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Key Points: 

 An optimal-estimation algorithm for surface spectral emissivity retrieval is developed and 

assessed for the forthcoming PREFIRE mission.  

 Surface spectral emissivity retrievals in the far-infrared can be significantly influenced by 

the atmospheric water vapor abundance. 

 Compared to the mid-infrared, the far-infrared surface emissivity retrievals are more 

affected by the choice of a priori constraints. 
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Abstract 

Surface spectral emissivity plays an important role in the polar radiation budget. The 

significance of surface emissivity in the far-infrared (far-IR) has been recognized by recent 

studies, yet there have been no observations to constrain far-IR surface spectral emissivity over 

the entire polar regions. In preparation for the Polar Radiant Energy in the Far-InfraRed 

Experiment (PREFIRE) mission, this study develops and assesses an optimal estimation-based 

retrieval algorithm to estimate both mid-IR and far-IR polar surface emissivity from the future 

PREFIRE measurements. Synthetic PREFIRE spectra are simulated by feeding the ERA5 

reanalysis and a global surface emissivity dataset to a radiative transfer model. Information 

content analysis indicates that the far-IR surface emissivity retrievals can be more influenced by 

the atmospheric water vapor abundance than the mid-IR counterparts. When the total column 

water vapor is above 1cm, the far-IR surface emissivity retrievals largely rely on the a priori 

constraints. Performance of the optimal-estimation algorithm is assessed using 960 synthetic 

PREFIRE clear-sky radiance spectra over the Arctic. The results based on current best estimate 

of instrument performance show that all retrievals converge within 15 iterations, the retrieved 

surface spectral emissivity has a mean bias within ±0.01 and a root-mean-square error less than 

0.024. The far-IR surface emissivity retrievals are much more affected by the a priori choice 

than the mid-IR ones. A properly constructed a priori covariance can also help to improve the 

computational efficiency. Influences of other factors for future operational retrievals are also 

discussed. 
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1. Introduction 

Surface emissivity is defined as the ratio of actual surface thermal emission to the radiation of 

a blackbody with the same temperature as the surface. It is a spectrally dependent property of 

surface composition that directly affects surface upward thermal emission and reflection of 

atmospheric downward thermal radiation at the surface, thus playing an important role in the 

radiation budget of the climate system. In addition, surface emissivity is also a key quantity to 

observe in remote sensing, for its inseparable role in atmospheric sounding (Li et al., 2007; Zhou 

et al., 2011; Capelle et al., 2012; Smith & Barnet, 2019), in the monitoring of surface 

compositions of rocky planets (Christensen et al., 2001; Rockwell & Hofstra, 2008), land cover 

changes (French et al., 2008; Hulley et al., 2015), evaporative stress indices (Fisher et al., 2020), 

and remote sensing of fires (Peterson and Wang, 2013). As a result, mid-infrared (mid-IR, 5 to 

15 μm) surface emissivities, especially those over the mid-IR window regions, have become 

routine retrieval products from spaceborne multi-spectral imagers and infrared hyperspectral 

sounders such as Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

(Gillespie et al., 1998), Moderate Resolution Imaging Spectroradiometer (MODIS) (Wan & Li, 

1997), Atmospheric Infrared Sounder (AIRS) (Susskind et al., 2003), and Infrared Atmospheric 

Sounding Interferometer (IASI) (Schlüssel et al., 2005).  

While the aforementioned observations only provide information about mid-IR surface 

spectral emissivity, the importance of far-IR (15 to 100 μm) surface emissivity to polar climate 

has been recognized in recent years. For example, Chen et al. (2014) used theoretically 

calculated far-IR spectral emissivity of several snow surfaces to show non-negligible bias in 

radiation budget when such surfaces are assumed to be blackbody instead. Feldman et al. (2014) 

demonstrated that different specifications of surface spectral emissivity in a climate model could 
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cause noticeable changes in the simulated polar surface climatology. Huang et al. (2018) 

incorporated a global surface spectral emissivity database, which was developed in Huang et al. 

(2016), into the NCAR Community Earth System Model 1.1.1 and showed statistically 

significant differences in the simulated long-term mean polar surface temperature and sea ice 

content. Huang et al. (2018) further evaluated surface emissivity feedback in response to the 

doubling of CO2 and concluded that such surface emissivity feedback is smaller than the surface 

albedo feedback by at least one order of magnitude. These studies have directly motivated 

observational efforts to measure and monitor far-IR surface spectral emissivity, especially in the 

polar regions, which then encouraged the selections of two satellite missions dedicated to far-IR 

observations, i.e., PREFIRE (Polar Radiant Energy in the Far InfraRed Experiment; L’Ecuyer et 

al., 2021) by NASA and FORUM (Far-infrared Outgoing Radiation Understanding and 

Monitoring; Palchetti et al., 2020) by ESA.  

Surface emissivity retrievals in the far-IR usually face more challenges than in the mid-IR due 

to the strong interference of water vapor absorption. Channels used in the mid-IR surface 

emissivity retrievals are always transparent for clear-sky situations. Even for the most humid 

scenes on the earth when the total column water vapor (TCWV) is around 9 cm, the clear-sky 

transmittances over mid-IR window channels are no less than 0.8. In contrast, the entire far-IR 

band becomes nearly opaque (transmittance < 0.05) once the TCWV exceeds 1 cm (Feldman et 

al., 2014). As a reference, based on ERA-5 reanalysis climatology from 2001 to 2020, the global 

mean TCWV is approximately 2.5 cm, while that over the Arctic and Antarctic is 0.8 cm and 0.4 

cm (Figure 5), respectively. These facts imply that far-IR surface emissivity can only be inferred 

from space-borne observations over polar or high-elevation regions where the TCWV is small 

enough. 
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 There have been no space-borne far-IR observations since the pioneering measurements by 

Infrared Interferometer Sounder-D (IRIS-D) aboard the Nimbus IV (Hanel et al., 1971), which 

measured nadir-view outgoing spectral radiances from 6.25 to 25 µm with a footprint of 94 km 

in diameter from April 1970 to January 1971. Efforts in retrieving far-IR surface emissivity have 

been limited by the scarcity of spectral observations except for a few field campaigns in recent 

years. Bellisario et al. (2017) retrieved far-IR surface emissivity from spectral observations made 

by the TAFTS (Tropospheric Airborne Fourier Transform Spectrometer; Canas et al., 1997), a 

