA 
sequencing data sets can be challenging given that each cell 
is represented by over 30 000 genes. To identify cell types, cell 
states, or development lineages, each data point need to be com-
pared with others. Since single-cell datasets are normally high 
dimensional in a large number of individual cells, dimension-
ality reduction is typically the next step after the raw count matrix 
is normalized. Researchers have been developing different 
algorithms to reduce the dimension by projecting high-dimen-
sional data into low-dimensional space. Principal component 
analysis (PCA) is a widely used linear projection method. By 
projecting the high-dimensional datasets into subspace with 
fewer columns, it is easier to visualize the samples with inter-
pretations. The disadvantage of linear dimensionality reduction 
methods is that they normally cannot reflect the complex struc-
tures of single-cell sequencing data in low-dimensional spaces. 
Compared to linear projection methods, nonlinear methods, 
such as t-distributed stochastic neighbor embedding algorithm 
(t-SNE),[117,118] showed better results in many aspects including 
maintaining similarities in local neighborhoods of data, which 
may be important to the overall data structure. t-SNE is a man-
ifold-based dimensionality reduction algorithm, and it projects 
the data sets based on similarities, which were measured in 
their gene expressions. After t-SNE, similar cells are plotted 
close to each other and dissimilar cells are far apart in the lower-
dimensional space. Several additional projection methods, such 
as PHATE,[119] scvis,[120] uniform manifold approximation and 
projection (UMAP),[121] and single-cell interpretation via multi-
kernel learning (SIMLR),[122] are also utilized for dimensionality 
reduction. It is worth noting that dimensionality reduction may 
result in the loss of important biological information, such as 
the spatial organization of cells and genome networks.

Clustering is the process of grouping cells into different 
clusters based on the cell types. The goal of clustering is to cat-
egorize individuals into different subsets based on their simi-
larities or distance between the data points. Once clustering is 
completed, the next step is to identify marker genes that are 
expressed in different clusters. However, the clustering results 
should be carefully interpreted since the grouped clusters may 
not be biologically related. Further statistical analysis and vali-
dations should be performed to confirm the biological informa-
tion of the groups.

3. Applications of Single-Cell Analysis

The identity and behavior of a cell are determined by its gene 
expression network, which is regulated by genetic and epige-
netic mechanisms. Hence, deciphering the temporal and spa-
tial patterns of gene expression in embryogenesis is a crucial 
step toward understanding the early developmental process. In 
this section, we present studies that used single-cell analysis 
to extend our knowledge of the transcriptional and epigenetic 
landscape for early embryogenesis such as preimplantation, 
gastrulation, and organogenesis.

3.1. Preimplantation

During the first 7 days of human development, the zygote 
undergoes cellular division and establishes the first three dis-
tinct cell types of the mature blastocyst: trophectoderm (TE), 
primitive endoderm (PE), and epiblast (EPI) (Figure 8).[22] 
In 2013, Yan et  al. applied scRNA-Seq to human oocytes and 
human preimplantation embryos at different stages.[35] They 
have identified 2733 potential novel long noncoding RNAs 
(lncRNAs). Many lncRNAs are variably expressed among 
cells of the same embryo but consistently present in different 
embryos of the same stage, and this suggests that the lncRNA 
in human embryos is potentially functional. Also, they found 
a large set of lineage-specific genes that can discriminate EPI, 
PE, and TE lineage cells in human blastocysts, which provides 
insight into the lineage separation of EPI, PE, and TE.[35]

Recently, Petropoulos et al. mapped the transcriptional land-
scape of human preimplantation and studied lineage specifica-
tion between EPI, PE, and TE using scRNA-seq (Figure 9a).[123] 
They found that cellular transcriptomes primarily segregated 
according to the embryonic stage, followed by segregations 
into lineages (TE–EPI–PE), embryo-to-embryo variability, 
and subpopulations. To study when and how the divergence 
of TE/inner cell mass (ICM) and EPI/PE occurs in humans. 
The authors applied map dimensionality reduction on all cells 
using lineage-specific genes. Interestingly, blastocyst forms 
three distinct transcriptional states corresponding to TE, EPI, 
and PE during E5, after which the segregation (based on lin-
eage-specific genes) did not further increase. During early E5, 
the cells had activated about half of the TE genes while still 
maintaining the expression of early EPI genes, indicating an 
intermediate stage of coexpression of lineage markers and the 
plasticity of the cells during early E5. This study demonstrated 
that the segregation of all three lineages occurs simultaneously 
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and coincides with blastocyst formation at E5.[123] These results 
highlight a unique development scheme in human preimplan-
tation embryogenesis, as the model developed from mouse 
studies suggests that TE and ICM fate is initiated in a positional 
and cell polarization-dependent manner within the morula, fol-
lowed by a subsequent progressive maturation of EPI and PE in 
the blastocyst.

