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Abstract16

Purpose: High-resolution pelvic magnetic resonance (MR) imaging is important for17

the high-resolution and high-precision evaluation of pelvic floor disorders (PFDs), but18

the data acquisition time is long. Because high-resolution three-dimensional (3D) MR19

data of the pelvic floor are difficult to obtain, MR images are usually obtained in three20

orthogonal planes: axial, sagittal, and coronal. The in-plane resolution of the MR21

data in each plane is high, but the through-plane resolution is low. Thus, we aimed to22

achieve 3D super-resolution using a convolutional neural network (CNN) approach to23

capture the intrinsic similarity of low-resolution 3D MR data from three orientations.24

Methods: We used a two-dimensional (2D) super-resolution CNN model to solve the25

3D super-resolution problem. The residual-in-residual dense block network (RRDB-26

Net) was used as our CNN backbone. For a given set of low through-plane resolution27

pelvic floor MR data in the axial or coronal or sagittal scan plane, we applied the28

RRDBNet sequentially to perform super-resolution on its two projected low-resolution29

views. Three datasets were used in the experiments, including two private datasets and30

one public dataset. In the first dataset (dataset 1), MR data acquired from 34 subjects31

in three planes were used to train our super-resolution model, and low-resolution MR32

data from 9 subjects were used for testing. The second dataset (dataset 2) included33

a sequence of relatively high-resolution MR data acquired in the coronal plane. The34

public MR dataset (dataset 3) was used to demonstrate the generalization ability of our35
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model. To show the effectiveness of RRDBNet, we used datasets 1 and 2 to compare36

RRDBNet with interpolation and enhanced deep super-resolution (EDSR) methods37

in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index.38

Since 3D MR data from one view have two projected low-resolution views, different39

super-resolution orders were compared in terms of PSNR and SSIM. Finally, to demon-40

strate the impact of super-resolution on the image analysis task, we used datasets 2 and41

3 to compare the performance of our method with interpolation on the 3D geometric42

model reconstruction of the urinary bladder.43

Results: RRDBNet outperformed the interpolation and EDSRmethods on the dataset44

1. With RRDBNet, training with three planes images had better performance than45

with one plane images. When achieving super-resolution, we found that our method46

obtained better smoothness and continuity than other methods on both projected and47

scanned views. When tested on the dataset 2, our model also obtained better PSNR48

and SSIM results on both projected and scanned views. We also found that it per-49

formed differently when applying 3D super-resolution with different orders. Next, the50

super-resolution results in the dataset 3 demonstrated good generalization capabil-51

ity of our method. Finally, the 3D geometric model results of the urinary bladder52

demonstrated that the super-resolution improved the 3D geometric model reconstruc-53

tion results.54

Conclusions: A CNN-based method was used to learn the intrinsic similarity among55

MR acquisitions from different scan planes. Through-plane super-resolution for pelvic56

MR images was achieved without using high-resolution 3D data, which is useful for the57

analysis of PFDs.58

59
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I. Introduction77

MR imaging is an important modality for medical image analysis. Compared with ultrasound78

(US) imaging, it provides better image quality and tissue contrast. Therefore, it is suitable79

for soft tissue imaging and is widely used for the evaluation of pelvic floor disorder, such as80

pelvic organ prolapse. Three-dimensional MR images are commonly used for pelvic organ81

segmentation1,2,3, pelvic floor evaluation4, computer simulation of pelvic organ prolapse5,6,82

and evaluation of tissue material properties7. High-resolution MR images are necessary83

for high-precision analysis of the above tasks. However, acquiring high-resolution 3D MR84

data is both expensive and time-consuming. Moreover, artifacts due to human movement,85

breathing, or organ contraction may be introduced when acquiring high-resolution 3D MR86

images. In addition, it is difficult to maintain the same pose for a long time, such as in87

maximal Valsalva maneuver. Therefore, it is a common practice to use a stack of 2D slices88

instead of 3D scans. For convenience, we will use the terms in-plane resolution to refer89

to the resolution of the 2D slices, and through-plane resolution to indicate the resolution90

between neighboring 2D slices. The in-plane resolution is usually less than 1 mm, while91

the through-plane resolution is not less than 5 mm. In this way, it increases the spacing92

between two slices or decreases the through-plane resolution while maintaining the high in-93

plane resolution characteristics for each 2D slice. This approach reduces the scanning time,94

but the deterioration of through-plane resolution limits the precision of downstream analysis95

tasks, such as 3D segmentation, reconstruction, and prolapse evaluation.96

Some digital techniques can improve the through-plane resolution when hardware up-97

dating is not available. An intuitive solution is the interpolation method, such as bilinear98

interpolation and spline interpolation. Compared with bilinear interpolation, spline inter-99

polation can produce smoother results. However, interpolation methods cannot consider100

the semantic and structural information of MR images, so they may cause artifacts. In101

contrast, the learning-based method uses the structural information between slices to ob-102

tain results with better fidelity. When learning, both low- and high-resolution pairs are103

required. This method usually downscales the high-resolution images to obtain the corre-104

sponding low-resolution images, which can be called “self super-resolution”. For example,105

