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Abstract
Adolescent risk-taking, including sensation seeking (SS), is often attributed to devel-
opmental changes in connectivity among brain regions implicated in cognitive control 
and reward processing. Despite considerable scientific and popular interest in this 
neurodevelopmental framework, there are few empirical investigations of adolescent 
functional connectivity, let alone examinations of its links to SS behavior. The studies 
that have been done focus on mean-based approaches and leave unanswered ques-
tions about individual differences in neurodevelopment and behavior. The goal of this 
paper is to take a person-specific approach to the study of adolescent functional con-
nectivity during a continuous motivational state, and to examine links between con-
nectivity and self-reported SS behavior in 104 adolescents (MAge = 19.3; SDAge = 1.3). 
Using Group Iterative Multiple Model Estimation (GIMME), person-specific connec-
tivity during two neuroimaging runs of a monetary incentive delay task was estimated 
among 12 a priori brain regions of interest representing reward, cognitive, and sali-
ence networks. Two data-driven subgroups were detected, a finding that was consist-
ent between both neuroimaging runs, but associations with SS were only found in the 
first run, potentially reflecting neural habituation in the second run. Specifically, the 
subgroup that had unique connections between reward-related regions had greater 
SS and showed a distinctive relation between connectivity strength in the reward re-
gions and SS. These findings provide novel evidence for heterogeneity in adolescent 
brain-behavior relations by showing that subsets of adolescents have unique associa-
tions between neural motivational processing and SS. Findings have broader implica-
tions for future work on reward processing, as they demonstrate that brain-behavior 
relations may attenuate across runs.
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1  |  INTRODUC TION

Adolescent risk-taking behavior, including sensation seeking, has 
been a central focus for developmental research, interventions, 
and policy largely because it is a leading cause of death and dis-
ease during an otherwise healthy period of life (Kann et al., 2018). 
Neuroscience research has provided critical insights into the neu-
rodevelopment during adolescence (Casey, 2015). For instance, 
there are varying degrees of support for a set of related models 
contending that normative changes in the cognitive control system 
(e.g., dorsolateral prefrontal cortex) and socioemotional system 
(e.g., ventral striatum and amygdala) during adolescence predispose 
youth to the sensation seeking characteristic of this developmental 
period (Casey et al., 2008; Ernst et al., 2006; Shulman et al., 2016; 
Steinberg,  2008). Although the implications of these models have 
been far-reaching, there is continued debate about their empiri-
cal support and applicability to all youth, potentially owing to their 
focus on functional localization and quantitative methods that av-
erage across youth who may vary widely on relevant dimensions 
(Beltz,  2018; Bjork & Pardini,  2015; Willoughby et  al.,  2013). The 
goal of this study is to begin to fill that knowledge gap by character-
izing adolescent-specific functional networks of the socioemotional 
and cognitive control systems during a motivational mental state 
presumed to occur in a reward processing task and examining their 
associations with self-reported sensation seeking behavior.

1.1  |  Neural connectivity and adolescent 
reward processing

Although there is considerable variability among them, most neu-
rodevelopmental models of adolescent risk-taking behavior (Casey 
et al., 2008; Ernst et al., 2006; Steinberg, 2008) broadly concern 
the interplay between brain regions implicated in: (a) cognitive 
control, such as the anterior cingulate cortex (ACC) and dorsolat-
eral prefrontal cortex (DLPFC); and (b) socioemotional processing, 
which can be broken down into the reward and salience subsys-
tems. The reward subsystem facilitates approach behaviors, and 
includes the ventral striatum (VS), orbitofrontal cortex (OFC), 
and ventromedial PFC (vmPFC) (Haber & Behrens,  2014; Haber 
& Knutson,  2010; Roy et  al.,  2012). The salience subsystem de-
tects the valence of stimuli, and includes the amygdala and insula 
(Knutson & Greer, 2008; Posner et al., 2005). Early studies evalu-
ated differences in mean-level activation of regions thought to 
contribute to sensation seeking behavior during reward process-
ing that showed developmental differences between adults and 
adolescents (reviewed in Silverman et  al.,  2015), such that ado-
lescents had less activation than adults in the ACC and VS when 
anticipating rewards (Bjork et  al.,  2010) but greater activation 
than adults in the VS and insula when receiving rewards (Galván 
& McGlennen, 2012). Some early studies also examined the asso-
ciations between regional mean-level activations and risk-related 
behaviors, such that the likelihood of engaging in a risky behavior 

in future and VS activation were more strongly positively related in 
adolescents and adults (Galvan et al., 2007).

Although informative, these early studies generally did not 
consider functional integration among the multiple regions that 
constitute each system or network (Pessoa,  2017). Connectivity 
studies have the potential to map patterns among integrated neural 
networks (Beltz, 2018; Lydon-Staley & Bassett, 2018). Specifically, 
connectivity overcomes limitations of functional localization by 
evaluating the covariation, or functional dynamics, among regional 
activations, which is emphasized in most theories of the neural un-
derpinnings of adolescent reward-seeking behavior (Beltz,  2018; 
Meisel et al., 2019). Furthermore, although prior studies have used 
connectivity analyses, methods have often averaged across adoles-
cents in an attempt to describe normative development. In contrast, 
person-specific connectivity takes an individual differences ap-
proach by modeling at the subgroup, or even at the individual, level. 
This is important because there is growing evidence of extreme indi-
vidual differences in both neural function (Becht & Mills, 2020; Finn 
et al., 2017; Gordon et al., 2017; Poldrack, 2017) and in adolescent 
brain development (Lydon-Staley & Bassett, 2018).

Sensation seeking is a psychological characteristic that is prin-
cipal to neurodevelopmental models (Shulman et al., 2016). In part, 
sensation seeking is presumed to be facilitated by reward-related, 
and dopamine-linked neural systems that impact an adolescent's 
motivation to engage in risk-taking behaviors (Ernst & Spear, 2009). 
Sensation seeking has been reported to have a small-to-moderate 
associations with general health risk behaviors (Demidenko 
et  al.,  2019), substance use disorders (Khurana et  al.,  2018), and 
simultaneous alcohol and marijuana use in adolescents (Linden-
Carmichael et al., 2019). To date, several studies have considered the 
relation between mean (or group-level) connectivity and sensation 
seeking. For instance, connectivity between the amygdala and the 
OFC during resting state using seed-based functional connectivity 
(i.e., detecting associations between a candidate region and all other 
brain regions) have been shown to be inversely related to sensation 

Significance

Neuroscience research has provided critical insights into 
adolescent neurodevelopment. Nevertheless, there is con-
tinued debate about their empirical support, potentially 
owing to their focus on functional localization and average 
youth. Using a data-driven person-specific network con-
nectivity approach on two continuous runs of the monetary 
incentive delay task, we uncover two distinct subgroups 
for each run. During the first run, subgroups were signifi-
cantly related to self-reported sensation seeking; however, 
this effect was attenuated in the second run and opposite 
in direction for the combined runs. Differences may relate 
to habituation or reliability over time and power across 
methods.
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seeking (Crane et  al.,  2018). Also, connectivity between VS and 
motor areas during incentivized trials in a task using psychophysio-
logical interaction (i.e., combining seed-based correlations and task 
regressors) have been shown to be positively related to sensation 
seeking (Crane et al., 2018; Weiland et al., 2013). Finally, mean-level 
connectivity patterns in the OFC and ACC estimated using Pearson's 
correlations from resting-state data were reported to reliably predict 
(r = 0.30) sensation seeking in adults (Wan et al., 2020). Together, 
these studies suggest that there may be group-level links between 
patterns of neural connectivity and sensation seeking.

Nonetheless, significant questions remain about the association 
between connectivity and sensation seeking during adolescence, as 
participants in the studies reviewed above ranged in age from 18 to 
85 years (Crane et al., 2018) or only included young-to-mid adults 
aged 21 to 35 years (Wan et al., 2020). Questions about adolescent-
specific motivational processes and behavior are important to an-
swer because the developmental peak in sensation seeking seems 
to be between ages 14 and 20 (Harden & Tucker-Drob,  2011; 
Romer, 2010). Although one study examined functional connectiv-
ity patterns and sensation seeking in a late adolescent sample (18–
22 years old), the study looked only at mean-level connectivity in 
a sample of late adolescents exposed to higher rates of adversity 
(Weiland et al., 2013). Thus, there is empirical evidence for mean-
ingful associations between functional connectivity and sensation 
seeking at the group level, but there remains a need for research on 
adolescents that captures individual differences.

1.2  |  Person-specific connectivity

One promising way to accurately capture individual differences in 
the neural networks underlying adolescent motivational processing 
is to use a person-specific connectivity approach that avoids assump-
tions about uniformity (Beltz, 2018; Lydon-Staley & Bassett, 2018). 
Given the heterogeneity of functional networks (Finn et al., 2017) 
and adolescent behaviors (Bjork & Pardini, 2015), modeling person-
specific covariation among regional activations may capture effects 
that are only present, or only particularly strong, in a subset of in-
dividuals or even that are unique to a single individual (see Beltz & 
Gates, 2017).

Group Iterative Multiple Model Estimation (GIMME; Gates & 
Molenaar,  2012) is one such modeling approach. GIMME creates 
sparse person-specific networks specifying data-driven connections 
(or edges) among brain regions of interest (ROIs) that can occur at 
multiple levels: group, subgroup, and individual (Beltz & Gates, 2017; 
Gates et al., 2017). First, GIMME estimates group-level connections 
that are meaningful for at least 75% of individuals. Second, sub-
groups are identified using the Walktrap community detection al-
gorithm (Orman & Labatut, 2009), which clusters into a community 
individuals based on the similarity of their group-level connection 
magnitudes (Gates et  al.,  2016), and then subgroup-level connec-
tions that are meaningful for only individuals in the same subgroup 
are estimated. Third, individual-level connections that are unique to 

a person (and estimated after group- and subgroup-level connec-
tions, which improves their reliability; Gates et  al.,  2017) are esti-
mated. While the final networks characterize both homogeneity (in 
the group-level connections—without averaging across individuals) 
and heterogeneity (in the individual-level connections) in a sparse 
network, subgroup-level connections represent both homogene-
ity and heterogeneity. Simulation studies have demonstrated that 
GIMME effectively identifies the presence of connections between 
ROIs and is to date an accurate method for modeling network pat-
terns in functional time-series data, especially compared to other 
approaches that assume homogeneity when participants are, in fact, 
heterogeneous (Gates et al., 2017; Mumford & Ramsey, 2014; Smith 
et al., 2011).

GIMME has been successfully used to delineate person-specific 
networks in developmental and clinical research (reviewed in Beltz & 
Gates, 2017; Beltz & Weigard, 2019). For instance, during an alcohol-
related inhibition task in young adults, the number of connections 
within the cognitive control system changed across the transition 
to college in accord with alcohol use behaviors (Beltz et al., 2013). 
Moreover, during resting state, network connectivity patterns in 
subgroups effectively delineated communities of children with 
different clinical diagnoses (e.g., autism spectrum disorder and at-
tention deficit hyperactivity disorder) and healthy controls (Henry 
et al., 2019), such that children with diagnoses were characterized 
by connections between the default mode, salience, and ventral at-
tention networks, whereas controls were largely characterized by 
within-network connections. Likewise, resting-state network con-
nectivity patterns revealed subgroups of adolescents who varied 
in levels of childhood violence exposure (Goetschius et  al.,  2020), 
which is particularly noteworthy because it illustrates how GIMME 
can differentiate—in adolescence—brain networks of children with 
certain experiences of adversity in a purely data-driven fashion. 
The ability to capture both homogeneity and heterogeneity in neu-
ral network features is critical in the study of adolescent sensation 
seeking and motivation processing, because risk-taking tendencies 
may represent only a subset of youth and not all adolescents (Bjork 
& Pardini, 2015).

1.3  |  Current study

In the current study, we examine whether person-specific network 
connectivity during a motivational processing task meaningfully 
relates to individual differences in self-reported sensation seeking 
behaviors. Given our interest in modeling the dynamic complexity 
of the brain and the precedent in prior studies using GIMME with 
task fMRI (Beltz et al., 2013; Duffy et al., 2021; Hillary et al., 2014; 
Weigard et al., 2018), we do not consider modulating effects of task 
regressors but rather focus on comprehensively evaluating connec-
tivity during a motivational state, or a state of being continuously 
engaged in a task in which possible gains and losses are evaluated 
and received. In other words, we uniquely capture relations among 
a broad set of ROIs to understand systems-level neural integration 
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during continuous motivational processing, but we do not explicitly 
estimate contrasts (e.g., gain > loss) as in traditional analyses of the 
monetary incentive delay (MID) task; thus, our GIMME networks 
may not reflect reward processing per se (Balodis & Potenza, 2015; 
Dugré et al., 2018).