Fourier interferometer with spectral coverage of 17-125 µm. The measurements were done from 

an aircraft over a limited region of the Greenland Plateau in March 2015. They retrieved far-IR 

surface spectral emissivity from 18.7 to 125 µm and highlighted the need for further research on 

the simultaneous retrievals of mid-IR and far-IR surface emissivities. Murray et al. (2020) 

adopted the retrieval framework in Bellisario et al. (2017) and validated the feasibility of 

retrieving mid-IR and far-IR surface emissivity from the TAFTS spectra measured at a higher 

altitude than those in Bellisario et al. (2017). Furthermore, Murray et al. (2020) also confirmed 

the theoretical calculations in Chen et al. (2014) and Huang et al. (2016) by demonstrating that 

the far-IR emissivities of snow and ice surfaces can be significantly less than unity, especially 

over the so-called far-IR dirty window (16.7 to 25 μm) (Rathke et al., 2002). These two studies 

were restricted to observations in March 2015 over a limited region in the Greenland Plateau. 

The PREFIRE mission, on the other hand, aims to measure in both mid-IR and far-IR (5 to 45 

µm, with a resolution of 0.84 µm) over polar regions at hourly to seasonal scales for the first 

time (L’Ecuyer et al., 2021). PREFIRE will provide an unprecedented opportunity in this decade 

for retrievals of far-IR surface emissivity in the polar regions. Thus, it is necessary to develop 

retrieval algorithms in preparation for such future observations. 
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Many algorithms have been developed for the retrieval of surface spectral emissivity and can 

be generally categorized as either statistical methods or physical methods (Kidder et al., 1995). 

Statistical methods make use of empirical relationships or auxiliary assumptions to constrain the 

retrieval problem (Li et al., 2013). Several widely used statistical methods for mid-IR surface 

emissivity retrievals are the Normalized Emissivity Method (Gillespie, 1986), the Temperature-

Emissivity Separation Methods (Gillespie et al., 1998; Hulley et al., 2018), and the Temperature 

Independent Spectral Indices Method (Becker & Li, 1990a). For these statistical methods, the 

training of empirical coefficients strongly depends on the accuracy of atmospheric corrections 

(Coll et al., 2003) and can vary with geographical regions. Split-window retrieval is another 

widely used statistical method, which assumes a linear relationship between surface temperature 

and brightness temperatures in mid-IR adjacent window channels (Price, 1984). This linear 

approximation is valid in the mid-IR window region due to the weak clear-sky atmospheric 

attenuation (Becker & Li, 1990b), yet cannot hold true anymore in the far-IR where water vapor 

absorption tends to be strong. Physical methods, on the other hand, require fewer empirical 

assumptions than the statistical methods: surface spectral emissivities are iteratively retrieved by 

minimizing differences between the forward radiative transfer calculations and actual 

measurements with the observational uncertainty taken into account. The optimal estimation 

(OE) method is a representative physical method, which combines a priori knowledge and 

observations based on the Bayesian framework to generate the retrieval results (Rodgers, 1976). 

The OE method has been widely adopted in retrieval studies and has shown satisfactory 

performance for the retrievals of atmospheric profiles (Turner & Löhnert, 2014; Maahn et al., 

2020), precipitation (L’Ecuyer and Stephens, 2002; Wood and L’Ecuyer, 2021), and surface 

parameters such as surface temperature, sea ice concentration (Scarlat et al., 2017) as well as 
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mid-IR surface emissivity (Liu et al., 2009; Divakarla et al., 2014). Such success of OE retrievals 

in the mid-IR motivates us to use it for the inversion of the far-IR surface spectral emissivity.  

This study implements the OE method to retrieve surface spectral emissivity in both the mid-

IR and far-IR, and assess the retrieval performance based on the synthetic PREFIRE radiances in 

the polar regions. Section 2 introduces the data and the forward modeling tool used in the study. 

Section 3 describes the relevant technical details of the OE retrieval algorithm. The analysis of 

information content and retrieval results are presented in Section 4, followed by further 

discussions and conclusions in Section 5.  

2. Data and Forward Modeling 

2.1 ERA5 reanalysis data 

The ERA5 reanalysis is the latest atmospheric reanalysis produced by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2020). The ERA5 reanalysis is 

based on the Integrated Forecasting System (IFS) Cy41r2 with a 4-D variational data 

assimilation scheme. Hersbach et al. (2020) also show that the ERA5 is superior to the precedent 

ERA-Interim reanalysis (Dee et al., 2011). The ERA5 has a horizontal resolution of 0.25º-by-

0.25º and a vertical coverage of 37 pressure levels up to 1 hPa. It provides hourly outputs as well 

as monthly means of essential atmospheric and surface variables.  

2.2 Global surface spectral emissivity dataset used in the simulation 

An observationally based global surface spectral emissivity dataset at 0.5°-by-0.5° spatial 

resolution has been developed by Huang et al. (2016) over the entire longwave spectrum for a 

variety of surface types, such as water, snow (fine, medium, and coarse grains), ice and tundra 

which are typical in the polar regions. This dataset is based on a set of first-principle calculations 
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as well as the mid-IR surface spectral emissivity retrievals from the MODIS measurements 

(Seemann et al., 2008) at 0.05º-by-0.05º resolution. Huang et al. (2016) validated the mid-IR part 

of the dataset against surface spectral emissivity retrievals from IASI observations (Zhou et al., 

2011). It has been demonstrated that the global-mean surface emissivity differences between this 

dataset and the IASI retrievals are within ±0.006 for four mid-IR bands from 820 to 1800 cm-1 

(12.2 to 5.6 µm) and the relevant root-mean-square (RMS) differences are less than 0.026 in both 

January and July (Huang et al., 2016). As there have been no far-IR measurements of surface 

spectral emissivity to validate the dataset, the far-IR surface emissivities in Huang et al. (2016) 

are based on either first-principle calculations (for snow, ice, desert, water, etc.) or extrapolation 

from the mid-IR counterparts (for vegetation surface types). More details about this dataset can 

be found in Huang et al. (2016). This dataset is used in our study for the simulation. 

Additionally, the a priori covariance matrix of surface spectral emissivities in the retrieval 

scheme is also constructed from this dataset. The nonexistence of any observed far-IR surface 

emissivity dataset leaves no choice but constructing a priori covariance matrix in this way.  