Timofte et al.8 proposed the anchored neighborhood regression (ANR) method for natu-106

ral image super-resolution. Schulter et al.9 used random forest method for local image107
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regression in order to achieve super-resolution. More recently, methods based on deep con-108

volutional neural networks (CNNs) outperformed the previous methods and produced new109

state-of-the-art results in image super-resolution (SRCNN and EDSR)10,11 because of the110

powerful representation ability of CNNs. However, these methods were designed for natural111

image super-resolution and, therefore, had some differences when applied to medical image112

super-resolution, especially for 3D medical image data. Therefore, Peng et al.12 proposed a113

spatially aware interpolation network for 3D CT super-resolution. However, such approach114

requires high-resolution data in the training phase, which is not easily available for pelvic115

floor MR imaging. Jog et al.13 used ANR and Fourier burst accumulation (FBA) to achieve116

neuroimaging super-resolution, and Zhao et al.14 proposed an improved method for brain117

MRI based on the EDSR method. Zhao et al.15 later applied this technique to neural,118

cardiac, and tongue MR images super-resolution.119

In this work, we designed a CNN-based algorithm to achieve super-resolution of 3D120

pelvic MR images based on only low-resolution 3D MR acquisitions from three orientations.121

Our contribution can be summarized in three aspects. First, as shown in Fig.1, MR data from122

three views (coronal, sagittal, and axial) were used to train a 2D self super-resolution model.123

For convenience, we used the terms “high-resolution view” and “low-resolution view” for the124

2D MR images with high-resolution in both dimensions and for images with low-resolution125

in either dimension, respectively. For example, Fig. 1(a) shows a high-resolution MR im-126

age, and Figs. 1(d) and (g) present its corresponding low-resolution projected images. The127

three-view data training ensured that the model had the ability to achieve super-resolution128

on different views, thereby avoiding the use of high-resolution 3D MR images data for train-129

ing. Second, an advanced deep CNN backbone, RRDBNet16 was used. Since RRDBNet was130

already shown to have better performance for natural image super-resolution compared with131

other CNN models, it was used in this work. Third, the 2D super-resolution model was ap-132

plied sequentially on two low-resolution views to improve the super-resolution performance.133

Subsequently, we validated the performance of our method in three areas. First, a group of134

holdout high-resolution MR sequences were used to validate the true super-resolution per-135

formance. Second, to show the generalization ability, we applied our method to another,136

public MR dataset without training a new model. Third, to demonstrate the advantages137

of our method, we compared the 3D reconstruction results from our method and from the138

interpolation-based method. In summary, we first demonstrated the 3D self super-resolution139
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of pelvic MR images using the deep CNN method, which means that 3D MR images super-140

resolution is achieved without any high-resolution 3D MR data.141

II. Methods and experiments142

The conceptual framework of our method is shown in Fig. 2(a). We named the high-143

resolution 3D MR data as I(x,y,z), where x, y, and z are scanning directions for coronal,144

sagittal, and axial MR data, respectively. For example, for a super-resolution task, we had145

low-resolution 3D MR data scanned in the coronal view, denoted as I(x̂,y,z). Therefore,146

I(x,y,z) was then expected to be reconstructed from I(x̂,y,z). We adopted a 2D approach to147

address this problem. First, we performed isotropic analytic interpolation of I(x̂,y,z) with148

spline interpolation algorithm. This process ensured that all three dimensions have the149

same resolution. Next, we sectioned it from the z-axis (axial view) and applied the 2D150

super-resolution model on all slices. As we estimated I(x,y) from I(x̂,y), x-axis resolution was151

improved. Therefore, we achieved the 3D super-resolution after traversing all the axial view152

slices and stacking them. As the MR data were reconstructed from the z-axis, we denoted153

it as ISR−z
(x,y,z). Similarly, starting from ISR−z

(x,y,z), we continued to apply the same procedures on154

the y-axis. After that, we obtained the final 3D super-resolution result, which was denoted155

as ISR−z−y
(x,y,z) . However, if we changed the order of the super-resolution axis in the process,156

i.e., if we achieved super-resolution from the y-axis before the z-axis, we obtained ISR−y−z
(x,y,z) .157

We compared their difference in the Results section. In our method, no 3D high-resolution158

MR data were used, and the super-resolution task was simplified as a 2D super-resolution159

problem which required the 2D CNN model that could achieve super-resolution on multiple160

views. Therefore, we used MR data from three views for training. As for the CNN model, we161

used RRDBNet (Fig. 2(b)). After fully optimizing the model, the model was applied for the162

3D super-resolution. The model training process is introduced in the following subsection.163

II.A. RRDBNet training164

Two key points for training the model are the training data and the model structure. In165

order to train the CNN model, pairs of low- and high-resolution image data are needed.166

With all three-view high-resolution 2D MR images that we acquired, we downscaled the167
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high-resolution data in one dimension to create the corresponding low-resolution MR images.168

As we used three-view MR data to train the model, it ensured that the CNN model had169

the ability to recover three-view images. Three-view high-resolution 2D MR images have170

the same image size (256 × 256), so it ensures the model training can be performed without171

resizing. Since the obtained low-resolution images are downsampled, cubic interpolation was172

used to ensure that the low-resolution images have the same size as high-resolution images.173

II.B. RRDBNet model structure174

As shown in Fig. 2(b), RRDBNet consists of 16 RRDB modules. Each RRDB module con-175

sists of three residual dense blocks (RDB), and there are five densely connected convolutional176

layers for each RDB16. Dense connections ensure that each CNN layer receives the outputs177

from all previous CNN layers, which promote efficient feature reusing and avoid overfitting.178

There is a residual connection outside of three RDBs to connect the input and output of179

RRDB. Residual scaling17 was used to avoid the training instability and the scaling factor β180

was set to 0.2 empirically in our experiment. As RRDBNet is a fully convolutional network,181

different sized inputs are allowed during testing to handle the different sizes of three-view182

slices that may occur. The fully convolutional networks have been successfully applied to183

super-resolution, receiving inputs of different sizes10. Since pooling is not used in RRDB-184

