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ABSTRACT 

Purpose: Deep learning (DL) is rapidly finding applications in low-dose CT image denoising. While 

having the potential to improve image quality (IQ) over the filtered back projection method (FBP) 

and produce images quickly, performance generalizability of the data-driven DL methods is not fully 

understood yet. The main purpose of this work is to investigate the performance generalizability of a 

low-dose CT image denoising neural network in data acquired under different scan conditions, 

particularly relating to these three parameters: reconstruction kernel, slice thickness and dose 

(noise) level.  A secondary goal is to identify any underlying data property associated with the CT 

scan settings that might help predict the generalizability of the denoising network.   

Methods: We select the residual encoder-decoder convolutional neural network (REDCNN) as an 

example of a low-dose CT image denoising technique in this work. To study how the network 

generalizes on the three imaging parameters, we grouped the CT volumes in the Low-Dose Grand 
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Challenge (LDGC) data into three pairs of training datasets according to their imaging parameters, 

changing only one parameter in each pair. We trained REDCNN with them to obtain six denoising 

models. We test each denoising model on datasets of matching and mismatching parameters with 

respect to its training sets regarding dose, reconstruction kernel and slice thickness, respectively, to 

evaluate the denoising performance changes. Denoising performances are evaluated on patient 

scans, simulated phantom scans and physical phantom scans using IQ metrics including mean 

squared error (MSE), contrast-dependent modulation transfer function (MTF), pixel-level noise 

power spectrum (pNPS) and low-contrast lesion detectability (LCD).   

Results: REDCNN had larger MSE when the testing data was different from the training data in 

reconstruction kernel, but no significant MSE difference when varying slice thickness in the testing 

data. REDCNN trained with quarter-dose data had slightly worse MSE in denoising higher-dose 

images than that trained with mixed-dose data (17-80%).  The MTF tests showed that REDCNN 

trained with the two reconstruction kernels and slice thicknesses yielded images of similar image 

resolution. However, REDCNN trained with mixed-dose data preserved the low-contrast resolution 

better compared to REDCNN trained with quarter-dose data. In the pNPS test, it was found that 

REDCNN trained with smooth-kernel data could not remove high-frequency noise in the test data of 

sharp kernel, possibly because the lack of high-frequency noise in the smooth-kernel data limited 

the ability of the trained model in removing high-frequency noise. Finally, in the LCD test, REDCNN 

improved the lesion detectability over the original FBP images regardless of whether the training and 

testing data had matching reconstruction kernels.  

Conclusions: REDCNN is observed to be poorly generalizable between reconstruction kernels, more 

robust in denoising data of arbitrary dose levels when trained with mixed-dose data, and not highly 

sensitive to slice thickness. It is known that reconstruction kernel affects the in-plane pNPS shape of 

a CT image whereas slice thickness and dose level do not, so it is possible that the generalizability 

performance of this CT image denoising network highly correlates to the pNPS similarity between 

the testing and training data. 

Index Terms—Deep learning, CT image denoising, Generalizability performance, Image 

quality assessment 

1. INTRODUCTION 

CT imaging is widely used in modern medicine for almost every disease or condition. It is highly 

recommended that the x-ray dose be as low as reasonable in CT exams for patient safety while 

maintaining the CT image quality to avoid misdiagnosis. Various approaches have been developed 

toward low-dose CT through improved hardware design such as automatic exposure control, kV 

optimization and dynamic bowtie filters [1, 2], and through advanced image 
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reconstruction/denoising methods, such as statistical and model-based iterative reconstruction (IR) 

algorithms [3, 4].  Deep learning (DL) methods are now being developed for this purpose, thanks to 

the availability of software tools and increased computational power. Publications on applying DL in 

low-dose CT image denoising are growing rapidly [5-10]. Commercial DL products have become 

available on some CT scanners, such as AiCE from Canon Medical Systems and TrueFidelity from GE 

Healthcare, both receiving FDA clearance in 2019.     

DL methods have been shown to be capable of improving image quality over FBP, similar to state-

of-the-art iterative denoising methods [9, 11-13]. However, unlike IR algorithms that are derived 

based on imaging physics and data statistics, a DL method relies on training data to optimize the 

network coefficients to attain a noise reduction function. This data-driven mechanism makes the DL 

performance less predictable when applied to processing data of different distribution from that of 

the training data. In most cases, characterizing the underlying data distribution to circumscribe the 

performance generalizability zone is not straightforward. The term “generalizability” refers to the 

accuracy with which performance results can be transferred to situations or data other than those 

originally studied[14].  The generalizability zone then refers to the data range for which a DL method 

preserves its reference performance, which is usually achieved when the testing and training data 

are acquired under the same condition. Preserving the performance means that the performance 

tested on a new set of data is comparable or statistically equivalent to the reference performance.  

The performance can be multifaceted for an image reconstruction and denoising method depending 

on the specifications. We considered multiple image quality (IQ) metrics in this work as described in 

the next paragraph. In CT, image resolution and noise properties are affected by CT imaging 

parameters including both the raw data acquisition parameters (kVp, mA, collimation width, pitch, 

etc.) and the reconstruction parameters (reconstruction kernel, slice thickness, reconstruction field 

of view etc.). Therefore, it is reasonable to investigate the generalizability performance of a DL 

network on data acquired with different parameters.  Changes in the network’s performance when 

tested on differently acquired datasets could indicate a potential data distribution shift caused by 

the associated imaging parameters. Thus, an analysis of the data properties associated with the 

imaging parameters may provide insight on possible ways to characterize the data distributions for 

the generalizable range of a DL-based CT image denoising network.   

Following this reasoning, we investigated a residual encoder-decoder convolutional neural 



 

Generalizability of DL in CT denoising 

 

 

This article is protected by copyright. All rights reserved. 

 

network (REDCNN) for low-dose CT image denoising [5] and used patient scans from the Low Dose 

Grand Challenge (LDGC) dataset [15] to train that network [16]. We examined the denoising 

performance changes between the conditions of training/testing using data with matching and 

mismatching imaging parameters under three scenarios. In each scenario only one imaging 

parameter changed between the training and testing data. The three imaging parameters were 

reconstruction kernel, slice thickness and dose level. The image quality (IQ) metrics for evaluating 

the denoising performance included 1) mean squared error (MSE), a global IQ metric; 2) contrast-

dependent modular transfer function (MTF) and pixel-level noise power spectrum (pNPS), standard 

CT IQ metrics that characterize the image resolution and noise properties; (pNPS differs from the 

standard NPS only in terms of the dimensional unit, as explained in Method Section 2.3.2) and 3) 

low-contrast lesion detectability (LCD), a more clinically relevant task-based IQ metric.  We included 

these multiple IQ metrics to examine how well they support the evaluation of a denoising method’s 

impact on task-based image quality. While a denoising algorithm may appear to beautify an image, 

there is the possibility that it impairs the detection or characterization of subtle signals and other 

image features.  

