Generalizability of DL in CT denoising

Performance of a deep learning-based CT image denoising method: Generalizability over dose,
reconstruction kernel and slice thickness
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ABSTRA
Purpose: De ing (DL) is rapidly finding applications in low-dose CT image denoising. While
having the(gotential to improve image quality (1Q) over the filtered back projection method (FBP)
and produ quickly, performance generalizability of the data-driven DL methods is not fully
understoo main purpose of this work is to investigate the performance generalizability of a

low-dose enoising neural network in data acquired under different scan conditions,

to these three parameters: reconstruction kernel, slice thickness and dose

particul
(noise) secondary goal is to identify any underlying data property associated with the CT

scan settin ight help predict the generalizability of the denoising network.

Methods: We select the residual encoder-decoder convolutional neural network (REDCNN) as an
example of a low-dose CT image denoising technique in this work. To study how the network
generalize“hree imaging parameters, we grouped the CT volumes in the Low-Dose Grand
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Challenge (LDGC) data into three pairs of training datasets according to their imaging parameters,
changing only one parameter in each pair. We trained REDCNN with them to obtain six denoising
models. Weg test each denoising model on datasets of matching and mismatching parameters with
respectM

evaluate t ing performance changes. Denoising performances are evaluated on patient
scans, simmom scans and physical phantom scans using IQ metrics including mean
squarecwrm), contrast-dependent modulation transfer function (MTF), pixel-level noise
power speSum (pNPS) and low-contrast lesion detectability (LCD).

ng sets regarding dose, reconstruction kernel and slice thickness, respectively, to

reconstrucion kegel, but no significant MSE difference when varying slice thickness in the testing
data. REDCNN t
images th

Results: REwd larger MSE when the testing data was different from the training data in

ined with quarter-dose data had slightly worse MSE in denoising higher-dose

ined with mixed-dose data (17-80%). The MTF tests showed that REDCNN

trained with*the tWo reconstruction kernels and slice thicknesses yielded images of similar image

resolutio:mr, REDCNN trained with mixed-dose data preserved the low-contrast resolution
REDCNN trained with quarter-dose data. In the pNPS test, it was found that

REDCNN trai ith smooth-kernel data could not remove high-frequency noise in the test data of

better co

sharp kern@l, possibly because the lack of high-frequency noise in the smooth-kernel data limited
the ability of the trained model in removing high-frequency noise. Finally, in the LCD test, REDCNN

improved detectability over the original FBP images regardless of whether the training and
testing datagla tching reconstruction kernels.

N is observed to be poorly generalizable between reconstruction kernels, more
robust in denoj data of arbitrary dose levels when trained with mixed-dose data, and not highly
i ickness. It is known that reconstruction kernel affects the in-plane pNPS shape of
a CT image whereas slice thickness and dose level do not, so it is possible that the generalizability
performans of this CT image denoising network highly correlates to the pNPS similarity between

the testing ing data.

Index Terp learning, CT image denoising, Generalizability performance, Image
SE n

quality as t

1. IN ON

CT imaging is widely used in modern medicine for almost every disease or condition. It is highly

recommended thafithe x-ray dose be as low as reasonable in CT exams for patient safety while

maintaining the Cd@mage quality to avoid misdiagnosis. Various approaches have been developed

toward «@

optimization ahé

CT through improved hardware design such as automatic exposure control, kV

namic bowtie filters [1, 2], and through advanced image
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reconstruction/denoising methods, such as statistical and model-based iterative reconstruction (IR)
algorithms [3, 4]. Deep learning (DL) methods are now being developed for this purpose, thanks to
the avaiMftware tools and increased computational power. Publications on applying DL in
low-dose Clgi denoising are growing rapidly [5-10]. Commercial DL products have become
available o&canners, such as AiCE from Canon Medical Systems and TrueFidelity from GE
Healthcarembeilmeceiving FDA clearance in 2019.

DL meth& been shown to be capable of improving image quality over FBP, similar to state-
of-the-art ierativellenoising methods [9, 11-13]. However, unlike IR algorithms that are derived

to attain a noise reduction function. This data-driven mechanism makes the DL

based on imagi hysics and data statistics, a DL method relies on training data to optimize the
network cw

performan edictable when applied to processing data of different distribution from that of

the training data. Wy most cases, characterizing the underlying data distribution to circumscribe the

performan lizability zone is not straightforward. The term “generalizability” refers to the
accuracy \Ag which performance results can be transferred to situations or data other than those

edfddl]. The generalizability zone then refers to the data range for which a DL method

»

originally s

preserves its ce performance, which is usually achieved when the testing and training data

are acqui he same condition. Preserving the performance means that the performance
testedonan of data is comparable or statistically equivalent to the reference performance.
The pe n be multifaceted for an image reconstruction and denoising method depending

on the specifications. We considered multiple image quality (IQ) metrics in this work as described in
the next pigraph. In CT, image resolution and noise properties are affected by CT imaging

parameters including both the raw data acquisition parameters (kVp, mA, collimation width, pitch,

etc.) and the truction parameters (reconstruction kernel, slice thickness, reconstruction field

of view etc.). Therefore, it is reasonable to investigate the generalizability performance of a DL
network ofidata acquired with different parameters. Changes in the network’s performance when

tested on ifferenv acquired datasets could indicate a potential data distribution shift caused by

imaging parametef8 may provide insight on possible ways to characterize the data distributions for
the generalizablegange of a DL-based CT image denoising network.
FoIon{Leasoning, we investigated a residual encoder-decoder convolutional neural

This article is protected by copyright. All rights reserved.
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network (REDCNN) for low-dose CT image denoising [5] and used patient scans from the Low Dose
Grand Challenge (LDGC) dataset [15] to train that network [16]. We examined the denoising
perforWs between the conditions of training/testing using data with matching and
mismatchi ing parameters under three scenarios. In each scenario only one imaging
parameter&\ween the training and testing data. The three imaging parameters were
reconstpuctiommkemmel, slice thickness and dose level. The image quality (I1Q) metrics for evaluating
the denoisMrmance included 1) mean squared error (MSE), a global IQ metric; 2) contrast-
dependentgitod transfer function (MTF) and pixel-level noise power spectrum (pNPS), standard
CT IQ metri haracterize the image resolution and noise properties; (oNPS differs from the
standard terms of the dimensional unit, as explained in Method Section 2.3.2) and 3)
low-contra si@A detectability (LCD), a more clinically relevant task-based 1Q metric. We included
these multmetrics to examine how well they support the evaluation of a denoising method’s
impact on ed image quality. While a denoising algorithm may appear to beautify an image,
there is th@ity that it impairs the detection or characterization of subtle signals and other

image feat

A similams conducted by Huber et. al. that evaluated the performance of one narrowly

trained twork on processing images reconstructed differently from the training data in

iew (FOV), reconstruction kernel and slice thickness [17]. It was observed in the

hat the denoising performance was degraded with variations in FOV and kernel,
but not affected by thickness. We also evaluated the performance behavior of a DL denoising
network inSatching and mismatching test data. However, a different denoising network was

examined andthe training and testing conditions were not designed the same. In this sense, our