Net, it manages to retain the maximum information of the input, i.e., the input and output185

images have the same size. Therefore, when images of different sizes are used for testing, the186

batch size should be set to one. There is no doubt that the size of the input should be larger187

than the maximum filter size in the network (3 × 3) and satisfy the maximum memory limit188

of the processor.189

II.C. Loss function and metrics190

In addition, the loss function and evaluation metrics are important for the model training191

and model evaluation, respectively. The L1 loss is used as the loss function, defined as192

follows:193

Loss =
1

MN

M,N∑

m,n

|gmn − pmn| (1)194

II.B. RRDBNet model structure



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

3D SSR for pelvic floor MRI using CNN page 5

where M and N are length and width, respectively. gmn and pmn are the pixel values for195

the ground truth and prediction, respectively. Since L1 is the pixel-wise evaluation between196

two images, we used the peak signal-to-noise ratio (PSNR) to evaluate the similarity of two197

images from the image level. PSNR was defined as follows:198

PSNR = 20 log(
255√
MSE

) (2)199

200

MSE =
1

MN

M,N∑

m,n

(gmn − pmn)
2 (3)201

where MSE is the mean square error between the ground truth and prediction. However,202

PSNR could not guarantee the structural similarity between two images. Previous studies203

have shown that two images with same MSE can have very different structural similarity204

(SSIM) indices. The image with a larger SSIM has a better visual result18,19. Therefore, it is205

used as a complementary metric to evaluate super-resolution from a macroscopic perspective.206

SSIM is defined as follows:207

SSIM =
(2µgµp + 2.552)(2σg,p + 7.652)

(µg
2 + µp

2 + 2.552)(σg
2 + σp

2 + 7.652)
(4)208

where µg and µp are the average of the ground truth and prediction, respectively. σg and σp209

are the standard deviation of the ground truth and prediction, respectively, and σg,p is the210

covariance between the ground truth and prediction.211

To evaluate the overlap of two geometric reconstructions, Relative Absolute Volume212

Difference (RAVD) is defined as follows:213

RAVD =
|V1 − V2|

V1

× 100% (5)214

where V1 is the reference volume and V2 is the evaluated volume.215

II.D. Experiments216

Three experiments were designed to validate the effectiveness of our method using three217

datasets. The first dataset, called the dataset 1, consisted of MR data from 43 subjects.218

Each subject’s data included T2 MR data of coronal-, sagittal-, and axial-plane acquisitions.219

Each 3D MR sequence had an in-plane resolution of 0.78 mm × 0.78 mm and a through-220

plane resolution of 5.0 mm. The second dataset (dataset 2) consisted of a coronal view 3D221

II.D. Experiments
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MR sequence to quantitatively validate the self super-resolution performance. It included222

65 images with a through-plane resolution of 2.2 mm and an in-plane resolution of 0.63223

mm × 0.63 mm. Both the dataset 1 and dataset 2 were taken from the Michigan Pelvic224

Floor collection with the approval from the institutional ethics review board. The third225

dataset (dataset 3) was selected from a public dataset (from the National Cancer Institute226

Clinical Proteomic Tumor Analysis Consortium (CPTAC))20,21 to validate the generalization227

capability of our method. Dataset 3 also had three-view scans with each scan having one228

high-resolution view. It had a through-plane resolution of 5.2 mm for three-view scans, and229

its in-plane resolutions varied from 0.78 mm to 0.94 mm. More imaging parameters for the230

three datasets are attached in Table S-1.231

In the first experiment, we split the dataset into a training set and a testing set, contain-232

ing 34 and 9 subjects’ MR data, respectively. There were 3037 images in the training set and233

796 images in the validation set. There were 990 coronal, 1020 sagittal, and 1027 axial MR234

images in the training set. As discussed in Section II.A, we downsampled the high-resolution235

images to create their corresponding low-resolution images. Since the projected image has236

only one low-resolution dimension, we downsampled the row or column direction to mimic237

the projected image. As three-view scans were used for training, it could accommodate the238

differences among different scans during projection. We set three levels of the downsampling239

ratios, 2:1, 4:1, and 6:1, respectively. Some examples of the training data are shown in Fig. 3.240

We compared our method with both the spline interpolation method and EDSR method11.241

Note that the EDSR model was trained with all 3037 training images. We also investigated242

the improvement after training with three-view MR data over training with single-view MR243

data. We first trained an RRDBNet using 3037 images, which was named RRDBNetall. We244

also trained another RRDBNet using only coronal-plane MR images of all training subjects245

(990 images), and named this model RRDBNetc. Similarly, we also trained RRDBNets (1020246

images) and RRDBNeta (1027 images). Since the number of training images for RRDBNetall247

was almost three times higher than for RRDBNetc, RRDBNets, and RRDBNeta, we used 12248

subjects’ MR data from three planes (998 images) to train another model, which was named249

RRDBNetpartial for comparison.250

We used Adam optimizer and an NVIDIA TITAN RTX graphics card with 24 GB of251

computation memory. RRDBNet was trained for 106 batches with a batch size of 4 and252

a learning rate of 0.0002. After the deep learning model was well optimized, we tested its253

II.D. Experiments
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performance on the testing dataset.254

In the second experiment, we used the dataset 2 to validate the 3D super-resolution255

performance quantitatively. Since the original MR data had a relatively high through-plane256

resolution of 2.2 mm, we evaluated the performance of 3D super-resolution performance on257

this basis. We extracted half of the slices to generate data with a through-plane resolution of258