A similar study was conducted by Huber et. al. that evaluated the performance of one narrowly 

trained denoising network on processing images reconstructed differently from the training data in 

terms of field of view (FOV), reconstruction kernel and slice thickness [17]. It was observed in the 

Huber et. al. study that the denoising performance was degraded with variations in FOV and kernel, 

but not affected by thickness. We also evaluated the performance behavior of a DL denoising 

network in matching and mismatching test data.  However, a different denoising network was 

examined and the training and testing conditions were not designed the same. In this sense, our 

study and the Huber et. al. study are complementary to each other. In addition, the IQ evaluation 

methods in our work, including MTF, pNPS, and LCD, are more comprehensive than those used in 

the Huber et. al. study.  Furthermore, we analyzed the underlying training and testing data 

properties to help answer the question of why some parameters may cause a data distribution shift 

to affect the generalizability and some may not.  As is known, imaging parameters affect the image 

resolution and noise property of a CT image set. For example, reconstruction kernel changes the in-

plane resolution and noise correlation structure. Slice thickness mainly affects the z-direction 

resolution. Dose level determined the noise magnitude. A degradation in the DL network’s denoising 
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efficiency due to a mismatch in an imaging parameter may be associated with a shift of the 

underlying data properties that are caused by that parameter. Based on the observations regarding 

whether a change in each of the three parameters causes a substantial degradation in the DL’s 

denoising performance or not, we may learn and identify which underlying data properties are most 

important in predicting the denoising network’s generalizability.  Note that CT image noise is also 

object-dependent. A DL network trained with body scans may not generalize well to scans of other 

anatomy such as head scans or extremity scans even if the CT imaging parameters are kept the 

same. This study focused on the impact of CT imaging parameters since our training data are 

exclusively from the body scans covering the segment from thorax to abdomen. 

 The rest of the paper is organized as follows. Section 2 explains the low-dose CT denoising 

network, the training scheme for preparing the generalizability tests, the evaluation methods and 

testing data. Section 3 presents the results. Section 4 discusses our observations on the DL 

generalizability performance followed by the conclusions.     

 

2. METHODS 

2.1. Low-dose CT denoising network 
Let 𝒙  𝑅𝑚×𝑛  denote a low-dose CT reconstructed image; the DL-based denoising problem is to 

optimize the network 𝐶(𝒙): 𝑅𝑚×𝑛 → 𝑅𝑚×𝑛  that maps 𝒙 to its corresponding high-dose image 

𝒚  𝑅𝑚×𝑛 by minimizing a loss function between 𝒙 and 𝒚 over a given set of training data. After the 

network is optimized, a noisy CT image can be passed through the network to produce an image 

intended to have reduced noise.  

Various network structures have been explored in the literature for low-dose CT image denoising. 

Some typical networks include convolutional neural networks [6], residual networks [5, 10, 18, 19], 

UNet [8, 20] and Generative adversarial networks [7, 21]. For this paper, we selected the residual 

encoder-decoder convolutional neural network (REDCNN) developed by Chen et al.[5] as a denoising 

example for the generalizability test. Our emphasis here is not on the demonstration of an 

innovative denoising algorithm, but rather the illustration of an approach for assessing DL 

generalizability. We come back to this point in the discussion. 
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As illustrated in Fig.1, REDCNN contains ten layers, the first five being convolutional layers and the 

last five being deconvolutional layers. A rectified linear unit (ReLU) activation function follows the 

convolutional or deconvolutional operator in each layer. Residual learning is realized by including 

three shortcuts connecting the convolution layer and deconvolution layer. All the convolutional and 

deconvolutional layers have a filter size of 5×5. The number of filters is 96 for all the layers except 

that the last layer has one filter. For more details about the network design, please refer to [5]. We 

selected this residual network design because it was not very complicated but has been shown to 

have potential for effective CT image denoising similar to some traditional iterative denoising 

methods under the conditions tested in the papers by Chen et. al. and Zeng et. al. [5, 22].  

The loss function for training the denoising network we used was the MSE between the network 

output and the corresponding high-dose target images. Some investigators add terms to the loss 

function to encourage image smoothness and feature similarity, or to regularize the network 

parameters with weight decay to avoid overfitting [8, 10]. However, we focused on the most 

commonly used MSE loss function in this work.  

In our implementation, the denoising network was trained using many pairs of 2D small image 

patches extracted from low-dose and corresponding full-dose patient CT slices, as described below 

in Sect 2.2. Therefore, it was a two-dimensional (2D) denoising network. After the network is 

trained, it can be applied directly to a whole image slice since the “conv” and “DeConv” functions in 

the neural network are essentially convolution operations.    

2.2. Training data categorization 
The denoising network was trained using the patient scans in the Low-Dose Grand Challenge 

(LDGC) dataset [15].  There are ten datasets in LDGC covering chest to abdomen. Each patient 

dataset contains a full-dose scan acquired on a Siemens Somatom Definition AS+ or Definition Flash 

scanner model and a simulated quarter-dose scan. Each scan was reconstructed with two slice 

thicknesses (1 mm and 3 mm) and two reconstruction kernels (a sharp kernel named D45 and a 

smooth kernel named B30). The corresponding quarter- and full-dose image pairs were treated as 

training input and training target in the DL training process, respectively. Among the ten patient 

datasets, seven patient datasets were used for training since more data were needed to train than 

test the network that contained more than 1.8 million coefficients. 350 slices of size 512x512 were 
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randomly selected from the seven patients and each slice was divided into 55x55 patches excluding 

the air patches outside of the body, resulting in about 70,000 training patches in total.  

The variety of reconstruction thickness, reconstruction kernel and dose level make the LDGC 

datasets suitable for this performance generalizability study. We grouped the CT volumes into three 

pairs of training data according to the imaging parameters as shown below. In each pair, only one 

imaging parameter value was varied to avoid interacting effects among the parameters. 

