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Key Points:9

• In an experimental setting, SMARP data can correctly predict whether a solar flare10

will lead to a solar energetic particle (SEP) event 72% of the times.11

• Flare peak intensity is the strongest SEP predictor and can be coupled with SMARP12

data to achieve accuracy ≤ 0.92± 0.07.13

• The SMARP dataset provides a leading time of 55.3±28.6 minutes for forecast-14

ing the SEP events.15
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Abstract16

We use machine learning methods to predict whether an active region (AR) which17

produces flares will lead to a solar energetic particle (SEP) event using Space-Weather18

Michelson Doppler Imager (MDI) Active Region Patches (SMARPs). This new data prod-19

uct is derived from maps of the solar surface magnetic field taken by the Michelson Doppler20

Imager (MDI) aboard the Solar and Heliospheric Observatory (SOHO). We survey the21

SMARP active regions associated with flares that appear on the solar disk between June22

5, 1996 and August 14, 2010, label those that produced SEPs as positive and the rest23

as negative. The AR SMARP features that correspond to each flare are used to train24

two different types of machine learning methods, the support vector machines (SVMs)25

and the regression models. The results show that the SMARP data can predict whether26

a flare will lead to an SEP with accuracy (ACC) ≤ 0.72±0.12 while allowing for a com-27

petitive leading time of 55.3± 28.6 minutes for forecasting the SEP events.28

Plain Language Summary29

We train machine learning algorithms to predict whether sunspots on the solar disk30

will produce solar phenomena such as Solar Energetic Particle (SEP) events. We use a31

newly published piece of solar data (SMARP) captured by the Space-Weather Michel-32

son Doppler Imager (MDI), an instrument aboard the Solar and Heliospheric Observa-33

tory (SOHO) which is a spacecraft launched on 1995 to study the Sun. The results show34

that the SMARP data can correctly predict 72% of the times whether a sunspot will lead35

to an SEP while allowing for a potentially competitive forecast window.36

1 Introduction37

Large solar eruptions can potentially harm modern civilization in several different38

ways. Events such as large solar flares and coronal mass ejections (CMEs) that lead to39

solar particle acceleration, can adversely affect the near-earth environment, degrade high40

frequency (HF) radio communications, incapacitate satellites, expose airline passengers41

to elevated radiation levels and even endanger life in outer space. Therefore, predicting42

and monitoring such events is an important task for the community.43

Solar Energetic Particles are rare events that involve protons, electrons and heavy44

ions accelerated to high energies (up to tens of GeV while the fastest ones can acceler-45

ate to speeds of up to 80% of the speed of light) by two solar processes (Reames, 2013),46

the energization at a solar flare site or the shock waves associated with Coronal Mass47

Ejections (CMEs). Solar charged particles are accelerated in flares or CME shock waves48

(Wild et al., 1963) and travel preferentially along the interplanetary magnetic field to49

their detection point in space (McCracken & Ness, 1966).50

The study of solar energetic particle (SEP) events is a relatively recent science as51

the identification of the first event took place on 28 February, 1942 (Forbush, 1946). Ob-52

servations of solar proton events (subset of solar energetic particle events) were made us-53

ing ground-based instruments that detected ionization, neutrons, or radio disturbances54

caused by them. The largest solar proton event recorded using these modern techniques55

(particles exceeded 15 GeV at the top of the atmosphere) was on the 23rd of February,56

1956. In the mid-1960s spacecraft were deployed that began directly measuring solar pro-57

ton events. This was also the time when the first flare was associated with an SEP event58

(Shea & Smart, 1995).59

During the so-called Halloween storms in late October 2003, SEP events caused 4760

satellites to report malfunctions, more than 10 satellites to go out of action for days, the61

Mars Odyssey spacecraft went into deep safe mode (Lopez et al., 2004), a Japanese satel-62

lite costing 640m USD was completely lost, the US FAA issued their first-ever high ra-63
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diation dosage alert for high-altitude aircraft, and astronauts in the ISS had to seek safety64

into their heavily shielded service module (Webb & Allen, 2004; Horne et al., 2013).65

One of the sources of solar activity phenomena that cause SEPs are the magnet-66

ically strong regions on the solar sphere that we refer to as active regions (van Driel-Gesztelyi67

& Green, 2015). The most flare productive active regions (ARs) are the ones that un-68

dergo large changes in sunspot area and show magnetic flux imbalance (Choudhary et69

al., 2013). Large active regions are also generally strong, produce a number of flares, evolve70

rapidly and their lifetime spans from days to months (Choudhary et al., 2013). Using71

instruments carried onboard satellites such as the Michelson Doppler Imager (MDI) on72

the Solar and Heliospheric Observatory (SOHO) or the Helioseismic and Magnetic Im-73

ager (HMI) on the Solar Dynamics Observatory (SDO), we are able to retrieve compo-74

nents of the magnetic field at the solar surface, allowing us to calculate physical char-75

acteristics of the ARs (Scherrer et al., 1995; Schou et al., 2012).76

Solar particle prediction studies mainly use the flare and nearEarth space environ-77

ment data to forecast SEP events given the knowledge that large SEPs are almost al-78

ways accompanied by a flare (Schrijver et al., 2012). Laurenza et al. (2009) used data79

such as flare longitude, time-integrated soft X-ray intensity, and time-integrated inten-80

sity of type III radio emission at around 1 MHz to provide short-term warnings for SEP81

events. Similarly, Núñez (2011) used the soft Xray, differential and integral proton fluxes82

data to forecast the SEP events of Solar Cycle 23 recorded on the NOAA/SWPC list.83

Although both flare and CME data are found to be useful inputs to predictive models,84

Garćıa-Rigo et al. (2016) deemed it sufficient to only use flare properties as they noticed85

that the CME information offers insignificant increase in SEP prediction accuracy, be-86

cause of the difficulty to obtain real-time information on the true radial CME speeds due87

to line-of-sight issues.88

Recently, machine learning (ML) methods like neural networks (in the multi-layer89

perceptron implementation), random forests, decision trees, extremely randomized trees90

and other, have been used in predicting SEP events. The preliminary results obtained91

by Bain et al. (2018) show that machine learning classification techniques such as the92

logistic regression (LR), decision trees (DTs) and support vector machine (SVM) algo-93

rithms give an improved forecasting skill over the current SWPC Proton Prediction Model94

(Balch, 2008) based on physical parameters associated with solar flares and coronal mass95

ejections. An even more comprehensive study that assesses the predictability of Solar96

Energetic Particles using ML techniques was recently published by Lavasa et al. (2021).97

In their work they conclude that random forests (RF) could be the prediction technique98

of choice for an optimal sample comprised by both flares and CMEs while proving that99

the most important features are the CME speed, width and flare soft X-ray (SXR) flu-100

ence. Lastly, Sadykov et al. (2021) recently indicated the possibility of developing ro-101

bust all-clear SPE forecasts by employing machine learning methods. Their approach102

indicates that for AR-based predictions, it is necessary to take into account western limb103

and far-side ARs, characteristics of the preceding proton flux represent the most valu-104

able input for prediction, daily median characteristics of ARs and the counts of type II,105