Specifically, we applied GIMME to two separate runs of the MID 
task (Knutson et al., 2000) in a sample of late adolescents, focus-
ing on 12 ROIs that reflect the cognitive control, reward, and sa-
lience networks (e.g., bilateral OFC, DLPFC, insula, amygdala, VS, 
and ACC and vmPFC). As described above and in the neurodevel-
opmental literature (Demidenko et al., 2020; Sherman et al., 2018; 
Silverman et  al.,  2015; Steinberg,  2010), we focus on these ROIs 
given evidence for the role of DLPFC and ACC in cognitive control 
processes (Apps et al., 2016; Szczepanski & Knight, 2014); the role 
of VS, OFC, and vmPFC in motivational processes and economic 
decision-making (Haber & Behrens,  2014; Knutson et  al.,  2014; 
Padoa-Schioppa & Conen, 2017; Roy et al., 2012); and the role of the 
insula and amygdala in valence and affective processing (Knutson 
et al., 2014; Posner et al., 2005). Although we use network labels, 
such as cognitive control, reward, and salience, as heuristics, brain 
regions are rarely localized to specific networks (Rolls, 2014) or af-
fective processes (Berridge, 2019); instead, they play a dynamic part 
in a complex interacting system (Pessoa, 2021). Thus, these network 
labels are intended to serve as conceptual links to the neurodevelop-
mental models from which the hypotheses below are derived (Casey 
et al., 2008; Ernst, 2014; Steinberg, 2010).

We implement GIMME's subgroup community detection algo-
rithm to uncover potential communities of adolescents who share 
neural features during motivational processing, and then we examine 
how these features relate to adolescent sensation seeking behavior. 
Given that reported poor within-participant reliability in task-based 
fMRI may be attributed to habituation (Elliott et al., 2020), or wan-
ing vigilance or novelty in reward systems triggered by fMRI tasks 
(Ekhtiari et al., 2020; Plichta et al., 2012), we also consider the net-
work connectivity during the combined and individual MID run time 
series.

Our study is comprised of three aims. In Aim 1, we map person-
specific connectivity in reward processing regions separately for 
each run of the MID task, exploring whether there are data-driven 
subgroups during a presume motivational state. In Aim 2, we exam-
ine whether there are meaningful associations between network 
features (such as subgroup membership and connection strength) 
and sensation seeking separately by run. In Aim 3, we compare esti-
mated connections between Run 01 and Run 02 to detect potential 
habituation across runs and repeat Aims 1 and 2 for the combined 
runs to evaluate the robustness of findings from the individual runs 
for the combined time series. We expect to find substantial individ-
ual differences in motivational processing, evidenced by person-
specific networks, but given the novelty of this approach, we do 
not have expectations about whether data-driven subgroups will 
exist. Nevertheless, we do hypothesize that connectivity strength 
between reward and cognitive control ROIs will be related to sen-
sation seeking based on common neurodevelopmental models that 

implicate regions, including the VS, OFC, vmPFC, and/or DLPFC, in 
the relationship to sensation seeking (Casey et al., 2008, 2019; Ernst 
et al., 2006; Shulman et al., 2016; Steinberg, 2008).

2  |  METHODS

2.1  |  Participants

Participants in this study are a Phase II subsample (N  =  104; 
MAge = 19.3; SDAge = 1.3; 57% female; 71% White, 14% black, non-
Hispanic, 6% Hispanic/Latinx) of adolescents from the Adolescent 
Health Risk Behavior (AHRB) study described in supplementary 
Section 2.1. Of the 115 participants eligible for inclusion, 104 are 
included in this study. Seven participants were not safe to magnetic 
resonance imaging (MRI) scan and four completed the scan but were 
excluded from analyses due to non-recoverable artifacts in the im-
ages (n = 3) or failing to respond during the MID task (n = 1).

During Phase I, participants completed behavioral question-
naires, including sensation seeking, across three waves at 18-
month intervals beginning in mid-to-late adolescence that were 
administered using computer-assisted self-interviewing (Wave 1, 
MAge  =  16.8  years, SDAge  =  1.1). As described in supplementary 
Section 2.1, participants characterized as high or average/low-risk 
takers at Phase I on a latent Behavioral Misadventure Score that 
comprises 15-health risk behaviors were recruited to participate 
in the neuroimaging Phase II. The behavioral data from Wave 1 
to Wave 3 are used here in assessments of sensation seeking for 
each participant (described below). During Wave 1, participants 
completed surveys in school, administered using computer-assisted 
self-interviewing, and during Wave 2 and Wave 3, participants 
completed surveys on their own time using web-based computer-
assisted interviewing.

2.2  |  Procedures

All study procedures were approved by the University of Michigan 
Institutional Review Board. Upon arrival for Phase II neuroimaging, 
research staff reviewed instructions of the MID task. Participants 
were informed of the cue-related outcomes and completed a prac-
tice version of the task. Participants were explicitly informed that 
their performance, or cumulative earnings during the MID (maxi-
mum of $30), would be associated with the compensation they re-
ceived at the end of the visit.

2.3  |  Measures

2.3.1  |  Sensation seeking

Participants completed the Brief Sensation Seeking Scale (BSSS), 
which is an 8-item self-report measure of novelty-seeking behaviors 
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(Hoyle et  al.,  2002). Participants responded on a 5-point Likert-
scale for eight items: (1) “strongly disagree” to (5) “strongly agree.” 
Example items are “I would like to explore strange places” or “I would 
like to try bungee jumping.” The BSSS is a revised version of the earlier 
SSS (Horvath & Zuckerman, 1993; Zuckerman et al., 1978) that up-
dates behavioral descriptions and language, and that removes similar 
items (e.g., related to alcohol) (Arnett, 1994; Hoyle et al., 2002). The 
composite variable is the average of the eight items, such that higher 
scores reflect higher sensation seeking (Cronbach's α = 0.78).

In order to utilize the longitudinal sensation seeking data from 
Phase I of this study, growth curves were used to estimate be-
havior at Wave 3 (most proximal to the scan) for all participants. 
Specifically, SAS 9.4 PROC NLMIXED (SAS Institute Inc., Cary, NC) 
was used to fit mixed-effects growth curve models to the three 
waves of BSSS data treating the intercept as a random effect and 
using an unstructured error covariance matrix; the intercept was 
calculated at Wave 3. Across the three waves, 100% (NWave 1 = 104; 
M = 3.29, SD = 0.76), 77% (NWave 2 = 80; M = 3.26, SD = 0.72), and 
89% (NWave 3 = 93; M = 3.33, SD = 0.56) of participants provided 
BSSS data. Full information maximum likelihood estimation was used 
in combination with empirical Bayes estimates to provide intercepts 
for all 104 participants in the sample (Rubin, 1976). As expected, the 
individual BSSS intercept estimates were highly correlated with the 
observed Wave 3 self-reported BSSS, r = 0.82.

2.3.2  |  fMRI task

The MID task (Knutson et  al.,  2000) was used to measure brain 
activity during a motivational state that comprised both monetary 
gains and losses. The MID is a well-established task for assessing 
reward processing, and the version used here is administered in the 
Adolescent Brain Cognitive Development Study (Casey et al., 2018). 
The task consists of three phases: anticipation, probe, and feedback. 
Each trial starts with a cue type (i.e., Win $0.20, Win $5, Lose $5, 
Lose $0.20, or No Money At Stake) presented on the screen for 
2,000  ms followed by a jittered fixation cross (1,500–4,000  ms). 
Next, the target probe cue (187–500  ms) appears and requires 
participants to respond in order to win or not lose money, and it 
is followed by the feedback phase (1,450–1,763  ms) during which 
participants are informed if they receive the reward. Two MID runs 
were administered, each lasted 5:42  min and consistent of 407 
volumes (see Supplemental Figure S2 and Section 2.3 for more in-
formation about the design and the task schematic). The MID task 
is considered a rapid event-related design, as the interstimulus in-
terval is shorter than the hemodynamic response function (Soares 
et al., 2016).

2.4  |  fMRI acquisition

Data were acquired using a GE Discovery MR750 3.0 Tesla scanner with 
a standard adult-sized coil (Milwaukee, WI). A full-brain high-resolution 

T1 SPGR PROMO scan was acquired for registration (TR = 7,000 ms, 
TE = 2,900 ms, flip angle = 8°, FOV = 25.6 cm, slice thickness = 1 mm, 
208 sagittal slices; matrix  =  256  ×  256). Next, two functional T2*-
weighted BOLD MID runs were acquired in the axial plane using a multi-
band EPI sequence (MB factor = 6) of 60 contiguous axial 2.4 mm slices 
(TR = 800 ms, TE = 30 ms, flip angle = 52°, FOV = 21.6 cm, 90 × 90 
matrix, volumes = 407). A field map was also acquired right before the 
task using spin-echo EPI (TR = 7,400 ms, TE = 80 ms, FOV = 21.6 cm, 
90 × 90 matrix) with opposite phase encoding polarity (A → P, P → A).

2.5  |  fMRI preprocessing and time-series 
extractions

fMRI data: (1) were reconstructed; (2) had realignment and field 
map correction applied in SPM12; and (3) had physiological noise 
removed using RETROICOR (Glover et al., 2000). Preprocessing was 
then completed using FSL (FMRIB's Software Library, www.fmrib.
ox.ac.uk/fsl) FEAT (FMRI Expert Analysis Tool) Version 6.00. This 
included: (4) registration to high-resolution structural and stand-
ard space MNI 152 image using FLIRT using a Full search 12 DOF 
(Jenkinson et al., 2002; Jenkinson & Smith, 2001); (5) motion correc-
tion using MCFLIRT (Jenkinson et al., 2002); (6) non-brain removal 
using BET (Smith, 2002); (7) spatial smoothing using a Gaussian ker-
nel of FWHM 5 mm; (8) grand-mean intensity normalization of the 
entire 4D data set by a single multiplicative factor; and (9) high-pass 
temporal filtering (Gaussian-weighted least-squares straight line fit-
ting, with sigma = 50.0 s).

2.6  |  Region of interest identification and  
time-series extraction

Several steps were completed to extract the time-series data 
for GIMME analyses. First, central coordinates for 12 ROIs (see 
Figure 1; supplementary section 2.6, Table S1 for specific MNI co-
ordinates) were selected using Neurosynth (Neurosynth.org) based 
on previous literature (Galvan, 2010; Sherman et al., 2018). These 
regions belong to three networks: the cognitive control network, 
which consists of the bilateral DLPFC and ACC; the reward network, 
which consists of the bilateral VS, vmPFC, and OFC; and the sali-
ence network, which consists of the bilateral amygdala and insula. 
As mentioned previously, these network labels are heuristics linked 
to neurodevelopmental models.

For each ROI, a 10-mm sphere around the central coordinate 
was used to extract the mean signal intensities at each volume for 
each of the two runs. For Aims 1 and 2, the entire time series from 
each separate run was used; however, for Aim 3, the concatenated 
time series across the two runs was used. Due to the rapid volume 
acquisition (800 ms), each run was down-sampled (retaining every 
other volume) after preprocessing, as has been suggested (Beltz & 
Gates,  2017) and used in other fast-acquisition methods, such as 
functional near-infrared spectroscopy (Pinti et al., 2019).

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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F I G U R E  1  Twelve ROI coordinates projected onto an MNI glass brain. Blue, ventral striatum; green, ventromedial prefrontal cortex; pink, 
anterior cingulate cortex; yellow, orbitofrontal cortex; red, insula; cyan, amygdala; black, dorsolateral prefrontal cortex

F I G U R E  2  GIMME model flow chart. Lines represent: black, group connections; green, subgroup connections; gray, individual 
connections; solid, contemporaneous; dashed, lagged; green, Subgroup01; red, Subgroup02
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2.7  |  GIMME analyses

GIMME version 0.6-0 in R version 3.6.1 (R Core Team, 2020) was used 
to estimate time-lagged (t − 1) and contemporaneous (t) network con-
nections in unified structural equation models (uSEM), which combine 
vector autoregressions and structural equation models, respectively, for 
each individual within a grouping algorithm that contains subgrouping via 
community detection. GIMME estimates network connections through a 
data-driven search process that uses Lagrange multiplier tests to select 
connections at the group, subgroup, and individual level that most im-
prove model fit. The sequential steps of the GIMME search process are 
summarized in Figure 2. At the beginning of these steps, we estimate au-
toregressive connections as part of a “null” model, as this search strategy 
has been demonstrated to improve recovery of other connections in tem-
porally dense data (Lane et al., 2019). Then, starting with this null model, 
group-level connections that best improve fit for the at least 75% of the 
sample are iteratively estimated for all participants. After the estimation 
of the group-level connections, GIMME uses this a priori model to inform 
subgroup detection. Subgroups are estimated using a data-driven com-
munity detection technique to cluster individuals with common sets of 
interconnected ROIs via Walktrap. For each subgroup, connections that 
improve fit for at least 50% of individuals in the subgroup are iteratively 
estimated for all participants in the subgroup (Gates et al., 2017). After 
subgroup detection and connection estimation are complete, the group 
and subgroup a priori models are used in the iterative data-driven estima-
tion of individual-level connections that uniquely characterize participants 
and improve their model fit. At each of these three steps, the algorithm 
stops its search when: (a) the model fits well according to two out of four 
fit statistics: Comparative Fit Index (CFI) ≥  .95, Non-Normed Fit Index 
(NNFI) ≥ .95, Standardized Root Mean Square Residual (SRMR) ≤ .05, and 
Root Mean Square Error of Approximation (RMSEA) ≤ .05; or (b) modifica-
tion indices indicate no additional connections will significantly improve 
fit—whichever comes first. The former is a stopping rule implemented 
to avoid overfitting. Given that the connections are inferred through the 
data-driven process from the temporal information in the fMRI data, the 
final maps reflect estimates of directed functional connectivity (Beltz & 
Gates, 2017; Friston et al., 2013).