Dose level effect:  

- Smooth kernel / 3 mm thickness / 25% dose level  

- Smooth kernel / 3 mm thicknesS / Mixed dose levels 

Kernel effect:  

- Sharp kernel / 3 mm thickness / mixed dose level  

- Smooth kernel / 3 mm thickness / mixed dose level 

Thickness effect:  

- Smooth kernel / 1 mm thickness / mixed dose level  

- Smooth kernel / 3 mm thickness / mixed dose level 

 

With this data arrangement, we can obtain three pairs of trained DL networks. For convenience, we 

name the networks according to the parameter setting of the training data as follows: DLkernel-

thickness-dose. For example, “DLsharp-3mm-mix%” represents the REDCNN trained with images of 

sharp kernel, 3mm thickness and mixed dose levels; “DLsmooth-1mm-25%” represents the REDCNN 

trained with images of smooth kernel, 1mm thickness and a single 25% dose level. Each pair of 

networks was cross evaluated on two types of test sets to determine how the performance may 

change when the testing data were acquired with a different parameter value. 

There was only one reduced dose level (25%) available in LDGC. The mixed-dose data were 

synthesized using the full and quarter-dose scans by a simple blending of the two scans: A noise map 

was obtained by subtracting the quarter-dose image from the full-dose image and then a portion of 

the noise map was blended back into the full-dose image as follows: 

𝒙𝑑 = 𝒙𝑓  +𝛼 (𝒙𝒒 − 𝒙𝑓), 𝛼 ≥ 0, 

where 𝒙𝑑 , 𝒙𝑓 , and 𝒙𝒒 represent the synthesized noisy image at a dose level 𝑑, the original full-dose 

and the quarter-dose images, respectively. The scaler 𝛼 denotes the blending factor. When 𝛼 = 1, 
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the outcome is exactly the quarter-dose image. When 𝛼 = 0, the outcome is the full-dose image. 

Assuming the full-dose and quarter-dose image noise variances are 2 and 42 at an image pixel, for 

an arbitrary nonnegative blending factor 𝛼, the noise variance of 𝒙𝑑at the same pixel will be 

((1 − 𝛼)2 + 4𝛼2)𝜎2.  The noise level corresponds to 1/((1 − 𝛼)2 + 4𝛼2) of the full-dose scan, 

based on the relationship that noise variance is inversely proportional to the exposure level in CT 

images reconstructed with FBP when all the other scan parameters are the same. We varied the 

blending factor randomly in the interval of [0.5, 1.2] for the mixed-dose training data case, resulting 

in images corresponding to dose levels ranging from 17% to 80% of the full-dose level. 

2.3. Performance evaluation 

To evaluate the performance, we considered the following IQ metrics: MSE, contrast-dependent 

MTF, pNPS, and LCD. MSE reflects how well the network performs in minimizing the loss function 

that it is designed to do. We did  not evaluate the other global metrics like PSNR or SSIM in this work 

since they are highly correlated with MSE. However, it is well known that a denoised image with 

smaller MSE does not necessarily have better diagnostic image quality. We included the standard CT 

IQ metrics MTF and NPS as they are commonly used to characterize the image resolution and noise 

texture. Lastly, we evaluated the denoising performance in terms of LCD, a task-based IQ metric 

measuring the capability of detecting low-contrast lesions in the denoised images. 

2.3.1. Mean Squared Errors (MSE) test 
For the MSE measure, the slices from one patient dataset in LDGC that were not included in the 

training were used as a test set. The total slice numbers were more than 200 slices and 500 slices for 

the testing cases of 3mm and 1mm slice thickness CT volumes respectively. For each slice, the full-

dose image was used as a reference to calculate the MSE (=
‖Noisy Image−Ref Image‖2

The total number of pixels
) before and after 

the DL denoising. Then the MSE reduction rate (= 
MSE before denoising – MSE after denoising 

MSE before denoising
× 100%) 

was calculated to quantify the denoising performance. The MSE was evaluated on an entire image 

slice. Based on the multiple slices in the test CT volumes, statistics of the MSE reduction rates can be 

obtained and compared between the pairs of DL networks. 

2.3.2. Contrast-dependent Modular Transfer Function (MTF) and pixel-level 

Noise Power Spectrum (pNPS) test 
We simulated 2D phantom CT scans for the MTF and NPS tests. We also collected physical CT 

scans of the CATPHAN600 (The Phantom Laboratory, Salem, NY)) to validate the simulation-based 
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results, which are described later in Sect 2.4. Both the MTF and NPS were evaluated within the 

plane. We did not evaluate the z-directional resolution and noise property because REDCNN was 

implemented as a 2D denoising network in this study. The network model was not trained using z-

direction data and hence was not designed to alter the z-directional property in a image slice. The 

simulated contrast phantom had a similar layout as the CATPHAN600 contrast module CTP404 to 

allow the measurement of contrast-dependent MTF. In this work, the contrast-dependent MTF was 

evaluated using the methods described in [23] at these five contrast levels: 990, 340, 200, 120 and 

35 HU. The MTF50% value was recorded for each MTF curve and plotted as a function of the HU 

contrast to characterize the contrast-dependent image resolution.  

Note that a noiseless CT scan of the contrast phantom was simulated for the MTF test to eliminate 

any uncertainties caused by random noise, since MTF represents a deterministic behavior of an 

imaging system. However, we also simulated five noisy contrast phantom scans for the MTF test to 

validate that using a noiseless scan to assess the resolution property of a nonlinear DL noise 

reduction is appropriate. For the NPS measurement, 50 noisy water phantom CT scans were 

simulated. A Region of Interest (ROI) of size 64 x 64 pixels at the image center was extracted from 

each realization. Local noise power spectrum (NPS) was estimated by taking the average of the 

modulus square of the Fourier transform of the noise images after being subtracted from the mean 

of the 50 realizations. A one-dimensional (1D) NPS curve was also estimated by radially binning the 

corresponding 2D NPS image. Because the deep learning network was trained to operate on 

pixelized images without being informed about the length unit of the pixel size, the estimated NPS 

was considered to be a function of the discrete frequency unit “cyc/pix” (cycle/pixel) in this study, 

rather than “lp/cm” (line pair/cm).  To differentiate from the standard NPS that usually has a 

dimensional unit of “lp/cm”, we refer to the “cyc/pix” unit-based NPS as pixel-level NPS, shortened 

as pNPS.  

The simulated CT scans were created from a virtual fan-beam 2D CT scanner.  The virtual scanner 

had distances of 595 mm from the x-ray tube to the isocenter and 1085.6 mm to the detector, the 

same as those in the Siemens CT scanner used to collect the LDGC dataset.  Poisson noise was 

modeled at the detector but electronic noise was not. We varied the air photon flux to achieve 

different noise levels. To simulate the reconstruction kernels in the LDGC data, two Hann filters of 

different cutoff frequencies (named Hann1 & Hann2) were used in our FBP reconstruction. The 
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cutoff frequencies were tuned to closely match the MTF50% and MTF10% of the D45 and B30 filters 

(see Table 1). Note that MTF50% and MTF10% are the frequency values where MTF drops to half 

and 10% respectively.  For convenience, we refer to Hann1 and D45 as sharp kernels, and Hann2 and 

B30 as smooth kernels in this paper.  The reconstruction pixel size was set to 0.664 mm, 

corresponding to a 512×512 reconstruction matrix of a 340 mm field of view (FOV). Since we only 

simulated 2D scans, slice thickness was not a modeled parameter in the virtual scanner. The 

simulated scans could be treated as a very thin slice thickness setting. The CT simulation code was 

implemented based on the Michigan Image Reconstruction Toolbox (MIRT) that is available online at 

https://web.eecs.umich.edu/~fessler/code.  