2.3 PCRTM forward model in the retrieval scheme  

A radiative transfer model is essential to physical retrievals. The Principal Component-based 

Radiative Transfer Model (PCRTM) V3.4 (Liu et al., 2006) is used to compute clear-sky 

radiances and Jacobians at the PREFIRE channels. Compared to the benchmark line-by-line 

radiative transfer calculations, the PCRTM makes use of correlations between spectral channels 

to predict the scores of precomputed principal components and greatly reduces the computational 

burden without significant loss of accuracy. Liu et al. (2006) demonstrated that, compared to the 

benchmark calculation, the root-mean-square error (RMSE) of the PCRTM calculation can be 

less than 0.4 K in brightness temperature. Chen et al. (2013) showed that the RMSE between the 
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PCRTM V2.1 and the LBLRTM (Line-By-Line Radiative Transfer Model) 12.0 (Clough et al., 

2005) in brightness temperature was 0.67 K for a random clear-sky profile, and the PCRTM was 

approximately 4480 times faster than the LBLRTM. More details about the PCRTM can be 

found in Liu et al. (2006). Chen et al. (2013) also developed a PCRTM-based simulator that can 

conveniently interface with reanalysis profiles and has been subsequently used in several studies 

(Huang et al., 2014; Bantges et al., 2016; Pan et al., 2017; Chen et al., 2018). This PCRTM-

based simulator is also used in this study as the forward model in the retrieval scheme. 

2.4 The PREFIRE mission: relevant design and current estimates of the noise level 

The PREFIRE mission, scheduled to launch no earlier than December 2022, will employ two 

CubeSats to operate in near-polar orbits (82º-98º inclination) and collect observations of polar 

spectral emission in both mid-IR and far-IR on hourly to seasonal timescales (L’Ecuyer et al., 

2021). Each spacecraft will carry a Thermal InfraRed Spectrometer (TIRS), a grating 

spectrometer with 64 channels covering 0-54 µm at a spectral resolution of 0.84 µm and a field 

of view comparable to AIRS (L’Ecuyer et al., 2021). TIRS will record spectral radiances over 

eight cross-track pixels, all within near nadir view. The manufacturing and assembling of TIRS 

instruments are ongoing. For brevity, hereafter PREFIRE will be used interchangeably with the 

PREFIRE TIRS instrument. The current best estimates of the noise equivalent spectral radiances 

(NeSRs) for PREFIRE channels in the mid-IR window and far-IR dirty window regions are 

shown in Figure 1a. These current estimates of NeSRs are used in our study to estimate 

measurement noises at each channel (i.e., Gaussian noise with the standard deviation being the 

estimated NeSR). Noises at different channels are assumed to be independent from each other. 

The PREFIRE TIRS is a push-broom device, intended to make eight cross-track measurements 

with each footprint around 10 km in diameter and viewing zenith angel  within ±10o (i.e., 
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cos≥ 0.985). Given such small deviation from nadir view, here we examine only the nadir-view 

geometry. The dependence of viewing zenith angle will be considered in the actual retrieval. 

2.5 Forward modeling strategy and selection of PREFIRE channels  

Two sets of simulations are carried out using the aforementioned PCRTM simulator and 

ERA5 reanalysis profiles. The first set is for an overall evaluation of the degree of freedoms 

(DoFs) and averaging kernels for the surface emissivity retrievals. And the second set is 

generated for assessment of the retrieval algorithm performance. Two polar regions featured with 

very different total column water vapor (TCWV) are chosen for the first set of simulations, 

namely, mid-Arctic Ocean (73-77°N, 0-360°E) and Antarctic Plateau (75-85°S, 60-90°E). The 

ERA5 climatological mean profiles averaged from 2001-2020 over each region are used to 

compute the DoFs and averaging kernel matrices. Given the seasonal variation of TCWV, such 

calculation is made for January and July, respectively.  

For the second set of simulations, 240 ERA5 hourly profiles are selected from the Arctic 

region (60-90ºN, 0-360°E), with equal separation both spatially and temporally, in each month of 

January, April, July, and October 2005, i.e., 960 profiles in total. As to be illustrated in the 

following section, TCWV affects the DoFs for surface emissivity retrievals the most. In general, 

the Arctic has a larger TCWV than the Antarctic. Therefore, the retrieval algorithm can be 

evaluated over a wider range of conditions in the Arctic than in the Antarctic. The ERA5 vertical 

profiles of temperature and humidity, as well as its surface skin temperatures and surface 

pressures are fed into the PCRTM simulator. Surface spectral emissivities used in the forward 

modeling are from Huang et al. (2016) over the same location as the individual ERA5 profiles, 

but perturbed with a uniformly distributed random number between -0.05 and 0.05. If the 

perturbed emissivity at a given frequency happens to be larger than one, it is then reset to 0.98. 
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These perturbed surface emissivities are necessary for the retrieval assessment, as it makes the 

(modeled) true surface emissivities not exactly the same as those used in constructing the a 

priori covariance. By doing so, the PCRTM simulator can provide the clear-sky TOA (top-of-

the-atmosphere) radiances at 1cm-1 spectral resolution from 50 to 2760 cm-1 (i.e., 200 to 3.6 µm). 

Such PCRTM spectra are then convolved with the PREFIRE spectral response functions (SRFs) 

to generate synthetic PREFIRE clear-sky radiances (as examples, SRFs of one mid-IR and one 

far-IR channels are shown in Figure 1c and 1d, respectively). Figure 1b shows two examples of 

such synthetic clear-sky radiances at the PREFIRE channels in the mid-IR window and far-IR 

dirty window, one for the mid-Arctic Ocean in the boreal winter and the other for the Antarctic 

Plateau in the austral winter. To mimic the realistic observations, Gaussian random noises based 

on the NeSRs shown in Figure 1a are added to the synthetic PREFIRE radiances. Both synthetic 

clear-sky radiances with and without measurement noises are used in the following sections.  

 Not all PREFIRE channels are suitable for the surface emissivity retrievals. For the far-IR 

channels outside of the dirty window region (i.e., wavelength > 25µm), water vapor absorption is 

always strong even when TCWV < 0.1 cm (Feldman et al, 2014), leading to little sensitivity to 

surface emission all over the polar regions. Thus, such channels are not used in our retrievals. 