III, and IV radio bursts may be excluded from the forecast and that ML-based forecasts106

outperform SWPC NOAA forecasts.107

Different studies have used a variety of sources to obtain the data necessary for so-108

lar particle event prediction. Richardson et al. (2018) predict the SEP events peak pro-109

ton intensity at one energy interval (1424 MeV) using the CME data (speed, width, di-110

rection and type II and type III radio emissions associated with the CME) in the Space111

Weather Database of Notications, Knowledge, Information (DONKI). Papaioannou et112

al. (2016) have presented a catalogue which includes solar variables (such as logarithm113

of the solar flare magnitude (log SXRs), solar flare longitude, duration, and rise time)114

for 314 SEP events obtained from the Energetic Particle Sensor (EPS) aboard the Geo-115

stationary Operational Environmental Satellites (GOES; Rodriguez et al., 2014) and CME116
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data (width/size and velocity) obtained by the Large Angle and Spectrometric Coron-117

agraph (LASCO; Brueckner et al., 1995) carried onboard the SOHO spacecraft. Using118

this information, Papaioannou et al. (2018) classify the solar energetic particle (SEP)119

event radiation impact with respect to the characteristics of their parent solar events while120

attempting to infer the possible prediction of SEP events.121

Similarly, Anastasiadis et al. (2017) provide full-disk Helioseismic and Magnetic122

Imager (HMI) magnetograms to their novel integrated prediction system which nowcasts123

SEP events. The HMI instrument aboard the Solar Dynamics Laboratory (SDO) mea-124

sures the solar surface magnetic field from which the Space-Weather HMI Active Region125

Patches (SHARPs) are derived. SHARPs have been used to identify flares or SEPs in126

Chen et al. (2019) and Inceoglu et al. (2018) respectively.127

A new data product recently published by Bobra et al. (2021) called Space-Weather128

MDI Active Region Patches (SMARPs) will be used in this work to predict SEPs. SMARPs129

are derived from the solar surface magnetic field taken by the Michelson Doppler Imager130

(MDI) on the SOHO spacecraft and provide a continuous and seamless set of keywords131

that describe every active region observed during Solar Cycle 23. The big difference be-132

tween the HMI (Schou et al., 2012) and the MDI (Scherrer et al., 1995) is that the first133

measures the vector magnetic field at the solar surface whereas the later only measures134

the line-of-sight component of the solar magnetic field. The main aim of this study is135

to evaluate the predictive power of MDI Active Region Patches (SMARPs) on SEP events136

as it is desirable for the space weather community to explore new datasets that, when137

used on machine learning algorithms in the future, will be able to predict when solar pro-138

ton events will occur, along with how energetic and how intense they will be.139

2 Database140

In this work, we will evaluate the predictive power of the MDI solar magnetogram141

on SEP events. In particular, we focus on whether an active region which is associated142

with a solar flare will lead to an SEP event. Compared to other works that predict whether143

an SEP is likely to occur in a defined future time window, our models simply forecast144

whether flares have a resulting particle increase. To achieve this, five different predic-145

tors obtained from the SMARP dataset (SMARP Predictors) are used, while two more146

predictors from the NOAA solar X-ray flare dataset (Flare Predictors) are used for com-147

parison. While we are specifically interested in the responses of the ML models when only148

SMARP Predictors are used, the ability to forecast SEPs by using flare data will serve149

as a baseline capability.150

2.1 SMARP Predictors151

The magnetogram is measured by the Michelson Doppler Imager (MDI Scherrer152

et al., 1995) onboard SOHO between June 5, 1996 and August 14, 2010. Based on the153

magnetogram, Bobra et al. (2021) derived a new database called Space-Weather MDI154

Active Region Patches (SMARPs), which contains characteristics of the active regions155

on the solar surface. A Tracked Active Region Patch (TARP) Number is assigned to each156

active region as its identification number and a NOAA active region number, if avail-157

able, is assigned to each active region patch. Three physical keywords, total unsigned158

flux (USFLUXL), mean gradient of the vertical field (MEANGBL), and the logarithm159

of the total unsigned flux near polarity inversion line (RVALUE) are calculated using the160

pixels in the active region and stored in the SMARP header file. In addition, the SMARP161

header file also contains four spacial features specifying the location of the correspond-162

ing AR on the solar surface: the minimum and maximum latitude (LATDMIN, LAT-163

DMAX) and the minimum and maximum longitude (LONDTMIN, LONDTMAX). The164

SMARP data is available on the Joint Science Operations Center database (Mumford165

et al., 2015; Barnes et al., 2020).166
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Besides the three physical keywords stored in the SMARP header file, we calcu-167

late the angular distance between the AR and the magnetic foot-point of the earth. The168

longitude and latitude location of the active region on the sun is approximated by the169

geometric center of the active region using the latitude and longitude keywords. The mag-170

netic foot-point of the earth on the sun is assumed to be at W45◦. Note that the mag-171

netic foot-point varies from event to event. One way of characterizing this variability is172

to calculate the magnetic foot-point location using the solar wind speed measured at 1173

AU assuming an ideal Parker spiral up to the solar source surface and reconstruct the174

coronal magnetic fields using potential field source surface model. However, interplan-175

etary magnetic field can also be disturbed by corotating interaction regions (CIRs), in-176

terplanetary coronal mass ejections (ICMEs) and other solar transient events, especially177

in solar maximum. In this work, for simplicity, we use W45◦ as an approximation. We178

also calculate the size of the active region by multiplying the difference of longitude by179

the difference of latitude.180

2.2 Construction of SEP Event List181

The SEP event list we use in this work is documented in the NOAA Space Envi-182

ronment Service Center website. This study is based strictly on the Solar Energetic Par-183

ticle categorization that NOAA SWPC follows, therefore the catalogue lists the SEP events184

observed by GOES that are accelerated to energies greater than 10 MeV, noting only185

the times when the proton flux exceeds this threshold. This means that NOAA some-186

times groups more than one SEP particle injection together as one event, which is an187

intrinsic problem of the dataset. Really strong ARs are also known to produce multi-188

ple SEP events, therefore there are a number of homologous events coming from the same189

AR. For each SEP event, a solar flare and the corresponding NOAA active region num-190

ber is assigned if exists. The solar flare list is obtained from the NOAA Solar Flare Data191

website. For each solar flare, the list contains the start, peak and end times, the peak192

intensity of the flare, the active region location and the corresponding NOAA active re-193

gion number.194

We match the solar flare list with the SMARP database using the AR numbers.195

If a flare does not have a registered AR number, matching based on their occurrence time196

and spatial coordinates is performed. We also discard those solar flares whose flare class,197

coordinates or AR numbers are undefined or missing. Out of the ∼ 25, 000 flares (A,198

B, C, M, X) recorded during the 14 year span between 1996 and 2010, only 6,510 flares199

have sufficient information and therefore are matched with SMARP files.200

During this 14 year span, 93 SEP events are detected by the GOES spacecraft. Miss-201

ing information about the SEP’s associated flare or AR such as the Location and its Im-202

portance (Xray/Opt), leave only 70 SEPs with information adequate to label the 6,510203

flares. We assign a label to each flare: Positive if it led to an SEP and Negative if it did204

not. An additional 5 SEP-flare couples were discarded due to missing physical feature205

data about their corresponding SMARP Active Region. Therefore, the dataset used for206

training has a Positive and a Negative component comprised of 65 and 6,510 flares re-207

spectively, making it vastly unbalanced.208

The SMARP header files contains rows with the physical and spatial features of209

each active region at a 96-minute cadence throughout its entire lifetime, starting two days210

before it emerges or rotates onto the solar disk until two days after it submerges or dis-211

appears from view behind the limb (Bobra et al., 2021). We select the SMARP header212

file row at the time right before the flare peak time. In Figure 1, a histogram of the time213

difference between the selected SMARP file row and the flare peak time is plotted with214

the left panel corresponding to the positive dataset and right panel corresponding to the215

negative dataset. The importance of the SMARP time characterization varies between216

different SMARP active regions. Picking earlier SMARP points can potentially yield slightly217
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Figure 1. Histograms for the time difference between the flare peak time and the selected