 

2.3.3. Low-Contrast Detectability (LCD) test 

The low-contrast detectability was estimated using a model observer and simulated MITA-LCD 

phantom (The Phantom Laboratory, Salem, NY) CT images. Specifically, we simulated 200 CT scans of 

the signal module and 100 scans of the background module of the MITA-LCD phantom CCT189 (Fig. 

2) at five exposure levels. The signal module contained four low-contrast disks with varying size/HU 

combinations (3mm/14HU, 5mm/7HU, 7mm/5HU, 10mm/3HU) to mimic subtle lesions.  The five 

exposure levels we simulated were: 100%, 85%, 70%, 55% and 30%.  The 100% dose level 

corresponded to an air photon count of 3×105 per detector pixel.   For each disk signal, a signal-

present (SP) ROI was cropped from the scan of the signal module and five signal-absent (SA) ROIs 

were cropped from the background module at the vicinity of the signal location. A Laguerre-Gauss 

channelized Hoteling model observer (LG-CHO) was applied to estimate the signal detectability [24]. 

The LG-CHO had five channels and the Gaussian width was adjusted to match the size of the disk to 

be detected. Among the 200 SP ROIs and 500 SA ROIs, 80 pairs of SP and SA ROIs were used to train 

the model observer. The remaining ROIs were used to estimate the detectability, quantified by the 

area under the receiver operating curve (AUC). 

 

2.4. Validation with physical phantom scans 

CT scans of a CATPHAN600 phantom (The Phantom Laboratory, Salem, NY) were collected on a 

SOMATOM Definition AS model (Siemens Medical Solutions USA, Inc, Malvern, PA) to validate the 

observations in the MTF and NPS test with simulated phantom scans. The scan protocols were 

https://web.eecs.umich.edu/~fessler/code/index.html
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designed to closely match the settings in the LDGC dataset, including the parameters of kVp, x-ray 

filter, detector collimation, slice thickness, convolution kernel and reconstruction field of view. Table 

2 provides a summary of those major scan parameters in the LDGC, together with the parameter 

settings for our phantom scans. As can be seen from the table, the reconstruction kernel and the 

slice thickness were the same for the LDGC patient scans and the phantom scans. However, there 

existed some differences in the other parameters as discussed next.  

First, we turned the automatic exposure control (AEC) off since “on” or “off” would not matter 

much for a cylindrical phantom with minor interior background variation. The patient scans had kVp 

varying in the range of 100 – 120 kV across the slices due to AEC. For our phantom scan, the kVp was 

fixed at 120 kV.  Second, we scanned the phantom with three dose options, named high-dose, full-

dose and quarter-dose. The full-dose option was set to match the average values of the CTDI of the 

full-dose patient scans. The high-dose option (higher than the full-dose option) was added to reduce 

the uncertainty in the MTF estimations.   Third, for the x-ray filter setting that may affect the x-ray 

spectrum shape, we used “FLAT” filter since most of the patient scans were with this option. Fourth, 

our phantom scans had the same single collimator width 0.6 mm as the LDGC patient scans. 

However, the total collimator width was 12 mm, narrower than 38.4 mm in the LDGC scans, because 

the 38.4 mm collimator option was not available on the scanner model we used. Fifth, the pitch 

factors in the patient scans varied from 0.6 to 0.8. In our phantom scan, the pitch was set to 0.8 to 

save scan time. As long as the pitch factor was smaller than 1, degradation in the z-directional 

sampling would be negligible for the scans of the cylinder-shaped CATPHAN600 phantom. Lastly, the 

reconstruction field of view (FOV) varied in the patient scans, ranging from 340 to 420 mm due to 

the different patient sizes. Reconstruction FOV affects the pixel size. For the phantom scans, we set 

the FOV to be 380mm, close to the average FOV of the 10 patient scans. This resulted in a pixel size 

of 0.74 mm in the reconstructed phantom volume. 

In total, we collected one high-dose scan, and five repeats of the full-dose and quarter-dose scans. 

For each scan, reconstructions with 1 mm and 3mm slice thickness, sharp and smooth kernel were 

generated, resulting in 44 CT volumes.  
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3. Results  

3.1. Mean Squared Errors Test 
Fig.3 shows the plots that compare the MSE reduction rates of the three pairs of DL networks.  

For the dose effect (Fig. 4a), when tested on the quarter-dose images, the DL networks trained 

solely with quarter-dose data (DLsmooth_3mm_25%) and trained with mixed-dose data 

(DLsmoooth_3mm_mix%) had almost equivalent MSE reduction rate. When tested on the 80% dose 

images, the DL network trained with mixed dose reduced MSE noticeably more. We also tested the 

network models on another two dose levels: 50%, a moderate low-dose level and 18%, close to the 

lowest dose level in the mixed-dose training data.  Difference of MSE reduction rate between the 

two models over the four tested dose levels is plotted in Fig. 4. It can be seen that DLsmoooth-3mm-

mix% had similar MSE performance at aggressively low dose levels (18% and 25%) compared to 

DLsmoooth-3mm-25% but reduced MSE comparatively more as the dose level increased toward 

normal dose. This trend indicates that the DL denoising network trained with mixed-dose data 

generalized better on data of different dose levels.  

For the reconstruction kernel effect, Fig. 3b shows that when the training and testing data had a 

different reconstruction kernel, the DL network performed substantially worse than the cases with 

matching reconstruction kernel in the training and testing data. This indicates that the DL denoising 

network did not generalize well on data with a different reconstruction kernel.  

For the thickness effect (Fig. 3c), in both the 3mm and 1mm thickness testing cases, the MSE 

reduction rate was similar between the DL networks trained with the two different thickness 

datasets. The DL network trained with 3mm thickness appeared to be slightly better at maintaining 

testing performance across thicknesses, but the difference was not statistically significant since the 

two distribution ranges heavily overlapped. The similar performances indicate that the slice 

thickness parameter may not be critical to the DL denoising network. 