To characterize individual differences in GIMME-derived net-
works, we focus on subgroup membership and individual coeffi-
cients from the networks when examining links to sensation seeking 
behavior. Subgroups are identified in GIMME (if they exist) and re-
flect neural network similarities among some sets of participants 
during the MID continuous motivational state. Each subgroup is 
characterized by a set of unique network connections, and each has 
a person-specific beta estimate that reflects its direction and mag-
nitude. These individual subgroups and connection estimates can be 
examined in relation to the BSSS.

2.8  |  Analysis plan

Event-related designs are often insufficiently powered to estimate 
the effects of specific task conditions (e.g., anticipation or feedback in 

the MID) on neural connectivity (see Beltz, 2018; Di & Biswal, 2017). 
This is especially true for rapid event-related designs, such as the 
current study's design, because the hemodynamic response func-
tion is longer than the interstimulus interval. It is also borne out by 
simulations using GIMME on task data (Duffy et  al.,  2021; Gates 
et al., 2011) and in empirical studies that modeled task regressors 
in GIMME and found little evidence for their substantial modulating 
effects on connectivity (Hillary et al., 2014; Price et al., 2020). Given 
this evidence, we focus on the connectivity among regions during a 
motivational state rather than modeling modulation by specific task 
phases (e.g., during individual gain or loss events).

To test Aim 1, which was to examine whether there are data-
driven subgroups during motivational processing, we use GIMME 
to map person-specific connectivity in reward ROIs separately for 
each run of the MID task, and then examine whether data-driven 
subgroups are identified. If subgroups are found, we will proceed 
to Aim 2.

To test Aim 2, which was to examine whether there are meaning-
ful associations between network features (e.g., subgroup member-
ship and connection strength) and sensation seeking, we use logistic 
regression to evaluate whether BSSS (i.e., Wave 3 empirical Bayes 
intercepts from the growth curve models) is significantly (p <  .05) 
associated with the subgroups detected from the first and second 
runs, separately. Specifically, we predict subgroup membership from 
BSSS, controlling for age, sex, and head motion (mean framewise dis-
placement (FD)). To determine which subgroup connections may be 
driving links with sensation seeking, significant associations are fol-
lowed-up with exploratory multiple regression analyses—conducted 
within each subgroup separately—to examine associations between 
specific connection strengths that are meaningful to the subgroup 
and BSSS.

Finally, to test Aim 3, we (i) compare estimated connections be-
tween Run 01 and Run 02 to detect potential habituation across runs 
and (ii) repeat Aims 1 and 2 for the concatenated time series to eval-
uate the robustness of neural connectivity and its BSSS associations 
in the full time series. Specifically, we: (a) examine whether data-
driven subgroups are identified, and then if subgroups are identified, 
we (b) use logistic regression to evaluate whether BSSS is signifi-
cantly (p <  .05) associated with the subgroups and evaluate which 
subgroup connections may be driving links with BSSS with follow-up 
multiple regression analyses, as we did in Aim 2.

We set the alpha cut-off (p < .05) that is conventionally used in 
null-hypothesis significance testing for each of the regression anal-
yses because of the novelty of these analyses. This is consistent 
with recommendations for new analyses and recent perspectives 
on multiple comparison corrections (e.g., Rubin,  2021; Thompson 
et al., 2020).

3  |  RESULTS

Demographic characteristics, task accuracy, and in-scanner motion 
during the MID task for participants are reported in Tables S2–S5. 
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No participants had mean head motion (Post FD) greater than 0.20, 
and so based on prior recommendations (Park et al., 2018), no par-
ticipants are excluded from analyses for this reason. Furthermore, 
BSSS was not significantly associated with mean Post FD for Run 01, 
r(102) = 0.02, or Run 02, r(102) = −0.05.

3.1  |  Aim 1: Person-specific connectivity networks 
by run

For all 104 participants, GIMME networks fit the data well (see Table 
S5). A summary of the final networks is shown in Figure 3; network 
connections for the group (black), subgroup (Subgroup01  =  red; 
Subgroup02  =  green), and individual (gray) connections are pre-
sented for each run of the MID. Solid lines represent contempora-
neous connections, dashed lines represent lagged connections, and 
the weight of each line reflects the proportion of participants with 
that connection.

There were notable similarities and differences between the 
GIMME group-level networks for each run. For instance, there 
were consistent connections among the bilateral VS, amygdala, 
and insula regions; L VS and ACC; L insula and L DLPFC; and R 
insula and ACC regions, but different connections between ACC 
and R DLPFC regions of the cognitive control network at the 
group level. The GIMME community detection algorithm also 
identified two subgroups in each run of the MID, but the number 
of participants in each subgroup and the subgroup-level connec-
tions differed. For Run 01, 61 participants were in Subgroup01 

and 43 participants were in Subgroup02. For Run 02, 56 partic-
ipants were in Subgroup01 and 48 participants were grouped 
into Subgroup02. Notably, the majority of individuals who were 
grouped into Subgroup01 and Subgroup02 in the first run were 
also grouped into the same subgroup in the second run (Table S6), 
suggesting some level of stability in subgroup membership be-
tween runs. Of note, there were no significant differences in age, 
sex, race/ethnicity, or sensation seeking across participants who 
did (N = 29) and did not (N = 75) change subgroups across the two 
runs (see Table S7).

For each run, the more homogeneous subgroup, Subgroup02, 
was represented by dense within-reward-network connections 
and a greater number of connections between cognitive con-
trol, reward, and salience networks than the heterogeneous 
subgroup, Subgroup01, which had fewer subgroup connec-
tions. With respect to subgroup connections, patterns were 
relatively consistent across runs. Participants in the heteroge-
neous subgroup, Subgroup01, had three subgroup-level con-
nections during each run; two were the same and one differed, 
such that R OFC → vmPFC and vmPFC → ACC connections re-
occurred across the two runs, but L DLPFC → L Amygdala was 
unique to Run 01 and ACC → R DLPFC was unique to Run 02. 
Participants in the more homogeneous subgroup, Subgroup02, 
had nine and eight connections per run, respectively; they 
were similar except L Insula  →  L Amygdala, R DLPFC  →  L 
Amygdala, R and OFC → R VS only occurred in Run 01 and R 
OFC → L OFC, L DLPFC → L Amygdala only occurred in Run 02 
(see Table S8).

F I G U R E  3  GIMME connectivity networks for each run. Black, group connection; red, Subgroup01 connections; green, Subgroup02 
connections; solid, contemporaneous; dashed, lagged (t − 1); DLPFC, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; vmPFC, 
ventromedial PFC; VS, ventral striatum
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3.2  |  Aim 2: Subgroup and connection strength 
associations with sensation seeking

For Aim 2, we evaluated whether the subgroups identified in Aim 
1 were related to BSSS. In a logistic regression model, there was a 
significant association between subgroup and self-reported BSSS 
for Run 01 (b = 1.1), OR = 3.1 (see Table 1), such that a unit in-
crease in BSSS was associated with a 3.1:1 increase in the odds of 
being in Subgroup02, which is characterized by several subgroup-
level connections among reward and salience regions. The model 
that included BSSS (AIC = 126.9) fit the data significantly better 
than the model without BSSS (AIC = 131.4), Δχ2(1) = 4.7, p = 0.03. 
Subgroups did not differ in age or sex, but they did differ in Post 
FD, such that there was greater motion observed for participants 
in Subgroup02. This effect is unchanged with (Table 1) and with-
out the covariate of motion (e.g., mean Post FD) in the model 
(see Table S9). To consider the confound of motion, we checked 
whether motion moderated the association between BSSS and 
subgroups. We found no significant (p > 0.05) moderation of mean 
Post FD (see Table S10).

There was no, however, significant association between sub-
group and self-reported BSSS from Run 02 (b = 0.58), OR = 1.8 (see 
Table 1), such that the model that included BSSS (AIC = 135.1) did 
not fit the data significantly better than the model without BSSS 
(AIC = 136.4), Δχ2(1) = 1.3, p = 0.25. Even though the direction of 
the effect was the same as in Run 01, such that sensation seeking 
was greater in Subgroup02, the size of the effect appeared to be 
attenuated in Run 02. Subgroups also did not differ in age, sex, or 
Post FD.

Given the significant association between subgroup classifica-
tion and BSSS in Run 01, with Subgroup02 being linked to increased 
BSSS, we explored whether BSSS was associated with person-
specific beta weights (i.e., connection strength) of subgroup-level 
connections in Subgroup02 for Run 01. Exploratory multiple re-
gression analyses revealed that the strength of the vmPFC → R OFC 
connection, b = 0.21, p = 0.02, and the R OFC → R VS connection, 
b = −27, p = 0.01 (see Figure 4), were significantly associated with 
BSSS. Hence, increased self-reported sensation seeking was posi-
tively associated with connectivity strength between the vmPFC and 
R OFC (Figure 4b), and sensation seeking was negatively associated 
with connectivity strength between R OFC and R VS (Figure 4c)—
which are all regions that are associated with motivational process-
ing (see Table S11).

3.3  |  Aim 3: Subgroup associations with sensation 
seeking in combined MID runs

We compared and contrasted GIMME results between the runs with 
GIMME results from the combined MID runs. Regarding compari-
sons between Run 01 and Run 02, there were notable differences 
(Figure 3). Although the group-level connections do not appear com-
pletely disparate between the two runs, only 55% of the group-level 

contemporaneous connections (solid black lines) reoccurred across 
both runs. Although, as noted above, there was some stability in 
subgroup membership between runs, the difference in membership 
was statistically significant, χ(1) = 18.1, p < 0.001, Φ = 0.41; only 
72% (N  =  44) of the participants were consistently grouped into 
Subgroup01, and 72% (N  =  31) of participants were consistently 
grouped into Subgroup02 (Table S6).

Regarding analyses of the combined runs, the GIMME net-
works fit the data well for all participants except one (see Table 
S12; Figure S4). For this participant, the model did not con-
verge. Thus, N = 103 in the combined run analyses. Similar to 
the analyses conducted separately per run, two subgroups were 
identified for the combined run analyses. The number of par-
ticipants differed across each subgroup, with 34 in Subgroup01 
and 69 in Subgroup02. Subgroups were comparable in the num-
ber of subgroup-level connections estimated for Subgroup01 
and Subgroup02, with 19 and 16 connections, respectively. 
Both Subgroup01 and Subgroup02 had connections within the 
reward and salience networks as well as dense network connec-
tions between reward, salience, and cognitive control. When 
examining whether self-reported BSSS predicted subgroup 
membership, there was no significant effect (b  =  −51; Table 
S13), such that the model that included BSSS (AIC = 129.6) did 
not fit the data significantly better than the model without BSSS 
(AIC  =  130.5), Δχ2(1)  =  0.9, p  =  0.33. This suggests that the 
positive association between sensation seeking and subgroups 
that was present for Run 01 was not reflected when the runs 
were combined.