SMARP data (selected row in the TARP file). The distributions range between 10 and 100 min-

utes. The mean time differences shown in the error bars above the graphs are 55.3 and 53.6

minutes with a standard deviation of 28.6 and 24.8 minutes for the Positive (green) and Negative

(red) datasets respectively.

different results than the ones presented below but the scope of the paper is to give an218

evaluation of the SMARP dataset rather than examine the optimal prediction window.219

The distributions range between 10 and 100 minutes. The mean time difference is 55.3220

and 53.6 minutes with a standard deviation of 28.6 and 24.8 minutes for the Positive and221

Negative dataset respectively. The time difference ∆t should not be confused with fore-222

cast windows or a lead times presented in similar works as the non-operational nature223

of our study does not allow for foreknowledge of whether a flare will occur.224

2.3 Flare Predictors225

We will evaluate the prediction power of SMARP dataset on SEP events by com-226

paring the prediction results with those obtained by only using the flare information, i.e.227

flare peak intensity and flare location. We use the solar long wavelength X-ray flare data228

that NOAA’s Geostationary Operational Environmental Satellites (GOES) continuously229

provides since 1975. Similarly to the SMARP Predictors, we calculate the flare angu-230

lar distance from the earth’s magnetic foot-point location, W45◦, on the sun.231

3 Preliminary Data Analysis232

We conduct preliminary analysis/assessment of different predictors, i.e. the SMARP233

and the Flare Predictors, via comparing the histogram of each predictor for the positive234

with that of negative samples. Figure 2 shows the density histograms of each predictor235

from the SMARP dataset on the top and from the GOES flare information on the bot-236

tom. The positive data is shown in green and negative data in red.237

As shown in Figure 2, the flare peak intensity is a powerful discriminator between238

the positive and negative dataset. The flare peak intensity has been used as a feature239

to predict the occurrence and properties (peak proton intensity, event duration, and etc.)240

of SEP events (Laurenza et al., 2009; Balch, 2008). The four intervals present in the in-241

tensity graph ([−7,−6], [−6,−5], [−5,−4] and [−4,+∞]) represent the four different GOES242

X-ray classes B, C, M and X respectively. The predictive power difference between the243

flare peak intensity and the SMARP Predictors on the top of Figure 2 has a big impact244

when comparing the SEP prediction capability with and without SMARP data. Flare245

intensity is the predictor that has the least overlap between positive and negative. In the246
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Figure 2. The probability density values are given in the histograms for the SMARP and

Flare Predictors such that the area under each histogram integrates to 1. Both the SEP (green,

positive samples) and flare-only (red, negative samples) data are split into 25 bins.

positive parameter spaces where there is no overlap, the associated SEP events are very247

intense and contain higher energy protons. Although larger flare intensity leads to higher248

proton fluxes, this is not necessarily the rule for all events as the problem is multidimen-249

sional (i.e. the correlation coefficient between the two physical quantities is not 1).250

Moderate distinction between the events that led to an SEP and those that did not251

can be identified in the predictors acquired using the SMARP active region coordinates252

(Active Region Angular Distance and Area). Large active regions increase the likelihood253

of an SEP event occurrence. The total unsigned flux is related to the X-ray, the EUV254

emissions from the sun and the particle acceleration, which reflects the energy stored in255

an active region (Gurman et al., 1974; van Driel-Gesztelyi et al., 2003; Ugarte-Urra et256

al., 2015), therefore the SEP events are connected to higher flux values. The flux and257

intensity distributions show similar trends but with the former having less predictive power.258

The Vertical Field Gradient distribution of the Positive dataset aligns well with that of259
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the Negative dataset, making it the least powerful predictor along with the R Value which260

shows the same trend.261

The predictive power differences observed in Figure 2 are consistent with a t-test262

(Kim, 2015) performed to all variables. For the most discriminating predictors, such as263

the Flare Peak Intensity and the AR Area, the Statistic values are high (21.3 and 6.35264

respectively) whereas for the weakest predictors (R Value and Vertical Field Gradient)265

the Statistic values do not exceed the 1.58 value.266

4 Machine Learning Methods267

To investigate whether the SOHO (SMARP AR data) or the GOES (flare erup-268

tion information) dataset can predict better the response variable of the two classes de-269

fined above, we use two popular groups of machine learning algorithms provided by the270

scikit-learn software package v0.24.2 for Python: different variations of the Support Vec-271

tor Machine (SVM; Cortes & Vapnik, 1995) and two Regression Models.272

4.1 Support Vector Machine273

SVMs were initially designed and have been used to solve binary classification prob-274

lems (Shao et al., 2014). In the most general case, the SVM is fitted to the data using275

a set of vector-target pairs (xi, yi) where i = 1, 2, .., n. The target for positive and neg-276

ative observations respectively is yi ∈ {1, 0} and the corresponding physical character-277

istics feature vector is xi = (fi1, fi2, .., fip). For all tests performed, our training data278

length is n = 116 and the maximum feature vector length is p = 7, where all calcu-279

lated predictors are used. Each different SVM method maps the input feature vector xi280

to a higher dimension space using an unknown function φ dependent on the user-defined281

kernel K. Given a regularization parameter C > 0 it solves an optimization problem282

to obtain the SVM trained weight vector w (Hsu & Lin, 2002; Inceoglu et al., 2018). The283

regularization parameter C controls the scaling of the SVM loss function and compen-284

sates for the change in the number of samples between the main problem and the smaller285

problems within the folds of the cross-validation. During testing, prediction is done by286

multiplying the trained vector w to the projected input feature vector φ(xi) with an ad-287

dition of a bias term. A more detailed study on how to solve the SVM optimization equa-288

tions is out of the scope of this research and can be found elsewhere (Cortes & Vapnik,289

1995; Vapnik, 1998).290

The kernel function K is defined as the inner product of data pairs that correspond291

to different observations i and j, K(xi, xj) = φ(xi)
Tφ(xj). In this study we train four292

different variations of the SVM (Amari & Wu, 1999). One uses the Linear kernel K =293

〈xi, xj〉, two use Polynomial kernels K = γ〈xi, xj〉d where d ∈ {2, 3} (second and third294

degree) and the last one uses the Gaussian Radial Basis Function (RBF) kernel K =295

exp(−γ‖xi = xj‖2) which has been used in similar studies (Inceoglu et al., 2018). To296

mitigate the risk of overfitting that is anticipated with the RBF kernel, the model pa-297

rameters are being chosen using the results that the validation testing dataset yields. Us-298

ing this cross-validation method we get similar results for the RBF kernel as we do for299

the rest models, which proves that excessive overfitting is being avoided. The weight-300

ing factor γ is user-defined and controls the influence a single training example has on301

the classification task. The different kernels help the prediction model deal with com-302

plex datasets such as the physical features of solar active regions by transforming the303

input into any desired form.304

4.2 Linear Models305

The observed physical properties of a SMARP AR can be also processed for the306

purpose of prediction by linear models: regression methods in which the target value is307
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expected to be a linear combination of the input features. Assuming a model function308

f(x) = wTx+b where w is a set of coefficients acquired during fitting, every feature’s309