Fig. 5 presents sample CT images to visually demonstrate the effect of reconstruction kernel. As 

can be seen, in the test case of FBP smooth (top two rows in Fig. 5), the DLsharp-3mm-mix% 

processed image obviously appears to be much noiser than the image processed by DLsmooth-3mm-

mix%. Meanwhile, in the test case of FBP sharp (bottom two rows in Fig. 5), the image texture of the 

DLsmooth-3mm-mix% processed FBP sharp image appears quite different from the others. It is also 
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noticeable that the anatomical structures in the DLsmooth-3mm-mix% processed image slice are 

oversmoothed and some small features are lost. 

 

  3.2.  Contrast-dependent Modular Transfer Function Test 
Fig. 6a and 6b show the contrast-dependent image resolution curves for the DL networks 

evaluated using the simulated noiseless FBP-smooth and FBP-sharp contrast phantom images, 

respectively. The curves clearly show that the image resolution decreases with contrast. This 

nonlinear smoothing behavior is similar to that of traditional iterative reconstruction and denoising 

methods. It is also observed from Fig. 6a and 6b that relative MTF performance among the 

differently trained network models are the same in the tests of using FBP-smooth and FBP-sharp 

contrast phantom images: the DL network trained with sharp-kernel data had slightly better image 

resolution (higher MTF50% value) than the DL network trained on smooth-kernel data; the DL 

network trained with thicker slice data had slightly better image resolution than the DL network 

trained with thinner slice data; the DL network trained with mixed-dose data had slightly better 

image resolution than the DL network trained with single-dose data, except at the contrast level of 

35 HU where the resolution dropped greatly for the single-dose DL network. In summary, the trends 

in the MTF test indicate that the image resolution of the DL denoising network was not very sensitive 

to the kernel and slice thickness parameters. However, it appears that with mixed-dose training 

data, low-contrast resolution was better preserved.    

To validate that the MTF measurements evaluated using noiseless test image is consistent with 

the results obtained on noisy test images, we also simulated 5 noisy contrast phantom images with 

an air photon count of 2.4×105 per pixel and further tested the MTF performance of one DL network 

model (DLsmooth-3mm-mix%).  Fig. 6c compares the MTF50% curves of DLsmooth-3mm-mix% in 

noiseless and noisy test images. It can be seen that the mean of MTF50% measurements using noisy 

test images were consistent with those on a noiseless test image, but with additional uncertainty 

from image noise.  

We also checked whether the DL network would introduce bias to the HU values of the contrast 

objects when tested on noiseless image. Using the DLsmooth-3mm-mix% model as an example, 

Table 3 lists the mean HU values (over the central 9 pixels) of the disks in the original FBP contrast-

phantom images and the DL processed images, for both noiseless and noisy cases. The HU values in 
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the DL processed noiseless and noisy FBP images were all close to the simulated true values. The HU 

results show that no bias was introduced by the DL model when tested on noiseless FBP images 

although it was trained using noisy CT images. 

 

3.3. Pixel-level Noise Power Spectrum Test 
We simulated 50 noisy scans of a cylindrical water phantom for the pNPS estimation, with an air 

photon count of 2.4×105 per pixel. Each noisy scan was reconstructed by FBP with both sharp and 

smooth kernels. Then the noisy images were processed by DLsharp-3mm-mix% and DLsmooth-3mm-

mix% to compare the effect of kernel in the NPS test.  Note that we did not further examine the 

effects of the slice thickness and dose level parameters in the NPS and the LCD test, because the 

previous MSE and MTF test results showed that the DL network trained with 3mm slice thickness 

and mixed-dose data had better performances.  

Fig. 7 presents the local pNPS images and Fig. 8 plots the corresponding radial profiles. The radial 

profiles clearly show that the DL networks reduced the noise magnitude and shifted the peak 

frequency toward zero. Again, this is a behavior similar to that of traditional iterative reconstruction 

and denoising methods. In general, DL denoised images had noise components concentrated more 

in the lower frequency bands compared to the original FBP images. The local pNPS of the DL images 

also appear to be less radially isotropic, reflecting higher nonstationarity along the angular direction 

of the DL noise reduction method. In addition, one may notice a contrasting appearance in the pNPS 

of DLsmooth-3mm-mix% processed FBP-sharp image (the rightmost in Fig 7b): much higher 

magnitude at the four corners (high-frequency regions). The 1D radial profile clearly shows that the 

corresponding pNPS curve has a rising tail (as indicated by the arrow in the Fig. 8b) after about 0.5 

cyc/pix. Moreover, the tail’s shape and height closely match those of the pNPS curve of the original 

FBP-sharp images, indicating that the high-frequency noise was not removed by the DL network 

trained with smooth-kernel data. An image patch of the DLsmooth-3mm-mix% denoised FBP-sharp 

water phantom image, shown in Fig. 8c, also demonstrates the remaining high-frequency noise, 

appearing as tiny checkerboard like artifacts. This phenomenon suggests that the DL model possibly 

did not learn to remove the high-frequency noise from the smooth kernel training data, since the 

training data did not contain noise in the high-frequency band.  
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3.4. MTF and pNPS test using physical phantom CT scans 
We conducted the MTF and NPS tests again using the physical CT scans of CATPHAN600 to 

validate the observations found in the results using simulated phantom CT scans.  

First, we measured the contrast-dependent image resolution of the DL networks processing 3mm-

thickness and high-dose FBP images. Fig. 9 displays the resolution curves.  Due to image noise, the 

MTF function estimated from the disks of contrast below 100HU were not reliable. Therefore, the 

contrast-dependent image resolution curves were based on the disks of air, PMP, LDPE and 

Polystyrene in the CATPHAN600 contrast module, which had measured mean absolute contrast of 

1100, 260, 170 and 115. The resolution curves in Fig. 9 also show that DL networks trained with data 

of sharp kernel, thicker slice thickness, mixed-dose levels had better image resolution than their 

counter parts, similar to the findings obtained in the testing results with simulated 2D CT scans. 

Second, we estimated the local pNPS images and extracted their 1D radial profiles of the DL 

networks processing 3mm-thickness and full-dose FBP images, shown in Fig. 10. A rising tail in the 1D 

pNPS curve of the DLsmooth-3mm-mix% processed FBP-sharp images was also observed, similar to 

that in Fig. 7b.  We omitted the NPS results for processing the low-dose FBP images since they 

present similar trends. These experiments showed that the NPS results obtained with the physical 

phantom CT scans agreed with those obtained with the simulated CT scans.   