During mouse preimplantation development, distinct cell 
lineage patterning is first observed based on morphology 

during the fourth cleavage to generate a 16-cell embryo. At 
this stage, some blastomeres divide symmetrically, contrib-
uting two daughter cells to the outside region of the embryo 
(TE), whereas others divide asymmetrically and contribute 
one daughter cell to the outside (TE) and another to the inside 
region (ICM). Recent studies using scRNA-Seq revealed an early 
transcriptional symmetry breaking during the first cleavage to 
generate a two-cell embryo. Biase et  al. revealed reproducible 
interblastomere differences in two-cell and four-cell mouse 

Figure 9.  a–c) Application of single-cell RNA-seq technology in revealing the emergency of different cell phenotypes during the preimplantation period. 
a) Reproduced under the terms of the CC-BY license.[123] Copyright 2016, The Authors. b) Reproduced with permission.[124] Copyright 2015, Springer 
Nature. c) Reproduced under the terms of the CC-BY license.[125] Copyright 2017, The Authors, published by Springer Nature.

Figure 8.  Overview of mouse and human embryo development. Reproduced under the terms of the CC-BY license.[22] Copyright 2021, The Authors, 
published by Cell Press.
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embryos, which is significantly larger than interembryo dif-
ferences.[126] And the gene pairs with consistent directions of 
interblastomere differences at the four-cell-stage would exhibit 
the consistent directions of differences between ICM and TE, 
suggesting the differential gene expression may be involved in 
directing ICM/TE lineage specification. Shi et  al. showed that 
the initial blastomere-to-blastomere difference was due to par-
tition error and then zygotic transcriptional activation further 
elevated this difference. They also demonstrated such transcrip-
tional symmetry breaking also occurs during the first cleavage 
in human preimplantation embryos.

During embryo development, it is generally believed that 
two major rounds of epigenetic reprograming including DNA 
methylation and histone modification occur during the forma-
tion of primordial germ cells (PGCs) and in preimplantation 
development. Different methods have been developed to char-
acterize the epigenetic landscape of preimplantation embryos 
in single-cell resolution. Burton et  al. applied scRNA-Seq to 
mouse preimplantation embryos and focused their analysis on 
chromatin modifiers.[127] They found that dramatic changes in 
expression of chromatin modifiers took place in the early stages 
of embryo development, from oocyte to four-cell-stage, sug-
gesting drastic epigenetic reprograming occurs earlier. Impor-
tantly, they identified Prdm14 as an important modifier that 
regulates TF/ICM bifurcation. Prdm14 expresses heterogene-
ously in four-cell-stage embryos and mechanistic studies sug-
gest that expression of prdm14 promotes H3R26me2 and leads 
the cells to differentiate to ICM.[127]

In 2013, Tang and co-workers developed to map DNA methyl-
ation in single-cell resolution based on reduced representation 
bisulfite sequencing (scRRBS).[34] They have applied scRRBS 
to analyze mESCs, sperm, oocytes, and zygotes. They found 
during zygotes development, both male and female pronuclei 
underwent significant demethylation, with demethylation of 
male pronuclei more drastic than female pronuclei.[34] Recently, 
the same group used an improved method, single-cell bisulfite 
sequencing (scBS-seq) to perform DNA methylome analysis 
of preimplantation human embryos (Figure  9b).[124] In this 
method, sequencing adaptors are ligated after bisulfite treat-
ment to minimize DNA degradation. They have identified three 
major waves of global demethylation and two major waves of 
de novo DNA methylation. By comparing the genome of the 
embryo with the sperm donor, they determined the parental 
origin of each blastomere and found that demethylation is 
faster in paternal genome than maternal genome at zygote 
stage, which is consistent with mouse zygote development. By 
tracing cell division of four-cell state embryo using fluorescence 
labeling, they found DNA methylome for the two daughter 
cells showed negative correlation, indicating passive dilution 
of DNA methylation during cell division and suggesting DNA 
methylation pattern could be used to trace cell lineage during 
early development.[124]