et. al. study are complementary to each other. In addition, the IQ evaluation
methods in o k, including MTF, pNPS, and LCD, are more comprehensive than those used in
the Huber &t. al. study. Furthermore, we analyzed the underlying training and testing data
propertiesF heIp'nswer the question of why some parameters may cause a data distribution shift

to affect the generalizability and some may not. As is known, imaging parameters affect the image

resolution and noise property of a CT image set. For example, reconstruction kernel changes the in-

plane resolution aad noise correlation structure. Slice thickness mainly affects the z-direction

 |level determined the noise magnitude. A degradation in the DL network’s denoising
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efficiency due to a mismatch in an imaging parameter may be associated with a shift of the
underlying data properties that are caused by that parameter. Based on the observations regarding
whethew each of the three parameters causes a substantial degradation in the DL’s
denoising p, nce or not, we may learn and identify which underlying data properties are most
important & the denoising network’s generalizability. Note that CT image noise is also
object-depemcdentmA DL network trained with body scans may not generalize well to scans of other
anatomy sMad scans or extremity scans even if the CT imaging parameters are kept the

same. This gfd used on the impact of CT imaging parameters since our training data are

exclusively body scans covering the segment from thorax to abdomen.

The rester is organized as follows. Section 2 explains the low-dose CT denoising

network, t iailng scheme for preparing the generalizability tests, the evaluation methods and

testing data. Sectigh 3 presents the results. Section 4 discusses our observations on the DL

generalizaktormance followed by the conclusions.

y minimizing a loss function between x and y over a given set of training data. After the
network is stimized, a noisy CT image can be passed through the network to produce an image

intended t duced noise.

Various @structures have been explored in the literature for low-dose CT image denoising.

Some typic rks include convolutional neural networks [6], residual networks [5, 10, 18, 19],
UNet [8, 20hand Generative adversarial networks [7, 21]. For this paper, we selected the residual
encoder- nvolutional neural network (REDCNN) developed by Chen et al.[5] as a denoising

example f eralizability test. Our emphasis here is not on the demonstration of an
innovative denoisifig algorithm, but rather the illustration of an approach for assessing DL

8enera|& come back to this point in the discussion.

This article is protected by copyright. All rights reserved.
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As illustrated in Fig.1, REDCNN contains ten layers, the first five being convolutional layers and the
last five being deconvolutional layers. A rectified linear unit (ReLU) activation function follows the
convquWonvolutional operator in each layer. Residual learning is realized by including
three short necting the convolution layer and deconvolution layer. All the convolutional and
deconvolu&have a filter size of 5x5. The number of filters is 96 for all the layers except
that thaslo stelayemhes one filter. For more details about the network design, please refer to [5]. We
selected tth network design because it was not very complicated but has been shown to

have potemffective CT image denoising similar to some traditional iterative denoising

methods u conditions tested in the papers by Chen et. al. and Zeng et. al. [5, 22].

The loss Wor training the denoising network we used was the MSE between the network
output andjesponding high-dose target images. Some investigators add terms to the loss
function to enco e image smoothness and feature similarity, or to regularize the network
parameters ight decay to avoid overfitting [8, 10]. However, we focused on the most

commonlyW@sed MSE loss function in this work.

ation, the denoising network was trained using many pairs of 2D small image

patches extrdcté@from low-dose and corresponding full-dose patient CT slices, as described below
in Sect 2% erefore, it was a two-dimensional (2D) denoising network. After the network is
trained, it c plied directly to a whole image slice since the “conv” and “DeConv” functions in
the neu are essentially convolution operations.

2.2. Tidining data categorization

The denoising network was trained using the patient scans in the Low-Dose Grand Challenge

(LDGC) dat There are ten datasets in LDGC covering chest to abdomen. Each patient

dataset contaifis a full-dose scan acquired on a Siemens Somatom Definition AS+ or Definition Flash
scanner m@del and a simulated quarter-dose scan. Each scan was reconstructed with two slice
thicknesses (1 mm_and 3 mm) and two reconstruction kernels (a sharp kernel named D45 and a
smooth kefhel named B30). The corresponding quarter- and full-dose image pairs were treated as

training input and Yraining target in the DL training process, respectively. Among the ten patient

datasets, seven patjent datasets were used for training since more data were needed to train than
test the that contained more than 1.8 million coefficients. 350 slices of size 512x512 were

This article is protected by copyright. All rights reserved.
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randomly selected from the seven patients and each slice was divided into 55x55 patches excluding

the air patches outside of the body, resulting in about 70,000 training patches in total.

The vahrl y of reconstruction thickness, reconstruction kernel and dose level make the LDGC

imaging pasmeter value was varied to avoid interacting effects among the parameters.

Dose level Q
- S ernel / 3 mm thickness / 25% dose level

- S rnel / 3 mm thicknesS / Mixed dose levels

Kernel efféeet:

- Sharp kei-nel / 3 mm thickness / mixed dose level
- S ernel / 3 mm thickness / mixed dose level

Thicknessieffect:

- S rnel / 1 mm thickness / mixed dose level
- o rnel / 3 mm thickness / mixed dose level

With thij gement, we can obtain three pairs of trained DL networks. For convenience, we
name the ne according to the parameter setting of the training data as follows: DLkernel-
thickne example, “DLsharp-3mm-mix%"” represents the REDCNN trained with images of

sharp kernel, 3mm thickness and mixed dose levels; “DLsmooth-1mm-25%" represents the REDCNN
trained wi!images of smooth kernel, Imm thickness and a single 25% dose level. Each pair of

networks wascross evaluated on two types of test sets to determine how the performance may

change wh @ ting data were acquired with a different parameter value.
There was only one reduced dose level (25%) available in LDGC. The mixed-dose data were
synthesize@using the full and quarter-dose scans by a simple blending of the two scans: A noise map

was obtainld by si)tracting the quarter-dose image from the full-dose image and then a portion of

the noise map was blended back into the full-dose image as follows:
i xd=xf+a(xq—xf),a20,

where x4, X5, q represent the synthesized noisy image at a dose level d, the original full-dose

and the dose images, respectively. The scaler a denotes the blending factor. When a = 1,

This article is protected by copyright. All rights reserved.
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the outcome is exactly the quarter-dose image. When a = 0, the outcome is the full-dose image.
Assuming the full-dose and quarter-dose image noise variances are ¢° and 4c° at an image pixel, for
an arbitMative blending factor a, the noise variance of x;at the same pixel will be
((1-a)? 2_The noise level corresponds to 1/((1 — a)? + 4a?) of the full-dose scan,
based on t&\ip that noise variance is inversely proportional to the exposure level in CT
images meconstrmeted with FBP when all the other scan parameters are the same. We varied the

blending f omly in the interval of [0.5, 1.2] for the mixed-dose training data case, resulting

4

in images esp@nding to dose levels ranging from 17% to 80% of the full-dose level.