 

3.5. Low Contrast Detectability Test 

Fig. 11 plots AUC, a measure of low-contrast detectability, as a function of dose for detecting the 

10mm/3HU inserts in the simulated MITA-LCD phantom. As can be seen in the figure, both the 

DLsharp and DLsmooth networks improved the detectability over the original FBP images regardless 

of the original reconstruction kernels. The DLsmooth network had similar AUCs as the DLsharp 

network in processing FBP-smooth images but significantly higher AUCs in processing FBP-sharp 

images. We will explain the possible reasons later in the discussion. The detectability curves are not 

shown here for the other three inserts (3mm/14HU, 5mm/7HU, 7mm/5HU). In general, we observed 

that the detectability curves in the original FBP images and the DL denoising images were almost the 

same for detecting the two smaller inserts (3mm/14HU and 5mm/7HU), then became more 

separated as the size of the insert increased, but the relative performance trends were the same for 
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detecting these inserts. Therefore, we only present the curves for detecting the 10mm/3HU insert 

since the curves separated the most in this case.  

 

4. DISCUSSION 

In this work we presented a framework for the evaluation of performance generalizability of a DL-

based CT image denoising method, using the REDCNN as an example denoising algorithm. We used 

the patient CT scans in the LDGC dataset to train the network on data acquired with different 

imaging parameters. Based on the data variety, we examined the performance generalizability of the 

denoising network on three parameters: reconstruction kernel, slice thickness and dose levels. 

Performances were evaluated using MSE, contrast-dependent MTF, pNPS and LCD. We observed the 

following three points from the testing results. 

First, the denoising network did not generalize well between the sharp and smooth reconstruction 

kernels, consistent with the observations in [17]. This is reasonable since the reconstruction kernel is 

the most dominant factor that determines the noise correlation structure in a FBP reconstructed 

image. The pNPS curves of the FBP-sharp and FBP-smooth images in Fig. 8 & 10 obviously differ in 

both the peak and the cutoff frequencies. Due to the DL’s data-driven mechanism, a denoising 

network may not recognize noise components that are not seen in its training data. This explains the 

remaining high-frequency noise in the DLsmooth processed FBP-sharp images. On the other hand, 

the image resolution property was not much different between the DLsmooth and DLsharp networks 

since the denoising network was not trained to alter image resolution.   

Second, the denoising network was not sensitive to slice thickness, consistent with the 

observations in [17]. Usually for FBP reconstructed volume in a helical CT scan, the slice thickness 

parameter is related to the interpolation width along the z direction applied in the image 

reconstruction process [25]. When all the other imaging parameters are kept the same, a 3mm slice 

thickness CT volume may be conceptually considered as being formed by a moving average (or 

weighted average) of adjacent slices of the 1mm slice thickness CT volumes. Averaging along the z 

direction does not alter the noise correlation structure within a slice, so the denoising networks 

trained with 3mm and 1mm thickness image slices were not much different. However, the noise 

magnitude in a 3mm thickness slice is usually lower than that in the corresponding 1mm slice. In this 
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sense, the target images in the 3mm thickness training data had slightly better image quality, which 

may explain why the DL-3mm network performed slightly better than the DL-1mm network in both 

the MSE and MTF tests.  

Third, the denoising network was more robust in processing images of an unknown noise level 

when trained with mixed-dose data. The MSE results showed that the DL-mix% network maintained 

the MSE reduction rate in processing quarter-dose slices and reduced MSE more when processing 

slices of a different dose level than the DL-25% network. The DL-mix% also preserved the low-

contrast image resolution better, as shown in the MTF test where the testing data may be 

considered as a very high-dose scan. Since the noise correlation structure did not change except the 

magnitude in the various dose level settings, training with mixed-dose data increased the adaptivity 

of the network in processing CT images with unknown noise levels. The finding on the dose 

parameter agrees with the observation in Chen et. al. [6], where a three-layer convolutional neural 

network (CNN-3) trained with mixed-dose data was found to have better denoising performance 

than the CNN3 trained with single-dose data in processing data at all the tested noise levels. Mixing 

the data of different dose levels in training can also be considered as a data augmentation strategy 

that is commonly used to improve robustness of a DL network performance [26, 27]. 

Despite the finding based on the MSE and pNPS tests that the denoising network did not 

generalize well between reconstruction kernels, the DLsmooth network surprisingly achieved much 

better detection performance than the DLsharp network in detecting the 7mm and 10mm disks after 

processing the FBP-sharp images. It appears that the remaining high-frequency noise in the 

DLsmooth processed FBP-sharp images did not negatively affect these detection performances. The 

reason could be that the signal information of the four disks mostly concentrated in the lower 

frequency band such that the high-frequency information was not used by the model observer in the 

detection tasks. As shown in Fig. 7b, the rising tail of the NPS curve of DLsmooth starts at about 0.5 

cyc/pix. Even for the smallest 3mm disk that was about 4.5 pixel wide, its main spectrum lobe is 

within 0.22 cyc/pix; the signal power of most of the low-contrast disks included in the LCD phantom 

already diminishes at 0.5 cyc/pix. Based on the MTF and pNPS tests, the DLsmooth appeared to have 

comparable resolution and better noise reduction in the lower frequency band compared to 

DLsharp, which may have contributed to the higher detectabilities of DLsmooth in the LCD test. The 

results and our analysis indicate the limitation of this LCD test in evaluating the overall performance 
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of DL denoising networks. Additional tasks focusing on high-frequency information need to be 

developed to allow a thorough evaluation of a DL method’s denoising performance, such as shape 

discrimination, size estimation, etc.       

Due to the limited data variety in LDGC, we examined the performance generalizability only on 

three CT imaging parameters in this work. Other parameters associated with a CT scan can also 

affect the FBP image quality, such as kV, helical pitch, detector collimation width and scan FOV. It is 

worth discussing how the DL denoising network REDCNN may generalize across other parameters. 

As is known, a DL network usually generalizes well within its training data distribution. In an FBP-

reconstructed CT image, the noise approximately follows a correlated multi-variate Gaussian 

distribution. The noise correlation structure can be described by the (local) NPS. The results in this 

study provide evidence to support that the generalizability performance of REDCNN denoising 

algorithm is highly correlated with the in-plane pNPS property of the data determined by the CT 

imaging parameters: if a different imaging parameter value associated with the testing data does not 

alter the pNPS shape relative to the training data, the DL network will maintain its denoising 

performance, such as between the two different thickness settings and between different dose 

levels; If a different parameter value substantially changes the pNPS shape, the DL network will likely 

have poorer denoising performance, such as between the sharp and smooth reconstruction kernels. 

Based on this finding, we make the following predictions on the generalizability related to other scan 

parameters.  