4.4mm as model input, and used the remaining half slices as the ground truth for evaluation.259

The super-resolution performance was then evaluated from three areas. First, we evaluated260

the 2D super-resolution performance from the sagittal and axial views. In this step, the261

spline interpolation and EDSR methods were used for comparison. Second, we obtained the262

3D super-resolution results using RRDBNet. We evaluated the super-resolution performance263

on the hidden slices. The interpolation and FBA22 method were used for comparison. When264

applying the model sequentially on the two projection views, there were two variants, which265

were distinguished as RRDBNetSR−z−y and RRDBNetSR−y−z. In addition, we also tested the266

single-view super-resolution variants, which were RRDBNetSR−y and RRDBNetSR−z. Third,267

we reconstructed the geometrical model of the urinary bladder based on segmentation results268

from the interpolation method and our method for mutual comparison.269

In the third experiment, we directly applied our method to the dataset 3 without training270

on it. Similarly, the super-resolution performance was also demonstrated in three areas.271

First, we showed the super-resolution results on the low-resolution views. Second, we showed272

the super-resolution results on the high-resolution views. Third, the geometrical model273

reconstruction results were compared. In these comparisons, the spline interpolation method274

was used as the baseline method.275

III. Results276

III.A. Validation on the testing set of the dataset 1277

The super-resolution results of different methods for the testing set of the dataset 1 are sum-278

marized in Table 1. Both EDSR and RRDBNet outperformed the interpolation method.279

However, for CNN-based methods, models based on RRDBNet had higher PSNR and SSIM280

than EDSR. RRDBNetpartial also outperformed the EDSR model. Moreover, PSNR and281

SSIM values of RRDBNetpartial were higher than those of RRDBNetc, RRDBNets, and282
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RRDBNeta, which were trained using single-view MR data. In addition, RRDBNets had283

better performance than RRDBNetc and RRDBNeta and their p-values comparison is at-284

tached in Table S-2.285

After super-resolution, the through-plane resolution was improved in-plane resolution so286

that the nominal resolution for dataset 1’s super-resolution results is 0.78Ö0.78Ö0.78 mm3.287

We compared their super-resolution results on the low-resolution views, as shown in Fig. 4288

and Fig. 5. The results obtained by the spline interpolation method have jagged edges, while289

the results by CNN methods are smoother and more faithful. Besides, compared with the290

EDSR model, RRDBNet obtained better results in terms of image smoothness and fidelity.291

The high-resolution view images were compared by using rigid registration for reference. In292

Fig. 5, it shows that RRDBNet’s results are smoother than EDSR and interpolation results.293

Moreover, RRDBNet reconstructed results have high similarity with the reference images294

but are not exactly matched. Subsequently, we compared their scan-plane results, as shown295

in Fig. S-1. Those results show that there are artifacts in the interpolation results. However,296

the results of CNN-based methods show fewer artifacts and better smoothness. In addition,297

compared with the EDSR model on the scanned view images, the results of RRDBNet also298

show smoother edges with fewer artifacts. To demonstrate that the CNN results have more299

continuous variations, we compared their results in Fig. 6. The bladder for RRDBNet300

has a larger size at + 0 position while it has a smaller size at + 5 position which reflects301

that the urinary bladder has more continuous changes in the RRDBNet results than in the302

interpolation results. The original MR images can be found in Fig. S-2.303

III.B. Validation on the dataset 2304

The nominal resolution of the super-resolution reconstruction of dataset 2 is 0.63Ö0.63Ö0.63305

mm3. Some super-resolution examples are shown in Fig. 7 for visual comparison. Figs.306

8(a) and (e) show blurred edges of the interpolation results, while both CNNs (EDSR and307

RRDBNet) result in better image smoothness and fidelity. It also shows that the results of308

RRDBNet (Figs. 7(c) and (g)) are even smoother than the 2.2 mm reference data (Figs.309

7(d) and (h)). The quantitative results of super-resolution on the projection view (average310

values for axial and sagittal) are shown in Table 2. The PSNR and SSIM values obtained by311

RRDBNet are higher than those obtained by the EDSR model and interpolation method.312

III.B. Validation on the dataset 2
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Therefore, we used the RRDBNet in the following high-resolution view comparisons. The313

quantitative evaluation results of PSNR and SSIM are summarized in Table 3. Namely,314

the CNN methods substantially outperformed the interpolation method in both PSNR and315

SSIM. Besides, both RRDBNetSR−y−z and RRDBNetSR−z−y obtained higher SSIM than316

the FBA method. In addition, RRDBNetSR−z had better results than RRDBNetSR−y (p317

value<0.001 for both PSNR and SSIM). The scan-plane results are provided in Fig. S-318

3. It shows that interpolation results have some ghosting patterns (Fig. S3(d)), while the319

RRDBNet results have fewer artifacts. Finally, Fig. 8 shows the results of 3D urinary bladder320

reconstruction by the interpolation method and RRDBNet method. Geometrical models321

were smoothed under the same configuration during reconstruction. The volume obtained322

with interpolation results is 412.2 mm3 and the volume obtained with the RRDBNet result323

is 409.8 mm3. The RVAD between them is 0.58%. The “difference” results (Fig. 8, column324