2.3. P

&

nce evaluation

To evalu rformance, we considered the following IQ metrics: MSE, contrast-dependent

S

MTF, pNPS, . MSE reflects how well the network performs in minimizing the loss function

that it is designe do. We did not evaluate the other global metrics like PSNR or SSIM in this work

U

since they y correlated with MSE. However, it is well known that a denoised image with

smaller M oes not necessarily have better diagnostic image quality. We included the standard CT

N

IQ metrics NPS as they are commonly used to characterize the image resolution and noise
texture. Lagtly valuated the denoising performance in terms of LCD, a task-based |Q metric
measuring bility of detecting low-contrast lesions in the denoised images.
2.3.1. an Squared Errors (MSE) test
Fort easure, the slices from one patient dataset in LDGC that were not included in the

training were used as a test set. The total slice numbers were more than 200 slices and 500 slices for

the testing@ases of 3mm and 1mm slice thickness CT volumes respectively. For each slice, the full-

[

|INoisy Image—Ref Image||?

dose image ed as a reference to calculate the MSE (= ) before and after

The total number of pixels

MSE before denoising - MSE after denoising

O

the DL den en the MSE reduction rate (= X 100%)

MSE before denoising

was calculdted to quantify the denoising performance. The MSE was evaluated on an entire image

h

slice. B ultiple slices in the test CT volumes, statistics of the MSE reduction rates can be

{

obtained ald compared between the pairs of DL networks.

1

trast-dependent Modular Transfer Function (MTF) and pixel-level

Power Spectrum (pNPS) test
We's 2D phantom CT scans for the MTF and NPS tests. We also collected physical CT

scans of the N600 (The Phantom Laboratory, Salem, NY)) to validate the simulation-based

A
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results, which are described later in Sect 2.4. Both the MTF and NPS were evaluated within the
plane. We did not evaluate the z-directional resolution and noise property because REDCNN was
implemWD denoising network in this study. The network model was not trained using z-
direction d ence was not designed to alter the z-directional property in a image slice. The
simulated &ntom had a similar layout as the CATPHANG600 contrast module CTP404 to
allow the neeasmmement of contrast-dependent MTF. In this work, the contrast-dependent MTF was
evaluated m methods described in [23] at these five contrast levels: 990, 340, 200, 120 and
35 HU. The@ value was recorded for each MTF curve and plotted as a function of the HU

contrast to rize the contrast-dependent image resolution.

Note thWess CT scan of the contrast phantom was simulated for the MTF test to eliminate
any uncertaindi used by random noise, since MTF represents a deterministic behavior of an
imaging system. Swever, we also simulated five noisy contrast phantom scans for the MTF test to
validate thm noiseless scan to assess the resolution property of a nonlinear DL noise

I

reduction i opriate. For the NPS measurement, 50 noisy water phantom CT scans were

each realiz

simulated. iep of Interest (ROI) of size 64 x 64 pixels at the image center was extracted from
io al noise power spectrum (NPS) was estimated by taking the average of the

modul he Fourier transform of the noise images after being subtracted from the mean

of the 50 rea s. A one-dimensional (1D) NPS curve was also estimated by radially binning the
corresp PS image. Because the deep learning network was trained to operate on
pixelized images without being informed about the length unit of the pixel size, the estimated NPS
was considSed to be a function of the discrete frequency unit “cyc/pix” (cycle/pixel) in this study,
rather than “lp/cm” (line pair/cm). To differentiate from the standard NPS that usually has a
dimension”lp/cm”, we refer to the “cyc/pix” unit-based NPS as pixel-level NPS, shortened
as pNPS.

The s£ scans were created from a virtual fan-beam 2D CT scanner. The virtual scanner

had distH mm from the x-ray tube to the isocenter and 1085.6 mm to the detector, the
same as thﬂ Siemens CT scanner used to collect the LDGC dataset. Poisson noise was

modeled a ctor but electronic noise was not. We varied the air photon flux to achieve

different nai els. To simulate the reconstruction kernels in the LDGC data, two Hann filters of
differen requencies (named Hann1 & Hann2) were used in our FBP reconstruction. The

This article is protected by copyright. All rights reserved.
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cutoff frequencies were tuned to closely match the MTF50% and MTF10% of the D45 and B30 filters
(see Table 1). Note that MTF50% and MTF10% are the frequency values where MTF drops to half
and 10‘VMy. For convenience, we refer to Hann1 and D45 as sharp kernels, and Hann2 and
B30 as smo, els in this paper. The reconstruction pixel size was set to 0.664 mm,
correspon&%lz reconstruction matrix of a 340 mm field of view (FOV). Since we only
simulated 2Bsseams; slice thickness was not a modeled parameter in the virtual scanner. The

simulated Mld be treated as a very thin slice thickness setting. The CT simulation code was
t

implementg® baS&d on the Michigan Image Reconstruction Toolbox (MIRT) that is available online at

https://we ich.edu/~fessler/code.
2. -Contrast Detectability (LCD) test
The low-co tectability was estimated using a model observer and simulated MITA-LCD

the signal nd 100 scans of the background module of the MITA-LCD phantom CCT189 (Fig.

2) at five emevels. The signal module contained four low-contrast disks with varying size/HU

phantom (Etom Laboratory, Salem, NY) CT images. Specifically, we simulated 200 CT scans of

combinati /14HU, 5mm/7HU, 7mm/5HU, 10mm/3HU) to mimic subtle lesions. The five
exposu imulated were: 100%, 85%, 70%, 55% and 30%. The 100% dose level
corresponde air photon count of 3x10° per detector pixel. For each disk signal, a signal-
presen s cropped from the scan of the signal module and five signal-absent (SA) ROIs

were cropped from the background module at the vicinity of the signal location. A Laguerre-Gauss
channelize&oteling model observer (LG-CHO) was applied to estimate the signal detectability [24].

The LG-CHQ ive channels and the Gaussian width was adjusted to match the size of the disk to

be detecte 5 the 200 SP ROIs and 500 SA ROls, 80 pairs of SP and SA ROIs were used to train

the model . The remaining ROIs were used to estimate the detectability, quantified by the
area undert®he receiver operating curve (AUC).

S —

2.4. Validatl:s') with physical phantom scans

CT scans of a CA#PHANG600 phantom (The Phantom Laboratory, Salem, NY) were collected on a

nition AS model (Siemens Medical Solutions USA, Inc, Malvern, PA) to validate the

observations ir MTF and NPS test with simulated phantom scans. The scan protocols were

This article is protected by copyright. All rights reserved.
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designed to closely match the settings in the LDGC dataset, including the parameters of kVp, x-ray
filter, detector collimation, slice thickness, convolution kernel and reconstruction field of view. Table
2 proviery of those major scan parameters in the LDGC, together with the parameter
settings for ntom scans. As can be seen from the table, the reconstruction kernel and the
slice thickn& same for the LDGC patient scans and the phantom scans. However, there
existed sprmemdiffesences in the other parameters as discussed next.