(xi) predicted target yi is 1 if f(xi) ≥ 0 and 0 if otherwise. In this case study linear310

models such as Ridge and Logistic regression are being used.311

The ridge regression is one of the simplest machine learning algorithms and works312

well for small datasets while being computationally inexpensive. To fit the coefficients313

w to the training data, the ridge regression minimizes an ordinary Least Squares loss func-314

tion with an additional term that penalizes the size of the coefficients, as given in (1).315

JRidge = ‖w>x− y‖22 + α‖w‖22 (1)

Between different training runs we vary the complexity parameter α in order to con-316

trol the amount of shrinkage and find the value that produces the most robust predic-317

tions. More specifically, α corresponds to 1/(2C) in the Logistic Regression or SVM and318

serves as a regularization parameter which improves the conditioning of the problem and319

reduces the variance of the estimates. Larger values specify stronger regularization. We320

do not adopt a cross-validation procedure for selecting the tuning parameter α due to321

considerations of sample sparsity and because the randomized picking process of the train-322

ing data leads to non-significant selection bias. Although it is a model often adopted when323

the response y takes real numbers, we chose ridge regression because it reduces overfit-324

ting, guarantees that we can find a solution and offers a different approach for binary325

classification compared to other competing models.326

The dichotomous nature of Logistic Regression makes it a great candidate for the327

binary SEP prediction task. We use the default Logistic Regression module provided by328

the Scikit-Learn library in Python (Pedregosa et al., 2011) which includes the l2 regu-329

larization as a penalty and the Limited-memory BroydenFletcherGoldfarbShanno (L-330

BFGS) optimization algorithm (Saputro & Widyaningsih, 2017) as a solver. The L-BFGS331

solver fits our application as it is robust and recommended for small dataset prediction332

tasks. To calculate the optimal w coefficients, Logistic Regression minimizes the cost func-333

tion J for w and c.334

JLR =
1

2
w>w + C

n∑
i=1

log(e−yi(x
>
i w+c) + 1) (2)

The constant C controls the regularization strength of the model. Although nor-335

malization is applied to the flare data before the fitting process, the C constant is also336

varied throughout different training runs in order to find the value that produces the most337

numerically stable prediction.338

4.3 Training and Tuning the ML Models339

The scarcity of the SEP events along with the mission duration of the MDI/SOHO340

limits the size of the Positive dataset and leads to difficulties in separating the data into341

training and testing subsets in a reasonable way. To overcome this problem, every model342

is trained on 90% of the Positive events (58) and an equal number of Negative events.343

The training of each algorithm is followed by a similarly balanced testing on the remain-344

ing 10% Positive (7) and an equal number of Negative events. This balanced training345

and testing procedure is repeated k number of times to provide uncertainty assessment346

of the random selection of events. In our work, k is chosen to be equal to 100. Each time,347

a different batch of Negative events is randomly selected from the pool of 6,510 flare erup-348

tion events that did not lead to an SEP. This means that the Negative events are selected349

without replacement (in every one of the k different runs, all negative train and test sam-350

ples are different) while the Positive class is selected with replacement due to the low351
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number of available events. Similarly, in every run a different split between training and352

testing occurs for the Positive dataset. It has to be highlighted that as the described method-353

ology dictates, there is at no point any overlap between training and testing, neither in354

the positive nor in the negative dataset. The training dataset is independent from the355

testing therefore throughout the paper we only present the testing results. Furthermore,356

the procedure that we describe above for assessing the uncertainty of the testing results357

follows the idea of bootstrap (Efron, 1979; Efron & Tibshirani, 1994), which uses ran-358

dom Monte Carlo samples to assign measures of accuracy, i.e. variance in our case. Across359

the many (k=100) resampling of the training and testing sets, it is with probability al-360

most 1 that we cover the best and worst cases in terms of testing accuracy and other met-361

rics. Therefore, the uncertainty assessment that we give in this paper is crucial in un-362

derstanding and interpreting our model performance.363

It is important to acknowledge that the prediction of such rare events is a very dif-364

ficult task, therefore our work is focused on using the SMARP dataset to underline the365

contrast between the flares that lead to SEPs and flares that do not. Using the afore-366

mentioned machine learning models we aim to understand the mechanism of SEP for-367

mation and explore prediction capabilities rather than presenting an apparatus ready368

for operation. More specifically, the results presented below aim to evaluate the poten-369

tial the SMARP dataset has on predicting SEPs while showing which physical param-370

eters are the most important for SEP prediction.371

The very important limitations this work faces should also be noted. A very small372

number of positive data along with the large uncertainties inherited by the SMARP dataset373

are problems addressed by running the aforementioned Monte Carlo experiments (re-374

peated random sampling) and by quantifying the uncertainties using box plots, statis-375

tical spreads and standard deviations as seen in Section 5. Different solar cycles have dif-376

ferent numbers of events and properties, therefore another limitation is that we are only377

able to use data from solar cycle 23. Models that are ready for operational use and are378

trained on highly unbalanced datasets need an increased weight to the penalty of the loss379

function for the rare classes of data. In the models presented in this work such weight-380

ing is not included, therefore it is expected that the model -if deployed as is- will have381

an increased number of false alarms, as discussed in Section 5.4.382

5 Results383

For each one of the SVMs and Linear Models, we follow the same training proce-384

dure, aiming to predict whether an AR that produces a flare will lead to an SEP event.385

The goal is to illustrate how useful the SMARP dataset is for this particular task, we386

therefore train the ML models using two separate sets of features, one that uses SMARP387

information and one that uses flare information (see Section 2 for the detailed descrip-388

tions of the two sets of features). The number of features vary from 2 to 5 and the ma-389

chine learning algorithms are tested on a number of different predictor combinations.390

The comparison between the different types of predictors and algorithms is done391

using three metrics that characterize and quantify the predictive power of classifiers: the392

Accuracy (ACC), the True Skill Statistics (TSS; Hanssen & Kuipers, 1965) and the Hei-393

dke Skill Score (HSS; Heidke, 1926). The TSS and the HSS can take any values between394

-1 (all incorrect) and 1 (all correct) while a value of 0 indicates a random forecast. Sim-395

ilarly, the ACC can take values between 0 and 1 with 0.5 being the score of a random396

forecast. More information about the metrics, their equations and statistical meaning397

can be found in the works of Inceoglu et al. (2018) and Florios et al. (2018). For every398

set of k different runs a cumulative contingency table (Figure 3, 4 and 5) is obtained based399

on the results from the raw SVM and Linear Model outputs. Each row and column in400

the contingency table represents the number of instances in an actual class and in a pre-401
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dicted class respectively. In an ideal case, the main diagonal of a contingency table gets402

high values while the rest of the matrix gets small values.403

The ACC can be artificially high in the rare event where a model always predicts404

the majority class. In flare and SEP prediction such naive cases are common due to the405

data imbalance, but in this paper all models are trained on a one-to-one positive-negative406

ratio, so these rare cases are not a concern. Therefore, this study’s basic prediction qual-407

ity metric is the ACC, with the TSS and HSS being presented too as auxiliary metrics.408