4  |  DISCUSSION

We used a person-specific network connectivity analysis ap-
proach, GIMME (Gates & Molenaar,  2012), to evaluate a central 
question in the study of adolescent risk-taking: Do individual 
differences in neural network connectivity during a continuous 
motivational processing task meaningfully relate to self-reported 
sensation seeking behavior? Specifically, we examined whether 
and how connectivity during two runs of a commonly used reward 
task (i.e., MID; Knutson et al., 2000) differed between data-derived 
subgroups of youth in late adolescence in ways related to sensa-
tion seeking (calculated as the endpoint intercept of a three-wave 
behavioral trajectory across adolescence). To examine possible 
habituation effects, we considered how neural subgrouping and 
behavioral associations varied across runs, and compared this ap-
proach with analyses that combined the runs. We found that there 
were two data-derived subgroups in each run and that subgroup-
level network connections were meaningfully associated with sen-
sation seeking in the first run only. These associations were not 
detected when the runs were combined for analysis. To our knowl-
edge, this is the first investigation of adolescent-specific network 
connectivity mapping during a motivational state with significant 
links to risk-relevant behavior.
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In light of evidence for the neural habituation to reward across 
time (Ekhtiari et al., 2020; Plichta et al., 2012), we examined person-
specific connectivity during continuous motivational processing 
separately for runs of the MID task in a sparse network of 12 ROIs 
representing cognitive control, reward, and salience networks. We 
found that the majority of group-level connections reoccurred 
across runs reflecting some level of stability across connections 
meaningful to all individuals. Then, for each MID run, the GIMME 
algorithm identified two subgroups. Although subgroup member-
ship significantly differed across the runs, the majority of individuals 
grouped in each of the subgroups in Run 01 (72%) were also grouped 

in the corresponding subgroup in Run 02, suggesting some degree 
of stability in subgroup-specific neural connectivity features over 
the course of the task. Subgroup01 had greater heterogeneity (only 
three subgroup connections during each run) than Subgroup02, 
which had nine and eight subgroup connections across Run 01 and 
Run 02, respectively. This suggests that while there is heteroge-
neity in adolescent brain activity during motivational processing, 
there are also some meaningful commonalities across subgroups of 
adolescents.

With respect to sensation seeking, when modeling each run sepa-
rately, we found a significant association between community-based 

TA B L E  1  Logistic regression: Sensation seeking associated with GIMME-derived subgroup from MID task data, by run, with and without 
Post FD (N = 104)

Run 01 Run 02

b SE p b SE p

Age −0.18 0.17 0.28 −0.11 0.16 0.48

Sex 0.28 0.43 0.52 0.80 0.42 0.06

Post FD 48.8 18.24 0.008 29.4 15.84 0.06

BSSS 1.1 0.55 0.04 0.58 0.51 0.26

Abbreviations: BSSS, brief sensation seeking scale; Post FD, post preprocessing framewise displacement.

F I G U R E  4  Meaningful associations between connection strength and sensation seeking in Subgroup02 during Run 01. (+), sig. positive 
association; (−), sig. negative association
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subgroups and self-reported sensation seeking. Specifically, our anal-
yses revealed that the more homogenous subgroup, Subgroup02, 
had significantly higher sensation seeking than Subgroup01. This 
effect, however, was only significant when subgroups were defined 
in the first run, suggesting that changes in subgroup membership 
across the runs may have impacted associations with sensation 
seeking. Similar to prior work that found associations between 
OFC connectivity and motivational traits (Crane et al., 2018; Wan 
et al., 2020), we found a significant positive association in connec-
tivity strength between vmPFC–Right OFC and sensation seeking, 
and a negative association in connectivity strength between Right 
OFC–Right VS and sensation seeking for Subgroup02 during Run 
01, but not during Run 02. Interestingly, activation contralateral to 
the latter brain regions, Left OFC and Left VS, during reward expec-
tancy has been reported to relate to impulsive sensation seeking in 
a young adult sample (Chase et al., 2017). This may suggest that the 
OFC, which is important for stimulus-value representations, track-
ing internal values, and goal-directed and affective behavior (Haber 
& Behrens,  2014; Padoa-Schioppa & Conen,  2017; Szczepanski & 
Knight, 2014), may be relevant for individual differences in reward 
seeking, but only for a specific subset of adolescents. Given the ex-
ploratory nature of this finding, it requires further investigation and 
replication in future work.

There were other important differences across runs. Although 
72% of participants maintained their subgroup assignments across 
runs (i.e., were in the homogeneous subgroup in both runs or the 
heterogeneous subgroup in both runs), the differences in group-
ing between runs appear to be meaningful because the association 
with sensation seeking decreased from the first to the second. This 
is consistent with recent findings, indicating that some of this de-
crease may be attributable to habituation (Elliott et al., 2020; Plichta 
et  al.,  2012), which is especially relevant to reward regions mod-
eled here (Ekhtiari et al., 2020). Specifically, motivation toward ap-
proaching and receiving rewards may be attenuated with repeated 
runs due to strategic changes in attentional processes (Failing & 
Theeuwes, 2018) and/or become habitual over time (Michaelsen & 
Esch, 2021). This might be reflected in the dynamics of reward, sa-
lience, and cognitive control networks that consequently decrease 
the association of neural features with reward-relevant behaviors.

It is also possible that the variability across runs may be due to 
issues of reliability. For instance, recent work has demonstrated that 
both task-based fMRI (Elliott et al., 2020) and resting-state connec-
tivity (Noble et  al.,  2019) suffer from poor test–retest reliability. 
Poor test–retest reliability may impact both subgroup partitioning 
(Gates et  al.,  2016; Pons & Latapy,  2005) and the association be-
tween network connectivity and sensation seeking. This presents 
a challenge when trying to determine whether differences across 
runs relate to habituation, motivation, reliability, or a mixture of all 
three. An ongoing project is evaluating the reliability of GIMME's 
directed connectivity estimates among different brain regions, but 
the test–retest reliability of GIMME's subgrouping algorithm has not 
been well investigated and so remains an important question for fu-
ture research.

When we repeated our analyses using the combined MID runs, 
we found further changes in subgroup memberships as well as with 
subgroup associations with sensation seeking. While two subgroups 
were, again, detected in combined runs, these two subgroups were 
both more homogeneous and represented by more connections be-
tween reward, salience, and cognitive control networks than when 
the runs were analyzed separately. Moreover, the subgroup associ-
ation with sensation seeking was not significant and negative; this 
is a striking deviation from the significant and positive association 
in Run 01 and even the positive (but non-significant) association 
in Run 02. This stark difference might reflect methodological arti-
facts, such as greater signal quality and stability with a longer du-
ration scan (Gordon et al., 2017), or greater statistical power, which 
would be expected to cause more connections to be estimated at 
the subgroup level, rather than at the individual level, because the 
50% threshold for subgroup connections becomes easier to meet. 
GIMME adds connections interactively at the group and subgroup 
level that are significant (p < 0.01) for a large proportion of individ-
uals (75% and 50% for the group and subgroup levels, respectively). 
Likewise, the model at the individual level retains/adds connections 
that meet the significance threshold and then the model fit criterion 
threshold (Gates & Molenaar, 2012). By doubling our time-series data 
(concatenating runs), this increases the likelihood that a connection 
would have been incorporated into the group- and subgroup-level 
models, especially in scenarios where connections were near the 
significance threshold in the shorter time series. Future connectiv-
ity work should consider issues of power and simultaneous changes 
stemming from individual differences across the time series.

While issues of reliability are important, differences across 
runs may also reflect meaningful individual differences in how 
network dynamics change across time. For example, connectivity 
patterns have been shown to reflect some variability in individuals 
across runs in both static and dynamic networks (Fong et al., 2019). 
Moreover, it appears likely that the variability across runs may have 
both influenced subgroup partitioning (Gates et  al.,  2016; Pons & 
Latapy,  2005) and the association between network connectivity 
and sensation seeking. Future work should reconsider these associ-
ations in the context of test–retest of network connectivity metrics 
(Beck & Jackson,  2020), the specific assumptions of GIMME, and 
the effect of different fMRI protocols, such as non-multiband data, 
different head motion corrections, and alternative reward, salience, 
and cognitive control ROI coordinates.

An important consideration in study is that participants were in 
a presumed general motivational state during the MID task, in which 
neural mechanisms involved in the processing of both gains and losses 
were consistently engaged, with potentially overlapping neural per-
turbations. Our reported estimates of directed functional connectiv-
ity during the MID task is therefore distinct from the field's common 
focus on average contrasts of anticipatory or outcome reward cues 
or the comparison of neural activation during gain versus loss trials 
(Demidenko et al., 2021; Dugré et al., 2018; Oldham et al., 2018). 
Thus, the ways in which our specific findings map onto established 
findings in the field regarding reward processing is currently unclear. 



    |  773DEMIDENKO et al.

It is important, however, to highlight that there is empirical support 
for examining motivational processing as we did because gain and 
loss cues in the MID design exhibit substantial overlap in neural acti-
vation (Murray et al., 2020; Oldham et al., 2018), and brain function 
involves continuous time-lagged brain states (Munn et  al.,  2021), 
with “carryover” effects that are often assumed to be random 
(e.g., if jitter is implemented correctly)—but this is rarely examined. 
Nevertheless, the complex issue of reward circuitry and motivational 
processing during task-based fMRI requires careful theoretical and 
empirical future work to understand and disentangle.

In addition to generalizing the results reported here, future 
work should consider how variability in task length, number of runs, 
task type, and region selection impact findings. Some researchers 
have proposed that increasing the amount of data, or task length 
(Gordon et  al.,  2017), and aggregating across modalities (Elliott 
et al., 2019) may improve reliability and generalizability. Although 
these suggestions certainly have merit, there may be an inherent 
trade-off between the measurement improvements that result from 
increasing the length of a task, and measurement decrements that 
occur due to habituation or other state-related changes linked to 
longer tasks. Furthermore, cognitive states induced by different 
tasks have been shown to be characterized by different connec-
tivity patterns explaining different amounts of variance in behavior 
(Greene et  al.,  2018). Hence, considering how group-, subgroup-, 
and individual-level network patterns may vary across the course 
of reward tasks and the impact of this variability on sensation seek-
ing may facilitate the field's understanding of adolescent risk-taking. 
Finally, we use a priori ROIs from the adolescent literature in our 
analyses, and this clearly constrains our results. Specifically, recent 
evidence from the resting-state literature demonstrates that ROI 
parcellations may impact the underlying associations and interpre-
tations (Bryce et al., 2021). Thus, future work should consider alter-
native ROIs and parcellations to test these and related hypotheses.

4.1  |  Study considerations

The findings reported here are not without limitations. First, major 
issue in fMRI is the effect of head motion on the quality of the un-
derlying neural signal (Parkes et al., 2018; Power et al., 2014; Siegel 
et  al.,  2014). Although we used standard task-based fMRI motion 
correction (Park et al., 2018), motion may still have impacted the un-
derlying signal. This is especially of concern given that head motion 
was significantly related to the subgroups identified. However, we 
compared our models with and without the covariate of head motion 
and the moderating effect of motion on the association between 
sensation seeking and subgroups and found our interpretations did 
not meaningfully change. Nonetheless, future work should consider 
how different head motion correction strategies may influence the 
estimation of person-specific networks.

Second, although the main sample used here is two times 
greater than the median sample used in neuroimaging studies (Szucs 
& Ioannidis,  2020), the analyses focused on the brain-behavior 

associations for Subgroup02 were smaller, and, therefore, may be 
less robust than results involving the full sample. Given the issues 
of reliability and power in fMRI analyses (Button et al., 2013; Elliott 
et  al., 2020; Noble et al., 2019; Szucs & Ioannidis, 2017), we can-
not extrapolate our exploratory analyses examining the association 
between specific connection strengths and BSSS. As such, these 
results warrant replication in an independent sample. The issue of 
power was also critical to consider when weighing the pros and cons 
of modeling the coactivation of brain regions during a motivational 
state rather than the modulating effect of specific task regressors. 
Ultimately, choosing not to model task regressors during functional 
connectivity sacrifices the knowledge about the effects of different 
phases of reward processing. However, as in most analyses, we had 
to consider the conceptual and statistical trades-offs of our decision. 
Our goal was to assess the dynamic engagement of respective brain 
regions during motivational processes that are important to neuro-
developmental heuristics (Casey et al., 2019). Our related, statistical 
goal was to model coactivation among regions in a way that was in-
formed by prior literature and adequately powered. Although task 
regressors are included in psychophysiological interaction analyses 
(PPI; McLaren et al., 2012), it has been reported that most modulat-
ing effects are small and statistically noisy, and therefore, require 
substantial power accomplished through task lengths and sample 
sizes in fMRI studies (Di & Biswal,  2017). Consistent with these 
group-level analyses in PPI, simulation studies of GIMME demon-
strate that issues of power can prevent the detection of small task 
modulating effects, especially in rapid event-related designs like 
that used in the current study (Duffy et al., 2021; Gates et al., 2011). 
Thus, we encourage future studies to build on our empirical findings 
by considering the effect of task modulation in designs that are well 
powered to do so, such as through the creation and implementation 
of a slow-event-related MID task.

Third, the networks are based on several key a priori ROIs. 
Although GIMME simulations have demonstrated that omission of 
variables (i.e., the third variable problem) does not greatly impact 
recovery of connections (Gates et al., 2017), future work should con-
sider how subgrouping and connection strength are altered when 
using different combinations of regions.

Fourth, due to some missing sensation seeking data, we used 
full information maximum likelihood to estimate a sensation seeking 
score at Wave 3 (closest to when neuroimaging was conducted) for 
all individuals. This strategy may have introduced additional noise 
into our models, especially if missingness was related to an unac-
counted variable. However, the strategy also allowed us to maxi-
mize our sample size (i.e., by not excluding participants with missing 
Wave 3 data), and our estimated intercept was significantly related 
to the observed data increasing our confidence in the observed 
associations.