One PREFIRE channel centered at 9.28 µm falls in the O3 9.6 µm band, so it is excluded to 

avoid the complexity of modeling O3 profiles. For the remaining PREFIRE channels in the mid-

IR window, mid-IR CO2 band, and far-IR dirty window regions, we further scrutinize their clear-

sky transmittances in the mid-Arctic Ocean and Antarctic Plateau for January and July, as shown 

in Figure 1e and 1f, respectively. The clear-sky transmittances of mid-IR window channels from 

8.4 µm to 12.7 µm are all above 0.6 with small variations from winter to summer. The channel 

centered on 13.5 µm sits in the wing of CO2 band and has a clear-sky transmittance of no less 
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than 0.3 in the mid-Arctic Ocean and larger than 0.6 in Antarctic Plateau for both seasons, 

suggesting non-negligible sensitivity to the surface emission. Thus, six mid-IR channels from 8.4 

µm to 13.5 µm (PREFIRE channel No. 10 and 12-16) are chosen for the surface emissivity 

retrievals. As for channels in the far-IR dirty window, the clear-sky transmittances exhibit much 

larger variations with TCWV than their mid-IR counterparts. For example, the clear-sky 

transmittance at 18.6 µm in the mid-Arctic Ocean drops from 0.47 in January to 0.09 in July. 

Over the Antarctic Plateau, it only decreases from 0.91 in July to 0.79 in January. Therefore, it 

can be expected that retrieving surface emissivity over such far-IR dirty window channels is 

more challenging for the Arctic Ocean than for the Antarctic Plateau. As a compromise, we 

choose eight channels in the far-IR from 16.9 µm to 22.8 µm (PREFIRE channel No. 20-27) for 

the surface emissivity retrievals. All eight channels have clear-sky transmittances above 0.6 over 

the Antarctic Plateau and larger than 0.16 over the Arctic Ocean in January. In total, fourteen 

PREFIRE channels are chosen for the surface emissivity retrievals. More details about the 

selected channels can be found in Table 1.  

3. Retrieval methodology 

The retrieval method adopted here largely follows the optimal estimation retrieval framework 

depicted in Rodgers (2000). Below is a brief depiction of the method and how to construct the a 

priori covariance matrix for our retrieval algorithm.  

3.1 Optimal estimation method 

The radiance observations made at the TOA, denoted by 𝐲, contain both outgoing radiances 

originated from the climate system and measurement noise. To mimic this fact, as mentioned 
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above, each synthetic PREFIRE radiance consists of the spectral radiance from the PCRTM 

given an input state vector 𝐱, denoted as F(x), and the measurement noise 𝜖. 

𝐲 = F(𝐱) +  𝜖 (1) 

Following the notation used in Rodgers (2000), 𝑃(𝐱) denotes the a priori probability distribution 

of the state vector x, and P(𝐱|𝐲) denotes the a posteriori probability of 𝐱 given the observation 𝐲. 

Assuming Gaussian distributions for both the likelihood P(𝐲|𝐱) and the a priori P(𝐱), P(𝐱|𝐲) 

then also follows a Gaussian distribution. The optimal estimation retrieval method seeks a 

solution, 𝐱̂, which maximizes the a posteriori probability P(𝐱|𝐲). 𝐒̂ denotes the a posteriori 

covariance matrix and evaluates the retrieval uncertainty of 𝐱̂. Solutions of 𝐱̂ and 𝐒̂ can be 

expressed as 

𝐱̂  =  (𝐊𝑇𝐒𝜖
−1𝐊 + 𝐒𝑎

−1)
−1

(𝐊𝑇𝐒𝜖
−1𝐲 +  𝐒𝑎

−1𝐱𝑎) (2) 

𝐒̂ = (𝐊𝑇𝐒𝜖
−1𝐊 +  𝐒𝑎

−1)
−1

 (3) 

where 𝐱𝑎 and 𝐒𝑎 are the a priori mean and covariance matrix of 𝐱, which represent the 

knowledge of state variables before the observations, 𝐒𝜖 is the noise covariance matrix that, in 

the context of information content analysis from satellite measurement, normally consider both 

the instrument noises and forward model errors (Xu et al., 2018), and 𝐊 = ∂F(𝐱)/𝜕𝐱 is the 

Jacobian matrix. The optimal estimate 𝐱̂ can be viewed as a sum of a priori mean and observed 

signal weighted by the inverse of covariance matrices. For moderately linear cases where the 

second-and higher-order derivative terms are negligible, 𝐱̂ can be obtained by using the iterative 

Gauss-Newton method to find the root of ∇𝐱[− ln(𝑃(𝐱|𝐲))] = 0. Estimated 𝐱̂ at the (i+1)-th 

iteration step, xi+1, can be expressed as 

𝐱𝑖+1 =  𝐱𝑎 + (𝛾𝐒𝑎
−1 + 𝐊𝑖

𝑇𝐒𝜖
−1𝐊𝑖)

−1
𝐊𝑖

𝑇𝐒𝜖
−1[𝐲 − F(𝐱𝑖) + 𝐊𝑖(𝐱𝑖 − 𝐱𝑎)]       (4) 
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where xi and Ki are the estimates of 𝐱̂  and its Jacobian at the i-th iteration, respectively. 

Corresponding, the estimated 𝐒̂ at the i-th iteration can be written as 

𝐒𝑖 = (𝛾𝐒𝑎
−1 + 𝐊𝑖

𝑇𝐒𝜖
−1𝐊𝑖)

−1
(𝛾2𝐒𝑎

−1 + 𝐊𝑖
𝑇𝐒𝜖

−1𝐊𝑖)(𝛾𝐒𝑎
−1 + 𝐊𝑖

𝑇𝐒𝜖
−1𝐊𝑖)

−1
  (5) 

Different from the formulas in Rodgers (2000), a tuning parameter 𝛾 is introduced in Equations 

(4) and (5) to manually adjust the relative weight of a priori constraints and observed 

information (Carissimo et al., 2005; Zhou et al., 2007; Masiello et al., 2012; Turner & Löhnert, 

2014). This modification is meant to stabilize the retrieval process by gradually adding 

information from the observations step by step. Following the work of Turner and Löhnert 

(2014), a sequence of 𝛾 values [1000, 300, 100, 30, 10, 3, 1, 1, 1, ⋯ , 1] has been used in this 

study. The iteration stops when 𝛾 = 1 and the following convergence criterion is met. 