First, wewe automatic exposure control (AEC) off since “on” or “off” would not matter
much for afgylindri€al phantom with minor interior background variation. The patient scans had kVp

varying in the rgnge of 100 — 120 kV across the slices due to AEC. For our phantom scan, the kVp was
fixed at 12mond, we scanned the phantom with three dose options, named high-dose, full-

ns. The high-dose option (higher than the full-dose option) was added to reduce

dose and q se. The full-dose option was set to match the average values of the CTDI of the
full-dose patient

the uncertajnigiagihe MTF estimations. Third, for the x-ray filter setting that may affect the x-ray

spectrum sfape, we used “FLAT” filter since most of the patient scans were with this option. Fourth,

our phantom asghad the same single collimator width 0.6 mm as the LDGC patient scans.
However, oIIimator width was 12 mm, narrower than 38.4 mm in the LDGC scans, because

the 38. imator option was not available on the scanner model we used. Fifth, the pitch
factors in the Patignt scans varied from 0.6 to 0.8. In our phantom scan, the pitch was set to 0.8 to
save sc ng as the pitch factor was smaller than 1, degradation in the z-directional

sampling would be negligible for the scans of the cylinder-shaped CATPHANG600 phantom. Lastly, the
reconstrucSn field of view (FOV) varied in the patient scans, ranging from 340 to 420 mm due to

the different patient sizes. Reconstruction FOV affects the pixel size. For the phantom scans, we set

the FOV to m, close to the average FOV of the 10 patient scans. This resulted in a pixel size

of 0.74 mmii econstructed phantom volume.

In tot ted one high-dose scan, and five repeats of the full-dose and quarter-dose scans.

For eacHHmstructions with 1 mm and 3mm slice thickness, sharp and smooth kernel were

generated,3 in 44 CT volumes.
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3. Results

3.1. Mean Squared Errors Test
Fig.3 Hots that compare the MSE reduction rates of the three pairs of DL networks.

For the dg act (Fig. 4a), when tested on the quarter-dose images, the DL networks trained
solely wﬁch ﬁuarter-dose data (DLsmooth_3mm_25%) and trained with mixed-dose data
(DLsmooot! 3mm_mix%) had almost equivalent MSE reduction rate. When tested on the 80% dose
images, the DL ngtwork trained with mixed dose reduced MSE noticeably more. We also tested the
network m@dels affanother two dose levels: 50%, a moderate low-dose level and 18%, close to the
lowest dosm;che mixed-dose training data. Difference of MSE reduction rate between the

r

two model

mix% had DEE performance at aggressively low dose levels (18% and 25%) compared to

four tested dose levels is plotted in Fig. 4. It can be seen that DLsmoooth-3mm-

DLsmooot % but reduced MSE comparatively more as the dose level increased toward
normal do end indicates that the DL denoising network trained with mixed-dose data
generalize n data of different dose levels.

For the r@tion kernel effect, Fig. 3b shows that when the training and testing data had a
different reconstruction kernel, the DL network performed substantially worse than the cases with
matching truction kernel in the training and testing data. This indicates that the DL denoising
network di generalize well on data with a different reconstruction kernel.

For the thickness effect (Fig. 3c), in both the 3mm and 1mm thickness testing cases, the MSE
reduction rh was similar between the DL networks trained with the two different thickness

datasets. ThegBlmpetwork trained with 3mm thickness appeared to be slightly better at maintaining

testing per @ e across thicknesses, but the difference was not statistically significant since the

two distribug ges heavily overlapped. The similar performances indicate that the slice
thickne r may not be critical to the DL denoising network.

Fig. 5 ample CT images to visually demonstrate the effect of reconstruction kernel. As

i

can be seen, in th@gtest case of FBP smooth (top two rows in Fig. 5), the DLsharp-3mm-mix%

Ul

processed viously appears to be much noiser than the image processed by DLsmooth-3mm-
mix%. M e, in the test case of FBP sharp (bottom two rows in Fig. 5), the image texture of the

DLsmooth- ix% processed FBP sharp image appears quite different from the others. It is also

A
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noticeable that the anatomical structures in the DLsmooth-3mm-mix% processed image slice are

oversmoothed and some small features are lost.

T

3.2. Condent Modular Transfer Function Test

Fig. 6a a he contrast-dependent image resolution curves for the DL networks
evaluat®y simulated noiseless FBP-smooth and FBP-sharp contrast phantom images,
respectivel rves clearly show that the image resolution decreases with contrast. This
nonlinear sihoothifig behavior is similar to that of traditional iterative reconstruction and denoising
methods. It observed from Fig. 6a and 6b that relative MTF performance among the
differentlyfraified hetwork models are the same in the tests of using FBP-smooth and FBP-sharp
contrast phantom images: the DL network trained with sharp-kernel data had slightly better image
resolution (higher MTF50% value) than the DL network trained on smooth-kernel data; the DL
network trained with thicker slice data had slightly better image resolution than the DL network
trained witl thinner slice data; the DL network trained with mixed-dose data had slightly better
image resolution than the DL network trained with single-dose data, except at the contrast level of
35HU whe@olution dropped greatly for the single-dose DL network. In summary, the trends
in the MTF test indicate that the image resolution of the DL denoising network was not very sensitive

to the kern lice thickness parameters. However, it appears that with mixed-dose training

data, lo ast resolution was better preserved.

To validate that the MTF measurements evaluated using noiseless test image is consistent with
the resultsw on noisy test images, we also simulated 5 noisy contrast phantom images with

an air photg of 2.4x10° per pixel and further tested the MTF performance of one DL network

model (DL
noiseless a isyatest images. It can be seen that the mean of MTF50% measurements using noisy
test im&nsistent with those on a noiseless test image, but with additional uncertainty
from imM

We also checkedhwhether the DL network would introduce bias to the HU values of the contrast

3mm-mix%). Fig. 6¢c compares the MTF50% curves of DLsmooth-3mm-mix% in

objects whentested on noiseless image. Using the DLsmooth-3mm-mix% model as an example,

Table 3 li mean HU values (over the central 9 pixels) of the disks in the original FBP contrast-

phantom im d the DL processed images, for both noiseless and noisy cases. The HU values in
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the DL processed noiseless and noisy FBP images were all close to the simulated true values. The HU

results show that no bias was introduced by the DL model when tested on noiseless FBP images

aIthoqued using noisy CT images.

3.3. -level Noise Power Spectrum Test
We sifh noisy scans of a cylindrical water phantom for the pNPS estimation, with an air
photon co x10° per pixel. Each noisy scan was reconstructed by FBP with both sharp and

smooth kefhels. n the noisy images were processed by DLsharp-3mm-mix% and DLsmooth-3mm-
mix% to com he effect of kernel in the NPS test. Note that we did not further examine the

effects of tle slice Ehickness and dose level parameters in the NPS and the LCD test, because the

S

previous MSE and MTF test results showed that the DL network trained with 3mm slice thickness

and mixed-dose ddta had better performances.