Although our study is based on a tenet of the imbalance hy-
pothesis and we found a significant brain-behavior relation, findings 
cannot be seamlessly extrapolated to other data sets, modeling se-
quences, or to real-world risk-taking behavior and age-related differ-
ences without further research. This is because we used a partially 
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data-driven approach when fitting neural networks and did not have 
a second, similar data set available for cross-validation. Indeed, re-
cent evidence in fMRI demonstrates that brain parcellations (Bryce 
et  al.,  2021), analytic pipelines (Botvinik-Nezer et  al.,  2020; Li 
et  al.,  2021), and other potentially subjective researcher decisions 
(Bloom et al., 2021; Steegen et al., 2016) impact results; hence, it is 
imperative that future work replicates these results in other ado-
lescent samples, with other tasks that probe motivational process-
ing, and using other preprocessing pipelines. Second, associations 
between self-reported sensation seeking and real-world risk-taking 
are often small-to-medium in adolescent samples (Demidenko 
et al., 2019). Instead, our findings represent the link between brain 
function during motivational processing and a psychological trait 
hypothesized to relate to real-world risk-taking behaviors. While 
there were no meaningful associations between age and connec-
tivity patterns in this work, prior work has reported developmen-
tal differences in connectivity patterns (Marek et al., 2015; Oldham 
& Fornito,  2019) which future studies should consider. Moreover, 
while both habituation and reliability issues are plausible explana-
tions for the difference in the association between subgroups and 
sensation seeking across runs, we cannot delineate which is more 
probable, given that this version of the MID task did not capture all 
mean response times and the reliability of fMRI connectivity (gen-
erally) and GIMME (specifically) are still being evaluated. This will 
be an important consideration in future work modeling functional 
connectivity across multiple runs of reward tasks.

4.2  |  Conclusions

This study is among the first to evaluate a central tenet of the devel-
opmental imbalance hypothesis using a data-driven person-specific 
network connectivity approach that characterizes group-, subgroup-
, and individual-level connections. When mapping sparse networks 
of connections among cognitive control and socioemotional ROIs 
during motivational processing, we found two subgroups—one “ho-
mogenous” with a greater number of shared connections, and one 
“heterogeneous” with fewer shared connections—with the homo-
geneous group having higher self-reported sensation seeking than 
the heterogeneous group. Further, the strengths of select homo-
geneous subgroup connections, such as the Right OFC–Right VS 
and vmPFC–Right OFC, were negatively and positively associated 
with self-reported sensation seeking, respectively. This implies that 
reward-related behaviors are meaningfully related to connectivity 
patterns derived from person-specific connectivity patterns. Note, 
however, brain-behavior relations varied by run, such that con-
nectivity between reward regions was significantly related to sen-
sation seeking only during the first run, but not the second run or 
when the runs were combined. These findings suggest young adults 
who report greater sensation seeking may share unique patterns of 
functional connectivity during motivational processing and these 
patterns may attenuate with repeated stimulation, perhaps due to 
habituation to the task or reliability across runs.

DECL AR ATION OF TR ANSPARENC Y
The authors, reviewers and editors affirm that in accordance to the 
policies set by the Journal of Neuroscience Research, this manuscript 
presents an accurate and transparent account of the study being re-
ported and that all critical details describing the methods and results 
are present.

ACKNOWLEDG MENTS
This research was supported, in part, by a grant from the Eunice 
Kennedy Shriver National Institute of Child Health & Human 
Development (NICHD; R01HD075806, D.P. Keating, Principal 
Investigator). M. Demidenko was also supported by the NICHD 
Developmental Psychology Training Grant (5T32HD007109-34, 
V.C. McLoyd & C.S. Monk). A. Weigard was supported by NIAAA 
T32 AA007477 (Dr. Frederic C. Blow) and NIDA K23 DA051561. 
A. Beltz was supported by the Jacobs Foundation. The au-
thors thank Bennet Fauber, Krisanne Litinas, Christine Wagner, 
Hani Nasr, Peter Batra, Joshua Hatfield, Meredith House, 
Kyle Kwaiser, Kathleen LaDronka, the U-M Survey Research 
Operations staff, and the U-M MRI Laboratory, for their sup-
port in collecting these data. They also thank Karthik Ganesan 
for the Matlab script to overlay the regions of interest on a MNI 
glass brain.

AUTHOR CONTRIBUTIONS
M.D. and A.B. implemented the methodology, conducted for-
mal analysis and visualization, completed necessary validation, 
and wrote the original draft with critical assistance from A.W. 
M.D. implemented the software. D.K. engaged in funding ac-
quisition, D.K. and E.H. were involved in overall program con-
ceptualization, project administration, acquiring resources and 
supervision. E.H. and M.D. curated the survey and/or imaging 
data. All authors participated in the review and editing of the 
manuscript, and read and approved the final version of the 
manuscript.

DATA AVAIL ABILIT Y S TATEMENT
Readers seeking access to these data should contact Dr. Daniel 
Keating (keatingd@umich.edu) or Michael Demidenko (demidenm@
umich.edu). Access will be granted to named individuals in accord-
ance with ethical procedures governing the reuse of sensitive data. 
Infrastructure is currently being developed in collaboration with the 
Inter-university Consortium for Political and Social Research (ICPSR) 
at the University of Michigan (https://www.icpsr.umich.edu) to ar-
chive and share data in an ethically approved manner and will be 
shared at a later TBD date.

ORCID
Michael I. Demidenko   https://orcid.org/0000-0001-9270-0124 
Edward D. Huntley   https://orcid.org/0000-0001-5321-4924 
Alexander S. Weigard   https://orcid.org/0000-0003-3820-6461 
Daniel P. Keating   https://orcid.org/0000-0001-6868-8006 
Adriene M. Beltz   https://orcid.org/0000-0001-5754-8083 

mailto:keatingd@umich.edu
mailto:demidenm@umich.edu
mailto:demidenm@umich.edu
https://www.icpsr.umich.edu
https://orcid.org/0000-0001-9270-0124
https://orcid.org/0000-0001-9270-0124
https://orcid.org/0000-0001-5321-4924
https://orcid.org/0000-0001-5321-4924
https://orcid.org/0000-0003-3820-6461
https://orcid.org/0000-0003-3820-6461
https://orcid.org/0000-0001-6868-8006
https://orcid.org/0000-0001-6868-8006
https://orcid.org/0000-0001-5754-8083
https://orcid.org/0000-0001-5754-8083


    |  775DEMIDENKO et al.

R E FE R E N C E S
Apps, M. A. J., Rushworth, M. F. S., & Chang, S. W. C. (2016). The an-

terior cingulate gyrus and social cognition: Tracking the motiva-
tion of others. Neuron, 90(4), 692–707. https://doi.org/10.1016/j.
neuron.2016.04.018

Arnett, J. (1994). Sensation seeking: A new conceptualization and a new 
scale. Personality and Individual Differences, 16(2), 289–296. https://
doi.org/10.1016/0191-8869(94)90165​-1

Balodis, I. M., & Potenza, M. N. (2015). Anticipatory reward processing in 
addicted populations: A focus on the monetary incentive delay task. 
Biological Psychiatry, 77(5), 434–444. https://doi.org/10.1016/j.
biops​ych.2014.08.020

Becht, A. I., & Mills, K. L. (2020). Modeling individual differences in 
brain development. Biological Psychiatry, 88(1), 63–69. https://doi.
org/10.1016/j.biops​ych.2020.01.027

Beck, E. D., & Jackson, J. J. (2020). Consistency and change in idio-
graphic personality: A longitudinal ESM network study. Journal of 
Personality and Social Psychology, 118(5), 1080–1100. https://doi.
org/10.1037/pspp0​000249

Beltz, A. M. (2018). Connecting theory and methods in adolescent brain 
research. Journal of Research on Adolescence, 28(1), 10–25. https://
doi.org/10.1111/jora.12366

Beltz, A. M., & Gates, K. M. (2017). Network mapping with GIMME. 
Multivariate Behavioral Research, 52(6), 789–804. https://doi.
org/10.1080/00273​171.2017.1373014

Beltz, A. M., Gates, K. M., Engels, A. S., Molenaar, P. C. M., Pulido, C., 
Turrisi, R., Berenbaum, S. A., Gilmore, R. O., & Wilson, S. J. (2013). 
Changes in alcohol-related brain networks across the first year of 
college: A prospective pilot study using fMRI effective connec-
tivity mapping. Addictive Behaviors, 38(4), 2052–2059. https://doi.
org/10.1016/j.addbeh.2012.12.023

Beltz, A. M., & Weigard, A. (2019). Methodological advances in leverag-
ing neuroimaging datasets in adolescent substance use research. 
Current Addiction Reports, 6(4), 495–503. https://doi.org/10.1007/
s4042​9-019-00275​-x

Berridge, K. C. (2019). Affective valence in the brain: Modules or 
modes? Nature Reviews Neuroscience, 20(4), 225–234. https://doi.
org/10.1038/s4158​3-019-0122-8

Bjork, J. M., & Pardini, D. A. (2015). Who are those “risk-taking adoles-
cents”? Individual differences in developmental neuroimaging re-
search. Developmental Cognitive Neuroscience, 11, 56–64. https://
doi.org/10.1016/j.dcn.2014.07.008

Bjork, J. M., Smith, A. R., Chen, G., & Hommer, D. W. (2010). Adolescents, 
adults and rewards: Comparing motivational neurocircuitry recruit-
ment using fMRI. PLoS One, 5(7), e11440. https://doi.org/10.1371/
journ​al.pone.0011440

Bloom, P. A., VanTieghem, M., Gabard-Durnam, L., Gee, D. G., Flannery, 
J., Caldera, C., Goff, B., Telzer, E. H., Humphreys, K. L., Fareri, D. S., 
Shapiro, M., Algharazi, S., Bolger, N., Aly, M. & Tottenham, N. (2021). 
Age-related change in task-evoked amygdala-prefrontal circuitry: A 
multiverse approach with an accelerated longitudinal cohort aged 
4-22 years. BioRxiv. https://doi.org/10.1101/2021.10.08.463601

Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., 
Johannesson, M., Kirchler, M., Iwanir, R., Mumford, J. A., Adcock, 
A., Avesani, P., Baczkowski, B., Bajracharya, A., Bakst, L., Ball, S., 
Barilari, M., Bault, N., Beaton, D., Beitner, J., … Schonberg, T. (2020). 
Variability in the analysis of a single neuroimaging dataset by many 
teams. BioRxiv, 582(7810), 84–88. https://doi.org/10.1038/s4158​
6-020-2314-9

Bryce, N. V., Flournoy, J. C., Guassi Moreira, J. F., Rosen, M. L., Sambook, 
K. A., Mair, P., & McLaughlin, K. A. (2021). Brain parcellation se-
lection: An overlooked decision point with meaningful effects 
on individual differences in resting-state functional connectiv-
ity. NeuroImage, 243, 118487. https://doi.org/10.1016/j.neuro​
image.2021.118487

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., 
Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small 
sample size undermines the reliability of neuroscience. Nature 
Reviews Neuroscience, 14(5), 365–376. https://doi.org/10.1038/
nrn3475

Casey, B. J. (2015). Beyond simple models of self-control to circuit-
based accounts of adolescent behavior. Annual Review of 
Psychology, 66, 295–319. https://doi.org/10.1146/annur​ev-psych​
-01081​4-015156

Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., 
Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, 
H., Orr, C. A., Wager, T. D., Banich, M. T., Speer, N. K., Sutherland, 
M. T., Riedel, M. C., Dick, A. S., Bjork, J. M., Thomas, K. M., … 
Dale, A. M. (2018). The adolescent brain cognitive development 
(ABCD) study: Imaging acquisition across 21 sites. Developmental 
Cognitive Neuroscience, 32, 43–54. https://doi.org/10.1016/j.
dcn.2018.03.001

Casey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. 
Developmental Review, 28(1), 62–77. https://doi.org/10.1016/j.
dr.2007.08.003

Casey, B. J., Heller, A. S., Gee, D. G., & Cohen, A. O. (2019). Development 
of the emotional brain. Neuroscience Letters, 693, 29–34. https://
doi.org/10.1016/j.neulet.2017.11.055

Chase, H. W., Fournier, J. C., Bertocci, M. A., Greenberg, T., Aslam, 
H., Stiffler, R., Lockovich, J., Graur, S., Bebko, G., Forbes, E. E., & 
Phillips, M. L. (2017). A pathway linking reward circuitry, impul-
sive sensation-seeking and risky decision-making in young adults: 
Identifying neural markers for new interventions. Translational 
Psychiatry, 7(4), e1096. https://doi.org/10.1038/tp.2017.60