(𝐱𝑖 −  𝐱𝑖+1)𝑇𝐒𝑖
−1(𝐱𝑖 − 𝐱𝑖+1) <

𝑙𝑒𝑛𝑔𝑡ℎ(𝐱)

10
 (6) 

This convergence criterion assures that the change of 𝐱 between two consecutive iterations is 

smaller than the retrieval uncertainty by at least an order of magnitude. 

3.2 Construction of a priori covariance matrix 𝐒𝑎 

Among all the terms describes in Equations (1)-(6), K is straightforward to obtain directly 

from the PCRTM, and Sϵ is a diagonal matrix which assumed to be decided by the NeSRs (since 

the forward model errors are unknown given the scarcity of the measurements in the far IR). On 

the other hand, 𝐱𝑎 and 𝐒𝑎 are specified in a more subjective way than K and Sϵ.  

A priori knowledge of 𝐱 can be obtained from climatological data, laboratory measurements 

or empirical analysis. In this study, the a priori mean 𝐱𝑎 of surface spectral emissivity are set to 

0.95. The a priori covariance matrix 𝐒𝑎 is derived from the global surface emissivity database 

(Huang et al., 2016) described in Section 2.2. Specifically, nadir-view surface spectral emissivity 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

from Huang et al. (2016) is first averaged onto each PREFIRE channel, and then a covariance 

matrix is computed from such surface emissivity data at the PREFIRE spectral resolution. Since 

there have been no measurements available to validate the far-IR surface emissivity in Huang et 

al. (2016), we decide not to directly use the computed covariance matrix as 𝐒𝑎. Two further 

adjustments are made instead: (1) doubling the a priori uncertainty of surface emissivity as 

derived from Huang et al. (2016) for each PREFIRE channel so that the tolerable range of 

surface emissivity at each PREFIRE channel becomes larger; (2) halving the linear correlation 

coefficients between the surface emissivities of two channels as derived from Huang et al. 

(2016), so that the retrievals of surface spectral emissivity can be less affected by the inter-

channel correlation. 𝐒𝑎 constructed in this way is shown in Figure 2. The variance in the mid-IR 

window channels (channels 10, 12-14) is around 10-4, much smaller than the variance in the rest 

channels (~8.3×10-4-1.4×10-3). The covariance of surface emissivities between two far-IR 

channels is positive and the covariance between one far-IR and one mid-IR channel is in general 

negative, but the latter one is much smaller in magnitude than the former one.  

4. Results 

4.1 Information content analysis 

The information content analysis provides an estimate of how much information contributed 

by the true surface spectral emissivity can be captured by the observations given the specified 

NeSRs and the a priori knowledge. Different metrics have been developed to evaluate the 

information content, such as the Fisher information matrix (Fisher, 1922), the Shannon 

information matrix (Shannon & Weaver, 1949), the averaging kernel matrix (Backus et al., 

1970), and the degree of freedom (DoF) for signal (Rodgers, 2000). Here the averaging kernel 
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and the DoF will be used in the information content analysis for two different polar 

topographical regions, the mid-Arctic Ocean (73-77°N, 0-360°E) and Antarctic Plateau (75-85°S, 

60-90°E with an averaged elevation ~3.2km). The ERA5 climatological monthly mean profiles 

in January and July from 2001 to 2020 over each region are used in the analysis.  

The averaging kernel matrix, 𝐀, quantitatively evaluates the sensitivity of retrieval results to 

the true surface emissivity. It can be expressed as 

𝐀 =  
𝜕𝐱̂

𝜕𝐱
=  𝐒𝑎𝐊𝑇(𝐊𝐒𝑎𝐊𝑇 + 𝐒𝜖)−1𝐊 (7) 

In our case, the rows of 𝐀 represent the sensitivity of retrieved surface emissivity at a given 

channel to the true surface emissivity at all fourteen selected channels. The diagonal elements 

denote the sensitivity of a specific retrieval estimate to its own true value. The averaging kernel 

matrix would be an identity matrix for the idealized scenario, i.e., each retrieval estimate is 

sensitive to its own true value with a 1:1 ratio but insensitive to any other state variables.  

The averaging kernels of surface spectral emissivity over the mid-Arctic Ocean are shown in 

Figure 3. Each curve represents a row in A, which usually peaks at its diagonal element. The 

closer the peak is to 1, the more signal from true surface emissivity on the same channel is 

expected to be retrieved. The averaging kernels of all mid-IR channels show essentially zero 

sensitivity to surface emissivity on the far-IR channels (Figure 3a and 3c). Except for the 8.4-µm 

channel, averaging kernels of the rest mid-IR channels all have peak values ≥ 0.5. The 8.4-µm 

channel has a NeSR larger than the radiance change corresponding to the 1 a priori uncertainty 

of the 8.4-µm surface emissivity, indicating that the a posteriori uncertainty cannot be further 

reduced from the a priori one by such measurements. This is why the averaging kernel for the 

8.4-µm surface emissivity does not have a noticeable peak as the rest of the mid-IR channels. 

Moreover, averaging kernels of all mid-IR channels show little changes from January to July 
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despite the increase of TCWV from 0.27 to 1.31 cm (a factor of 4.9). In contrast, the averaging 

kernel of any far-IR surface emissivity has a positive peak smaller than 0.5 in January (Figure 

3b) and remains flat at zero over all the far-IR channels in July (Figure 3d). Such contrasts in the 

averaging kernels between the far-IR and mid-IR channels show that the TCWV variation can 

affect surface emissivity retrievals in the far-IR much more than those in the mid-IR. Note that 

the far-IR averaging kernels in July have non-zero components over the mid-IR channels (Figure 

3d), which implies that the far-IR emissivity retrievals for the mid-Arctic Ocean in July will be 

largely constrained by the a priori covariance between the far-IR and mid-IR, as well as the 

actual mid-IR surface emissivity retrievals in July.  

The averaging kernels for the Antarctic Plateau are shown in Figure 4. The most noticeable 

difference from Figure 3 is that, in both January and July, the averaging kernels for the far-IR 

surface emissivities have a much higher peak over the respective channels. This is due to the 

much smaller TCWV over the Antarctic Plateau than the mid-Arctic Ocean. In this case, the far-

IR surface emissivity retrievals are more influenced by the actual far-IR measurements than the a 

priori constraints between the far-IR and mid-IR.  

