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Abstract
Purpose: High-resolution pelvic magnetic resonance (MR) imaging is important
for the high-resolution and high-precision evaluation of pelvic floor disorders
(PFDs), but the data acquisition time is long. Because high-resolution three-
dimensional (3D) MR data of the pelvic floor are difficult to obtain, MR images
are usually obtained in three orthogonal planes: axial, sagittal, and coronal. The
in-plane resolution of the MR data in each plane is high, but the through-plane
resolution is low. Thus, we aimed to achieve 3D super-resolution using a con-
volutional neural network (CNN) approach to capture the intrinsic similarity of
low-resolution 3D MR data from three orientations.
Methods: We used a two-dimensional (2D) super-resolution CNN model to
solve the 3D super-resolution problem. The residual-in-residual dense block
network (RRDBNet) was used as our CNN backbone. For a given set of low
through-plane resolution pelvic floor MR data in the axial or coronal or sagittal
scan plane, we applied the RRDBNet sequentially to perform super-resolution
on its two projected low-resolution views.Three datasets were used in the exper-
iments, including two private datasets and one public dataset. In the first dataset
(dataset 1), MR data acquired from 34 subjects in three planes were used to
train our super-resolution model, and low-resolution MR data from nine sub-
jects were used for testing.The second dataset (dataset 2) included a sequence
of relatively high-resolution MR data acquired in the coronal plane. The public
MR dataset (dataset 3) was used to demonstrate the generalization ability of
our model. To show the effectiveness of RRDBNet, we used datasets 1 and 2
to compare RRDBNet with interpolation and enhanced deep super-resolution
(EDSR) methods in terms of peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) index. As 3D MR data from one view have two projected low-
resolution views, different super-resolution orders were compared in terms of
PSNR and SSIM. Finally, to demonstrate the impact of super-resolution on the
image analysis task, we used datasets 2 and 3 to compare the performance of
our method with interpolation on the 3D geometric model reconstruction of the
urinary bladder.
Results: A CNN-based method was used to learn the intrinsic similarity among
MR acquisitions from different scan planes. Through-plane super-resolution for
pelvic MR images was achieved without using high-resolution 3D data, which is
useful for the analysis of PFDs.

KEYWORDS
3D super-resolution, deep learning, MRI

Med Phys. 2022;49:1083–1096. wileyonlinelibrary.com/journal/mp © 2021 American Association of Physicists in Medicine 1083

mailto:jiajia.luo@pku.edu.cn
https://wileyonlinelibrary.com/journal/mp


1084 3D SSR FOR PELVIC FLOOR MRI USING CNN

1 INTRODUCTION

MR imaging is an important modality for medical image
analysis. Compared with ultrasound (US) imaging, it
provides better image quality and tissue contrast.There-
fore, it is suitable for soft tissue imaging and is widely
used for the evaluation of pelvic floor disorder (PFD),
such as pelvic organ prolapse. Three-dimensional
(3D) MR images are commonly used for pelvic organ
segmentation,1–3 pelvic floor evaluation,4 computer sim-
ulation of pelvic organ prolapse,5,6 and evaluation of
tissue material properties.7 High-resolution MR images
are necessary for high-precision analysis of the above
tasks. However, acquiring high-resolution 3D MR data is
both expensive and time-consuming. Moreover, artifacts
due to human movement, breathing, or organ contrac-
tion may be introduced when acquiring high-resolution
3D MR images. In addition, it is difficult to maintain the
same pose for a long time, such as in maximal Valsalva
maneuver. Therefore, it is a common practice to use a
stack of 2D slices instead of 3D scans.For convenience,
we will use the terms in-plane resolution to refer to the
resolution of the 2D slices, and through-plane resolu-
tion to indicate the resolution between neighboring 2D
slices. The in-plane resolution is usually less than 1
mm, whereas the through-plane resolution is not less
than 5 mm. In this way, it increases the spacing between
two slices or decreases the through-plane resolution
while maintaining the high in-plane resolution charac-
teristics for each 2D slice. This approach reduces the
scanning time, but the deterioration of through-plane
resolution limits the precision of downstream analysis
tasks, such as 3D segmentation, reconstruction, and
prolapse evaluation.

Some digital techniques can improve the through-
plane resolution when hardware updating is not avail-
able. An intuitive solution is the interpolation method,
such as bilinear interpolation and spline interpolation.
Compared with bilinear interpolation,spline interpolation
can produce smoother results. However, interpolation
methods cannot consider the semantic and structural
information of MR images, so they may cause arti-
facts. In contrast, the learning-based method uses
the structural information between slices to obtain
results with better fidelity. When learning, both low- and
high-resolution pairs are required. This method usually
downscales the high-resolution images to obtain the
corresponding low-resolution images, which can be
called “self super-resolution.” For example, Timofte
et al.8 proposed the anchored neighborhood regres-
sion (ANR) method for natural image super-resolution.
Schulter et al.9 used random forest method for local
image regression to achieve super-resolution. More
recently, methods based on deep convolutional neural
networks (CNNs) outperformed the previous methods
and produced new state-of -the-art results in image
super-resolution (SRCNN and EDSR)10,11 because of
the powerful representation ability of CNNs. However,