5.1 SEP Prediction with SMARP Predictors409

The cumulative contingency table in Figure 3 shows that out of 1400 testing in-410

stances, Third Degree Polynomial SVM correctly classifies 552 as being Positive and 449411

as being Negative when using the SMARP Flux and the AR Distance. This is the cu-412

mulative information obtained from 100 different runs, each of which has 14 testing points,413

therefore out of the 1400 total flares examined, there were 148 false alarms (flares wrong-414

fully being classified as they will lead to an SEP) and 251 missed events (flares that lead415

to SEPs but the model predicted they do not). The ratio of all correctly classified pos-416

itive and negative events over the total number of events is the accuracy (ACC). In this417

case, the mean accuracy suggests that 72% of the times (±12% for a single run) the Third418

Degree Polynomial SVM algorithm can predict whether a flare will lead or not to an SEP419

using the its AR SMARP features. The comparison between the probability of detec-420

tion and the probability of false detection lead to an average TSS level of 0.47 ± 0.24421

for the same 100 runs. Similarly, the HSS measures a fractional forecast improvement422

over a random forecast of 0.44 ± 0.25.423

The results show that the Linear Models can predict whether a flare will be accom-424

panied by SEPs with ACC values ≥ 0.70±0.12 for a number of SMARP Predictor com-425

binations (Table 2 in Appendix). The maximum corresponding TSS and HSS values for426

these SMARP Predictor runs are above the 0.40 levels. Similar to row 3 of Table 3, the427

Polynomial models that use the AR Distance and Area in Table 2 fail to produce a mean-428

ingful decision boundary yielding ACC values ≤ 0.52±0.04, TSS values ≤ 0.15±0.28429

and HSS values ≤ 0.05±0.09. Note here that a zero TSS or HSS value means that the430

method has no skill over the random forecast, therefore the these specific Polynomial ex-431

amples do not show any predictive power at all.432

Although the quality of the results cannot be judged based on the variance, the scores433

indicate that the better a model’s predictive power is, the lower the variance between434

the different runs is. Thus, the flare peak intensity based models (Table 3, row 6-10) have435

an ACC standard deviation of ≤ 0.09 while in SMARP examples, where prediction qual-436

ity is inferior, the ACC standard deviation is ≥ 0.10. This pattern is even more evident437

when considering the TSS (or the HSS) for which the standard deviation can be as high438

as 0.28 at the SMARP Predictors exclusive runs in Table 2. Potential reasons about this439

behavior of variance is the small number of Positive data which allows for low quality440

runs to not converge at all.441

Both SVM and Linear models are affected by user-defined constants such as the442

α and C in Equations 1 and 2. An embedded grid search -using the testing dataset to443

avoid overfitting- is employed for each experiment, where we vary each hyper-parameter444

on a range between 0.05 to 20. The parameter that produced the highest-quality and445

most consistent results was used for the examples presented in this study.446

The negative dataset includes SMARP data only from the active regions that pro-447

duced at least one flare throughout their lifespan. In a real-world application, the fore-448

caster does not have prior knowledge of whether an AR is going to produce flares or not.449

In this work we chose to disregard quiet active regions (ARs that did not flare) not only450

because they are missing the flare predictors we compare SMARPs with, but mainly be-451
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Figure 3. The distribution of k = 100 different ACC, TSS and HSS values are shown in the

box plots (left). The values were obtained using the USFLUX & AR Distance on a Third Degree

Polynomial SVM and constitute the best SEP prediction the SMARP data can achieve. The box

range shows the interquartile range, the red line inside it the median value, the whiskers show

the results range and the two red dots show two outlier values. The range of the y-axis is kept

the same with Figure 5 for comparison. Adding all the individual TP, TN, FP and FN values

respectively we produce a cumulative contingency table for the 100 different runs (right). For the

runs where only SMARP predictors are used, the contingency table yields a False Alarm Ratio

(FAR) of 0.211 and a Probability of Detection (POD) of 0.687.

cause they are very easily distinguishable compared to the ARs that produced SEPs. This452

claim is demonstrated in Figure 4, where the results of the binary classification between453

Positive SMARP events and SMARPs chosen randomly from quiet active regions are pre-454

sented.455

The quiet dataset was created using the 3901 SMARPs that do not produce flares.456

Out of these 3901 ARs, almost half have missing data (especially RVALUE and USFLUX457

values that are zero). From the ones that have an adequate amount of data, we randomly458

select a SMARP data point, creating a quiet dataset of 1529 different predictor vectors.459

In the histograms of Figure 4 we observe that the overlap between quiet and pos-460

itive datasets for the USFLUX, ARAREA and RVALUE predictors is insignificant. The461

results under the histograms show that the classification task between positive and quiet,462

when using the USFLUX, the ARAREA and the RVALUE as predictors on an Polyno-463

mial SVM model, yield mean values of 0.96± 0.05, 0.93± 0.09 and 0.91± 0.10 for the464

ACC, TSS and HSS respectively. These numbers very well demonstrate that distinguish-465

ing between Positive and Quiet active regions is a trivial problem for our machine learn-466

ing models, yielding classification accuracy errors of less than 4%.467

5.2 SEP Prediction with Flare Predictors468

Similar to the results presented before, the prediction quality metrics for the flare-469

only cases are calculated based on the contingency tables obtained from each different470

run. The cumulative contingency table in Figure 5 shows that out of 1400 testing instances,471

Ridge Regression correctly classifies 626 as being Positive and 651 as being Negative when472

trained on flare peak intensity and distance. This is the cumulative information obtained473

from k = 100 different runs, each of which was tested on 14 data points. The mean ac-474

curacy suggests that 91% of the times (±8% for a single run) the Ridge algorithm can475

predict whether a flare will lead or not to an SEP using its physical characteristics. The476

comparison between the probability of detection and the probability of false detection477
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Figure 4. On the top panels of the figure, the probability density values are given in the his-

tograms for three SMARP predictors (USFLUX, ARAREA and RVALUE) such that the area

under each histogram integrates to 1. Both the SEP (green, positive ARs) and non-flaring (or-

ange, quiet ARs) data are split into 25 bins. On the bottom part of the figure, the boxplots of

the skill scores along with the cumulative contingency table for 100 different runs are presented.