To further quantitatively understand how the TCWV affects the information contents for the 

mid-IR and far-IR emissivity retrievals, we perform a DoF analysis. The DoF for signal, denoted 

by 𝑑𝑠, refers to the number of independent pieces of information about the true state that can be 

determined from a measurement. It tells how informative the observation can be considering the 

measurement noise and the a priori dependence among surface spectral emissivity. The DoF for 

signal is equal to the trace of averaging kernel matrix A. Using monthly-mean January profiles 

over the mid-Arctic Ocean, we scale the water vapor profile to get different TCWV and compute 

the DoF for signal accordingly. The DoF calculation is not sensitive to the choice of months or 
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polar surface types. Figure 5 shows the DoFs for surface emissivity retrievals in the mid-IR and 

far-IR, respectively, as a function of TCWV derived in this way. Shaded areas denote the long-

term monthly-mean range of TCWV for the Arctic (60-90ºN, 0-360ºE), Antarctic (60-90ºS, 0-

360ºE) and globe, respectively. In general, the polar regions have less water vapor abundance 

than global mean by a factor of 2.5 to 10. The Arctic exhibits a larger seasonal variation of 

TCWV than the Antarctic. When the TCWV is around 0.005 cm, the DoF of six mid-IR channels 

is 4.7, and the DoF for signal of eight far-IR channels is 6.2. This discrepancy between DoFs and 

the corresponding number of channels reflects the influence of instrument noise and correlations 

among PREFIRE channels characterized by the a priori covariance matrix. As the TCWV 

increases, the DoF for the far-IR surface emissivity retrievals drops to 4 when TCWV = 0.1 cm 

and to virtually zero when TCWV > 1 cm. In contrast, the DoF for the mid-IR surface emissivity 

retrievals stays relatively constant until the TCWV reaches 1 cm. If we take 0.5 as a threshold of 

the DoF, the far-IR and mid-IR surface emissivity retrieval drop to this threshold when the 

TCWV reaches 0.6 cm and 3 cm, respectively (Figure 5). Such variations with the TCWV are 

consistent with what is shown in Figure 3 and Figure 4, corroborating that the retrievals of far-IR 

surface emissivity can be significantly influenced by the water vapor abundance while the mid-

IR retrievals are less affected by the TCWV.  

4.2 Performance assessment of the retrieval algorithm 

The retrieval algorithm described in Section 3 is applied to 960 synthetic PREFIRE clear-sky 

spectra (i.e., 240 spectra from January, April, July, and October, respectively). To assess the 

performance of the surface emissivity retrieval algorithm, the ERA5 temperature and humidity 

profiles used here are assumed to be accurate without errors. The influence of uncertainty in 

temperature and humidity profiles on the surface emissivity retrieval will be discussed in the next 
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section. Figure 6 shows an individual retrieval in April over the deep Arctic. The true surface 

emissivity at each channel falls into the range within the a posteriori uncertainty (Figure 6a) of 

the optimal estimate. The radiances computed from the retrieved surface emissivity (red circled 

line in Figure 6b) are close to the synthetic PREFIRE radiances (blue dotted line in Figure 6b). 

The differences between them, i.e. radiance residuals, are within ±0.03 Wm−2sr−1μm−1 as 

shown in Figure 6c and all fall into the NeSR range (±1) denoted by the shading.  

All 960 cases converged within 15 iterations, with a median convergence speed of 8 

iterations. Radiance residuals of the 960 cases show no dependence on the synthetic radiances, as 

one example given in Figure 7a for a far-IR channel at 16.9 µm. Moreover, the overwhelming 

majority of radiance residuals fall within the range determined by the NeSR of this channel, 

indicating that the accuracy level of retrieval results is comparable to the instrument noise level 

(Figure 7a). The residuals also show no dependence on TCWV (Figure 7b). This good fit 

between retrieval estimates and synthetic observations is stable regardless of measurement noise 

or the variation of water vapor abundance. Thus, Figure 7a and 7b assure that the optimal 

estimation algorithm performs as intended. 

Figure 8a summarizes the mean bias and RMSE of the retrieval results for all 960 cases. The 

mean bias varies within ±0.01 for both mid-IR and far-IR channels. The RMSEs on the far-IR 

channels are less than 0.024 and generally larger than those in the mid-IR. When it comes to 

each calendar month studied here, the mean bias shows no obvious seasonal dependence, neither 

do the RMSEs on the mid-IR channels. However, the RMSEs on the far-IR channels are larger in 

July than in other months (Figure 8c). This is consistent with the aforementioned information 

content analysis: the far-IR retrieval in July over the Arctic relies more on the a priori constraints 

between the mid-IR and far-IR channels as well as the mid-IR retrievals than the actual far-IR 
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radiances. In other words, the a priori knowledge becomes the predominant factor determining 

the Arctic far-IR surface emissivity retrievals in July, which has been demonstrated by the zero 

(flat) averaging kernels of the far-IR channels in Figure 3d.  

4.3 Sensitivity of retrievals to the a priori constraint 

The a priori information exerts influence on the optimal estimation retrievals by providing an 

important constraint within the Bayesian framework. If the true surface emissivity spectra are not 

properly characterized by the a priori mean and covariance matrix, the retrieval results can be 

significantly different from the true values (Maahn et al., 2020). Some studies, such as the 

retrievals of liquid water path from ground-based measurements (Turner et al., 2007), may find 

little dependence on the a priori constraint when the observations are accurate enough and can 

always provide adequate information content. However, for the PREFIRE surface emissivity 

retrievals studied here, we need to further understand how the retrieval results can be influenced 

by the different choices of a priori constraint. 