these methods were designed for natural image super-
resolution, and therefore, had some differences when
applied to medical image super-resolution, especially
for 3D medical image data. Therefore, Peng et al.12

proposed a spatially aware interpolation network for 3D
CT super-resolution. However, such approach requires
high-resolution data in the training phase, which is
not easily available for pelvic floor MR imaging. Jog
et al.13 used ANR and Fourier burst accumulation
(FBA) to achieve neuroimaging super-resolution, and
Zhao et al.14 proposed an improved method for brain
MRI based on the EDSR method. Zhao et al.15 later
applied this technique to neural, cardiac, and tongue
MR images super-resolution.

In this work, we designed a CNN-based algorithm
to achieve super-resolution of 3D pelvic MR images
based on only low-resolution 3D MR acquisitions from
three orientations. Our contribution can be summarized
in three aspects. First, as shown in Figure 1, MR data
from three views (coronal, sagittal, and axial) were used
to train a 2D super-resolution model. For convenience,
we used the terms “high-resolution view” and “low-
resolution view” for the 2D MR images with high reso-
lution in both dimensions and for images with low res-
olution in either dimension, respectively. For example,
Figure 1(a) shows a high-resolution MR image, and
Figures 1(d) and (g) present its corresponding low-
resolution projected images. The three-view data train-
ing ensured that the model had the ability to achieve
super-resolution on different views, thereby avoiding
the use of high-resolution 3D MR images data for
training. Second, an advanced deep CNN backbone,
RRDBNet16 was used.As RRDBNet was already shown
to have better performance for natural image super-
resolution compared with other CNN models, it was
used in this work. Third, the 2D super-resolution model
was applied sequentially on two low-resolution views
to improve the super-resolution performance. Subse-
quently, we validated the performance of our method
in three areas. First, a group of holdout high-resolution
MR sequences were used to validate the true super-
resolution performance. Second, to show the general-
ization ability, we applied our method to another, pub-
lic MR dataset without training a new model. Third, to
demonstrate the advantages of our method, we com-
pared the 3D reconstruction results from our method
and from the interpolation-based method. In summary,
we first demonstrated the 3D self super-resolution of
pelvic MR images using the deep CNN method, which
means that 3D MR images super-resolution is achieved
without any high-resolution 3D MR data.

2 METHODS AND EXPERIMENTS

The conceptual framework of our method is shown in
Figure 2(a). We named the high-resolution 3D MR data
as I(x,y,z), where x, y, and z are scanning directions
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F IGURE 1 Three-view pelvic MR images. (a), (e), and (i) are the scanned high-resolution coronal, sagittal, and axial images, respectively. (d)
and (g) are low-resolution projected from (a), (b), and (h) are projected from (e), and (c) and (f) are projected from (i)

for coronal, sagittal, and axial MR data, respectively.
For example, for a super-resolution task, we had low-
resolution 3D MR data scanned in the coronal view,
denoted as I(x̂,y,z).Therefore, I(x,y,z) was then expected to
be reconstructed from I(x̂,y,z).We adopted a 2D approach
to address this problem. First, we performed isotropic
analytic interpolation of I(x̂,y,z) with spline interpolation
algorithm. This process ensured that all three dimen-
sions have the same resolution. Next, we sectioned it
from the z-axis (axial view) and applied the 2D super-
resolution model on all slices. As we estimated I(x,y)
from I(x̂,y), x-axis resolution was improved. Therefore,
we achieved the 3D super-resolution after traversing
all the axial view slices and stacking them. As the MR
data were reconstructed from the z-axis, we denoted
it as ISR−z

(x,y,z). Similarly, starting from ISR−z
(x,y,z), we continued

to apply the same procedures on the y-axis. After that,
we obtained the final 3D super-resolution result, which
was denoted as ISR−z−y

(x,y,z) . However, if we changed the
order of the super-resolution axis in the process, that is,
if we achieved super-resolution from the y-axis before
the z-axis, we obtained ISR−y−z

(x,y,z) . We compared their dif-
ference in the Section 3. In our method, no 3D high-
resolution MR data were used, and the super-resolution

task was simplified as a 2D super-resolution problem
that required the 2D CNN model that could achieve
super-resolution on multiple views. Therefore, we used
MR data from three views for training. As for the CNN
model, we used RRDBNet (Figure 2(b)). After fully opti-
mizing the model, the model was applied for the 3D
super-resolution. The model training process is intro-
duced in the following subsection.