Since the kV setting mainly affects the image contrast and not the noise color, we expect a 

denoising network to generalize well in the typical kV range (80-140 kVp) of CT scans. Helical pitch 

and detector collimation width mainly affect the longitudinal resolution, similar to the effect of the 

slice thickness parameter. Therefore, the denoising network may not be very sensitive to the change 

of these two parameters as well. The scan FOV (or reconstruction FOV) setting usually varies with 

the patient size. With a fixed CT reconstruction matrix size (512×512), the scan FOV setting 

determines the pixel size of the reconstruction grid, i.e., the image-domain sampling frequency. 

Backprojecting the noisy sinogram to a finer or a coarser image grid will affect the noise correlation 

between adjacent image pixels. Therefore, the pNPS of CT scans reconstructed with different FOVs 

will be different. If the FOV setting changes significantly, such as from average-size patients to obese 

patients or to pediatric patients, the denoising performance may not generalize well. Loss of 
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resolution or denoising performance due to a change of FOV in the data was observed in the Huber 

et. al study, where a range FOV from 100 mm to 400 mm was examined [17]. We will conduct 

experiments to confirm these predictions with appropriate patient and phantom CT data in the 

future.  Please note that the above generalizability discussion is regarding the imaging parameters 

assuming that the body part to be scanned is the same.  When a network is trained on CT images of 

abdomen, it may not maintain the denoising performance in head or extremity scans and vice versa, 

since the object-dependent CT noise property could differ significantly due to substantial changes in 

anatomical structure and size of a body part.      

A limitation of this work is that it investigated generalizability of a single denoising network, 

REDCNN. There are other popular networks applied to low-dose CT image denoising, such as ResNet, 

UNet and GAN. Different networks may have different ways of extracting relevant features in the 

training data, resulting in images of different resolution and noise properties [28]. However, DL 

methods share a common property: data-driven-based learning mechanism.  Therefore, training 

data is always an essential element affecting the performance of DL methods. We anticipate that the 

generalizability performances observed on REDCNN likely apply to other types of 2D DL denoising 

networks if they are similarly trained to perform a slice-wise CT image denoising function.   The 

experiments conducted in this work will be performed using other typical types of DL networks to 

confirm this anticipation. 

Another point that should be noted is the open question of the utility of MTF and NPS for the 

characterization of DL-derived images. These two Fourier-based IQ metrics are designed for linear, 

stationary systems (shift-invariant). FBP is a linear reconstruction method. A FBP-reconstructed CT 

image is approximately locally stationary [29], hence MTF and NPS are suitable to describe a CT 

system with FBP reconstruction. Therefore, we used MTF and local NPS to analyze the underlying 

data property of the FBP image input to the denoising network. However, these metrics cannot fully 

characterize the imaging performance of a nonlinear noise reduction method [24].  A DL-based 

denoising process is obviously a nonlinear process. Modified versions of the MTF and NPS, such as 

contrast-dependent MTF[23] and noise-level dependent NPS[30], have been proposed as possibly 

providing a better picture of the imaging performance of those nonlinear methods, but they may still 

not capture shift-variant properties of images.  In this work we evaluated the contrast-dependent 

MTF and local NPS for comparing the resolution and noise behavior over the imaged frequency 
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range of various denoising network models measured under the same context. However, metrics like 

MTF and NPS developed for linear systems need to be complemented by other performance metrics 

such as task-based performance metrics to fully characterize the diagnostic image performance of 

DL methods.     

In summary, generalizability performance is an important characteristic of DL methods. Loss of 

generalizability of a DL network can be rooted in a shift of the testing data distribution from the 

training data. There are many different CT imaging settings. Without any knowledge about the 

generalization behavior, we may have to test a CT image denoising network tediously on data from a 

large variety of scan settings to understand its use range.   Our results imply that comparing the 

underlying pNPS associated with the imaging parameters used to acquire the testing and training 

data may be used as one way to predict the generalizability performance of a DL-based CT image 

denoising network.  CT data acquired with imaging parameters that significantly change the pNPS 

relative to the training data would possibly not benefit from a DL noise reduction model, such as 

images reconstructed with a different reconstruction kernel.  This finding can be helpful to the 

development as well as regulatory evaluation of DL-based CT image denoising methods. For 

developers, the training data cohort may be more effectively designed. One may emphasize on 

adding training data that has different pNPS properties to improve the generalizability of a CT image 

denoising network or training the network separately on those categories of data. For regulatory 

evaluation, the categories of testing data may be  appropriately reduced to support the assessment 

of the generalizability of a DL-based CT image denoising software within its intended use, according 

to the FDA least-burdensome principle (https://www.fda.gov/regulatory-information/search-fda-

guidance-documents/least-burdensome-provisions-concept-and-principles). Validated intended uses 

and product labeling will allow clinicians to have better information on what kinds of images are 

suitable to be processed by a DL denoising algorithm available at their site.   

 

5. CONCLUSIONS 

This paper reported our work in testing the performance (MSE, MTF, pNPS and LCD) generalizability 

of a 2D DL-based CT denoising method (REDCNN) on three CT imaging parameters (reconstruction 

kernel, slice thickness and dose). Our results showed that the DL performance did not generalize 

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/least-burdensome-provisions-concept-and-principles
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/least-burdensome-provisions-concept-and-principles
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well between the sharp and smooth reconstruction kernels, was not highly sensitive to the slice 

thickness parameter, and was better when trained with mixed-dose data. The observed DL 

performance behaviors indicate that the generalizability performance of a DL-based CT image 

denoising network highly correlates to the pNPS similarity between the testing and training data. 

Future work is needed to investigate the impact of other imaging parameters on the performance 

generalizability to consolidate this finding. Tasks that challenge possible differences in the higher 

spatial-frequency content of the denoised images should also be explored to allow a more complete 

performance evaluation. 