Two a priori covariance matrices are tested to further understand such influence. The a priori 

covariance matrix used in Figure 8 is denoted as “informative 𝐒𝑎”. The other a priori covariance 

matrix, termed as “weakly informative 𝐒𝑎”, is a diagonal matrix with a uniform value of 0.152 

on its diagonal. This weakly informative Sa assumes the same a priori uncertainty (=0.15) for 

the emissivity at every channel but no a priori correlation between surface emissivities at any 

two different channels. Figure 9 compares the mean and RMSE of the retrieval results using 

these distinct 𝐒𝑎 (note that the results using informative 𝐒𝑎 are the same as what is shown in 

Figure 8a). Using weakly informative 𝐒𝑎 instead of the informative 𝐒𝑎 leads to larger RMSEs for 

all channels and such differences are much more noticeable in the far-IR than in the mid-IR: the 

RMSEs derived using the two different 𝐒𝑎 can differ by 0.002-0.06 in the mid-IR but by 0.04-
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0.12 in the far-IR. Therefore, the far-IR surface emissivity retrievals in the Arctic are more 

influenced by choice of 𝐒𝑎 than the mid-IR surface emissivity retrievals. Nevertheless, even for 

the case of weakly informative 𝐒𝑎, the RMSEs are smaller than a priori uncertainty (i.e., 0.15) 

for all channels, with the largest RMSE being 0.14 at the 18.6-µm channel. The reduction from 

the a priori uncertainty reflects the extent to which the PREFIRE measurements with noise can 

help constrain the retrievals. The larger the reduction, the more the retrieval results are 

determined by the measurements than a priori. Not only the retrieval accuracy but also the 

convergence speed can benefit from a properly constructed a priori constraint. When using the 

weakly informative 𝐒𝑎, 72% of the 960 cases converge within 10 iterations and 96% converge 

within 15 iterations. When the informative 𝐒𝑎 is used, 98% cases converge within 10 iterations 

and 100% converge within 15 iterations. Therefore, adopting a properly constructed 𝐒𝑎 is critical 

to the satisfactory performance of the retrieval algorithm, especially for the far-IR surface 

emissivity retrievals.  

Besides above discussion, the OE retrieval framework used here assumes that a priori 

distribution of the retrieved variable follows the normal distribution. A deviation from such 

normal distribution could lead to an incorrect estimation of posteriori error covariance. The mid-

IR surface spectral emissivity in Huang et al. (2016) is based on the MODIS retrieved surface 

emissivity retrieved at 0.05º-by-0.05º spatial resolution. The histogram of a mid-IR channel over 

the Arctic in a given calendar month indeed resemble a Gaussian curve. As for the surface 

emissivities in the far-IR channels, measurements are not available for validating its distribution. 

Thus, our assessment of posteriori error covariance here might be affected by such a possibility 

of non-Gaussian a priori distribution. We also notice that the Gaussian-like histogram is more 

applicable to each polar region and each calendar month, but not to both polar regions together 
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or the entire year. Therefore, in actual retrieval, there is a need of constructing a priori 

covariance separately for each region and each month (or minimally each season).   

5. Conclusions and discussion 

In preparation for the PREFIRE mission, this study seeks to implement and assess an optimal-

estimation-based surface emissivity retrieval algorithm. Fourteen mid-IR and far-IR PREFIRE 

channels are selected for the feasibility of retrieving their surface spectral emissivities in the 

polar regions. The information content analysis evaluates to what extent the PREFIRE 

measurements can provide useful information in addition to the a priori constraints. Both 

averaging kernel and the DoF analyses demonstrate that the mid-IR information content is less 

affected by the TCWV than the far-IR counterpart. When the TCWV is > 1cm, the information 

content available for far-IR surface emissivity retrievals dramatically decreases to virtually zero.  

The optimal estimation retrieval algorithm is applied to retrieve surface spectral emissivity 

from 960 synthetic PREFIRE clear-sky radiance spectra spanning the range of conditions 

encountered at both poles with random noise added to each channel based on the current 

estimation of the PREFIRE NeSR. The retrievals of all 960 cases converge within 15 iterations. 

The mean of retrieval bias varies within ±0.01 over both mid-IR and far-IR channels. The 

RMSEs in the mid-IR range from 0.005 to 0.02, while those in the far-IR stay around 0.02. The 

RMSEs of far-IR surface emissivity retrievals in the Arctic, unlike those in the mid-IR, exhibit a 

noticeable seasonal dependence, with the largest RMSEs seen in July among four calendar 

months examined in this study. The comparison of retrieval results using two different a priori 

covariance matrices indicates that the mid-IR surface emissivity retrievals are much less affected 

by the choice of a priori covariance than the far-IR surface emissivity retrievals do. For the same 
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retrieval algorithm, the choice of a priori covariance can affect the convergence speed as well as 

the retrieval accuracy level.  

This study assumes the temperature and humidity profiles as well as surface skin temperature 

are known without any uncertainty. This assumption is necessary given the spectral resolution of 

the PREFIRE channels (i.e., 0.84 µm). MODIS infrared channels have a narrower spectral 

resolution (i.e., ~0.3-0.5 µm) than the PREFIRE, and its surface emissivity retrieval algorithm 

also assumed that the temperature and humidity profiles were known from either the numerical 

weather forecast data assimilation or collocated other remote sensing observations (Hulley et al., 

2016). However, such temperature and humidity profiles always have uncertainties. In a real 

operational algorithm, how such uncertainties can propagate and affect the surface emissivity 

retrievals needs to be understood and quantified. As demonstrated by several validation studies 

of the atmospheric temperature and humidity retrievals (Divakarla et al., 2006; Pougatchev et al., 

2009; Divakarla et al., 2014; Boylan et al., 2015; Milstein & Blackwell, 2016; Nalli et al., 2018), 

atmospheric temperature profiles from data assimilation or reanalysis are generally in good 

agreement with those inverted from hyperspectral soundings or directly observed by radiosondes, 

and the RMSEs are around or less than 1.5 K in the troposphere. In contrast, state-of-the-art 

humidity retrievals from hyperspectral sounders still can have a RMSE as large as 20% in the 

troposphere (Milstein & Blackwell, 2016; Nalli et al., 2018), and reanalysis humidity fields bear 

similar uncertainty (Jakobson et al., 2012; Nygård et al., 2016; Chen et al., 2018). Therefore, the 

uncertainties in the humidity profiles likely can affect the surface emissivity retrievals more than 

those in the temperature profiles. Quantifying the error propagation of such uncertainties in the 

humidity and temperature profiles is out of the scope of this study but will be investigated once 

the data flow structure for the entire PREFIRE operational algorithm is determined.  
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This study highlights, in multiple ways, the importance of a priori covariance on the surface 

spectral emissivity retrieval. Therefore, having a priori covariance with correct and sufficient 

representation of polar surface spectral emissivity, and testing its deviation from assumed 

Gaussian distribution, are crucial to the success of the PREFIRE surface spectral emissivity 

retrieval effort. Likewise, future work upon knowing the instrumental characteristics of 

PREFIRE after the launch can be conducted to consider the impact of the off-diagonal 

observation error covariance matrix on the surface emissivity retrieval. While there have been a 

couple of field campaigns to measure the far-IR surface spectral emissivities over Greenland and 

Mt. Zugspitze in the German Alps (Bellisario et al., 2017; Murray et al., 2020; Palchetti et al., 

2021), we hope that our findings here can further motivate more in-situ or laboratory 

measurements of such quantities, especially over the far-IR dirty window where few actual 

measurements currently exist.  
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Table 1. Basic information about the 14 PREFIRE channels selected for surface spectral 

emissivity retrieval in this study. In total six in the mid-IR and eight in the far-IR are selected. 