2.1 RRDBNet training

Two key points for training the model are the training
data and the model structure. To train the CNN model,
pairs of low- and high-resolution image data are needed.
With all three-view high-resolution 2D MR images that
we acquired, we downscaled the high-resolution data
in one dimension to create the corresponding low-
resolution MR images. As we used three-view MR data
to train the model, it ensured that the CNN model had the
ability to recover three-view images. Three-view high-
resolution 2D MR images have the same image size
(256 × 256), so it ensures that the model training can
be performed without resizing. As the obtained low-
resolution images are downsampled, cubic interpolation
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F IGURE 2 The pipeline of our method. (a) Through-plane super-resolution data flow. (b) RRDBNet model structure.× 16 means 16
repetitions. ∗ 𝛽 means the output feature is multiplied by 𝛽, where 𝛽 is equal to 0.2

was used to ensure that the low-resolution images have
the same size as high-resolution images.

2.2 RRDBNet model structure

As shown in Figure 2(b),RRDBNet consists of 16 RRDB
modules. Each RRDB module consists of three resid-
ual dense blocks (RDB), and there are five densely con-
nected convolutional layers for each RDB.16 Dense con-
nections ensure that each CNN layer receives the out-
puts from all previous CNN layers, which promote effi-
cient feature reusing and avoid overfitting. There is a
residual connection outside of three RDBs to connect
the input and output of RRDB. Residual scaling17 was
used to avoid the training instability and the scaling fac-
tor 𝛽 was set to 0.2 empirically in our experiment. As
RRDBNet is a fully convolutional network,different sized
inputs are allowed during testing to handle the differ-
ent sizes of three-view slices that may occur. The fully
convolutional networks have been successfully applied
to super-resolution, receiving inputs of different sizes.10

Since pooling is not used in RRDBNet, it manages to
retain the maximum information of the input, that is, the
input and output images have the same size. Therefore,
when images of different sizes are used for testing, the
batch size should be set to one. There is no doubt that
the size of the input should be larger than the maximum

filter size in the network (3 × 3) and satisfy the maximum
memory limit of the processor.

2.3 Loss function and metrics

In addition, the loss function and evaluation metrics are
important for the model training and model evaluation,
respectively. The L1 loss is used as the loss function,
defined as follows:

Loss =
1

MN

M,N∑
m,n

|gmn − pmn|, (1)

where M and N are length and width, respectively. gmn
and pmn are the pixel values for the ground truth and
prediction, respectively.As L1 is the pixelwise evaluation
between two images, we used the peak signal-to-noise
ratio (PSNR) to evaluate the similarity of two images
from the image level. PSNR was defined as follows:

PSNR = 20 log(
255√
MSE

), (2)

MSE =
1

MN

M,N∑
m,n

(gmn − pmn)2, (3)
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where MSE is the mean square error between the
ground truth and prediction. However, PSNR could not
guarantee the structural similarity (SSIM) between two
images. Previous studies have shown that two images
with same MSE can have very different SSIM indices.
The image with a larger SSIM has a better visual
result.18,19 Therefore, it is used as a complementary
metric to evaluate super-resolution from a macroscopic
perspective. SSIM is defined as follows:

SSIM =
(2𝜇g𝜇p + 2.552)(2𝜎g,p + 7.652)

(𝜇g
2 + 𝜇p

2 + 2.552)(𝜎g
2 + 𝜎p

2 + 7.652)
, (4)

where 𝜇g and 𝜇p are the average of the ground truth and
prediction, respectively.𝜎g and 𝜎p are the standard devi-
ation of the ground truth and prediction,respectively,and
𝜎g,p is the covariance between the ground truth and pre-
diction.

To evaluate the overlap of two geometric reconstruc-
tions, relative absolute volume difference (RAVD) is
defined as follows:

RAVD =
|V1 − V2|

V1
× 100%, (5)

where V1 is the reference volume and V2 is the evalu-
ated volume.

2.4 Experiments

Three experiments were designed to validate the effec-
tiveness of our method using three datasets. The first
dataset, called the dataset 1, consisted of MR data from
43 subjects.Each subject’s data included T2 MR data of
coronal-, sagittal-, and axial-plane acquisitions. Each 3D
MR sequence had an in-plane resolution of 0.78 mm ×

0.78 mm and a through-plane resolution of 5.0 mm.The
second dataset (dataset 2) consisted of a coronal view
3D MR sequence to quantitatively validate the super-
resolution performance. It included 65 images with a
through-plane resolution of 2.2 mm and an in-plane
resolution of 0.63 mm × 0.63 mm. Both the dataset
1 and dataset 2 were taken from the Michigan Pelvic
Floor collection with the approval from the institutional
ethics review board. The third dataset (dataset 3) was
selected from a public dataset (from the National Can-
cer Institute Clinical Proteomic Tumor Analysis Consor-
tium (CPTAC))20,21 to validate the generalization capa-
bility of our method.Dataset 3 also had three-view scans
with each scan having one high-resolution view. It had a
through-plane resolution of 5.2 mm for three-view scans,
and its in-plane resolutions varied from 0.78 to 0.94
mm.More imaging parameters for the three datasets are
attached in Table S1.