G

Fig. 7 pr local pNPS images and Fig. 8 plots the corresponding radial profiles. The radial

N

profiles cle that the DL networks reduced the noise magnitude and shifted the peak

frequency ro. Again, this is a behavior similar to that of traditional iterative reconstruction

d

and denois ods. In general, DL denoised images had noise components concentrated more

inthe | cy bands compared to the original FBP images. The local pNPS of the DL images

also appear to ss radially isotropic, reflecting higher nonstationarity along the angular direction

V)

of the ction method. In addition, one may notice a contrasting appearance in the pNPS

of DLsmooth-3mm-mix% processed FBP-sharp image (the rightmost in Fig 7b): much higher

1

magnitude ur corners (high-frequency regions). The 1D radial profile clearly shows that the
correspondi S curve has a rising tail (as indicated by the arrow in the Fig. 8b) after about 0.5

cyc/pix. M he tail’s shape and height closely match those of the pNPS curve of the original

3

FBP-sharp i dicating that the high-frequency noise was not removed by the DL network

n

trained wi -kernel data. An image patch of the DLsmooth-3mm-mix% denoised FBP-sharp

water p ge, shown in Fig. 8c, also demonstrates the remaining high-frequency noise,

{

appearing eckerboard like artifacts. This phenomenon suggests that the DL model possibly

did not lea

U

ove the high-frequency noise from the smooth kernel training data, since the

training data contain noise in the high-frequency band.

A
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3.4. MTF and pNPS test using physical phantom CT scans
We conducted the MTF and NPS tests again using the physical CT scans of CATPHANG600 to

validate th|obser'tions found in the results using simulated phantom CT scans.

First, wee contrast-dependent image resolution of the DL networks processing 3mm-
thickness JREIRIERTASSe FBP images. Fig. 9 displays the resolution curves. Due to image noise, the
MTF funetion estimated from the disks of contrast below 100HU were not reliable. Therefore, the
contrast-dL

image resolution curves were based on the disks of air, PMP, LDPE and

Polystyrengin the BATPHANG60O contrast module, which had measured mean absolute contrast of

G

1100, 260, 1 d 115. The resolution curves in Fig. 9 also show that DL networks trained with data

of sharp kelinelythi@ker slice thickness, mixed-dose levels had better image resolution than their

$

counter parts, similar to the findings obtained in the testing results with simulated 2D CT scans.

LI

Second, ated the local pNPS images and extracted their 1D radial profiles of the DL

networks 3mme-thickness and full-dose FBP images, shown in Fig. 10. A rising tail in the 1D

N

pNPS curv Lsmooth-3mm-mix% processed FBP-sharp images was also observed, similar to

that in Fig. @#b" omitted the NPS results for processing the low-dose FBP images since they

d

present si r ds. These experiments showed that the NPS results obtained with the physical

phanto greed with those obtained with the simulated CT scans.

M

3.5 rast Detectability Test

Fig. 11 plots AUC, a measure of low-contrast detectability, as a function of dose for detecting the

I

10mm/3H in the simulated MITA-LCD phantom. As can be seen in the figure, both the

DLsharp a oth networks improved the detectability over the original FBP images regardless

€

of the origi nstruction kernels. The DLsmooth network had similar AUCs as the DLsharp

network infprocessing FBP-smooth images but significantly higher AUCs in processing FBP-sharp

n

images. lain the possible reasons later in the discussion. The detectability curves are not

{

shown h other three inserts (3mm/14HU, 5mm/7HU, 7mm/5HU). In general, we observed

that the detectabMity curves in the original FBP images and the DL denoising images were almost the

U

same for d the two smaller inserts (3mm/14HU and 5mm/7HU), then became more

separate size of the insert increased, but the relative performance trends were the same for

A
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detecting these inserts. Therefore, we only present the curves for detecting the 10mm/3HU insert

since the curves separated the most in this case.

T

4. DISC

P

In thiS8y SFREWERBesented a framework for the evaluation of performance generalizability of a DL-
based CTi oising method, using the REDCNN as an example denoising algorithm. We used
the patienm in the LDGC dataset to train the network on data acquired with different
imaging pa s. Based on the data variety, we examined the performance generalizability of the

denoising Metwidrkion three parameters: reconstruction kernel, slice thickness and dose levels.

S

Performances wete evaluated using MSE, contrast-dependent MTF, pNPS and LCD. We observed the

following three poflats from the testing results.

L

First, the g network did not generalize well between the sharp and smooth reconstruction

[

kernels, copsi ith the observations in [17]. This is reasonable since the reconstruction kernel is
the most d factor that determines the noise correlation structure in a FBP reconstructed
image. The rves of the FBP-sharp and FBP-smooth images in Fig. 8 & 10 obviously differ in

both th

d

he cutoff frequencies. Due to the DL’s data-driven mechanism, a denoising
network may n cognize noise components that are not seen in its training data. This explains the

remaini

M

uency noise in the DLsmooth processed FBP-sharp images. On the other hand,
the image resolution property was not much different between the DLsmooth and DLsharp networks

since the d€poising network was not trained to alter image resolution.

]

Second, sing network was not sensitive to slice thickness, consistent with the

observation . Usually for FBP reconstructed volume in a helical CT scan, the slice thickness

parameter(fi§ related to the interpolation width along the z direction applied in the image

n

reconst ess [25]. When all the other imaging parameters are kept the same, a 3mm slice

{

thicknes e may be conceptually considered as being formed by a moving average (or

weighted averagefof adjacent slices of the 1mm slice thickness CT volumes. Averaging along the z

4

direction d alter the noise correlation structure within a slice, so the denoising networks
trained w and 1mm thickness image slices were not much different. However, the noise

magnitu m thickness slice is usually lower than that in the corresponding 1mm slice. In this

A
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sense, the target images in the 3mm thickness training data had slightly better image quality, which

may explain why the DL-3mm network performed slightly better than the DL-1mm network in both

the MSEWsts.

Third, th @ g network was more robust in processing images of an unknown noise level

when train€d'w

Xed-dose data. The MSE results showed that the DL-mix% network maintained
the MSE r‘xctlon rate in processing quarter-dose slices and reduced MSE more when processing
slices of a dose level than the DL-25% network. The DL-mix% also preserved the low-

contrast infage resBlution better, as shown in the MTF test where the testing data may be

¢

considered as a \ery high-dose scan. Since the noise correlation structure did not change except the

magnitud e ydrious dose level settings, training with mixed-dose data increased the adaptivity

S

of the net ocessing CT images with unknown noise levels. The finding on the dose

parameter agreesdith the observation in Chen et. al. [6], where a three-layer convolutional neural

U

network (C ined with mixed-dose data was found to have better denoising performance

1!

than the CNIN3 trained with single-dose data in processing data at all the tested noise levels. Mixing
the data of dose levels in training can also be considered as a data augmentation strategy

that is comimo ed to improve robustness of a DL network performance [26, 27].

a

Desp inding based on the MSE and pNPS tests that the denoising network did not

generalize een reconstruction kernels, the DLsmooth network surprisingly achieved much

M

better formance than the DLsharp network in detecting the 7mm and 10mm disks after

processing the FBP-sharp images. It appears that the remaining high-frequency noise in the

frequency Dames@ch that the high-frequency information was not used by the model observer in the

I

DLsmooth d FBP-sharp images did not negatively affect these detection performances. The

reason cou t the signal information of the four disks mostly concentrated in the lower

detection . hown in Fig. 7b, the rising tail of the NPS curve of DLsmooth starts at about 0.5

n

cyc/pix. smallest 3mm disk that was about 4.5 pixel wide, its main spectrum lobe is

1

within O ¥ the signal power of most of the low-contrast disks included in the LCD phantom

already di t 0.5 cyc/pix. Based on the MTF and pNPS tests, the DLsmooth appeared to have

U

comparabl ion and better noise reduction in the lower frequency band compared to
DLsharp, w y have contributed to the higher detectabilities of DLsmooth in the LCD test. The

results a nalysis indicate the limitation of this LCD test in evaluating the overall performance

A
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of DL denoising networks. Additional tasks focusing on high-frequency information need to be

developed to allow a thorough evaluation of a DL method’s denoising performance, such as shape

discrimiWestimation, etc.

three CTi

ging eters in this work. Other parameters associated with a CT scan can also
affect the SP image quality, such as kV, helical pitch, detector collimation width and scan FOV. It is

worth disc w the DL denoising network REDCNN may generalize across other parameters.