To measure all the different layers of epigenetic informa-
tion from the same cells, Tang’s group developed a single-cell 
multiomics sequencing technology (scCOOL-seq) to simultane-
ously measure the chromatin state, nucleosome positioning, 
DNA methylation, and copy number variation (CNV) from the 
same single cells (Figure  9c).[125] They have applied scCOOL-
seq to mouse and human preimplantation embryos. They 

found distinct chromatin accessibility in parental genomes 
during preimplantation development: the chromatin of human 
embryos was more open than mouse embryos. Importantly, 
by comparing results from scCOOL-seq and scRNA-seq, they 
found a positive correlation between the chromatin accessibility 
of promoters and the expression levels of corresponding genes 
and a negative correlation between DNA methylation and chro-
matin accessibility of promoters during human preimplanta-
tion development. By examining the transcription factor motifs 
in nucleosome-depleted regions (NDRs), they found, in both 
mouse and human embryos, the bind motifs of pluripotency 
and early embryonic regulators showed strong stage-specific 
enrichment at distal NDRs and some were enriched much ear-
lier than cell fate specification.[125]

3.2. Peri-Implantation

During day 8 to day 12 of human embryo development, the 
mature blastocyst implants into the uterine wall. This period 
typically is called peri-implantation. Implantation is one of the 
most mysterious developmental milestones during mammalian 
embryogenesis. However, the implantation of the entire con-
ceptus into the maternal endometrium is less understood due 
to the limited access and observation technology to the embryo 
early after implantation in vivo. Failure of implantation is a sub-
stantial cause of early pregnancy loss. In humans, it is assessed 
that about 40–60% of conceptions fail, with the majority of 
the losses occurring implantation. So it is pretty important to 
examine the lineage specification and corresponding patterns 
of the transcriptome and DNA methylome during implantation 
to reveal the underlying mechanisms driving human embryo 
implantation.

In 2019, Tang and co-workers mimicked the implantation of 
human embryos and applied scCOOL-seq to examine the gene-
expression network and lineage-specific DNA methylation pat-
terns of human peri-implantation embryos at single-cell resolu-
tion (Figure 10a).[128] They analyzed more than 8000 individual 
cells from 65 human peri-implantation embryos. They used 
STRT-Seq to construct single-cell RNA-seq libraries, MALBAC 
amplification technique to perform single-cell whole-genome 
sequencing, and single-cell whole-genome bisulfite sequencing 
(scBS-seq) to analyze DNA methylome, finding there is robust 
preparation for the establishment of a mother-to-offspring con-
nection during implantation. They also identified the specific 
genes which are expressed in the EPI, PE, and TE cells. More-
over, according to the analysis of parental allele-specific expres-
sion of X-chromosome-linked genes, they found that the ratio 
of X chromosomes to autosomes in female cells showed a bit 
higher than that in male cells during implantation. Using the 
single-cell Trio-seq2 strategy, they analyzed the lineage-specific 
DNA methylation dynamics during implantation and found 
that remethylation of the genome in PE lineage was much 
slower than that in both EPI and TE lineages, suggesting that 
the embryos initiated DNA remethylation shortly after the 
blastocyst stage and that PE, EPI, and TE presented obviously 
distinct and asynchronous DNA remethylation patterns.[128]

Similarly, in 2019, Yuan and co-workers used single-cell RNA 
sequencing techniques to define the transcriptomic landscape of 
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placental trophoblast (TB) from cultured human blastocysts during  
the implantation period.[129] They shed light on the events driving 
early placental emergence by examining the transcriptomes of 
cytoTB (CTB), syncytioTB (STB), and migratory TB (MTB) picked 
from embryos at increasing days in culture. They found that 
these three kinds of TB cells emerge in sequencing, with CTB 
with some properties of STB appearing at D8, while mature STB 
peaked at D10, and MTB with a mixed MTB/CTB phenotype 
arose around D10. Subsequently, at around D12, the generation 
of STB is decreased, CTB institutes a new stage of proliferation, 
and mature MTB initiates to migrate from the main body of the 
conceptus (Figure  10b).[129] Recently, the other group (Lv et  al.) 
revealed the underlying regulatory mechanism driving tropho-
blast fate divergence during the human peri-implantation period 
using single-cell RNA sequencing.[130] They performed SMART-
seq2 assay to analyze the transcriptome of trophoblast cells and 
identified that T-box transcription factor 3 (TBX3) is essential for 
mediating the differentiation of cytotrophoblast into syncytio-
trophoblast (Figure 10c).[130] Tan et al. found the underlying tran-
scriptional landscape upon ZIKV infection during the pre- and 
peri-implantation period using single-cell RNA sequencing.[131] 
They reported that ZIKV infection caused miscarriage and con-
genital malformations could be ascribed to the ZIKV susceptibility 
of trophectoderm and neural progenitor cell death.[131]