Crane, N. A., Gorka, S. M., Phan, K. L., & Childs, E. (2018). Amygdala-
orbitofrontal functional connectivity mediates the relationship 
between sensation seeking and alcohol use among binge-drinking 
adults. Drug and Alcohol Dependence, 192, 208–214. https://doi.
org/10.1016/j.druga​lcdep.2018.07.044

Demidenko, M. I., Huntley, E. D., Jahn, A., Thomason, M. E., Monk, C. S., 
& Keating, D. P. (2020). Cortical and subcortical response to the 
anticipation of reward in high and average/low risk-taking adoles-
cents. Developmental Cognitive Neuroscience, 44, 100798. https://
doi.org/10.1016/j.dcn.2020.100798

Demidenko, M. I., Huntley, E. D., Martz, M. E., & Keating, D. P. (2019). 
Adolescent health risk behaviors: Convergent, discriminant and 
predictive validity of self-report and cognitive measures. Journal of 
Youth and Adolescence, 48(9), 1765–1783. https://doi.org/10.1007/
s1096​4-019-01057​-4

Demidenko, M. I., Weigard, A. S., Ganesan, K., Jang, H., Jahn, A., Huntley, 
E. D., & Keating, D. P. (2021). Interactions between methodologi-
cal and interindividual variability: How Monetary Incentive Delay 
(MID) task contrast maps vary and impact associations with be-
havior. Brain and Behavior, 11(5), e02093. https://doi.org/10.1002/
brb3.2093

Di, X., & Biswal, B. B. (2017). Psychophysiological interactions in a vi-
sual checkerboard task: Reproducibility, reliability, and the effects 
of deconvolution. Frontiers in Neuroscience, 11, 573. https://doi.
org/10.3389/fnins.2017.00573

Duffy, K. A., Fisher, Z. F., Arizmendi, C. A., Molenaar, P. C. M., Hopfinger, 
J., Cohen, J. R., Beltz, A. M., Lindquist, M. A., Hallquist, M. N., & 
Gates, K. M. (2021). Detecting task-dependent functional connec-
tivity in group iterative multiple model estimation with person-
specific hemodynamic response functions. Brain Connectivity, 11(6), 
418–429. https://doi.org/10.1089/brain.2020.0864

Dugré, J. R., Dumais, A., Bitar, N., & Potvin, S. (2018). Loss anticipation 
and outcome during the monetary incentive delay task: A neuroim-
aging systematic review and meta-analysis. PeerJ, 6, e4749. https://
doi.org/10.7717/peerj.4749

Ekhtiari, H., Kuplicki, R., Aupperle, R. P., & Paulus, M. P. (2020). It is 
never as good the second time around: Brain areas involved in 

https://doi.org/10.1016/j.neuron.2016.04.018
https://doi.org/10.1016/j.neuron.2016.04.018
https://doi.org/10.1016/0191-8869(94)90165-1
https://doi.org/10.1016/0191-8869(94)90165-1
https://doi.org/10.1016/j.biopsych.2014.08.020
https://doi.org/10.1016/j.biopsych.2014.08.020
https://doi.org/10.1016/j.biopsych.2020.01.027
https://doi.org/10.1016/j.biopsych.2020.01.027
https://doi.org/10.1037/pspp0000249
https://doi.org/10.1037/pspp0000249
https://doi.org/10.1111/jora.12366
https://doi.org/10.1111/jora.12366
https://doi.org/10.1080/00273171.2017.1373014
https://doi.org/10.1080/00273171.2017.1373014
https://doi.org/10.1016/j.addbeh.2012.12.023
https://doi.org/10.1016/j.addbeh.2012.12.023
https://doi.org/10.1007/s40429-019-00275-x
https://doi.org/10.1007/s40429-019-00275-x
https://doi.org/10.1038/s41583-019-0122-8
https://doi.org/10.1038/s41583-019-0122-8
https://doi.org/10.1016/j.dcn.2014.07.008
https://doi.org/10.1016/j.dcn.2014.07.008
https://doi.org/10.1371/journal.pone.0011440
https://doi.org/10.1371/journal.pone.0011440
https://doi.org/10.1101/2021.10.08.463601
https://doi.org/10.1101/843193
https://doi.org/10.1101/843193
https://doi.org/10.1016/j.neuroimage.2021.118487
https://doi.org/10.1016/j.neuroimage.2021.118487
https://doi.org/10.1038/nrn3475
https://doi.org/10.1038/nrn3475
https://doi.org/10.1146/annurev-psych-010814-015156
https://doi.org/10.1146/annurev-psych-010814-015156
https://doi.org/10.1016/j.dcn.2018.03.001
https://doi.org/10.1016/j.dcn.2018.03.001
https://doi.org/10.1016/j.dr.2007.08.003
https://doi.org/10.1016/j.dr.2007.08.003
https://doi.org/10.1016/j.neulet.2017.11.055
https://doi.org/10.1016/j.neulet.2017.11.055
https://doi.org/10.1038/tp.2017.60
https://doi.org/10.1016/j.drugalcdep.2018.07.044
https://doi.org/10.1016/j.drugalcdep.2018.07.044
https://doi.org/10.1016/j.dcn.2020.100798
https://doi.org/10.1016/j.dcn.2020.100798
https://doi.org/10.1007/s10964-019-01057-4
https://doi.org/10.1007/s10964-019-01057-4
https://doi.org/10.1002/brb3.2093
https://doi.org/10.1002/brb3.2093
https://doi.org/10.3389/fnins.2017.00573
https://doi.org/10.3389/fnins.2017.00573
https://doi.org/10.1089/brain.2020.0864
https://doi.org/10.7717/peerj.4749
https://doi.org/10.7717/peerj.4749


776  |    DEMIDENKO et al.

salience processing habituate during repeated drug cue expo-
sure in methamphetamine and opioid users. BioRxiv. https://doi.
org/10.1101/2020.04.18.036368

Elliott, M. L., Knodt, A. R., Cooke, M., Kim, M. J., Melzer, T. R., Keenan, 
R., Ireland, D., Ramrakha, S., Poulton, R., Caspi, A., Moffitt, T. E., 
& Hariri, A. R. (2019). General functional connectivity: Shared 
features of resting-state and task fMRI drive reliable and her-
itable individual differences in functional brain networks. 
NeuroImage, 189, 516–532. https://doi.org/10.1016/j.neuro​image.​   
2019.01.068

Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, 
S., Sison, M. L., Moffitt, T. E., Caspi, A., & Hariri, A. R. (2020). What is 
the test-retest reliability of common task-functional MRI measures? 
New empirical evidence and a meta-analysis. Psychological Science, 
31(7), 792–806. https://doi.org/10.1177/09567​97620​916786

Ernst, M. (2014). The triadic model perspective for the study of adoles-
cent motivated behavior. Brain and Cognition, 89, 104–111. https://
doi.org/10.1016/j.bandc.2014.01.006

Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobi-
ology of motivated behavior in adolescence. Psychological Medicine, 
36(3), 299–312. https://doi.org/10.1017/S0033​29170​5005891

Ernst, M., & Spear, L. P. (2009). Reward systems. In Handbook of devel-
opmental social neuroscience (pp. 324–341). New York, NY: The 
Guilford Press.

Failing, M., & Theeuwes, J. (2018). Selection history: How reward mod-
ulates selectivity of visual attention. Psychonomic Bulletin & Review, 
25(2), 514–538. https://doi.org/10.3758/s1342​3-017-1380-y

Finn, E. S., Scheinost, D., Finn, D. M., Shen, X., Papademetris, X., & 
Constable, R. T. (2017). Can brain state be manipulated to empha-
size individual differences in functional connectivity? NeuroImage, 
160, 140–151. https://doi.org/10.1016/j.neuro​image.2017.03.064

Fong, A. H. C., Yoo, K., Rosenberg, M. D., Zhang, S., Li, C.-S. R., Scheinost, 
D., Constable, R. T., & Chun, M. M. (2019). Dynamic functional 
connectivity during task performance and rest predicts individual 
differences in attention across studies. NeuroImage, 188, 14–25. 
https://doi.org/10.1016/j.neuro​image.2018.11.057

Friston, K., Moran, R., & Seth, A. K. (2013). Analysing connectivity 
with Granger causality and dynamic causal modelling. Current 
Opinion in Neurobiology, 23(2), 172–178. https://doi.org/10.1016/j.
conb.2012.11.010

Galvan, A. (2010). Adolescent development of the reward system. 
Frontiers in Human Neuroscience, 4, 6. https://doi.org/10.3389/
neuro.09.006.2010

Galvan, A., Hare, T., Voss, H., Glover, G., & Casey, B. J. (2007). Risk-taking 
and the adolescent brain: Who is at risk? Developmental Science, 
10(2), F8–F14. https://doi.org/10.1111/j.1467-7687.2006.00579.x

Galván, A., & McGlennen, K. M. (2012). Enhanced striatal sensitivity 
to aversive reinforcement in adolescents versus adults. Journal of 
Cognitive Neuroscience, 25(2), 284–296. https://doi.org/10.1162/
jocn_a_00326

Gates, K. M., Henry, T., Steinley, D., & Fair, D. A. (2016). A Monte 
Carlo evaluation of weighted community detection algorithms. 
Frontiers in Neuroinformatics, 10, 45. https://doi.org/10.3389/
fninf.2016.00045

Gates, K. M., Lane, S. T., Varangis, E., Giovanello, K., & Guiskewicz, K. 
(2017). Unsupervised classification during time-series model build-
ing. Multivariate Behavioral Research, 52(2), 129–148. https://doi.
org/10.1080/00273​171.2016.1256187

Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm re-
covers effective connectivity maps for individuals in homogeneous 
and heterogeneous samples. NeuroImage, 63(1), 310–319. https://
doi.org/10.1016/j.neuro​image.2012.06.026

Gates, K. M., Molenaar, P. C. M., Hillary, F. G., & Slobounov, S. (2011). 
Extended unified SEM approach for modeling event-related fMRI 
data. NeuroImage, 54(2), 1151–1158. https://doi.org/10.1016/j.
neuro​image.2010.08.051

Glover, G. H., Li, T. Q., & Ress, D. (2000). Image-based method for ret-
rospective correction of physiological motion effects in fMRI: 
RETROICOR. Magnetic Resonance in Medicine, 44(1), 162–167. 
https://doi.org/10.1002/1522-2594(20000​7)44:1<162:aid-mrm23​
>3.0.co;2-e

Goetschius, L. G., Hein, T. C., McLanahan, S. S., Brooks-Gunn, J., McLoyd, 
V. C., Dotterer, H. L., Lopez-Duran, N., Mitchell, C., Hyde, L. W., 
Monk, C. S., & Beltz, A. M. (2020). Association of childhood vio-
lence exposure with adolescent neural network density. JAMA 
Network Open, 3(9), e2017850. https://doi.org/10.1001/jaman​
etwor​kopen.2020.17850

Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, 
D. J., Berg, J. J., Ortega, M., Hoyt-Drazen, C., Gratton, C., Sun, H., 
Hampton, J. M., Coalson, R. S., Nguyen, A. L., McDermott, K. B., 
Shimony, J. S., Snyder, A. Z., Schlaggar, B. L., Petersen, S. E., Nelson, 
S. M., & Dosenbach, N. U. F. (2017). Precision functional mapping 
of individual human brains. Neuron, 95(4), 791–807.e7. https://doi.
org/10.1016/j.neuron.2017.07.011

Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018). Task-
induced brain state manipulation improves prediction of individual 
traits. Nature Communications, 9(1), 1–13. https://doi.org/10.1038/
s4146​7-018-04920​-3

Haber, S. N., & Behrens, T. E. J. (2014). The neural network underlying 
incentive-based learning: Implications for interpreting circuit dis-
ruptions in psychiatric disorders. Neuron, 83(5), 1019–1039. https://
doi.org/10.1016/j.neuron.2014.08.031

Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate 
anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–
26. https://doi.org/10.1038/npp.2009.129

Harden, K. P., & Tucker-Drob, E. M. (2011). Individual differences in the 
development of sensation seeking and impulsivity during adoles-
cence: Further evidence for a dual systems model. Developmental 
Psychology, 47(3), 739–746. https://doi.org/10.1037/a0023279

Henry, T. R., Feczko, E., Cordova, M., Earl, E., Williams, S., Nigg, J. T., 
Fair, D. A., & Gates, K. M. (2019). Comparing directed functional 
connectivity between groups with confirmatory subgrouping 
GIMME. NeuroImage, 188, 642–653. https://doi.org/10.1016/j.
neuro​image.2018.12.040

Hillary, F. G., Medaglia, J. D., Gates, K. M., Molenaar, P. C., & Good, D. 
C. (2014). Examining network dynamics after traumatic brain in-
jury using the extended unified SEM approach. Brain Imaging 
and Behavior, 8(3), 435–445. https://doi.org/10.1007/s1168​
2-012-9205-0