As is know‘ aDL )twork usually generalizes well within its training data distribution. In an FBP-
reconstructe image, the noise approximately follows a correlated multi-variate Gaussian

distributiofi T, se correlation structure can be described by the (local) NPS. The results in this
study provi idence to support that the generalizability performance of REDCNN denoising
algorithm is hi;hlSOrrelated with the in-plane pNPS property of the data determined by the CT
imaging par, : if a different imaging parameter value associated with the testing data does not

alter the p shape relative to the training data, the DL network will maintain its denoising

performan s between the two different thickness settings and between different dose
levels; If a Qiff parameter value substantially changes the pNPS shape, the DL network will likely
have p ising performance, such as between the sharp and smooth reconstruction kernels.
Based on this ing, we make the following predictions on the generalizability related to other scan
param

Since the kV setting mainly affects the image contrast and not the noise color, we expect a

denoising lho generalize well in the typical kV range (80-140 kVp) of CT scans. Helical pitch

and detectg ation width mainly affect the longitudinal resolution, similar to the effect of the

slice thickn@ ameter. Therefore, the denoising network may not be very sensitive to the change

of theseEeters as well. The scan FOV (or reconstruction FOV) setting usually varies with
the pati ith a fixed CT reconstruction matrix size (512x512), the scan FOV setting
determiHl size of the reconstruction grid, i.e., the image-domain sampling frequency.

Backproje oisy sinogram to a finer or a coarser image grid will affect the noise correlation

between adij age pixels. Therefore, the pNPS of CT scans reconstructed with different FOVs
will be diff P the FOV setting changes significantly, such as from average-size patients to obese
patients diatric patients, the denoising performance may not generalize well. Loss of
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resolution or denoising performance due to a change of FOV in the data was observed in the Huber
et. al study, where a range FOV from 100 mm to 400 mm was examined [17]. We will conduct
experimMirm these predictions with appropriate patient and phantom CT data in the
future. Ple that the above generalizability discussion is regarding the imaging parameters
assuming t@ part to be scanned is the same. When a network is trained on CT images of
abdomen, immaymmet Maintain the denoising performance in head or extremity scans and vice versa,

since the owendent CT noise property could differ significantly due to substantial changes in

anatomical

e and size of a body part.

A limitation of this work is that it investigated generalizability of a single denoising network,

REDCNN. arglother popular networks applied to low-dose CT image denoising, such as ResNet,
UNet and ifferent networks may have different ways of extracting relevant features in the
training data, resulfing in images of different resolution and noise properties [28]. However, DL
methods s mon property: data-driven-based learning mechanism. Therefore, training
data is always an essential element affecting the performance of DL methods. We anticipate that the

generalizab

gformances observed on REDCNN likely apply to other types of 2D DL denoising

networks ifith similarly trained to perform a slice-wise CT image denoising function. The

experi ted in this work will be performed using other typical types of DL networks to
confirm this a tion.
Anot t should be noted is the open question of the utility of MTF and NPS for the

characterization of DL-derived images. These two Fourier-based IQ metrics are designed for linear,

stationary shift-invariant). FBP is a linear reconstruction method. A FBP-reconstructed CT
image is a tely locally stationary [29], hence MTF and NPS are suitable to describe a CT
system wit onstruction. Therefore, we used MTF and local NPS to analyze the underlying
data prop FBP image input to the denoising network. However, these metrics cannot fully
charactemi imaging performance of a nonlinear noise reduction method [24]. A DL-based

denoisiﬁH, obviously a nonlinear process. Modified versions of the MTF and NPS, such as
contrast—dﬂ MTF[23] and noise-level dependent NPS[30], have been proposed as possibly

providing icture of the imaging performance of those nonlinear methods, but they may still

not captur ariant properties of images. In this work we evaluated the contrast-dependent
MTF an PS for comparing the resolution and noise behavior over the imaged frequency
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range of various denoising network models measured under the same context. However, metrics like
MTF and NPS developed for linear systems need to be complemented by other performance metrics

such as Waerformance metrics to fully characterize the diagnostic image performance of

DL method

In summary, bility performance is an important characteristic of DL methods. Loss of
generalizahility of a DL network can be rooted in a shift of the testing data distribution from the
training data. are many different CT imaging settings. Without any knowledge about the
generaliza@ion we may have to test a CT image denoising network tediously on data from a
large variety o n settings to understand its use range. Our results imply that comparing the
underlying agsociated with the imaging parameters used to acquire the testing and training

data may one way to predict the generalizability performance of a DL-based CT image

denoising networld CT data acquired with imaging parameters that significantly change the pNPS

relative to tng data would possibly not benefit from a DL noise reduction model, such as
t

images rec ructed with a different reconstruction kernel. This finding can be helpful to the

developme Il as regulatory evaluation of DL-based CT image denoising methods. For
developersgth ing data cohort may be more effectively designed. One may emphasize on
adding tkaiii that has different pNPS properties to improve the generalizability of a CT image
denoising ne r training the network separately on those categories of data. For regulatory
evaluatj gories of testing data may be appropriately reduced to support the assessment

of the generalizability of a DL-based CT image denoising software within its intended use, according

to the FDASast-burdensome principle (https://www.fda.gov/regulatory-information/search-fda-

suidance-docugaents/least-burdensome-provisions-concept-and-principles). Validated intended uses

g will allow clinicians to have better information on what kinds of images are

suitable to be ssed by a DL denoising algorithm available at their site.

5. CONCLUSIONS

This paper re;ort; our work in testing the performance (MSE, MTF, pNPS and LCD) generalizability
of a 2D DL-bas denoising method (REDCNN) on three CT imaging parameters (reconstruction
kernel, kness and dose). Our results showed that the DL performance did not generalize
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well between the sharp and smooth reconstruction kernels, was not highly sensitive to the slice
thickness parameter, and was better when trained with mixed-dose data. The observed DL
perfornWiors indicate that the generalizability performance of a DL-based CT image
denoising highly correlates to the pNPS similarity between the testing and training data.
Future wo&to investigate the impact of other imaging parameters on the performance

generaliza hilibysbeseonsolidate this finding. Tasks that challenge possible differences in the higher

]

spatial-fre ntent of the denoised images should also be explored to allow a more complete

performangéev tion.