3.3. Gastrulation

Gastrulation represents a process of embryogenesis, which is 
defined by the initiation of the primitive streak and subsequent 

generation of primary germ layers, including definitive endo-
derm (DE), mesoderm, and (neuro-) ectoderm. During the gas-
trulation process, the germ layers are coordinated cell division, 
movement, and rearrangement, guiding mesodermal and/or 
endodermal progenitors on the inside of the embryo and the 
ectoderm on the outside, proceeding to fate patterning. Germ 
layer patterning formation in vivo is synergistically regulated by 
different developmental signaling pathways, including Nodal/
TGFβ, BMP, WNT, and FGF. These signaling pathways are 
tightly interconnected to dictate cell fate specification, tissue 
patterning, and rearrangements.

In 2020, Moskowitz and co-workers used single-cell RNA 
sequencing techniques to reveal the underlying mechanism 
driving the formation of anterior mesoderm (AM) patterning 
during gastrulation, founding Hedgehog (Hh)-fibroblast 
growth factor (FGF) signaling axis is required.[132] They per-
formed transcriptional profiling and drop-seq to interrogate 
anterior–posterior axis patterning in a mesoderm-specific Hh 
pathway mutant, observing selective anterior mesoderm defects 
in mouse embryo development. They concluded that Hh sign-
aling is required for FGF pathway activity in nascent mesoderm 
during gastrulation, revealing a previously uncharacterized role 
of Hh signaling in the development of specific anterior meso-
derm lineages. In 2019, Meissner’s and Weissman’s groups 
reported a flexible, high-information, multichannel molecular 
recorder with a single-cell readout approach to assemble mouse 
cell-fate maps. They revealed the developmental relationship 
between different tissue types through integrating lineage 
information and scRNA-seq.[133] In the same year, Göttgens 
and co-workers reported the transcriptional profiles of 116 312 

Figure 10.  a–c) Single-cell RNA-sequencing transcriptome profiling and trophoblast development during peri-implantation of the embryo. a) Repro-
duced with permission.[128] Copyright 2019, Springer Nature. b) Reproduced under the terms of the CC-BY license.[129] Copyright 2019, The Authors, 
published by Nature. c) Reproduced under the terms of the CC-BY license.[130] Copyright 2019, The Authors, published by National Academy of Sciences.
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single cells with a median of 3436 genes detected per cell from 
mouse embryos and constructed a molecular map of cellular 
differentiation from pluripotency toward endoderm and hema-
toendothelial lineages. They also highlighted where TAL1 is 
critical for progression into the blood lineage.[134] Similarly, in 
2021, Arnold and colleagues combined scRNA-seq, genetic fate 
labeling, and imaging approaches to reveal the precise spati-
otemporal pattern of the emergence of AM and DE progenitors 
during germ layer formation of mouse embryo gastrulation.[135] 
They found the separation of AM and DE lineages from 
Eomes-expressing cells. In 2016, Sun and co-workers utilized 
scRNA-seq, conventional bisulfite sequencing, and Tet-assisted 
bisulfite sequencing (TAB-seq) technologies to analyze the epi-
genetic modification, including cytosine methylation by DNA 
methyltransferases (DNMTs) and demethylation caused by 
oxidation of 5-methylcytosine by the Ten-eleven translocation 
(Tet) family, revealing that TET-mediated demethylation and 
methylation regulate Lefty-Nodal signaling to dictate primitive 
streak patterning during mice embryo gastrulation.[136] Further-
more, in 2020, Meissner and co-workers performed scRNA-seq 
to simultaneously recover robust morphological and transcrip-
tional information of many mutant mouse embryos during the 
gastrulation period.[137] They found polycomb repressive com-
plex (PRC) 1 and 2 components are considerable cooperativi-
ties, while PRC2 dominates in restricting the germline. In 2017, 

Reik and co-workers described regulatory processes associated 
with lineage commitment during mouse embryonic develop-
ment from implantation to early gastrulation at single-cell reso-
lution (Figure 11a).[138]