Note the PREFIRE spectral resolution for each channel is around 0.84 µm. 

 PREFIRE 

Channel No. 

Central 

wavelength (µm) 

Spectral coverage 

Wavelength (µm) Wavenumber (cm-1) 

Mid-IR 

10 8.44 [8.02, 8.86] [1247, 1129] 

12 10.13 [9.70, 10.55] [1031, 948] 

13 10.97 [10.55, 11.39] [948, 878] 

14 11.82 [11.39, 12.24] [878, 817] 

15 12.66 [12.24, 13.08] [817, 765] 

16 13.50 [13.08, 13.92] [765, 718] 

Far-IR 

20 16.88 [16.45, 17.30] [608, 578] 

21 17.72 [17.30, 18.14] [578, 551] 

22 18.57 [18.14, 18.99] [551, 527] 

23 19.41 [18.99, 19.83] [527, 504] 

24 20.25 [19.83, 20.67] [504, 484] 

25 21.10 [20.67, 21.52] [484, 465] 

26 21.94 [21.52, 22.36] [465, 447] 

27 22.78 [22.36, 23.20] [447, 431] 
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Figure 1. (a) The noise equivalent spectral radiances (NeSRs) of the PREFIRE channels in the 

mid-IR window region and a portion of the far-IR. (b) Simulated PREFIRE clear-sky radiances 

at TOA over the same channels as shown in (a). Blue and red curves represent monthly mean 

synthetic PREFIRE radiances over the mid-Arctic Ocean (73-77ºN, 0-360ºE) in January 2005 

and the Antarctic Plateau (75-85ºS, 60-90ºE) in July 2005, respectively. Details of the simulation 

are described in Section 2. (c) PREFIRE spectral response function of a mid-IR channel centered 

on 11.8 µm. (d) Same as (c) but for a far-IR channel centered on 18.6 µm. (e) Clear-sky 

atmospheric transmittance averaged over the mid-Arctic Ocean at each PREFIRE channel. Blue 
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line with circles is for January and red line with diamonds is for July, respectively. The 

transmittance is computed using MODTRAN5 (MODerate resolution atmospheric 

TRANsmission; Berk et al., 2006). (f) Same as (e) but for the Antarctic Plateau. In all panels, 

solid markers denote 14 selected channels for the surface emissivity retrieval.  

  



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

 
Figure 2. A priori covariance matrix, 𝐒𝑎, used in our surface emissivity retrievals. The PREFIRE 

channel information can be found in Table 1. Details about how 𝐒𝑎 is constructed can be found 

in Section 3.2.  
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Figure 3. (a) The averaging kernels of surface spectral emissivities at the selected PREFIRE mid-

IR channels. They are calculated using the ERA5 20-year (2001-2020) mean profile in January 

over the mid-Arctic Ocean (73-77°N, 0-360°E). The corresponding mean total column water 

vapor (TCWV) is labeled on the top of the panel. (b) Same as (a) except for the averaging 

kernels of surface spectral emissivities at the selected far-IR channels. (c)-(d) Same as (a)-(b) 

except for July. 
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Figure 4. Same as Figure 3, but for the Antarctic Plateau (75-85°S, 60-90°E). 
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Figure 5. Degree of freedom (DoF) for the surface spectral emissivity retrieval as a function of 

total column water vapor (TCWV). These DoFs are calculated by scaling the water vapor profile 

while keeping ERA5 January long-term (2001-2020) mean temperature profiles over the mid-

Arctic Ocean (73-77°N, 0-360°E) unchanged. The blue shade bounded by solid lines denote the 

range of long-term monthly-mean TCWV averaged over the Arctic (60-90ºN, 0-360ºE) based on 

the ERA5 reanalysis from 2001 to 2020. Similarly, the light-yellow shade bounded by dash lines 

is for the Antarctic (60-90ºS, 0-360ºE), and the light red shade bounded by dotted-dash lines is 

for the global mean. The solid lines in each shade represent the long-term (2001-2020) annual-

mean TCWV over the corresponding areas. 
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Figure 6. Retrieval of an individual April case in the Arctic. The location is 83.25°N and 

343.50°E. (a) True (in blue) and retrieved (in red) surface spectral emissivity on the selected 

PREFIRE channels. For the retrieval estimates, open circle represents the optimal estimate of 

surface emissivity, and the vertical bars denote the standard deviation of retrieval uncertainty 

(±1). (b) Synthetic PREFIRE radiances (in blue) and the radiances based on the retrieved 

surface spectral emissivity (in red). (c) Difference between the radiances shown in (b). i.e., 

residual radiance. Pink shade denotes the PREFIRE NeSR (±1). 
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Figure 7. (a) A scatter plot of retrieval residuals with respect to the synthetic PREFIRE radiances 

at a far-IR channel (16.9 𝜇𝑚). Horizontal dash lines denote the NeSR (±1) of this PREFIRE 

channel. (b) Similar to (a), but for a scatter plot of retrieval residuals at the same channel with 

respect to the total column water vapor. It is apparent that residuals are not correlated with the 

synthetic radiance, nor with the total column water vapor.  
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Figure 8. Statistics of the surface emissivity retrievals over the Arctic (60-90ºN, 0-360ºE). (a) 

The mean bias (open circles) and the corresponding RMSE (vertical bars) based on all 960 cases. 

(b) The mean bias for January, April, July, and October cases, respectively. Each month has 240 

cases. (c) The RMSE for January, April, July, and October cases, respectively. 
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Figure 9. Blue lines with dots show the mean biases and the RMSEs of surface spectral 

emissivity retrievals using a weakly informative a priori covariance matrix (a diagonal matrix 

with the same value of 0.152 on its diagonal). Orange line with open circle denotes the 

counterparts from using the a priori covariance matrix shown in Figure 2, which is denoted as 

informative 𝐒𝑎. For comparison, dashed lines denote the ±0.15 threshold (i.e., a priori 

uncertainty for weakly informative 𝐒𝑎). 

 