G

Data Avai It
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tatement: The physical phantom CT images and the simulated phantom CT
images that suppOlt the findings of this study are available from the corresponding author upon

reasonabl

danu

Refere

[1] M. Soderberg, and M. Gunnarsson, “Automatic exposure control in computed tomography--
an gv pn of systems from different manufacturers,” Acta Radiol, vol. 51, no. 6, pp. 625-
34 OJ0.

2] : , G. S. K. Fung, K. Parodi, and K. Stierstorfer, “The z-sbDBA, a new concept for
ic sheet-based fluence field modulator in x-ray CT,” Medical Physics, vol. 47, no. 10,
ppaA827-4837, 2020.

no

[3] I 1, and J. A. Fessler, “Statistical image reconstruction for polyenergetic X-ray
computed fomography,” IEEE Transactions on Medical Imaging, vol. 21, no. 2, pp. 8§9-99,
20

[4] Y. Li, L. Tang, Y. L. Li, X. T. Li, Y. Cui, Y. S. Sun, and X. P. Zhang, “Evaluation
0 eduction and image quality in chest CT using adaptive statistical iterative

This article is protected by copyright. All rights reserved.



Generalizability of DL in CT denoising

[5]

[6]

[7]

[12]

[14]

reconstruction with the same group of patients,” The British journal of radiology, vol. 85, no.
1018, pp. €906-e911, 2012.

% Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang, “Low-Dose
C ith a Residual Encoder-Decoder Convolutional Neural Network,” IEEE Transactions
maging, vol. 36, no. 12, pp. 2524-2535, 2017.

ang, W. Zhang, P. Liao, K. Li, J. Zhou, and G. Wang, “Low-dose CT via
al neural network,” Biomedical Optics Express, vol. 8, no. 2, pp. 679-694,
2017.

H.
T
20

a
@“b

Q. ang, B Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang, L. Sun, and G.
W = -Dose CT Image Denoising Using a Generative Adversarial Network With
Wm Distance and Perceptual Loss,” IEEE Transactions on Medical Imaging, vol. 37,

€

no 48-1357, 2018.

B. i Han, H. Shim, and J. Baek, “A performance comparison of convolutional neural
network-ba@ed image denoising methods: The effect of loss functions on low-dose CT

im edical Physics, vol. 46, no. 9, pp. 3906-3923, 2019.

R. s MacDougall, Y. Zhang, M. J. Callahan, J. Perez-Rossello, M. A. Breen, P. R. Johnston,

and" Y, Improving Low-Dose Pediatric Abdominal CT by Using Convolutional Neural

Ne Radiology. Artificial Intelligence, vol. 1, no. 6, pp. €180087, 2019.

W. . Zhang, J. Yang, J. Wu, X. Yin, Y. Chen, H. Shu, L. Luo, G. Coatrieux, Z. Gui,
, “Improving Low-Dose CT Image Using Residual Convolutional Network,”

IE s, vol. 5, pp. 24698-24705, 2017.

P. Lyu, D. Marin, and E. Samei, “Noise and spatial resolution properties of a
commercially available deep learning-based CT reconstruction algorithm,” Medical Physics,
vol,_47,no. 9, pp. 3961-3971, 2020.

M. , O. Chevallier, P.-O. Comby, G. Secco, K. Haioun, F. Ricolfi, B. Lemogne, and

R. “Deep Learning Versus Iterative Reconstruction for CT Pulmonary Angiography
n ency Setting: Improved Image Quality and Reduced Radiation Dose,”

i
Diagnostics (Basel, Switzerland), vol. 10, no. 8, pp. 558, 2020.

H. Kawashima, K. Ichikawa, T. Takata, W. Mitsui, H. Ueta, N. Yoneda, and S. Kobayashi,

ormapce of clinically available deep learning image reconstruction in computed
M a phantom study,” J Med Imaging (Bellingham), vol. 7, no. 6, pp. 063503, Nov,
20

Ex:ummary for the Patient Engagement Advisory Committee Meeting: Artificial
Intelli (A1) and Machine Learning (ML) in Medical Devices US Food and Drug
tration, https://www.fda.gov/media/142998/download, October 22, 2020.

This article is protected by copyright. All rights reserved.



Generalizability of DL in CT denoising

[15]

[16]

[17]

[25]

[26]

C. H. McCollough, A. C. Bartley, R. E. Carter, B. Chen, T. A. Drees, P. Edwards, D. R.

Holmes III, A. E. Huang, F. Khan, S. Leng, K. L. McMillan, G. J. Michalak, K. M. Nunez, L.

Yu, and J. G. Fletcher, “Low-dose CT for the detection and classification of metastatic liver
ults of the 2016 Low Dose CT Grand Challenge,” Medical Physics, vol. 44, no.

10, 9-¢352, 2017.
R. Lin, Q. Li, L. Jinag, J. A. Fessler, and K. Myers, “Generalizability test of a

dewg-based CT image denoising method,” The 6th International Conference on
Imse Formation in X-Ray Computed Tomography, 2020.

N. Rg Huber, A. D. Missert, L. Yu, S. Leng, and C. H. McCollough, “Evaluating a
Coativolutighal Neural Network Noise Reduction Method When Applied to CT Images
ec

R ted Differently Than Training Data,” Journal of Computer Assisted Tomography,

Vom4, pp. 544-551, 2021.
K. HE, X¥Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition." pp.

770-778:
K. , W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual

Le Deep CNN for Image Denoising,” IEEE Transactions on Image Processing, vol.
26 . 3142-3155,2017.

rger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical
Im@ge entation," Medical Image Computing and Computer-Assisted Intervention —
MICCAT2015. pp. 234-241.

w, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
a ngio, “Generative Adversarial Nets,” Proceedings of the International Conference
iformation Processing Systems, pp. 2672-2680, 2014.

R. Zeng, S. Divel, Q. Li, and K. Myers, "Performance Evaluation of Deep Learning Methods
Appi T Image Reconstruction.”" pp. E162-E162.

S. R A\ D. B. Husarik, G. Yadava, S. N. Murphy, and E. Samei, “Towards task-based
ass % of CT performance: System and object MTF across different reconstruction
algorithms,” Medical Physics, vol. 39, no. 7Partl, pp. 4115-4122, 2012.

J. Y& Vaishnav, W. C. Jung, L. M. Popescu, R. Zeng, and K. J. Myers, “Objective assessment
of umage quality and dose reduction in CT iterative reconstruction,” Medical Physics, vol. 41,
S PDp: 071904, 2014.

L. W. G0!5‘nan, “Principles of CT: Multislice CT,” Journal of Nuclear Medicine Technology,
VO 72, pp. 57-68, 2008.

@W, Y. Bengio, and A. Courville, Deep Learning: The MIT Press, 2016.

This article is protected by copyright. All rights reserved.



Generalizability of DL in CT denoising

[27]  C. Shorten, and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep
Learning,” Journal of Big Data, vol. 6, no. 1, pp. 60, 2019/07/06, 2019.