We observe that the median values for all three skill scores (ACC, TSS and HSS) are 1, which

means no-error classification. For the runs that concern the quiet active regions, the contingency

table yields a False Alarm Ratio (FAR) of 0.049 and a Probability of Detection (POD) of 0.951.

lead to an average TSS level of 0.84 ± 0.12 for the 100 runs. Similarly, the HSS mea-478

sures a fractional forecast improvement over a random forecast of 0.82 ± 0.14.479

Using explicitly the Flare Predictors (first row of Table 3) all six models produce480

similar results. The TSS and HSS show higher standard deviation values (varying from481

0.13 to 0.17) compared to the ACC. The predictive power of flare peak intensity is demon-482

strated when comparing the first two box plots in Figure 6 with the third and fourth one,483

where predictors (such as USFLUX, RVALUE, ARDIST, MEANGBZ etc.) other than484

Intensity are being used instead.485

The ACC, TSS and HSS values range from 0.88±0.09 to 0.92±0.07 (values marked486

red and green in Table 3 of the Appendix), 0.78±0.17 to 0.86±0.13 and 0.76±0.18 to487

0.84±0.15 respectively for the runs that include Intensity accompanied with a SMARP488

Predictor (row 6-10). These results show that all models, when using the Flare Peak In-489

tensity, can successfully predict ≤ 92% of the times if a flare will be accompanied with490

an SEP. When using the SMARP Predictors along with the Flare Distance (row 2-5) in-491

stead, the ACC values range from 0.60 ± 0.09 to a maximum of 0.71 ± 0.10, the TSS492

from 0.36± 0.3 to 0.846± 0.2 and the HSS from 0.19± 0.18 to 0.42± 0.2. This proves493

that when Intensity is not involved in the prediction process, all models yield inferior re-494

sults, losing at the best case 0.17 ± 0.09 from the accuracy metric. We only test our mod-495

els on a mix of SMARP and Flare Predictors to verify the prediction power of the In-496

tensity, as in real-life applications the two groups of predictors cannot be used together497
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Figure 5. The distribution of k=100 different ACC, TSS and HSS values are shown in the

box plots (left). The values were obtained using the Flare Peak Intensity & Flare Distance on a

Ridge Regression model and constitute the best SEP prediction the flare data can achieve. The

box range shows the interquartile range, the red line inside it the median value, the whiskers

show the results range and the two red dots show two outlier values. The range of the y-axis is

kept the same with Figure 3 for comparison. Adding all the individual TP, TN, FP and FN val-

ues respectively we produce a cumulative contingency table for the 100 different runs (right). For

the runs where only flare predictors are used, the contingency table yields a False Alarm Ratio

(FAR) of 0.110 and a Probability of Detection (POD) of 0.927.

due to the leading time difference (i.e. SMARP data is being acquired before the flare498

peak time).499

Although each SVM or Linear model performs differently when trained on the same500

predictors, the variance between the models is of high significance only for some cases501

where the second and third degree Polynomial SVMs encounter convergence difficulties.502

The accuracy difference between the best and the worst performing models in Table 3503

is always ≤ 0.03±0.13, regardless the predictors combination, except for the extreme504

case of Flare Distance & ARAREA. This consistency gives us confidence to our results505

while suggesting that our models are not overfitting.506

The maximum accuracy achieved on each one of the four main categories of pre-507

dictor combinations is presented in Figure 6. The resulting ACC, TSS and HSS values508

show that regardless the machine learning model, the Flare Predictors generally perform509

better than the SMARP data because of the better predictive power of the flare peak510

intensity. Although the SMARP data cannot provide SEP forecast of quality similar to511

the flare peak intensity, it provides us with a larger leading time compared to the Flare512

Predictors as the flares precede in time the SMARP data points.513

5.3 Comparison with Results in Literature514

Inceoglu et al. (2018) used data provided by the SHARPs, GOES, and DONKI databases515

to train SVMs that forecast both CME and SEP events with maximum TSS and HSS516

of 0.92±0.09 and 0.92±0.08. Anastasiadis et al. (2017) use the SDO/Helioseismic and517

Magnetic Imager (HMI) full-disk magnetograms and the flare information from the SOHO/MDI518

database on the prediction tool they call Forecasting Solar Particle Events and Flares519

(FORSPEF). They achieve Heidke Skill Scores (HSS) of 0.37±0.011 and 0.67±0.007520

when using solar flare data and CME data respectively. While we only use GOES data521

to forecast exclusively SEP events (not CMEs), the best TSS and HSS our SVM imple-522

mentations achieve are 0.84±0.12 and 0.82±0.14, results that are comparable to both523

aforementioned studies.524
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Figure 6. A cumulative box plot for the four main categories of predictor combinations out-

lined in the Appendix Tables. More specifically, the first plot (pink) corresponds to row 1 in

Table 3, the second (blue) to rows 2-5, the third (green) to 6-10 and the fourth (yellow) corre-

sponds to Table 2. The plot makes evident the superiority of the flare peak intensity over the

SMARP data.

On the other hand, Papaioannou et al. (2018) perform a principal component anal-525

ysis (PCA) on a set of six solar variables obtained from GOES and LASCO in order to526

calculate a decision boundary for their logistic regression. They classify events as SEP527

versus non-SEP and achieve a maximum POD (TSS + POFD) of 77.78%. Based on flare528

prediction, the warning tool Garćıa-Rigo et al. (2016) present provides long-term warn-529

ings of possible SEP event occurrence with POD scores of up to 58.3%. Núñez (2011)530

presents a dual-model system called UMASEP that has a POD of all (well and poorly531

connected with flares) SEP events of 80.72%. The SMARP data in Figure 3 achieves a532

POD 78.8%, similar to the works of Papaioannou and Nunez. If intensity gets involved533

in our logistic regression model, we can achieve POD scores of up to 90%.534

All the results we report are using a probability threshold pt = 0.5 because it is535

the one that is going to yield the optimal results for our models as demonstrated in Fig-536

ure 7. It is possible for works that use different models and datasets to slightly increase537

their prediction statistics as Anastasiadis et al. (2017) show in their work.538

To demonstrate how the skill scores change when varying the decision threshold,539

we show how the combination of ARDIST and USFLUX (one of the best performing SMARP540

predictor combinations of Table 2) performs on the Logistic Regression model. On the541

left panel of Figure 7, a graph of the contingency table values is presented as the deci-542

sion threshold Td changes from 0.3 to 0.7 in 0.05 increments. On the right one, the three543

different skill scores are being calculated and their box plots are graphed in order to present544

the uncertainties of each different decision threshold. Different models show similar trends545

with this specific case when the decision threshold is varied.546

Lastly, it is important to note that none of the skill scores presented in this work547

can be immediately compared to the ones in the cited literature because the underly-548

ing class ratio and the train and testing data is not the same. It is therefore impossible549
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Figure 7. The left panel presents the contingency table values (TP, TN, FP and FN) along

with the total number of correct predictions (TP+TN) for a nuber of different decision thresholds

Tp. We observe that as the decision threshold increases, the number of false alarms (in green)

increases while the number of missed events (in red) decreases. The total number of correct pre-

dictions is maximum where Td = 0.5, therefore the results presented in the paper are calculated

using this specific value. The right panel includes three different graphs for every one of the skill

scores discussed in the Section 5 (ACC, TSS and HSS). The ACC and HSS mean values are at

maximum when Td is 0.50 and 0.55, while the TSS is mainly constant around 0.4 except a couple

of decision threshold cases (0.35 and 0.6).

to do a fair comparison as SMARP is a newly published dataset and this is the first work550

that uses it for SEP prediction. Although we acknowledge that the comparisons with the551

literature should not be immediate, this is not a problem as the aim of this research is552

not to push the SEP prediction accuracy boundaries but rather to evaluate the SMARP553

dataset and its different predictors. This is the reason extra comparison runs using the554

GOES X-ray data are performed.555

5.4 Connections to Operational Forecasting556

Although the SMARP results presented above show that the dataset has some po-557

tential predictive capability, given its limitations (low resolution, limited positive events558

etc.), the SMARP data series could not be used alone to reliably forecast SEP events.559