Horvath, P., & Zuckerman, M. (1993). Sensation seeking, risk appraisal, 
and risky behavior. Personality and Individual Differences, 14(1), 41–
52. https://doi.org/10.1016/0191-8869(93)90173​-Z

Hoyle, R. H., Stephenson, M. T., Palmgreen, P., Lorch, E. P., & Donohew, 
R. L. (2002). Reliability and validity of a brief measure of sensa-
tion seeking. Personality and Individual Differences, 32(3), 401–414. 
https://doi.org/10.1016/S0191​-8869(01)00032​-0

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved opti-
mization for the robust and accurate linear registration and motion 
correction of brain images. NeuroImage, 17(2), 825–841. https://
doi.org/10.1006/nimg.2002.1132

Jenkinson, M., & Smith, S. (2001). A global optimisation method for ro-
bust affine registration of brain images. Medical Image Analysis, 5(2), 
143–156. https://doi.org/10.1016/S1361​-8415(01)00036​-6

Kann, L., McManus, T., Harris, W. A., Shanklin, S. L., Flint, K. H., Queen, 
B., Lowry, R., Chyen, D., Whittle, L., Thornton, J., Lim, C., Bradford, 
D., Yamakawa, Y., Leon, M., Brener, N., & Ethier, K. A. (2018). 
Youth risk behavior surveillance—United States, 2017. MMWR. 
Surveillance Summaries, 67(8), 1–114. https://doi.org/10.15585/​
mmwr.ss6708a1

Khurana, A., Romer, D., Betancourt, L. M., & Hurt, H. (2018). Modeling 
trajectories of sensation seeking and impulsivity dimensions from 
early to late adolescence: Universal trends or distinct sub-groups? 

https://doi.org/10.1101/2020.04.18.036368
https://doi.org/10.1101/2020.04.18.036368
https://doi.org/10.1016/j.neuroimage.2019.01.068
https://doi.org/10.1016/j.neuroimage.2019.01.068
https://doi.org/10.1177/0956797620916786
https://doi.org/10.1016/j.bandc.2014.01.006
https://doi.org/10.1016/j.bandc.2014.01.006
https://doi.org/10.1017/S0033291705005891
https://doi.org/10.3758/s13423-017-1380-y
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2018.11.057
https://doi.org/10.1016/j.conb.2012.11.010
https://doi.org/10.1016/j.conb.2012.11.010
https://doi.org/10.3389/neuro.09.006.2010
https://doi.org/10.3389/neuro.09.006.2010
https://doi.org/10.1111/j.1467-7687.2006.00579.x
https://doi.org/10.1162/jocn_a_00326
https://doi.org/10.1162/jocn_a_00326
https://doi.org/10.3389/fninf.2016.00045
https://doi.org/10.3389/fninf.2016.00045
https://doi.org/10.1080/00273171.2016.1256187
https://doi.org/10.1080/00273171.2016.1256187
https://doi.org/10.1016/j.neuroimage.2012.06.026
https://doi.org/10.1016/j.neuroimage.2012.06.026
https://doi.org/10.1016/j.neuroimage.2010.08.051
https://doi.org/10.1016/j.neuroimage.2010.08.051
https://doi.org/10.1002/1522-2594(200007)44:1%3C162:aid-mrm23%3E3.0.co;2-e
https://doi.org/10.1002/1522-2594(200007)44:1%3C162:aid-mrm23%3E3.0.co;2-e
https://doi.org/10.1001/jamanetworkopen.2020.17850
https://doi.org/10.1001/jamanetworkopen.2020.17850
https://doi.org/10.1016/j.neuron.2017.07.011
https://doi.org/10.1016/j.neuron.2017.07.011
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1016/j.neuron.2014.08.031
https://doi.org/10.1016/j.neuron.2014.08.031
https://doi.org/10.1038/npp.2009.129
https://doi.org/10.1037/a0023279
https://doi.org/10.1016/j.neuroimage.2018.12.040
https://doi.org/10.1016/j.neuroimage.2018.12.040
https://doi.org/10.1007/s11682-012-9205-0
https://doi.org/10.1007/s11682-012-9205-0
https://doi.org/10.1016/0191-8869(93)90173-Z
https://doi.org/10.1016/S0191-8869(01)00032-0
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.15585/mmwr.ss6708a1
https://doi.org/10.15585/mmwr.ss6708a1


    |  777DEMIDENKO et al.

Journal of Youth and Adolescence, 47(9), 1992–2005. https://doi.
org/10.1007/s1096​4-018-0891-9

Knutson, B., & Greer, S. (2008). Anticipatory affect: Neural correlates 
and consequences for choice. Philosophical Transactions of the Royal 
Society B: Biological Sciences, 363(1511), 3771–3786. https://doi.
org/10.1098/rstb.2008.0155

Knutson, B., Katovich, K., & Suri, G. (2014). Inferring affect from fMRI 
data. Trends in Cognitive Sciences, 18(8), 422–428. https://doi.
org/10.1016/j.tics.2014.04.006

Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). fMRI visu-
alization of brain activity during a monetary incentive delay task. 
NeuroImage, 12(1), 20–27. https://doi.org/10.1006/nimg.2000.0593

Lane, S. T., Gates, K. M., Pike, H. K., Beltz, A. M., & Wright, A. G. C. (2019). 
Uncovering general, shared, and unique temporal patterns in am-
bulatory assessment data. Psychological Methods, 24(1), 54–69. 
https://doi.org/10.1037/met00​00192

Li, X., Ai, L., Giavasis, S., Jin, H., Feczko, E., Xu, T., Clucas, J., Franco, 
A., Heinsfeld, A. S., Adebimpe, A., Vogelstein, J. T., Yan, C.-G., 
Esteban, O., Poldrack, R. A., Craddock, C., Fair, D., Satterthwaite, 
T., Kiar, G. & Milham, M. P. (2021). Moving beyond processing and 
analysis-related variation in neuroscience. BioRxiv. https://doi.
org/10.1101/2021.12.01.470790

Linden-Carmichael, A. N., Stamates, A. L., & Lau-Barraco, C. (2019). 
Simultaneous use of alcohol and marijuana: Patterns and individual 
differences. Substance Use & Misuse, 54(13), 2156–2166. https://
doi.org/10.1080/10826​084.2019.1638407

Lydon-Staley, D. M., & Bassett, D. S. (2018). The promise and challenges 
of intensive longitudinal designs for imbalance models of adoles-
cent substance use. Frontiers in Psychology, 9, 1576. https://doi.
org/10.3389/fpsyg.2018.01576

Marek, S., Hwang, K., Foran, W., Hallquist, M. N., & Luna, B. (2015). The 
contribution of network organization and integration to the de-
velopment of cognitive control. PLoS Biology, 13(12), e1002328. 
https://doi.org/10.1371/journ​al.pbio.1002328

McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A general-
ized form of context-dependent psychophysiological interactions 
(gPPI): A comparison to standard approaches. NeuroImage, 61(4), 
1277–1286. https://doi.org/10.1016/j.neuro​image.2012.03.068

Meisel, S. N., Fosco, W. D., Hawk, L. W., & Colder, C. R. (2019). Mind 
the gap: A review and recommendations for statistically evaluat-
ing dual systems models of adolescent risk behavior. Developmental 
Cognitive Neuroscience, 39, 100681. https://doi.org/10.1016/j.
dcn.2019.100681

Michaelsen, M. M., & Esch, T. (2021). Motivation and reward mechanisms 
in health behavior change processes. Brain Research, 1757, 147309. 
https://doi.org/10.1016/j.brain​res.2021.147309

Mumford, J. A., & Ramsey, J. D. (2014). Bayesian networks for fMRI: A 
primer. NeuroImage, 86, 573–582. https://doi.org/10.1016/j.neuro​
image.2013.10.020

Munn, B. R., Müller, E. J., Wainstein, G., & Shine, J. M. (2021). The ascend-
ing arousal system shapes neural dynamics to mediate awareness 
of cognitive states. Nature Communications, 12(1), 6016. https://doi.
org/10.1038/s4146​7-021-26268​-x

Murray, L., Lopez-Duran, N. L., Mitchell, C., Monk, C. S., & Hyde, L. W. 
(2020). Neural mechanisms of reward and loss processing in a low-
income sample of at-risk adolescents. Social Cognitive and Affective 
Neuroscience, 15(12), 1299–1314. https://doi.org/10.1093/scan/
nsaa157

Noble, S., Scheinost, D., & Constable, R. T. (2019). A decade of test-retest 
reliability of functional connectivity: A systematic review and 
meta-analysis. NeuroImage, 203, 116157. https://doi.org/10.1016/j.
neuro​image.2019.116157

Oldham, S., & Fornito, A. (2019). The development of brain network 
hubs. Developmental Cognitive Neuroscience, 36, 100607. https://
doi.org/10.1016/j.dcn.2018.12.005

Oldham, S., Murawski, C., Fornito, A., Youssef, G., Yücel, M., & Lorenzetti, 
V. (2018). The anticipation and outcome phases of reward and loss 
processing: A neuroimaging meta-analysis of the monetary incen-
tive delay task. Human Brain Mapping, 39(8), 3398–3418. https://
doi.org/10.1002/hbm.24184

Orman, G. K., & Labatut, V. (2009). A comparison of community detec-
tion algorithms on artificial networks. In J. Gama, V. S. Costa, A. 
M. Jorge, & P. B. Brazdil (Eds.), Discovery science (pp. 242–256). 
Springer. https://doi.org/10.1007/978-3-642-04747​-3_20

Padoa-Schioppa, C., & Conen, K. E. (2017). Orbitofrontal cortex: A neural 
circuit for economic decisions. Neuron, 96(4), 736–754. https://doi.
org/10.1016/j.neuron.2017.09.031

Park, H. R. P., Kostandyan, M., Boehler, C. N., & Krebs, R. M. (2018). 
Smiling faces and cash bonuses: Exploring common affective cod-
ing across positive and negative emotional and motivational stimuli 
using fMRI. Cognitive, Affective, & Behavioral Neuroscience, 18(3), 
550–563. https://doi.org/10.3758/s1341​5-018-0587-3

Parkes, L., Fulcher, B., Yücel, M., & Fornito, A. (2018). An evaluation of 
the efficacy, reliability, and sensitivity of motion correction strate-
gies for resting-state functional MRI. NeuroImage, 171, 415–436. 
https://doi.org/10.1016/j.neuro​image.2017.12.073

Pessoa, L. (2017). A network model of the emotional brain. Trends in 
Cognitive Sciences, 21(5), 357–371. https://doi.org/10.1016/j.
tics.2017.03.002

Pessoa, L. (2021). Complex systems: The science of interacting parts. 
OSF Preprints. https://doi.org/10.31219/​osf.io/635tq

Pinti, P., Scholkmann, F., Hamilton, A., Burgess, P., & Tachtsidis, I. 
(2019). Current status and issues regarding pre-processing of 
fNIRS neuroimaging data: An investigation of diverse signal filter-
ing methods within a general linear model framework. Frontiers 
in Human Neuroscience, 12, 505. https://doi.org/10.3389/
fnhum.2018.00505

Plichta, M. M., Schwarz, A. J., Grimm, O., Morgen, K., Mier, D., Haddad, 
L., Gerdes, A. B. M., Sauer, C., Tost, H., Esslinger, C., Colman, P., 
Wilson, F., Kirsch, P., & Meyer-Lindenberg, A. (2012). Test–retest 
reliability of evoked BOLD signals from a cognitive–emotive 
fMRI test battery. NeuroImage, 60(3), 1746–1758. https://doi.
org/10.1016/j.neuro​image.2012.01.129

Poldrack, R. A. (2017). Precision neuroscience: Dense sampling of in-
dividual brains. Neuron, 4, 727–729. https://doi.org/10.1016/j.
neuron.2017.08.002

Pons, P., & Latapy, M. (2005). Computing communities in large networks 
using random walks. In P. Yolum, T. Güngör, F. Gürgen, & C. Özturan 
(Eds.), Computer and information sciences—ISCIS 2005 (pp. 284–293). 
Springer. https://doi.org/10.1007/11569​596_31

Posner, J., Russell, J. A., & Peterson, B. S. (2005). The circumplex model 
of affect: An integrative approach to affective neuroscience, 
cognitive development, and psychopathology. Development and 
Psychopathology, 17(3), 715–734. https://doi.org/10.1017/S0954​
57940​5050340

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & 
Petersen, S. E. (2014). Methods to detect, characterize, and remove 
motion artifact in resting state fMRI. NeuroImage, 84, 320–341. 
https://doi.org/10.1016/j.neuro​image.2013.08.048