In the first experiment,we split the dataset into a train-
ing set and a testing set, containing 34 and 9 subjects’
MR data, respectively. There were 3037 images in the
training set and 796 images in the validation set. There
were 990 coronal, 1020 sagittal, and 1027 axial MR
images in the training set. As discussed in Section 2.1,
we downsampled the high-resolution images to create
their corresponding low-resolution images. As the pro-
jected image has only one low-resolution dimension,
we downsampled the row or column direction to mimic
the projected image. As three-view scans were used for
training, it could accommodate the differences among
different scans during projection. We set three levels of
the downsampling ratios, 2:1, 4:1, and 6:1, respectively.
Some examples of the training data are shown in Fig-
ure 3. We compared our method with both the spline
interpolation method and EDSR method.11 Note that the
EDSR model was trained with all 3037 training images.
We also investigated the improvement after training
with three-view MR data over training with single-view
MR data. We first trained an RRDBNet using 3037
images, which was named RRDBNetall. We also trained
another RRDBNet using only coronal-plane MR images
of all training subjects (990 images), and named this
model RRDBNetc. Similarly, we also trained RRDBNets
(1020 images) and RRDBNeta (1027 images).Since the
number of training images for RRDBNetall was almost
three times higher than for RRDBNetc, RRDBNets, and
RRDBNeta, we used 12 subjects’ MR data from three
planes (998 images) to train another model, which was
named RRDBNetpartial for comparison.

We used Adam optimizer and an NVIDIA TITAN
RTX graphics card with 24 GB of computation memory.
RRDBNet was trained for 106 batches with a batch size
of 4 and a learning rate of 0.0002. After the deep learn-
ing model was well optimized,we tested its performance
on the testing dataset.

In the second experiment, we used the dataset 2 to
validate the 3D super-resolution performance quanti-
tatively. As the original MR data had a relatively high
through-plane resolution of 2.2 mm, we evaluated the
performance of 3D super-resolution performance on
this basis. We extracted half of the slices to generate
data with a through-plane resolution of 4.4 mm as a
model input, and used the remaining half slices as the
ground truth for evaluation. The super-resolution perfor-
mance was then evaluated from three areas. First, we
evaluated the 2D super-resolution performance from the
sagittal and axial views. In this step, the spline interpo-
lation and EDSR methods were used for comparison.
Second, we obtained the 3D super-resolution results
using RRDBNet. We evaluated the super-resolution
performance on the hidden slices. The interpolation
and FBA22 method were used for comparison. When
applying the model sequentially on the two projection
views, there were two variants,which were distinguished
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F IGURE 3 Examples of training images from different views. (a), (b), and (c) are downsampled images from coronal(d), sagittal (e), and
axial (f) images, respectively

as RRDBNetSR−z−y and RRDBNetSR−y−z. In addition,
we also tested the single-view super-resolution vari-
ants, which were RRDBNetSR−y and RRDBNetSR−z.
Third, we reconstructed the geometrical model of the
urinary bladder based on segmentation results from
the interpolation method and our method for mutual
comparison.

In the third experiment,we directly applied our method
to the dataset 3 without training on it.Similarly, the super-
resolution performance was also demonstrated in three
areas. First, we showed the super-resolution results on
the low-resolution views. Second, we showed the super-
resolution results on the high-resolution views. Third,
the geometrical model reconstruction results were com-
pared. In these comparisons, the spline interpolation
method was used as the baseline method.

3 RESULTS

3.1 Validation on the testing set of the
dataset 1

The super-resolution results of different methods
for the testing set of the dataset 1 are summa-
rized in Table 1. Both EDSR and RRDBNet outper-
formed the interpolation method. However, for CNN-
based methods, models based on RRDBNet had
higher PSNR and SSIM than EDSR. RRDBNetpartial
also outperformed the EDSR model. Moreover, PSNR
and SSIM values of RRDBNetpartial were higher than

TABLE 1 Super-resolution performance on the testing set of the
dataset 1. p-Values were calculated using RRDBNetall as a reference

Methods PSNR (dB) p-value SSIM p-value

Interpolation 26.84 <0.001 0.7664 <0.001

EDSR 28.41 <0.001 0.8101 <0.001

RRDBNetc 28.23 <0.001 0.8101 <0.001

RRDBNets 29.26 <0.001 0.8249 <0.001

RRDBNeta 28.37 <0.001 0.8168 <0.001

RRDBNetpartial 29.94 <0.001 0.8453 <0.001

RRDBNetall 30.44 – 0.8549 –

The top two performances were highlighted in bold.

those of RRDBNetc, RRDBNets, and RRDBNeta, which
were trained using single-view MR data. In addition,
RRDBNets had better performance than RRDBNetc and
RRDBNeta and their p-values comparison is attached in
Table S2.