3) show the differences between the results of RRDBNet and those of the interpolation325

method.326

III.C. Generalization testing on the dataset 3327

The generalization ability of our method was evaluated using dataset 3. The in-plane reso-328

lution of MRI in dataset 3 is 0.78Ö0.78 mm2 or 0.94Ö0.94 mm2. After super-resolution, the329

through-plane resolution was improved to the in-plane resolution, so the nominal resolution330

of the super-resolution reconstruction of dataset 3 is 0.78Ö0.78Ö0.78mm3 or 0.94Ö0.94Ö0.94331

mm3 depending on the original in-plane resolution of the 2D high-resolution MR images.332

Fig. 9 shows the super-resolution results in low-resolution views. The MR data from the333

public dataset have a different appearance from our training dataset. However, the RRDB-334

Net results are sharper and smoother than those obtained using the spline interpolation.335

Scan-plane results are also provided in Fig. S-4. It shows the super-resolution results in336

high-resolution views and the results of RRDBNet have fewer artifacts than interpolation337

results. Similar to Section III.B, we selected the urinary bladder as the region of interest338

and built 3D reconstruction models to evaluate the impact of the super-resolution results339

on the subsequent reconstruction task. We also used the same smoothing parameters for all340

geometrical models during reconstruction. The volume obtained with interpolation result341

is 20.6 mm3 and the volume obtained with the RRDBNet result is 24.0 mm3. The RVAD342

III.C. Generalization testing on the dataset 3
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between them is 14.1%. As shown in Fig. 10, the shape continuity and surface smoothness343

of the 3D bladder model obtained by our method are superior to those of the interpolation344

method. The “difference” results (Fig. 10, column 3) show that there are evident differences345

between the two reconstructions.346

IV. Discussion347

We developed a novel CNN-based method for super-resolution of 3D pelvic MR data using348

only low-resolution 3D data with RRDBNet. There are three novel aspects to this work.349

First, it represents a new application of 3D self super-resolution of pelvic MR images. We350

exploited the intrinsic similarity of MR images from three MR views to avoid using 3D351

high-resolution MR training data, and solved the 3D super-resolution problem using a 2D352

approach. Second, we established that three-view data could improve the model perfor-353

mance compared with single-view data, even for the same number of images. Third, we354

demonstrated the advantages of our method with three datasets, proving its effectiveness on355

MR images super-resolution of different views and 3D geometric model reconstruction.356

Super-resolution is crucial for high-resolution and high-precision medical image analy-357

sis. Some related works focused on the brain14,15,23,24, cardiac15, tongue15, musculoskeletal25,358

kidney12, and knee applications26. Compared to them, our pelvic floor imaging study has359

some important differences. First, we are concerned about the improvement of the through-360

plane resolution. As for PFD analysis, the through-plane resolution is always the limita-361

tion. Some researchers also investigated the through-plane resolution problem by using deep362

learning methods for other body regions14,15,25,27,28,29,30. However, most of them still require363

high-resolution MR images during training25,27,28,29. Second, the pelvic floor has a complex364

structure and large variability in the shape and size of different organs. The shape and size365

of some pelvic organs, such as the urinary bladder and uterus, may change due to abdominal366

pressure and prolapse, while other organs in the body such as the brain, usually have less367

variation. Third, we used low-resolution MR data from three views for 3D super-resolution,368

while previous studies used the paired training data of low- and high-resolution to train369

the super-resolution model. Compared with brain imaging, high-resolution 3D pelvic MR370

data are usually not available, the pelvic floor imaging process is long and costly due to the371

large pelvic area, and patients cannot remain in the same position for a long period of time,372
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especially in Valsalva maneuver. Therefore, direct training of a 3D super-resolution model373

(3D CNN) is not a feasible solution. Previously, Zhao et al.14,15,30 also investigated the 3D374

super-resolution problem using CNNs, which does not require 3D MR data for training. In375

contrast to their approaches, the proposed method takes advantage of three-view training376

data, so it can learn the view-specific characteristics. In addition, we implemented the super-377

resolution of projection views sequentially instead of FBA. Moreover, the proposed method378

used RRDBNet, which showed better super-resolution performance than EDSR. Natural im-379

age super-resolution and medical image super-resolution are also closely related. SRCNN10,380

EDSR11, and RRDBNet16 were firstly used for the natural image 2D super-resolution, but381

they can also be transferred for medical image super-resolution. Some generative adversar-382

ial networks (GANs)16,31 have been proposed to avoid over-smoothing and to obtain more383

photorealistic results. However, one challenge of GANs is their unstable training and some384

efforts have been made to improve the stability of trained GANs. Different medical appli-385

cations of GANs in super-resolution have also been investigated to produce photorealistic386

results32,33.387

As in the first experiment, we used a low-resolution 3D MR dataset to train the CNN388

models. The results show that the CNN methods have higher PSNR and SSIM than the389

interpolation method, indicating that the CNN methods have higher image quality and390

better structural similarity with the ground truth data. This is because CNN methods are391

data-driven methods that make better use of a large amount of training data to capture the392

structural patterns behind the training data. Therefore, CNN methods can provide results393

with better smoothness and image fidelity. The downsampling ratios during training were394

set to 2:1, 4:1, and 6:1, but we further tested the super-resolution performance for data with395

a downsampling ratio of 7:1, as shown in Table S-3. This shows that the CNN method works396

well when the downsampling ratio does not match the ratio in the training data. However,397

larger downsampling ratios will make super-resolution more difficult because there is less398

information available. Next, RRDBNet provided better results than the EDSR model, which399

means that RRDBNet is more powerful and better suited for this task. Another important400

question, whether using three views data has better performance than using single-view data,401

was also investigated and answered. It shows that training with three-view data provided402

better performance than training with only a single-view data even with almost the same403

number of images. This finding is relevant for pelvic MR images super-resolution because404
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three-view MR data can be scanned instead of high-resolution MR data from only one view.405