Although the aim of the study is not to propose an operational forecasting apparatus,560

it is of interest to explore how the SMARP predictor models would perform if they were561

to be deployed. Three additional experiments (Experiment B, C and Operational in Ta-562

ble 5.4) are performed using the Support Vector Machine model of Figure 3 where the563

unsigned flux and the active region distance SMARPs are chosen to be the predictors.564

The differences between the experiments presented in Table 5.4 lie on the way the SMARP565

dataset is utilized during training and testing. The first experiment is the one discussed566

in Section 5.1 where a balanced number of positive and negative events is used during567

both training and testing. One way for handling imbalanced classes in SVMs is by in-568

troducing a hyperparameter C which determines the penalty for misclassification. In the569

last three experiments of Table 5.4, C is weighted in such a way (1:100 imbalance ratio)570

that it increases the penalty for misclassifying positive samples (the minority class) to571

prevent them from being overwhelmed by the negative ones (majority class).572

In the second experiment (B), although during testing the same number (7) of pos-573

itive and negative samples is used (balanced testing), the SVM is trained using the en-574
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Experiment Training Ratio Testing Ratio ACC TSS HSS POD FAR

Original Balance 1:1 Balance 1:1 0.70± 0.12 0.43± 0.25 0.39± 0.23 0.78 0.31
B Imbalance 1:100 Balance 1:1 0.69± 0.12 0.42± 0.27 0.39± 0.25 0.78 0.33
C Imbalance 1:100 Imbalance 1:10 0.52± 0.04 0.01± 0.01 0.01± 0.01 0.80 0.98
Operational Imbalance 1:100 Unknown 1:X 0.52± 0.05 0.01± 0.01 0.01± 0.01 0.81 0.98

Table 1. The four different experiments performed using the USFLUX and the AR Distance

predictors on a Third Degree Polynomial Support Vector Machine model. The ACC, TSS, HSS

results are given in the format of mean ± standard deviation.

tire dataset mentioned in Section 2.2 comprised of 65 positive and 6,510 negative sam-575

ples. In Experiments C and Opertational, we further mimic a forecasting apparatus in576

operational use in terms of having unbalanced samples: in Experiment C, the test set577

is made up of 70 negative samples 7 positive samples; whereas in Experiment Operational,578

the test set is randomly sampled from the full list of positive and negative samples. Again,579

for all the experiments, we follow the idea of the bootstrap procedure as described in Sec-580

tion 4.3 to assess the variability of the results, as given by the standard deviations of ACC,581

TSS, and HSS in Table 5.4. The results in Table 5.4 show that although the SMARP582

dataset has some ability to make distinctions between flares that produce SEPs and flares583

that do not, when put in an operational setting where the testing is performed in a vastly584

imbalanced set of samples, the forecasting model fails to produce meaningful results. It585

is important to note that for the models which imitate an operational forecaster, the Prob-586

ability of Detection (POD) is higher than the more experimental models, but the increase587

in False Alarms results to low ACC, TSS and HSS scores. This is yet another proof of588

the initial hypothesis that although the SMARP dataset includes meaningful informa-589

tion which can be proven useful for SEP forecasting, it cannot be used by itself as a fore-590

casting dataset.591

6 Conclusions592

To predict SEP events we use the newly published Space-Weather MDI Active Re-593

gion Patches (SMARPs) dataset which includes observations of the solar magnetogram594

that were made during the active Solar Cycle 23. Point data selected from the SMARP595

time series is used on a variety of machine learning algorithms such as a different Sup-596

port Vector Machines and Linear Regression models. The purpose of this study is to eval-597

uate the power of this new data product for SEP forecast. Our results (Table 3 & 2) show598

that SMARP can accomplish this task as it can identify correctly 72% of the times whether599

an Active Region that produces a flare will lead to an SEP or not. Although the pre-600

diction results for the SMARP dataset are worse than the ones produced using the flare601

peak intensity and location, we demonstrate that not only SMARP data produces bet-602

ter results compared to earlier SEP prediction works, but it also provides a better lead-603

ing time than other datasets.604

The task of SEP prediction using SMARP data is subject to inherent limitations605

such as data uncertainties and a vastly unbalanced set of datasets which only includes606

a limited amount of positive events. To overcome these difficulties, a Monte Carlo method607

of random sampling, i.e. a bootstrap procedure, was employed to quantify of the results’608

uncertainties. It is important to note that the results presented in this paper should not609

be considered as an estimate of the accuracy that a prediction apparatus would yield if610

deployed but should rather be viewed as an effort to quantify and compare the predic-611

tion capability of the flare and SMARP predictors. In conclusion, although the SMARP612

dataset is constructed from the MDI data set, which includes only the line-of-sight com-613

ponent of the surface magnetic field at a relatively long 96-minute cadence, it can pro-614
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duce competitive prediction results for SEPs while providing a longer leading time than615

using Flare Predictors.616
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Table 2. Maximum ACC, TSS and HSS Values for the SVM and Linear Models using SMARP

Predictors

SVMs Linear Models
SMARP Predictors Linear RBF Polynomial 2 Polynomial 3 Logistic Reg. Ridge Score

0.67 ± 0.12 0.67 ± 0.13 0.70 ± 0.12 0.72 ± 0.12 0.70 ± 0.12 0.71 ± 0.12 ACC
1. USFLUXL & ARDIST 0.39 ± 0.28 0.38 ± 0.28 0.43 ± 0.25 0.47 ± 0.24 0.43 ± 0.23 0.47 ± 0.25 TSS

0.34 ± 0.24 0.34 ± 0.25 0.39 ± 0.23 0.44 ± 0.25 0.40 ± 0.24 0.42 ± 0.24 HSS

0.65 ± 0.11 0.67 ± 0.12 0.65 ± 0.12 0.67 ± 0.12 0.69 ± 0.11 0.65 ± 0.12 ACC
2. USFLUXL & ARAREA 0.35 ± 0.27 0.38 ± 0.28 0.34 ± 0.27 0.36 ± 0.26 0.37 ± 0.23 0.30 ± 0.27 TSS

0.30 ± 0.23 0.35 ± 0.24 0.30 ± 0.24 0.33 ± 0.24 0.34 ± 0.22 0.27 ± 0.23 HSS

0.69 ± 0.11 0.69 ± 0.11 0.52 ± 0.04 0.51 ± 0.03 0.67 ± 0.12 0.70 ± 0.12 ACC
3. ARDIST & ARAREA 0.42 ± 0.25 0.42 ± 0.23 0.15 ± 0.28 0.10 ± 0.22 0.36 ± 0.25 0.42 ± 0.26 TSS

0.37 ± 0.23 0.38 ± 0.22 0.05 ± 0.09 0.03 ± 0.06 0.34 ± 0.24 0.40 ± 0.25 HSS

0.65 ± 0.13 0.68 ± 0.10 0.58 ± 0.11 0.60 ± 0.11 0.67 ± 0.11 0.66 ± 0.12 ACC
4. ARDIST & RVALUE 0.33 ± 0.28 0.38 ± 0.22 0.18 ± 0.29 0.26 ± 0.29 0.36 ± 0.23 0.35 ± 0.25 TSS