After super-resolution, the through-plane resolution
was improved in-plane resolution so that the nomi-
nal resolution for dataset 1’s super-resolution results
is 0.78×0.78×0.78 mm3. We compared their super-
resolution results on the low-resolution views, as shown
in Figures 4 and 5. The results obtained by the spline
interpolation method have jagged edges, whereas the
results by CNN methods are smoother and more faithful.
Besides, compared with the EDSR model, RRDBNet
obtained better results in terms of image smoothness
and fidelity. The high-resolution view images were
compared by using rigid registration for reference. In
Figure 5, it shows that RRDBNet’s results are smoother
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F IGURE 4 Comparison of super-resolution results for the projection view. (a), (e), and (i) are obtained by spline interpolation (order = 3). (b),
(f), and (j) are obtained with the EDSR model. (c), (g), and (k) are obtained with RRDBNet. (d), (h), and (l) are reference images from real
acquisitions using registration. Regions in red boxes were zoomed in for comparison in Figure 5

F IGURE 5 Comparison of super-resolution results for local regions. (a)–(l) correspond to the regions in red boxes of (a)–(l) in Figure 4.
Spline refers to spline interpolation

than EDSR and interpolation results. Moreover,
RRDBNet reconstructed results have high similarity
with the reference images but are not exactly matched.
Subsequently, we compared their scan-plane results,
as shown in Figure S1. Those results show that there
are artifacts in the interpolation results. However, the
results of CNN-based methods show fewer artifacts
and better smoothness. In addition, compared with the
EDSR model on the scanned view images, the results

of RRDBNet also show smoother edges with fewer
artifacts. To demonstrate that the CNN results have
more continuous variations, we compared their results
in Figure 6. The bladder for RRDBNet has a larger size
at + 0 position, whereas it has a smaller size at + 5
position that reflects that the urinary bladder has more
continuous changes in the RRDBNet results than in the
interpolation results. The original MR images can be
found in Figure S2.
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F IGURE 6 Comparison of successive changes in the urinary bladder. In each subimage, the left half is the result of interpolation and the
right half is the result of RRDBNet. The urinary bladders are segmented into different colors

F IGURE 7 Projection view super-resolution performance of the dataset 2. (a) and (e) are the images obtained with spline interpolation
(order = 3). The raw through-plane resolution is 4.4 mm. (b) and (f) are the super-resolution results of (a) from the EDSR. (c) and (g) are the
super-resolution results of (a) from RRDBNet. (d) and (h) are the reference image data of (a) and (e) with a through-plane resolution of 2.2 mm,
respectively

3.2 Validation on the dataset 2

The nominal resolution of the super-resolution recon-
struction of dataset 2 is 0.63×0.63×0.63 mm3. Some
super-resolution examples are shown in Figure 7 for
visual comparison. Figures 8(a) and 8(e) show blurred
edges of the interpolation results, whereas both CNNs

(EDSR and RRDBNet) result in better image smooth-
ness and fidelity. It also shows that the results of RRDB-
Net (Figures 7(c) and 7(g)) are even smoother than
the 2.2 mm reference data (Figures 7(d) and 7(h)). The
quantitative results of super-resolution on the projection
view (average values for axial and sagittal) are shown
in Table 2. The PSNR and SSIM values obtained by
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F IGURE 8 Comparison of the geometric model reconstructions
of the urinary bladder from three viewpoints. “Difference” means the
difference between the reconstructions of the interpolation method
and RRDBNet. Geometrical models were smoothed with the same
parameters when reconstruction

TABLE 2 Comparison of the super-resolution performance of
the projected views of dataset 2. p-Values were calculated using
RRDBNetall as a reference

Methods PSNR (dB) p-value SSIM p-value

Interpolation 26.55 <0.001 0.8083 <0.001

EDSR 26.98 <0.001 0.8192 <0.001

RRDBNetall 27.32 – 0.8292 –

The best performance was highlighted in bold.

TABLE 3 Comparison of scan-plane super-resolution
performance for the dataset 2. p-Values were calculated using
RRDBNetSR−z−y as a reference

Methods PSNR (dB) p-value SSIM p-value

Interpolation 21.50 <0.001 0.4809 <0.001

FBA 22.96 <0.001 0.5799 <0.001

RRDBNetSR−y 22.40 <0.001 0.5774 <0.001

RRDBNetSR−y−z 22.60 <0.001 0.5965 <0.001

RRDBNetSR−z 23.40 <0.001 0.6237 0.156

RRDBNetSR−z−y 23.27 – 0.6255 –

The top two performances were highlighted in bold.

RRDBNet are higher than those obtained by the EDSR
model and interpolation method. Therefore, we used
the RRDBNet in the following high-resolution view com-
parisons. The quantitative evaluation results of PSNR
and SSIM are summarized in Table 3. Namely, the
CNN methods substantially outperformed the interpo-
lation method in both PSNR and SSIM. Besides, both
RRDBNetSR−y−z and RRDBNetSR−z−y obtained higher
SSIM than the FBA method. In addition, RRDBNetSR−z

had better results than RRDBNetSR−y (p-value < 0.001

for both PSNR and SSIM). The scan-plane results are
provided in Figure S3. It shows that interpolation results
have some ghosting patterns (Figure S3(d)), whereas
the RRDBNet results have fewer artifacts. Finally, Fig-
ure 8 shows the results of 3D urinary bladder recon-
struction by the interpolation method and RRDBNet
method. Geometrical models were smoothed under the
same configuration during reconstruction. The volume
obtained with interpolation results is 412.2 mm3 and
the volume obtained with the RRDBNet result is 409.8
mm3. The RVAD between them is 0.58%. The “differ-
ence”results (Figure 8,column (3)) show the differences
between the results of RRDBNet and those of the inter-
polation method.