[28] %eng, M. M. Farhangi, and K. Myers, Deep neural networks-based denoising
models for CT imaging and their efficacy, p.”pp. MI: SPIE, 2021.

[29] R. Petrick, M. A. Gavrielides, and K. J. Myers, “Approximations of noise
covariance in multi-slice helical CT scans: impact on lung nodule size estimation,” Phys Med

%im, no. 19, pp. 6223-42, Oct 7, 2011.
[30] K.LiJ Tang, and G.-H. Chen, “Statistical model based iterative reconstruction (MBIR) in

cli@ystems: experimental assessment of noise performance,” Medical physics, vol.
41

, . 041906-041906, 2014.

Fig. 1. lllus the REDCNN denoising network. x and y represent the noisy image input and the
cleaner image output. Each “conv” layer contains 96 filters of size 5x5. Each “DeConv” layer also

ize 5x5 except that the last DeConv has only one filter of size 5x5.
images of the simulated MITA-LCD signal module (left) and background module

contain 96
Fig. 2: Sa

trast signals visible. The display window is [-50 50] for both images.

SE reduction rate of the DL networks tested on patient images of matching and
ging parameters. (a)The first row compares the dose level effect on denoising
single-dose (DLsmooth-3mm-25%) and mixed-dose data (DLsmooth-3mm-mix%).
(b) The second row compares the reconstruction kernel effect on denoising models trained with sharp
kernel data (DLsharp-3mm-mix%) and smooth kernel data (DLsmooth-3mm-mix%). (c) The third row
compares thickness effect on denoising models trained with 3 mm thickness data (DLsmooth-
3mm-mix°/mm thickness data (DLsmooth-1mm-mix%). The box plots were generated using
the Boxplot() function in MATLAB, in which the central red line indicates the median and the bottom
and top edg€S o box indicate the 25th and 75th percentiles, respectively. The whiskers extend to
the most e & ata points not considered outliers, and the outliers are plotted individually using

Fig. 3 Plots

the '+' marke pol.

Fig. 4 Differ, MSE reduction rate between the DL model trained with mixed dose data
(DLsmooth#8mm-mix%) and the DL model trained with quarter-dose data (DLsmooth-3mm-25%).
Test da atient CT images reconstructed with smooth kernel and 3mm slice thickness at
four dose levels: 18%, 25%, 50% and 80%.

Fig. 5 In’“trate the effect of reconstruction kernel on the denoising models. From left to
right are i full-dose FBP image as the reference, the quarter-dose FBP image as the input
to the DL networksy, DLsharp-3mm-mix% and DLsmooth-3mm-mix% denoised quarter-dose images.
a). Tested on a nt image slice reconstructed with smooth kernel and 3 mm slice thickness and b)
Tested on t image slice reconstructed sharp kernel and 3 mm slice thickness. The red box in
the full-dose age in (a) indicates ROI that is zoomed for display.

Fig. 6: dependent MTF50% curves of the DL networks evaluated using (a) the simulated
noiseles st phantom test image reconstructed with smooth kernel and (b) the simulated
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noiseless contrast phantom test image reconstructed with sharp kernel. (c) Comparison of contrast-
dependent MTF50% curves of the DLsmooth-3mm-mix% model in noiseless and noisy contrast
phantom test images reconstructed with smooth kernel.

Fig. 7: 2D Igcal pNRS of the simulated water phantom images and the corresponding DLsharp-3mm-
mix% ar“n%mm-mix% denoised images evaluated using: (a) simulated 2D water phantom
images recog ted with smooth kernel and (b) simulated 2D water phantom images reconstructed
with sharp
Fig. 8: (a) | profiles of the pNPS images in Fig. 7a. (b) The 1D radial profiles of the pNPS
images in FIg. 7D. " The blue arrow in (b) points to the remaining high-frequency noise in the
DLsmodth-8mmEmik % processed FBP-sharp images. The sample image patch in (c) illustrates the
remaining gh-frequency noise, which appears as tiny checkerboard like artifacts.

ae 1D gadl

Fig. 9: Con endent MTF50% curves of the DL networks evaluated using high-dose and 3mm-
slice-thickn PHANG0O0 physical CT test images reconstructed with (a) smooth kernel and (b)
sharp kerngl.

Fig.10: 2D PS of the CATPHANG0O physical CT scans and the corresponding DLsharp-

images re cted with smooth kernel and 3 mm slice thickness, and (b) the

3mm-mix% an smooth-3mm-mix% denoised images evaluated using (a) the CATPHANGOO
CATPHA ages reconstructed with sharp kernel and 3 mm slice thickness. (c)

Radial prefi the 2D pNPS images in (a) on the left and the radial profiles of the
2D pNPS images in (b) on the right.

Fig. 11 Det curves for the insert (10mm-3HU) in the original noisy FBP images, and denoised
FBP image harp-3mm-mix% and DLsmooth-3mm-mix% evaluated using (a) simulated MITA-
LCD phantdgn images reconstructed with smooth kernel, and (b) simulated MITA-LCD phantom test

images reconstructed with sharp kernel.

Table 0% and MTF10% values in Ip/cm of the commercial reconstruction

and simulated reconstruction kernels (Hann1 and Hann2).

Resolution D45 Hannl B30 Hann2
(Ip/cm)
(sharp) (sharp) (smooth) (smooth)
MTF50% 5.6 5.6 3.5 3.5
MTF10% 9.4 10.4 5.9 6.2

(©
=
-
O
C
e

Table 2: Com;rison of the imaging parameters between the LDGC dataset and our
phantom

<C
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Dataset AEC kVp CTDI x-ray filter Single/Total Pitch FOV Slice Reconstruction
Collimator kernels
(kV) (mGy) width (mm) (mm) Thickness
I ' (mm)
LDGC X 100 - 19.7 (mean for FLAT (8) 0.6/38.4 0.6t00.8 378 3 B30f
120 Full)
WEDGE 3 (2) (mean) 1 D45f
Phantom OFF 120 32.1 (High) FLAT 0.6/12 0.8 380 3 B30f
scans
20.0 (Full) 1 D45f
5.0(Quarter)
Table 3: on of the HU values of the five disks evaluated using simulated contrast
phantom i es reconstructed with smooth kernel. In this table, the DL model that was

used to process the contrast phantom images was DLsmooth-3mm-mix%. Each HU value
was calcu an average over the central 9 pixels of the corresponding disk. For the
case of n es, the two values before and in the parenthesis represent the mean and
standard deviation, respectively, estimated from 5 noisy realizations. The HU results in the
table sho bias was introduced in the denoised images when tested on noiseless
FBP imag

dai)

Disk object E 990 HU 340 HU -200 HU 120 HU -35 HU
Noiseless FBP- 989.9 339.7 -200.0 119.9 -35.0
smooth image

(referenci
DL processed 990.7 3401 -199.9 120.0 -35.3

989.1 (2.31) 341.1 (3.89) -200.1 (3.37) 120.2 (2.48) -32.8 (3.25)
989.9 (1.62) 341.0 (2.34) -200.2 (2.38) 120.5 (1.46 -33.6 (2.02)
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