In this way, three views of MR data triple the number of training images, thereby further406

improving the super-resolution performance. It also benefits from the fact that each of407

the three scan planes has complementary strengths and weaknesses based on the angle at408

which they intersect a structure. One region may be clear on an axial scan but fuzzy in409

sagittal, while another would be the reverse, which can cause the scanning difference among410

different views. In Fig. 5, RRDBNet results are highly similar to the reference images but411

not fully matched. Besides, the movement during multiple times scanning is also the reason.412

Moreover, it shows that different results were obtained when using different view data for413

training. The training results with the sagittal view data are better than those training414

with the coronal and axial views data. We believe that reflects larger image variation in the415

sagittal view compared with the other two views, as discussed in a previous study on pelvic416

organ segmentation3. Hence, as more variances were learned by the model, it became more417

powerful.418

Training using 2D high-resolution MR images of three views is featured in this method419

to avoid using high-resolution 3D MR images for training. Since three-view data are not420

scanned simultaneously, there may be slight differences between the data sets due to motion421

and breathing. However, it does not affect the proposed approach. Although the 2D MR422

images are acquired at different times, the model will only use the paired high-resolution423

images and downsampled low-resolution images from the same view for training. It does424

not require the information among different views, so it does affect the training process. As425

for testing, super-resolution model will be applied to a single acquisition of MR data, so426

these differences between different views will not affect it either. However, the inconsistency427

between different views resulted in our inability to register the imaging volume of different428

view scans for training purposes. Training with such registered data would lead to over-429

smoothed results due to the mismatch between input and output. We only used the image430

registration method to generate reference data to test the super-resolution performance of431

RRDBNetall trained with downsampled data. Since the original MR images have a low432

through-plane resolution, we aligned the MR images scanned from two planes by image433

registration. For example, if the sagittal MR image is registered with the coronal MR image,434

the super-resolution performance of the sagittal projection view acquired from the coronal435

acquisition can be evaluated with the registered sagittal images. Then, RRDBNet was436
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compared with the spline interpolation method on the projection views using the registered437

data for PSNR and SSIM, as shown in Table S4 for dataset 1 and Table S5 for dataset 3.438

These results demonstrated the actual super-resolution capability of RRDBNet.439

Next, we quantitatively proved the effectiveness of our method with dataset 2. We hid440

half of the slices to generate the low-resolution data and used our method to achieve super-441

resolution. When compared with the high-resolution data on projection views, RRDBNet442

had a significant improvement over the EDSR model and interpolation model in terms of443

PSNR and SSIM, which was consistent with the visual results (Fig. 7). We then evaluated444

the super-resolution performance for the scanned views. Overall, the results of the proposed445

method are better than those from the interpolation method. The interpolation results have446

some ghosting patterns (Fig. S3(a)), while the RRDBNet results also have some artifacts, but447

these are different from the interpolation ones. The ghosting pattern from the interpolation448

method is because it does not consider the semantic continuity of the data. And we think449

the artifacts in CNN results can be explained in two ways. First, the 3D super-resolution450

results were achieved using a 2D approach to avoid using high-resolution MR data, which451

may sacrifice some 3D continuity. Second, original MR data were also acquired slice by452

slice, which may also introduce some artifacts due to movement and breathing. We found453

that RRDBNetSR−z outperformed RRDBNetSR−y (Table 3). We think that this may be454

due to the difference of variance among the three views. Since sagittal view images present455

a larger variance, it is more difficult to reconstruct from this view. Besides, it shows the456

differences in achieving super-resolution under different orders. We investigated whether the457

processing order mattered for the other two datasets. Since high-resolution 3D MR data458

were not available for dataset 1 and dataset 3, we tested the super-resolution performance459

on projection views with the acquisition of the corresponding planes as reference, using both460

rigid and non-rigid registration methods. Results for the test data of dataset 1 are shown461

in Table S-4. It shows that for the super-resolution of the coronal view data, the processing462

from the axial view data outperforms the processing from the sagittal view when both463

registration methods are used, which is consistent with the results of dataset 2. In addition,464

for the sagittal view super-resolution of dataset 1, processing from the coronal view is slightly465

better than processing from the axial view. For the axial view super-resolution of dataset466

1, processing from the coronal view produces better results. Similarly, evaluation results for467

the data of dataset 3 are shown in Table S-5. In dataset 3, it is shown that for the coronal468
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view super-resolution, processing from the sagittal view produces better PSNR and SSIM469

than processing from the axial view when different registration methods are used. For the470

sagittal view super-resolution of dataset 3, processing from the sagittal view has better SSIM471

but the difference in PSNR is not significant. For the axial view super-resolution of dataset472

3, processing from the sagittal view produces higher PSNR and SSIM. Dataset 1 and dataset473

2 are from the same data source and have similar imaging parameters, but they are different474

from dataset 3, so the differences may be due to the scanning parameters. In the experiments475

of dataset 2, we evaluated the super-resolution performance on hidden slices, but whether476

the original inputs changed during this process has not been tested yet. Then we compared477

the original high-resolution scan plane images in Table S-6, and it shows that both spline478

interpolation and CNN methods introduced small changes in input slices. In terms of PSNR479

and SSIM, there is no significant difference between the results of the two methods (p-value480