3.3 Generalization testing on the
dataset 3

The generalization ability of our method was evalu-
ated using dataset 3. The in-plane resolution of MRI in
dataset 3 is 0.78×0.78 or 0.94×0.94 mm2. After super-
resolution, the through-plane resolution was improved
to the in-plane resolution, so the nominal resolution
of the super-resolution reconstruction of dataset 3 is
0.78×0.78×0.78 or 0.94×0.94×0.94 mm3 depending on
the original in-plane resolution of the 2D high-resolution
MR images. Figure 9 shows the super-resolution results
in low-resolution views. The MR data from the public
dataset have a different appearance from our training
dataset. However, the RRDBNet results are sharper and
smoother than those obtained using the spline inter-
polation. Scan-plane results are also provided in Fig-
ure S4. It shows the super-resolution results in high-
resolution views and the results of RRDBNet have fewer
artifacts than interpolation results.Similar to Section 3.1,
we selected the urinary bladder as the region of inter-
est and built 3D reconstruction models to evaluate the
impact of the super-resolution results on the subsequent
reconstruction task. We also used the same smooth-
ing parameters for all geometrical models during recon-
struction. The volume obtained with interpolation result
is 20.6 mm3 and the volume obtained with the RRDB-
Net result is 24.0 mm3. The RVAD between them is
14.1%. As shown in Figure 10, the shape continuity and
surface smoothness of the 3D bladder model obtained
by our method are superior to those of the interpola-
tion method. The “difference” results (Figure 1, column
(3)) show that there are evident differences between the
two reconstructions.

4 DISCUSSION

We developed a novel CNN-based method for super-
resolution of 3D pelvic MR data using only low-
resolution 3D data with RRDBNet.There are three novel
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F IGURE 9 Projection views super-resolution results for the dataset 3. (a), (c), and (e) are the results of spline interpolation (order = 3). (b),
(d), and (f) are the super-resolution results of RRDBNet

F IGURE 10 Comparison of the geometric model
reconstructions of the urinary bladder for the dataset 3 from three
viewpoints. “Difference” means the difference between interpolation’s
and RRDBNet’s reconstructions. The geometrical models were
smoothed with the same parameters during reconstruction

aspects to this work. First, it represents a new applica-
tion of 3D self super-resolution of pelvic MR images.
We exploited the intrinsic similarity of MR images from
three MR views to avoid using 3D high-resolution MR
training data, and solved the 3D super-resolution prob-
lem using a 2D approach. Second, we established that
three-view data could improve the model performance
compared with single-view data,even for the same num-
ber of images. Third, we demonstrated the advantages

of our method with three datasets, proving its effective-
ness on MR images super-resolution of different views
and 3D geometric model reconstruction.

Super-resolution is crucial for high-resolution and
high-precision medical image analysis. Some related
works focused on the brain,14,15,23,24 cardiac,15

tongue,15 musculoskeletal,25 kidney,12 and knee
applications.26 Compared to them, our pelvic floor
imaging study has some important differences. First, we
are concerned about the improvement of the through-
plane resolution. As for PFD analysis, the through-plane
resolution is always the limitation. Some researchers
also investigated the through-plane resolution prob-
lem by using deep learning methods for other body
regions.14,15,25,27–30 However, most of them still require
high-resolution MR images during training.25,27–29 Sec-
ond, the pelvic floor has a complex structure and large
variability in the shape and size of different organs.
The shape and size of some pelvic organs, such as the
urinary bladder and uterus, may change due to abdom-
inal pressure and prolapse, whereas other organs in
the body, such as the brain, usually have less variation.
Third, we used low-resolution MR data from three views
for 3D super-resolution, whereas previous studies used
the paired training data of low- and high-resolution to
train the super-resolution model. Compared with brain
imaging, high-resolution 3D pelvic MR data are usually
not available, the pelvic floor imaging process is long
and costly due to the large pelvic area, and patients
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cannot remain in the same position for a long period of
time, especially in Valsalva maneuver. Therefore, direct
training of a 3D super-resolution model (3D CNN) is
not a feasible solution. Previously, Zhao et al.14,15,30

also investigated the 3D super-resolution problem
using CNNs, which does not require 3D MR data for
training. In contrast to their approaches, the proposed
method takes advantage of three-view training data,
so it can learn the view-specific characteristics. In
addition, we implemented the super-resolution of pro-
jection views sequentially instead of FBA. Moreover, the
proposed method used RRDBNet, which showed bet-
ter super-resolution performance than EDSR. Natural
image super-resolution and medical image super-
resolution are also closely related. SRCNN,10 EDSR,11

and RRDBNet16 were first used for the natural image
2D super-resolution, but they can also be transferred
for medical image super-resolution. Some generative
adversarial networks (GANs)16,31 have been proposed
to avoid oversmoothing and to obtain more photoreal-
istic results. However, one challenge of GANs is their
unstable training and some efforts have been made to
improve the stability of trained GANs. Different medical
applications of GANs in super-resolution have also
been investigated to produce photorealistic results.32,33