0.31 ± 0.26 0.35 ± 0.20 0.15 ± 0.22 0.21 ± 0.23 0.34 ± 0.21 0.33 ± 0.23 HSS

0.67 ± 0.13 0.68 ± 0.11 0.70 ± 0.11 0.67 ± 0.10 0.70 ± 0.13 0.69 ± 0.10 ACC
5. USFLUXL, ARDIST 0.36 ± 0.28 0.38 ± 0.24 0.42 ± 0.23 0.37 ± 0.21 0.42 ± 0.27 0.41 ± 0.22 TSS

& ARAREA 0.34 ± 0.26 0.35 ± 0.22 0.39 ± 0.22 0.34 ± 0.19 0.39 ± 0.26 0.38 ± 0.21 HSS

0.68 ± 0.12 0.68 ± 0.13 0.66 ± 0.13 0.69 ± 0.12 0.67 ± 0.11 0.69 ± 0.13 ACC
6. All SMARP Predictors 0.40 ± 0.24 0.32 ± 0.27 0.35 ± 0.28 0.42 ± 0.25 0.36 ± 0.24 0.40 ± 0.27 TSS

0.37 ± 0.23 0.35 ± 0.25 0.33 ± 0.27 0.39 ± 0.24 0.33 ± 0.23 0.38 ± 0.26 HSS

Note. The ACC values ≥ 0.70 are marked in bolt. In green and red are marked the higher and lower ac-

curacy values respectively.

Appendix626
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Table 3. Maximum ACC, TSS and HSS Values for the SVM and Linear Models using Different

Predictors

SVMs Linear Models
Flare Predictors Linear RBF Polynomial 2 Polynomial 3 Logistic Reg. Ridge

0.90 ± 0.08 0.91 ± 0.07 0.90 ± 0.08 0.90 ± 0.08 0.90 ± 0.08 0.91 ± 0.07 ACC
1. Intensity & Flare Distance 0.82 ± 0.16 0.84 ± 0.13 0.82 ± 0.15 0.80 ± 0.16 0.83 ± 0.16 0.84 ± 0.12 TSS

0.80 ± 0.17 0.82 ± 0.14 0.80 ± 0.16 0.78 ± 0.17 0.80 ± 0.17 0.82 ± 0.14 HSS

SMARP & Flare Predictors

0.71 ± 0.10 0.68 ± 0.13 0.70 ± 0.11 0.70 ± 0.11 0.71 ± 0.11 0.71 ± 0.12 ACC
2. Flare Distance & USFLUXL 0.46 ± 0.20 0.39 ± 0.28 0.44 ± 0.24 0.42 ± 0.24 0.45 ± 0.22 0.46 ± 0.25 TSS

0.42 ± 0.20 0.36 ± 0.26 0.40 ± 0.23 0.39 ± 0.23 0.42 ± 0.21 0.41 ± 0.23 HSS

0.67 ± 0.14 0.69 ± 0.13 0.61 ± 0.14 0.61 ± 0.12 0.69 ± 0.12 0.70 ± 0.10 ACC
3. Flare Distance & RVALUE 0.36 ± 0.29 0.41 ± 0.27 0.25 ± 0.32 0.30 ± 0.32 0.41 ± 0.25 0.43 ± 0.22 TSS

0.34 ± 0.27 0.38 ± 0.26 0.22 ± 0.27 0.23 ± 0.23 0.38 ± 0.24 0.40 ± 0.21 HSS

0.66 ± 0.13 0.68 ± 0.11 0.60 ± 0.09 0.62 ± 0.10 0.70 ± 0.12 0.69 ± 0.11 ACC
4. Flare Distance & ARAREA 0.35 ± 0.27 0.40 ± 0.25 0.36 ± 0.30 0.39 ± 0.29 0.43 ± 0.24 0.42 ± 0.24 TSS

0.32 ± 0.26 0.36 ± 0.22 0.19 ± 0.18 0.24 ± 0.21 0.41 ± 0.23 0.39 ± 0.22 HSS

0.69 ± 0.13 0.69 ± 0.13 0.67 ± 0.12 0.66 ± 0.11 0.69 ± 0.13 0.69 ± 0.11 ACC
5. Flare Distance, USFLUXL 0.41 ± 0.27 0.42 ± 0.27 0.35 ± 0.30 0.36 ± 0.25 0.35 ± 0.26 0.41 ± 0.24 TSS

& ARAREA 0.38 ± 0.26 0.37 ± 0.26 0.32 ± 0.28 0.32 ± 0.23 0.39 ± 0.25 0.38 ± 0.22 HSS

0.88 ± 0.09 0.89 ± 0.07 0.90 ± 0.08 0.90 ± 0.08 0.88 ± 0.09 0.89 ± 0.09 ACC
6. Intensity & USFLUXL 0.80 ± 0.16 0.80 ± 0.13 0.82 ± 0.14 0.80 ± 0.17 0.78 ± 0.17 0.79 ± 0.17 TSS

0.77 ± 0.18 0.77 ± 0.15 0.80 ± 0.15 0.79 ± 0.18 0.76 ± 0.18 0.77 ± 0.17 HSS

0.89 ± 0.08 0.91 ± 0.07 0.91 ± 0.08 0.89 ± 0.09 0.91 ± 0.07 0.90 ± 0.08 ACC
7. Intensity & RVALUE 0.79 ± 0.16 0.83 ± 0.14 0.83 ± 0.15 0.80 ± 0.16 0.84 ± 0.13 0.83 ± 0.15 TSS

0.77 ± 0.17 0.82 ± 0.15 0.81 ± 0.16 0.78 ± 0.17 0.81 ± 0.14 0.80 ± 0.16 HSS

0.91 ± 0.07 0.91 ± 0.07 0.91 ± 0.07 0.90 ± 0.07 0.92 ± 0.07 0.91 ± 0.07 ACC
8. Intensity & ARDIST 0.84 ± 0.13 0.84 ± 0.13 0.83 ± 0.14 0.83 ± 0.13 0.86 ± 0.13 0.84 ± 0.14 TSS

0.82 ± 0.14 0.81 ± 0.14 0.81 ± 0.15 0.81 ± 0.14 0.84 ± 0.15 0.82 ± 0.15 HSS

0.91 ± 0.07 0.91 ± 0.08 0.90 ± 0.08 0.91 ± 0.07 0.92 ± 0.08 0.90 ± 0.08 ACC
9. Intensity, USFLUXL 0.83 ± 0.14 0.84 ± 0.15 0.82 ± 0.15 0.83 ± 0.13 0.85 ± 0.15 0.81 ± 0.16 TSS

& ARDIST 0.82 ± 0.15 0.82 ± 0.16 0.80 ± 0.16 0.82 ± 0.14 0.83 ± 0.16 0.80 ± 0.17 HSS

0.90 ± 0.08 0.91 ± 0.07 0.91 ± 0.08 0.90 - 0.08 0.91 ± 0.08 0.90 ± 0.08 ACC
10. Intensity & MEANGBL 0.82 ± 0.15 0.85 ± 0.13 0.84 ± 0.15 0.82 ± 0.15 0.84 ± 0.14 0.82 ± 0.16 TSS

0.80 ± 0.17 0.83 ± 0.14 0.83 ± 0.15 0.80 ± 0.16 0.82 ± 0.15 0.80 ± 0.16 HSS

Note. The ACC values ≥ 0.91 with standard deviation ≤ 0.07 are marked in bold. In green and red are

marked the higher and lower accuracy values respectively for each one of the three predictor groups.
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