> 0.05). Since the raw MR images were scanned slice by slice, this may lead to discontinuities481

between slices, which can cause small changes during super-resolution in order to consider482

the 3D semantic continuity. Finally, the visual comparison of the 3D geometrical models of483

the urinary bladder (Fig. 8) shows that our reconstructed bladder model has a smoother484

surface than the interpolation results, especially in regions with dramatic shape changes as485

indicated from the “difference” results.486

Finally, we validated our method on the dataset from a different source, obtained from487

different scanners and different operators. The results showed that our method yielded high-488

quality super-resolution results. Similarly, we also compared the reconstruction results of489

the geometric model of the urinary bladder (Fig. 10). We found that the reconstruction490

results of our method were more faithful in terms of surface smoothness and shape continuity491

compared to the results of the interpolation method. From the comparison between Fig. 8492

and Fig. 10, the RVAD in Fig. 10 is larger than that of Fig. 8 since the volume in Fig. 8 is493

larger. When a bladder has a larger volume, the change in shape is flatter, so downsampling494

has less effect on it. Otherwise, the difference between RRDBNet and the interpolation495

method is more obvious, which means that the super-resolution is more significant for small496

features.497

In this work, there are some limitations. First, we did not have 3D pelvic floor MR498

images with high through-plane resolution, so we could not comprehensively assess the 3D499

super-resolution performance especially in low-resolution views. However, the visual im-500
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provement could prove the effectiveness and advantage of our method qualitatively. Second,501

stress MR images, images made while an individual is straining down, which are used for502

PFD evaluation, are not included in the current work. Prolapse can be better observed in503

stress images, where low through-plane resolution exists due to the difficulty of maintaining504

the maneuver for long periods of time under large abdominal pressure. Therefore, super-505

resolution in stress MR images is of interest and can be explored in future work. Third, the506

training images are not sufficient for model training because a deep CNN usually requires507

“big data” for training. Since we found that RRDBNetall had better performance compared508

to RRDBNetpartial, we deduced that more training data could further improve the model509

performance. However, there are usually limited training sequences for a single hospital or510

medical center. If we can utilize data from different sources to train the model, such as the511

dataset 1 and dataset 3, it may further improve the model performance. Therefore, using512

data from different sources to improve the performance and generalization of the model is513

another meaningful direction for further research.514

V. Conclusion515

We proposed a CNN-based framework to achieve 3D super-resolution for pelvic MR images,516

while using only low-resolution 3D MR data. Our approach takes advantage of the intrinsic517

similarity between data from different scan-planes for training to achieve 3D super-resolution518

from projection views. By evaluating low-resolution data, high-resolution data, and unseen519

data, the effectiveness and good generalization of our method compared with interpolation520

and EDSR methods were demonstrated. The comparison of 3D urinary bladder geometric521

model reconstruction results demonstrates that our method could be beneficial for the image522

analysis and may be useful for high-resolution and high-precision PFD evaluation.523
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VI. Figures648

Figure 1: Three-view pelvic MR images. (a), (e), and (i) are the scanned high-resolution
coronal, sagittal, and axial images, respectively. (d) and (g) are low-resolution projected
from (a), (b) and (h) are projected from (e), and (c) and (f) are projected from (i).
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Figure 2: The pipeline of our method. (a) Through-plane super-resolution data flow. (b)
RRDBNet model structure. × 16 means 16 repetitions. ∗β means the output feature is
multiplied by β, where β is equal to 0.2.
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Figure 3: Examples of training images from different views. (a), (b), and (c) are downsam-
pled images from coronal(d), sagittal (e), and axial (f) images, respectively.

Figure 4: Comparison of super-resolution results for the projection view. (a), (e), and (i)
are obtained by spline interpolation (order=3). (b), (f), and (j) are obtained with the EDSR
model. (c), (g), and (k) are obtained with RRDBNet. (d), (h), and (l) are reference images
from real acquisitions using registration. Regions in red boxes were zoomed in for comparison
in Fig. 5.
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Figure 5: Comparison of super-resolution results for local regions. (a) to (l) correspond to
the regions in red boxes of (a)–(l) in Fig. 4. Spline refers to spline interpolation.

Figure 6: Comparison of successive changes in the urinary bladder. In each sub-image, the
left half is the result of interpolation and the right half is the result of RRDBNet. The
urinary bladders are segmented into different colors.



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

page 24 3D SSR for pelvic floor MRI using CNN

Figure 7: Projection view super-resolution performance of the dataset 2. (a) and (e) is the
images obtained with spline interpolation (order=3). The raw through-plane resolution is
4.4 mm. (b) and (f) are the super-resolution results of (a) from the EDSR. (c) and (g) are
the super-resolution results of (a) from RRDBNet. (d) and (h) are the reference image data
of (a) and (e) with a through-plane resolution of 2.2 mm, respectively.