As in the first experiment,we used a low-resolution 3D
MR dataset to train the CNN models. The results show
that the CNN methods have higher PSNR and SSIM
than the interpolation method, indicating that the CNN
methods have higher image quality and better SSIM
with the ground truth data. This is because CNN meth-
ods are data-driven methods that make better use of
a large amount of training data to capture the struc-
tural patterns behind the training data. Therefore, CNN
methods can provide results with better smoothness and
image fidelity. The downsampling ratios during training
were set to 2:1, 4:1, and 6:1, but we further tested the
super-resolution performance for data with a downsam-
pling ratio of 7:1, as shown in Table S3. This shows
that the CNN method works well when the downsam-
pling ratio does not match the ratio in the training data.
However, larger downsampling ratios will make super-
resolution more difficult because there is less informa-
tion available. Next, RRDBNet provided better results
than the EDSR model, which means that RRDBNet is
more powerful and better suited for this task. Another
important question,whether using three views data have
better performance than using single-view data, was
also investigated and answered. It shows that training
with three-view data provided better performance than
training with only a single-view data even with almost
the same number of images. This finding is relevant for
pelvic MR images super-resolution because three-view
MR data can be scanned instead of high-resolution MR
data from only one view. In this way, three views of MR
data triple the number of training images, thereby fur-
ther improving the super-resolution performance. It also

benefits from the fact that each of the three scan planes
has complementary strengths and weaknesses based
on the angle at which they intersect a structure. One
region may be clear on an axial scan but fuzzy in sagit-
tal, whereas another would be the reverse, which can
cause the scanning difference among different views. In
Figure 5,RRDBNet results are highly similar to the refer-
ence images but not fully matched. Besides, the move-
ment during multiple times scanning is also the reason.
Moreover, it shows that different results were obtained
when using different view data for training. The training
results with the sagittal view data are better than those
training with the coronal and axial views data.We believe
that reflects larger image variation in the sagittal view
compared with the other two views, as discussed in a
previous study on pelvic organ segmentation.3 Hence,
as more variances were learned by the model, it became
more powerful.

Training using 2D high-resolution MR images of three
views is featured in this method to avoid using high-
resolution 3D MR images for training. As three-view
data are not scanned simultaneously, there may be
slight differences between the datasets due to motion
and breathing. However, it does not affect the proposed
approach. Although the 2D MR images are acquired at
different times, the model will only use the paired high-
resolution images and downsampled low-resolution
images from the same view for training. It does not
require the information among different views, so it
does affect the training process. As for testing, super-
resolution model will be applied to a single acquisition
of MR data, so these differences between different
views will not affect it either. However, the inconsis-
tency between different views resulted in our inability
to register the imaging volume of different view scans
for training purposes. Training with such registered
data would lead to oversmoothed results due to the
mismatch between input and output. We only used the
image registration method to generate reference data
to test the super-resolution performance of RRDBNetall
trained with downsampled data. As the original MR
images have a low through-plane resolution, we aligned
the MR images scanned from two planes by image
registration. For example, if the sagittal MR image
is registered with the coronal MR image, the super-
resolution performance of the sagittal projection view
acquired from the coronal acquisition can be evaluated
with the registered sagittal images. Then, RRDBNet
was compared with the spline interpolation method on
the projection views using the registered data for PSNR
and SSIM, as shown in Table S4 for dataset 1 and Table
S5 for dataset 3. These results demonstrated the actual
super-resolution capability of RRDBNet.