In primates, including humans and nonhuman, gastrulation 
remains a mystery since accessing primate embryos is diffi-
cult at this stage. In 2020, Li and co-workers developed a 3D in 
vitro human blastocyst-culture system to mimic developmental 
milestone and 3D architectures of the embryonic disc, amnion, 
and formation of primitive streak anlage (Figure 11b).[139] They 
characterized the regulatory network driving the segregation 
of epiblast, primitive endoderm, and trophoblast using single-
cell transcriptome profiling. In parallel, in 2019, Wang and co-
workers also established an in vitro culture system to support 
the development of the cynomolgus monkey embryo beyond 
early gastrulation.[141] They recapitulated the segregation of 
epiblast and hypoblast, the emergence of the primordial germ 
cells, and formation of the anterior–posterior axis, and explored 
the characteristics and mechanisms driving lineage specifica-
tion during embryo postimplantation.

Recently, Neveu and co-workers designed a computational 
framework, i.e., MorphoSeq to generate a spatiotemporal atlas 
of gene expression at the single-cell level and classify the single 
cell of the individual embryo into cell types without prior knowl-
edge (Figure 11c).[140] They reconstructed the genome-wide gene 

Figure 11.  a–c) Lineage delineation by transcriptome using single-cell RNA-seq during gastrulation period. a) Reproduced under the terms of the CC-BY 
license.[138] Copyright 2017, The Authors. b) Reproduced with permission.[139] Copyright 2019, Springer Nature. c) Reproduced under the terms of the 
CC-BY license.[140] Copyright 2020, The Authors, published by Nature.
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expression trajectory of every single cell in the 18 lineages up 
to gastrulation in the ascidian Phallusia mammillata, mapping 
physical position of each cell and lineage history.

3.4. Neurulation

Neurulation begins soon after the gastrulation of the embryo, 
which is essential for the formation of the neural tube and 
subsequent development of central nervous system. After 
neural development, the neural plate folds and fuses to form 
the neural tube, which is directly dictated by the morphogens 
secreted from surrounding tissues and biophysical cues from 
extracellular matrix.[142] These extracellular inductive cues are 
sensed and transduced through intracellular signaling pathways 
to mediate genetic networks activation, including activation of 
transcriptional factors, DNA methylation and demethylation, 
which guides the fate specification of progenitor cells within 
the neural tube.

Recently, Brivanlou and co-workers generated a neuru-
loids structure, which recapitulates early human neurulation, 
through micropattern technology.[143] Then, they uncovered the 
precise identities and timing of fate specification during neu-
rulation using scRNA-seq technology. They tested over 5105 
single cells across two independent experiments, revealed 
gene expression landmarks of neural, neural crest, sensory 
placodes, and epidermis, and identified over 100 genes with an 
expression pattern specific to each population. Furthermore, 
they unraveled the molecular mechanisms driving the mor-
phogenetic defect of Huntington’s disease (HD) through ana-
lyzing scRNA-seq data of neuruloids in wild type and 56CAG 
background, founding the downregulation of WNT/PCP sign-
aling pathway and dramatically decrease in the expression of 
cytoskeleton-associated genes and actin-myosin contraction.[143] 

In 2018, Xu and co-workers investigated the genome-wide tran-
scriptome profile of single cells to uncover cell fate decision and 
subpopulation specification during human neurulation using 
scRNA-seq and ATAC-seq.[144] They identified putative novel 
transcription factors and dissected the dynamics of chromatin 
accessibility during neural differentiation stages. Together, all 
these researches pave the way for a deeper understanding of 
the underlying mechanisms of neurulation, cell fate specifica-
tion, and neuronal disease.

3.5. Organogenesis

After gastrulation, three germ layers further develop into dif-
ferent organs, and embryos expand from hundreds of cells to 
millions of cells during organogenesis. scRNA-seq provides a 
powerful strategy to map the transcriptional landscape at the 
single-cell level during early organ development. Trapnell’s and 
Shendure’s groups developed a high-throughput sequencing 
method, single-cell combinatorial-indexing RNA-sequencing 
analysis (sci-RNA-seqs), and analyzed over 2 million cells from 
different organogenesis-stage mouse embryos and recovered 
a median of 671 UMIs.[145] By subjecting single-cell transcrip-
tome to Louvain clustering, they identified 39 major clusters. 
They developed and used monocle 3 to identify major devel-
opmental trajectories along mouse organogenesis. They found 
many trajectories are more complicated than a simple linear 
path, such as branching path and certain cell types to be gen-
erated from multiple origins, highlighting the complexity of 
organogenesis.[145]