Price, R. B., Beltz, A. M., Woody, M. L., Cummings, L., Gilchrist, D., & 
Siegle, G. J. (2020). Neural connectivity subtypes predict dis-
crete attentional-bias profiles among heterogeneous anxiety pa-
tients. Clinical Psychological Science, 8(3), 491–505. https://doi.
org/10.1177/21677​02620​906149

R Core Team. (2020). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing. https://www.R-proje​
ct.org/

Rolls, E. T. (2014). Emotion and decision-making explained: A 
précis. Cortex, 59, 185–193. https://doi.org/10.1016/j.
cortex.2014.01.020

https://doi.org/10.1007/s10964-018-0891-9
https://doi.org/10.1007/s10964-018-0891-9
https://doi.org/10.1098/rstb.2008.0155
https://doi.org/10.1098/rstb.2008.0155
https://doi.org/10.1016/j.tics.2014.04.006
https://doi.org/10.1016/j.tics.2014.04.006
https://doi.org/10.1006/nimg.2000.0593
https://doi.org/10.1037/met0000192
https://doi.org/10.1101/2021.12.01.470790
https://doi.org/10.1101/2021.12.01.470790
https://doi.org/10.1080/10826084.2019.1638407
https://doi.org/10.1080/10826084.2019.1638407
https://doi.org/10.3389/fpsyg.2018.01576
https://doi.org/10.3389/fpsyg.2018.01576
https://doi.org/10.1371/journal.pbio.1002328
https://doi.org/10.1016/j.neuroimage.2012.03.068
https://doi.org/10.1016/j.dcn.2019.100681
https://doi.org/10.1016/j.dcn.2019.100681
https://doi.org/10.1016/j.brainres.2021.147309
https://doi.org/10.1016/j.neuroimage.2013.10.020
https://doi.org/10.1016/j.neuroimage.2013.10.020
https://doi.org/10.1038/s41467-021-26268-x
https://doi.org/10.1038/s41467-021-26268-x
https://doi.org/10.1093/scan/nsaa157
https://doi.org/10.1093/scan/nsaa157
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.1016/j.dcn.2018.12.005
https://doi.org/10.1016/j.dcn.2018.12.005
https://doi.org/10.1002/hbm.24184
https://doi.org/10.1002/hbm.24184
https://doi.org/10.1007/978-3-642-04747-3_20
https://doi.org/10.1016/j.neuron.2017.09.031
https://doi.org/10.1016/j.neuron.2017.09.031
https://doi.org/10.3758/s13415-018-0587-3
https://doi.org/10.1016/j.neuroimage.2017.12.073
https://doi.org/10.1016/j.tics.2017.03.002
https://doi.org/10.1016/j.tics.2017.03.002
https://doi.org/10.31219/osf.io/635tq
https://doi.org/10.3389/fnhum.2018.00505
https://doi.org/10.3389/fnhum.2018.00505
https://doi.org/10.1016/j.neuroimage.2012.01.129
https://doi.org/10.1016/j.neuroimage.2012.01.129
https://doi.org/10.1016/j.neuron.2017.08.002
https://doi.org/10.1016/j.neuron.2017.08.002
https://doi.org/10.1007/11569596_31
https://doi.org/10.1017/S0954579405050340
https://doi.org/10.1017/S0954579405050340
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1177/2167702620906149
https://doi.org/10.1177/2167702620906149
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1016/j.cortex.2014.01.020
https://doi.org/10.1016/j.cortex.2014.01.020


778  |    DEMIDENKO et al.

Romer, D. (2010). Adolescent risk taking, impulsivity, and brain devel-
opment: Implications for prevention. Developmental Psychobiology, 
52(3), 263–276. https://doi.org/10.1002/dev.20442

Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-
subcortical systems and the generation of affective meaning. Trends 
in Cognitive Sciences, 16(3), 147–156. https://doi.org/10.1016/j.
tics.2012.01.005

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–
592. https://doi.org/10.1093/biome​t/63.3.581

Rubin, M. (2021). When to adjust alpha during multiple testing: A consid-
eration of disjunction, conjunction, and individual testing. Synthese, 
199(3–4), 10969–11000. https://doi.org/10.1007/s1122​9-021-
03276​-4

Sherman, L., Steinberg, L., & Chein, J. (2018). Connecting brain re-
sponsivity and real-world risk taking: Strengths and limita-
tions of current methodological approaches. Developmental 
Cognitive Neuroscience, 33, 27–41. https://doi.org/10.1016/j.
dcn.2017.05.007

Shulman, E. P., Smith, A. R., Silva, K., Icenogle, G., Duell, N., Chein, J., & 
Steinberg, L. (2016). The dual systems model: Review, reappraisal, 
and reaffirmation. Developmental Cognitive Neuroscience, 17, 103–
117. https://doi.org/10.1016/j.dcn.2015.12.010

Siegel, J. S., Power, J. D., Dubis, J. W., Vogel, A. C., Church, J. A., Schlaggar, 
B. L., & Petersen, S. E. (2014). Statistical improvements in func-
tional magnetic resonance imaging analyses produced by censoring 
high-motion data points. Human Brain Mapping, 35(5), 1981–1996. 
https://doi.org/10.1002/hbm.22307

Silverman, M. H., Jedd, K., & Luciana, M. (2015). Neural networks 
involved in adolescent reward processing: An activation likeli-
hood estimation meta-analysis of functional neuroimaging stud-
ies. NeuroImage, 122, 427–439. https://doi.org/10.1016/j.neuro​
image.2015.07.083

Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain 
Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. 
F., Nichols, T. E., Ramsey, J. D., & Woolrich, M. W. (2011). Network 
modelling methods for fMRI. NeuroImage, 54(2), 875–891. https://
doi.org/10.1016/j.neuro​image.2010.08.063

Soares, J. M., Magalhães, R., Moreira, P. S., Sousa, A., Ganz, E., Sampaio, 
A., Alves, V., Marques, P., & Sousa, N. (2016). A Hitchhiker's guide to 
functional magnetic resonance imaging. Frontiers in Neuroscience, 
10, 515. https://doi.org/10.3389/fnins.2016.00515

Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). 
Increasing transparency through a multiverse analysis. 
Perspectives on Psychological Science, 11(5), 702–712. https://doi.
org/10.1177/17456​91616​658637

Steinberg, L. (2008). A social neuroscience perspective on adolescent 
risk-taking. Developmental Review, 28(1), 78–106. https://doi.
org/10.1016/j.dr.2007.08.002

Steinberg, L. (2010). A dual systems model of adolescent risk-taking. 
Developmental Psychobiology, 52(3), 216–224. https://doi.
org/10.1002/dev.20445

Szczepanski, S. M., & Knight, R. T. (2014). Insights into human behavior 
from lesions to the prefrontal cortex. Neuron, 83(5), 1002–1018. 
https://doi.org/10.1016/j.neuron.2014.08.011

Szucs, D., & Ioannidis, J. P. A. (2017). Empirical assessment of published 
effect sizes and power in the recent cognitive neuroscience and 
psychology literature. PLOS Biology, 15(3), e2000797. https://doi.
org/10.1371/journ​al.pbio.2000797

Szucs, D., & Ioannidis, J. P. A. (2020). Sample size evolution in neuro-
imaging research: An evaluation of highly-cited studies (1990–
2012) and of latest practices (2017–2018) in high-impact jour-
nals. NeuroImage, 221, 117164. https://doi.org/10.1016/j.neuro​
image.2020.117164

Thompson, W. H., Wright, J., & Bissett, P. G. (2020). Open exploration. 
Elife, 9, e52157. https://doi.org/10.7554/eLife.52157

Wan, Z., Rolls, E. T., Cheng, W., & Feng, J. (2020). Sensation-seeking is 
related to functional connectivities of the medial orbitofrontal cor-
tex with the anterior cingulate cortex. NeuroImage, 215, 116845. 
https://doi.org/10.1016/j.neuro​image.2020.116845

Weigard, A., Beltz, A., Reddy, S. N., & Wilson, S. J. (2018). Characterizing 
the role of the pre-SMA in the control of speed/accuracy trade-off 
with directed functional connectivity mapping and multiple solu-
tion reduction. Human Brain Mapping, 40(6), 1829–1843. https://
doi.org/10.1002/hbm.24493

Weiland, B. J., Welsh, R. C., Yau, W.-Y.- W., Zucker, R. A., Zubieta, J.-K., & 
Heitzeg, M. M. (2013). Accumbens functional connectivity during 
reward mediates sensation-seeking and alcohol use in high-risk 
youth. Drug and Alcohol Dependence, 128(1), 130–139. https://doi.
org/10.1016/j.druga​lcdep.2012.08.019

Willoughby, T., Good, M., Adachi, P. J. C., Hamza, C., & Tavernier, R. 
(2013). Examining the link between adolescent brain develop-
ment and risk taking from a social-developmental perspective. 
Brain and Cognition, 83(3), 315–323. https://doi.org/10.1016/j.
bandc.2013.09.008

Zuckerman, M. S., Eysenck, S. B. G., & Eysenck, H. J. (1978). Sensation 
seeking in England and America: Cross-cultural, age, and sex com-
parisons. Journal of Consulting and Clinical Psychology, 46(1), 139–
149. https://doi.org/10.1037/0022-006x.46.1.139

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of the article at the publisher’s website.
FIGURE S1. AHRB study Phase 1 Wave 1–Wave 3: participant's 
associated counties/census tracts in Southeastern Michigan during 
study
FIGURE S2. MID task schematic
TABLE S1. A priori MNI coordinates pulled from Neurosynth
TABLE S2. Demographics overall and by run for Aim 1/Aim 2
TABLE S3. MID accuracy
TABLE S4. Motion: Mean framewise displacement (FD) pre/post 
preprocessing
TABLE S5. Four fit statistics from GIMME model
TABLE S6. Crosstabs of subgrouping across runs (N = 104)
TABLE S7. Demographics characteristics of participant's subgroup 
labels that are stable or changed across Run 01 and Run 02
TABLE S8. Overlap in paths opened for Group, Subgroup02 and 
Subgroug02 across runs
TABLE S9. Logistic regression: Sensation seeking associated with 
GIMME-derived subgroup from MID task data, by run, without Post 
FD (N = 104)
TABLE S10. Logistic regression: Moderating effect of motion on 
association between BSSS and subgroup for Run01 and Run01
TABLE S11. Multiple regression: Individual traits of sensation 
seeking associated with GIMME FC path strength in Subgroup02 
during MID task, by run
FIGURE S3. Connectivity strength and sensation seeking raw plots 
for participants in Subgroup02, by Run 01 (N  =  43) and Run 02 
(N = 48)
TABLE S12. Four fit statistics from GIMME model

https://doi.org/10.1002/dev.20442
https://doi.org/10.1016/j.tics.2012.01.005
https://doi.org/10.1016/j.tics.2012.01.005
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1007/s11229-021-03276-4
https://doi.org/10.1007/s11229-021-03276-4
https://doi.org/10.1016/j.dcn.2017.05.007
https://doi.org/10.1016/j.dcn.2017.05.007
https://doi.org/10.1016/j.dcn.2015.12.010
https://doi.org/10.1002/hbm.22307
https://doi.org/10.1016/j.neuroimage.2015.07.083
https://doi.org/10.1016/j.neuroimage.2015.07.083
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1016/j.neuroimage.2010.08.063
https://doi.org/10.1016/j.neuroimage.2010.08.063
https://doi.org/10.3389/fnins.2016.00515
https://doi.org/10.1177/1745691616658637
https://doi.org/10.1177/1745691616658637
https://doi.org/10.1016/j.dr.2007.08.002
https://doi.org/10.1016/j.dr.2007.08.002
https://doi.org/10.1002/dev.20445
https://doi.org/10.1002/dev.20445
https://doi.org/10.1016/j.neuron.2014.08.011
https://doi.org/10.1371/journal.pbio.2000797
https://doi.org/10.1371/journal.pbio.2000797
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.7554/eLife.52157
https://doi.org/10.1016/j.neuroimage.2020.116845
https://doi.org/10.1002/hbm.24493
https://doi.org/10.1002/hbm.24493
https://doi.org/10.1016/j.drugalcdep.2012.08.019
https://doi.org/10.1016/j.drugalcdep.2012.08.019
https://doi.org/10.1016/j.bandc.2013.09.008
https://doi.org/10.1016/j.bandc.2013.09.008
https://doi.org/10.1037/0022-006x.46.1.139


    |  779DEMIDENKO et al.

FIGURE S4. Combined MID Run GIMME Full Model. Black, 
Group Paths; Red, Subgroup01 connections; Green, Subgroup02 
connections; Grey, Individual Paths. Solid, Contemporaneous; 
Dashed, Lagged (t  −  1). Weight is the proportion of subjects with 
the connection
TABLE S13. Logistic regression model predicting subgroup labels: 
Combined MID Runs and BSSS (N = 103)
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