Next, we quantitatively proved the effectiveness of
our method with dataset 2. We hid half of the slices to
generate the low-resolution data and used our method
to achieve super-resolution. When compared with the
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high-resolution data on projection views, RRDBNet had
a significant improvement over the EDSR model and
interpolation model in terms of PSNR and SSIM, which
was consistent with the visual results (Figure 7). We
then evaluated the super-resolution performance for the
scanned views. Overall, the results of the proposed
method are better than those from the interpolation
method. The interpolation results have some ghosting
patterns (Figure S3(a)), whereas the RRDBNet results
also have some artifacts, but these are different from
the interpolation ones. The ghosting pattern from the
interpolation method is because it does not consider the
semantic continuity of the data. And we think that the
artifacts in CNN results can be explained in two ways.
First, the 3D super-resolution results were achieved
using a 2D approach to avoid using high-resolution MR
data, which may sacrifice some 3D continuity. Second,
original MR data were also acquired slice by slice,which
may also introduce some artifacts due to movement and
breathing. We found that RRDBNetSR−z outperformed
RRDBNetSR−y (Table 3). We think that this may be due
to the difference of variance among the three views.
Since sagittal view images present a larger variance, it
is more difficult to reconstruct from this view. Besides,
it shows the differences in achieving super-resolution
under different orders. We investigated whether the
processing order mattered for the other two datasets.
As high-resolution 3D MR data were not available for
dataset 1 and dataset 3, we tested the super-resolution
performance on projection views with the acquisition of
the corresponding planes as reference, using both rigid
and nonrigid registration methods. Results for the test
data of dataset 1 are shown in Table S4. It shows that
for the super-resolution of the coronal view data,the pro-
cessing from the axial view data outperforms the pro-
cessing from the sagittal view when both registration
methods are used, which is consistent with the results
of dataset 2. In addition, for the sagittal view super-
resolution of dataset 1,processing from the coronal view
is slightly better than processing from the axial view. For
the axial view super-resolution of dataset 1, processing
from the coronal view produces better results. Similarly,
evaluation results for the data of dataset 3 are shown
in Table S5. In dataset 3, it is shown that for the coro-
nal view super-resolution, processing from the sagittal
view produces better PSNR and SSIM than process-
ing from the axial view when different registration meth-
ods are used. For the sagittal view super-resolution of
dataset 3, processing from the sagittal view has better
SSIM but the difference in PSNR is not significant. For
the axial view super-resolution of dataset 3, processing
from the sagittal view produces higher PSNR and SSIM.
Dataset 1 and dataset 2 are from the same data source
and have similar imaging parameters,but they are differ-
ent from dataset 3, so the differences may be due to the
scanning parameters. In the experiments of dataset 2,

we evaluated the super-resolution performance on hid-
den slices, but whether the original inputs changed dur-
ing this process has not been tested yet. Then we com-
pared the original high-resolution scan plane images in
Table S6, and it shows that both spline interpolation and
CNN methods introduced small changes in input slices.
In terms of PSNR and SSIM, there is no significant dif-
ference between the results of the two methods (p-value
> 0.05). As the raw MR images were scanned slice by
slice, this may lead to discontinuities between slices,
which can cause small changes during super-resolution
to consider the 3D semantic continuity. Finally, the visual
comparison of the 3D geometrical models of the urinary
bladder (Figure 8) shows that our reconstructed blad-
der model has a smoother surface than the interpola-
tion results, especially in regions with dramatic shape
changes as indicated from the “difference” results.

Finally, we validated our method on the dataset from
a different source, obtained from different scanners and
different operators. The results showed that our method
yielded high-quality super-resolution results. Similarly,
we also compared the reconstruction results of the geo-
metric model of the urinary bladder (Figure 10). We
found that the reconstruction results of our method were
more faithful in terms of surface smoothness and shape
continuity compared to the results of the interpolation
method. From the comparison between Figures 8 and
10, the RVAD in Figure 10 is larger than that of Figure 8
because the volume in Figure 8 is larger. When a blad-
der has a larger volume, the change in shape is flatter,so
downsampling has less effect on it.Otherwise, the differ-
ence between RRDBNet and the interpolation method is
more obvious, which means that the super-resolution is
more significant for small features.

In this work, there are some limitations. First, we did
not have 3D pelvic floor MR images with high through-
plane resolution, so we could not comprehensively
assess the 3D super-resolution performance especially
in low-resolution views. However, the visual improve-
ment could prove the effectiveness and advantage of
our method qualitatively. Second, stress MR images,
images made while an individual is straining down,
which are used for PFD evaluation, are not included
in the current work. Prolapse can be better observed
in stress images, where low through-plane resolution
exists due to the difficulty of maintaining the maneuver
for long periods of time under large abdominal pressure.
Therefore, super-resolution in stress MR images is of
interest and can be explored in future work. Third, the
training images are not sufficient for model training
because a deep CNN usually requires “big data” for
training. Since we found that RRDBNetall had better
performance compared to RRDBNetpartial, we deduced
that more training data could further improve the model
performance. However, there are usually limited training
sequences for a single hospital or medical center. If
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we can utilize data from different sources to train the
model, such as the dataset 1 and dataset 3, it may fur-
ther improve the model performance. Therefore, using
data from different sources to improve the performance
and generalization of the model is another meaningful
direction for further research.

5 CONCLUSION

We proposed a CNN-based framework to achieve 3D
super-resolution for pelvic MR images, while using only
low-resolution 3D MR data. Our approach takes advan-
tage of the intrinsic similarity between data from dif-
ferent scan planes for training to achieve 3D super-
resolution from projection views. By evaluating low-
resolution data, high-resolution data, and unseen data,
the effectiveness and good generalization of our method
compared with interpolation and EDSR methods were
demonstrated. The comparison of 3D urinary bladder
geometric model reconstruction results demonstrates
that our method could be beneficial for the image anal-
ysis and may be useful for high-resolution and high-
precision PFD evaluation.
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