Figure 8: Comparison of the geometric model reconstructions of the urinary bladder from
three viewpoints. “Difference” means the difference between the reconstructions of the in-
terpolation method and RRDBNet. Geometrical models were smoothed with the same
parameters when reconstruction.
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Figure 9: Projection views super-resolution results for the dataset 3. (a), (c), and (e) are the
results of spline interpolation (order = 3). (b), (d), and (f) are the super-resolution results
of RRDBNet.
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Figure 10: Comparison of the geometric model reconstructions of the urinary bladder for the
dataset 3 from three viewpoints. “Difference” means the difference between interpolation’s
and RRDBNet’s reconstructions. The geometrical models were smoothed with the same
parameters during reconstruction.
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VII. Figures caption649

1. Figure 1. Three-view pelvic MR images. (a), (e), and (i) are the scanned high-650

resolution coronal, sagittal, and axial images, respectively. (d) and (g) are low-651

resolution projected from (a), (b) and (h) are projected from (e), and (c) and (f)652

are projected from (i).653

2. Figure 2. The pipeline of our method. (a) Through-plane super-resolution data flow.654

(b) RRDBNet model structure. × 16 means 16 repetitions. ∗β means the output655

feature is multiplied by β, where β is equal to 0.2.656

3. Figure 3. Examples of training images from different views. (a), (b), and (c) are657

downsampled images from coronal(d), sagittal (e), and axial (f) images, respectively.658

4. Figure 4. Comparison of super-resolution results for the projection view. (a), (e), and659

(i) are obtained by spline interpolation (order=3). (b), (f), and (j) are obtained with660

the EDSR model. (c), (g), and (k) are obtained with RRDBNet. (d), (h), and (l) are661

reference images from real acquisitions using registration. Regions in red boxes were662

zoomed in for comparison in Fig. 5.663

5. Figure 5. Comparison of super-resolution results for local regions. (a) to (l) correspond664

to the regions in red boxes of (a)–(l) in Fig. 4. Spline refers to spline interpolation.665

6. Figure 6. Comparison of successive changes in the urinary bladder. In each sub-image,666

the left half is the result of interpolation and the right half is the result of RRDBNet.667

The urinary bladders are segmented into different colors.668

7. Figure 7. Projection view super-resolution performance of the dataset 2. (a) and (e)669

is the images obtained with spline interpolation (order=3). The raw through-plane670

resolution is 4.4 mm. (b) and (f) are the super-resolution results of (a) from the671

EDSR. (c) and (g) are the super-resolution results of (a) from RRDBNet. (d) and (h)672

are the reference image data of (a) and (e) with a through-plane resolution of 2.2 mm,673

respectively.674

8. Figure 8. Comparison of the geometric model reconstructions of the urinary bladder675

from three viewpoints. “Difference” means the difference between the reconstructions676
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of the interpolation method and RRDBNet. Geometrical models were smoothed with677

the same parameters when reconstruction.678

9. Figure 9. Projection views super-resolution results for the dataset 3. (a), (c), and679

(e) are the results of spline interpolation (order = 3). (b), (d), and (f) are the super-680

resolution results of RRDBNet.681

10. Figure 10. Comparison of the geometric model reconstructions of the urinary bladder682

for the dataset 3 from three viewpoints. “Difference” means the difference between in-683

terpolation’s and RRDBNet’s reconstructions. The geometrical models were smoothed684

with the same parameters during reconstruction.685

11. Figure S-1. Comparison of super-resolution results of the scan planes. Red boxes686

indicate the representative regions used for comparison.687

12. Figure S-2. Comparison of continuous changes. (a) Six sequential coronal images from688

the RRDBNet results. (b) Six sequential coronal images from spline interpolation689

results. The spacing between two adjacent slices is 0.78 mm. Red boxes indicate the690

representative regions used for comparison as in Fig. 6.691

13. Figure S-3. Scan-plane super-resolution performance of the dataset 2. (a) and (d) are692

obtained from 4.4 mm through-plane resolution data by spline interpolation (order =693

3). (b) and (e) are the super-resolution results from RRDBNet. (c) and (f) are the694

reference image data of (a) and (d) with a through-plane resolution of 2.2 mm. Red695

boxes indicate the representative regions used for comparison.696

14. Figure S-4.Scan-plane super-resolution for the dataset 3. (a), (c), and (e) are obtained697

by spline interpolation (order = 3). (b), (d), and (f) are the super-resolution results698

of RRDBNet. Red boxes indicate the representative regions used for comparison.699

VIII. Tables700
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Table 1: Super-resolution performance on the testing set of the dataset 1. P-values were
calculated using RRDBNetall as a reference.

Methods PSNR (dB) p-value SSIM p-value
Interpolation 26.84 <0.001 0.7664 <0.001
EDSR 28.41 <0.001 0.8101 <0.001
RRDBNetc 28.23 <0.001 0.8101 <0.001
RRDBNets 29.26 <0.001 0.8249 <0.001
RRDBNeta 28.37 <0.001 0.8168 <0.001
RRDBNetpartial 29.94 <0.001 0.8453 <0.001
RRDBNetall 30.44 - 0.8549 -

The top 2 performances were highlighted in bold.

Table 2: Comparison of the super-resolution performance of the projected views of dataset 2.
P-values were calculated using RRDBNetall as a reference.

Methods PSNR (dB) p-value SSIM p-value
Interpolation 26.55 < 0.001 0.8083 < 0.001
EDSR 26.98 < 0.001 0.8192 < 0.001
RRDBNetall 27.32 - 0.8292 -

The best performance was highlighted in bold.

Table 3: Comparison of scan-plane super-resolution performance for the dataset 2. P-values
were calculated using RRDBNetSR−z−y as a reference.

Methods PSNR (dB) p-value SSIM p-value
Interpolation 21.50 < 0.001 0.4809 < 0.001
FBA 22.96 < 0.001 0.5799 < 0.001
RRDBNetSR−y 22.40 < 0.001 0.5774 < 0.001
RRDBNetSR−y−z 22.60 < 0.001 0.5965 < 0.001
RRDBNetSR−z 23.40 < 0.001 0.6237 0.156
RRDBNetSR−z−y 23.27 - 0.6255 -

The top 2 performances were highlighted in bold.