 

Data Availability Statement: The physical phantom CT images and the simulated phantom CT 

images that support the findings of this study are available from the corresponding author upon 

reasonable request. 
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Fig. 1. Illustration of the REDCNN denoising network. x and y represent the noisy image input and the 
cleaner image output. Each “conv” layer contains 96 filters of size 5x5. Each “DeConv” layer also 
contain 96 filters of size 5x5 except that the last DeConv has only one filter of size 5x5.  
Fig. 2: Sample CT images of the simulated MITA-LCD signal module (left) and background module 
(right) for the LCD test. Red and green boxes illustrate the locations for cropping signal-present ROIs 
and the corresponding signal-absent ROIs. Note that the CT image of the signal module shown here 
is an average of 20 realizations from the highest dose level reconstructed with FBP of smooth kernel 
to make the low-contrast signals visible. The display window is [-50 50] for both images.  
Fig. 3 Plots of the MSE reduction rate of the DL networks tested on patient images of matching and 
mismatching CT imaging parameters. (a)The first row compares the dose level effect on denoising 
models trained with single-dose (DLsmooth-3mm-25%) and mixed-dose data (DLsmooth-3mm-mix%). 
(b) The second row compares the reconstruction kernel effect on denoising models trained with sharp 
kernel data (DLsharp-3mm-mix%) and smooth kernel data (DLsmooth-3mm-mix%). (c) The third row 
compares the thickness effect on denoising models trained with 3 mm thickness data (DLsmooth-
3mm-mix%) and 1mm thickness data (DLsmooth-1mm-mix%). The box plots were generated using 
the Boxplot() function in MATLAB, in which the central red line indicates the median and the bottom 
and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to 
the most extreme data points not considered outliers, and the outliers are plotted individually using 
the '+' marker symbol.  
Fig. 4 Difference of MSE reduction rate between the DL model trained with mixed dose data 
(DLsmooth-3mm-mix%) and the DL model trained with quarter-dose data (DLsmooth-3mm-25%). 
Test datasets were patient CT images reconstructed with smooth kernel and 3mm slice thickness at 
four dose levels: 18%, 25%, 50% and 80%.  
Fig. 5 Images to illustrate the effect of reconstruction kernel on the denoising models. From left to 
right are images of a full-dose FBP image as the reference, the quarter-dose FBP image as the input 
to the DL networks, DLsharp-3mm-mix% and DLsmooth-3mm-mix% denoised quarter-dose images. 
a). Tested on a patient image slice reconstructed with smooth kernel and 3 mm slice thickness and b) 
Tested on a patient image slice reconstructed sharp kernel and 3 mm slice thickness. The red box in 
the full-dose FBP image in (a) indicates ROI that is zoomed for display.  
Fig. 6: Contrast-dependent MTF50% curves of the DL networks evaluated using (a) the simulated 
noiseless contrast phantom test image reconstructed with smooth kernel and (b) the simulated 
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noiseless contrast phantom test image reconstructed with sharp kernel. (c) Comparison of contrast-
dependent MTF50% curves of the DLsmooth-3mm-mix% model in noiseless and noisy contrast 
phantom test images reconstructed with smooth kernel.  
Fig. 7: 2D local pNPS of the simulated water phantom images and the corresponding DLsharp-3mm-
mix% and DLsmooth-3mm-mix% denoised images evaluated using: (a) simulated 2D water phantom 
images reconstructed with smooth kernel and (b) simulated 2D water phantom images reconstructed 
with sharp kernel.  
Fig. 8: (a) The 1D radial profiles of the pNPS images in Fig. 7a. (b) The 1D radial profiles of the pNPS 
images in Fig. 7b. The blue arrow in (b) points to the remaining high-frequency noise in the 
DLsmooth-3mm-mix% processed FBP-sharp images. The sample image patch in (c) illustrates the 
remaining high-frequency noise, which appears as tiny checkerboard like artifacts.  
Fig. 9: Contrast-dependent MTF50% curves of the DL networks evaluated using high-dose and 3mm-
slice-thickness CATPHAN600 physical CT test images reconstructed with (a) smooth kernel and (b) 
sharp kernel.  
Fig.10: 2D Local pNPS of the CATPHAN600 physical CT scans and the corresponding DLsharp-
3mm-mix% and DLsmooth-3mm-mix% denoised images evaluated using (a) the CATPHAN600 

images reconstructed with smooth kernel and 3 mm slice thickness, and (b) the 
CATPHAN600 images reconstructed with sharp kernel and 3 mm slice thickness. (c) 
Radial profiles of the 2D pNPS images in (a) on the left and the radial profiles of the 
2D pNPS images in (b) on the right.  
Fig. 11 Detectability curves for the insert (10mm-3HU) in the original noisy FBP images, and denoised 

FBP images with DLsharp-3mm-mix% and DLsmooth-3mm-mix% evaluated using (a) simulated MITA-

LCD phantom images reconstructed with smooth kernel, and (b) simulated MITA-LCD phantom test 

images reconstructed with sharp kernel.  

 

Table 1. The MTF50% and MTF10% values in lp/cm of the commercial reconstruction 

kernels (D45, B30) and simulated reconstruction kernels (Hann1 and Hann2). 

 

Resolution 

(lp/cm) 

D45 

(sharp) 

Hann1 

(sharp) 

B30 

(smooth) 

Hann2 

(smooth) 

MTF50% 5.6 5.6 3.5 3.5 

MTF10% 9.4 10.4 5.9 6.2 

 

 

 

Table 2: Comparison of the imaging parameters between the LDGC dataset and our 

phantom scans. 
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Dataset AEC kVp 

(kV) 

CTDI 

(mGy) 

x-ray filter Single/Total 

Collimator 

width (mm) 

Pitch FOV 

(mm) 

Slice 

Thickness 

(mm) 

Reconstruction 

kernels 

LDGC XYZ-EC 100 - 

120 

19.7 (mean for 

Full) 

FLAT (8) 

WEDGE_3 (2) 

0.6 / 38.4 0.6 to 0.8 378 

(mean) 

3 

1 

B30f 

D45f 

Phantom 

scans 

OFF 120 32.1 (High) 

20.0 (Full) 

5.0(Quarter) 

FLAT 0.6 / 12 0.8 380 3 

1 

B30f 

D45f 

 

 

 

Table 3: Comparison of the HU values of the five disks evaluated using simulated contrast 

phantom test images reconstructed with smooth kernel. In this table, the DL model that was 

used to process the contrast phantom images was DLsmooth-3mm-mix%. Each HU value 

was calculated as an average over the central 9 pixels of the corresponding disk. For the 

case of noisy images, the two values before and in the parenthesis represent the mean and 

standard deviation, respectively, estimated from 5 noisy realizations. The HU results in the 

table show that no bias was introduced in the denoised images when tested on noiseless 

FBP images. 

  

Disk object  990 HU 340 HU -200 HU 120 HU -35 HU 

 

Noiseless FBP-

smooth image 

(reference) 

989.9 339.7 -200.0 119.9 -35.0 

DL processed 

noiseless FBP-

smooth image 

990.7 340.1 -199.9 120.0 -35.3 

Noisy FBP-

smooth images 

989.1 (2.31) 341.1 (3.89) -200.1 (3.37) 120.2 (2.48) -32.8 (3.25) 

DL processed 

noisy FBP-

smooth images 

989.9 (1.62) 341.0 (2.34) -200.2 (2.38) 120.5 (1.46 -33.6 (2.02) 

 

 