In 2018, Tang and co-workers utilized scRNA-seq tech-
nology to examine the transcriptomic features of ≈2000 indi-
vidual cells from eight organs and tissues from seven mouse 
embryos between E9.5 to E11.5, investigating the evolutionary 

Figure 12.  a–c) Application of single-cell RNA-seq technology on identifying cell types during organogenesis. a) Reproduced under the terms of 
the CC-BY 4.0 license.[146] Copyright 2018, The Authors, published by Nature. b) Reproduced with permission.[147] Copyright 2018, Springer Nature.  
c) Reproduced with permission.[148] Copyright 2018, Elsevier.
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and developmental relationships among various organs and 
cell types during mouse organogenesis (Figure 12a).[146] They 
applied the SCENIC algorithm to map gene regulatory net-
works, construct regulon matrix, and perform hierarchy clus-
tering. They obtained four major groups with epithelial, meso-
dermal, hematopoietic, and neuronal features. Moreover, they 
uncovered a hybrid epithelial/mesenchymal (E/M) state in 
epithelial cells, founding E/M hybrid state is a common pro-
cess within endodermal organs. Another research from the 
Göttgens group reported the role of the leukotriene pathway in 
mediating blood progenitor formation during murine organo-
genesis using scRNA-seq.[147] They profiled the transcriptomic 
landscape of more than 20 000 individual cells from mouse 
embryos during the gastrulation to the organogenesis period. 
They identified around 20 major cell types and dynamic waves 
of transcription and candidate regulators in the ordering of 
somatic progenitor cells. Furthermore, they figured out the leu-
kotriene biosynthesis pathway as a regulator in mediating early 
blood development through analyzing the full transcriptomes 
of the hemogenic endothelial cells and the blood progenitors 
(Figure 12b).[147]

In humans, Maehr and co-workers used scRNA-sequencing 
based on the drop-seq technique to study 8 days of thymus 
organogenesis. They profiled ≈25 000 cells and revealed cel-
lular heterogeneity and interrogate developmental dynamics, 
and pinpointed the cell-specific expression patterns in stromal 
and blood populations. By combining the genome-wide asso-
ciation study data and autoimmune-disease-related genes with 
cell atlas, they found embryonic thymus-resident cells possibly 
participate in autoimmune disease etiologies (Figure  12c).[148] 
Similarly, in 2019, Hu and co-workers profiled the transcrip-
tional landscape of human early T lymphopoiesis from mul-
tiple hemogenic and hematopoietic sites spanning embryonic 
and fetal stages through droplet-based and well-based (STRT-
seq).[149] They found a subtype in early thymic progenitors 
that shared similar properties with a subset of lymphoid pro-
genitors in the fetal liver, and identified a new subset of pre-
thymic lymphoid progenitor in the aorta-gonad-mesonephros 
region. These researches provided useful information to better 
understand human early T lymphopoiesis and T lymphocyte 
regeneration.

4. Conclusion and Perspectives

In past years, fundamental research on stem cells and devel-
opmental biology has witnessed rapid progress via the assis-
tance of single-cell sequencing. Despite the fruitful history, the 
marriage of developmental biology and single-cell sequencing 
still faces several critical challenges. By far, we mainly rely on 
pseudotime analysis to reconstruct the developmental trajec-
tory of cell lineages, which could only infer the native process 
indirectly. Directly probing the temporal progression of cell 
fate decisions at the single-cell level in live embryos remains a 
desired target. The recent development of new techniques, such 
as the Live-seq,[54] might help address such challenges in the 
near future. In addition, due to extremely rare access to human 
embryos at the postimplantation and gastrulation stage, single-
cell analysis for such precious samples should rely on highly 

sensitive techniques that could perform single-cell multiomics 
with a small amount of starting materials (such as that from just 
one cell). To this end, enhancement of the detection sensitivity 
and target versatility of single-cell sequencing becomes a fertile 
ground receiving increasing attention in recent years. Further-
more, the loss of original spatial information has been a major 
caveat for single-cell sequencing. Therefore, the combination of 
single-cell sequencing with stereo-sequencing should open tre-
mendous opportunities for resolving the spatiotemporal trajec-
tory of individual cells throughout embryogenesis, which might 
provide the most comprehensive roadmap for the development 
of humans in the near future. Once the technology of spatial-
omics becomes mature and cost-effective, we believe many of 
the current mysteries in developmental biology will be unveiled.
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