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Abstract
A central but challenging problem in genetic studies is to test for (usually weak)
associations between a complex trait (e.g., a disease status) and sets of multiple
genetic variants. Due to the lack of a uniformlymost powerful test, data-adaptive
tests, such as the adaptive sum of powered score (aSPU) test, are advantageous
in maintaining high power against a wide range of alternatives. However, there
is often no closed-form to accurately and analytically calculate the p-values of
many adaptive tests like aSPU, thus Monte Carlo (MC) simulations are often
used, which can be time consuming to achieve a stringent significance level (e.g.,
5e-8) used in genome-wide association studies (GWAS). To estimate such a small
p-value, we need a huge number of MC simulations (e.g., 1e+10). As an alterna-
tive, we propose using importance sampling to speed up such calculations. We
develop some theory to motivate a proposed algorithm for the aSPU test, and
show that the proposed method is computationally more efficient than the stan-
dard MC simulations. Using both simulated and real data, we demonstrate the
superior performance of the new method over the standard MC simulations.
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1 INTRODUCTION

Genome-wide association studies (GWASs), such as one of
the first and most influential, conducted by the Wellcome
Trust Case Control Consortium (WTCCC) (2010), have
successfully identified many genetic variants associated
with common disease and complex traits by single SNP-
based analysis, where SNP stands for single-nucleotide
polymorphism. However, these results can only explain a
small proportion of the heritability for most human traits.
One possible reason is that many SNPs have too small
effect sizes to be detected by single SNP-based analysis.
Driven by the idea of aggregating small and possibly sparse
signals of multiple SNPs to gain power, researchers have
proposed multiple SNP-based analyses, in which the goal
is to test association between a trait and multiple SNPs,

which can be drawn from a gene or a pathway. Since there
is no uniformly most powerful test, it is desirable to apply
an adaptive test such that high power can be maintained
against various alternatives (e.g., Chen et al., 2010; Lee
et al., 2012; Zhang et al., 2014; Su et al., 2015; Huang et al.,
2016; Su et al., 2017; Ma and Wei, 2019; Yang et al., 2019),
most of which require Monte Carlo (MC) methods to cal-
culate their p-values. Pan et al. (2014) proposed such a
test, called the adaptive sum of powered score (aSPU) test,
based on combining a family of so-called sum of powered
score (SPU) tests, which cover some existing tests, such
as the Sum (or burden) test, the sum of squared score
test (Pan, 2009) and minP test as special cases. In partic-
ular, compared to some existing tests, such as the popu-
lar Sequence Kernel Association Test (SKAT) (Wu et al.,
2011) and the optimized SKAT (SKAT-O) (Lee et al., 2012),
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the aSPU test performs better in situations where a large
number of nonassociated variants exist (i.e., with sparse
signals). The aSPU has also been extended to pathway-
based analysis (Pan et al., 2015) and can simply work with
GWAS summary statistics and a reference panel (Kwak
and Pan, 2015). An asymptotic theory for the aSPU test for
“large n and large p” has been developed (Xu et al., 2016),
where n and p refer to the sample size and the number of
SNPs, respectively. For “large n and small p,” although the
aSPU test statistic is a nonlinear function of a multivari-
ate normal score vector, it is unknown how to calculate its
p-value analytically. Thus, MC simulations (Lin 2005) or
other resamplingmethods have been used so far. Given the
stringent significance threshold for genome-wide testing
(e.g., at p< 5e-8), it requires at least 1e+9 to 1e+11 MC sim-
ulations (Yu et al., 2011) to estimate a small p-value around
5e-8, which will be time consuming. Hence, we propose
importance sampling to speed up p-value calculations for
aSPU (and possibly other adaptive tests).
Importance sampling was originally proposed to reduce

variations in MC simulations (Cochran, 1977; Hesterberg,
1995; Asmussen and Glynn, 2007). Its intuition is to
sample from a proposed distribution that overweighs an
important target region so that we can obtain samples
more frequently from that region, while the standard MC
sampling will seldom get any from that region if the corre-
sponding probability in that region is extremely small. The
proposed distribution is often called a proposal distribu-
tion. This method has been frequently used to evaluate the
extremes of Gaussian random fields and other rare-event
probabilities, and its efficiency has been carefully studied
(Adler et al., 2012; Liu and Xu, 2014a, 2014b; Jiang et al.,
2017; He and Xu, 2018; Li and Xu, 2018). Since the p-value
calculation involves sampling from a rejection region with
possibly a small probability from a null distribution, we
propose using importance sampling to speed up the SPU
and aSPU tests. The applications of importance sampling
or other Markov chain Monte Carlo (MCMC) techniques
for such a purpose are a common theme in the literature
(e.g., Kimmel and Shamir, 2006; Liang et al., 2007; Shi
et al., 2007; Yu et al., 2011). The recent work of Shi et al.
(2019) is most closely related to ours: they also proposed
an importance sampling approach called MCMC-CE
(Markov Chain Monte Carlo-Cross Entropy) to more
efficiently estimate small p-values. A key difference is
that we consider a wider range of tests with different and
possibly computationally more efficient proposal distri-
butions. We derive some theoretical results to support the
computational efficiency of our proposed method. We use
simulations to demonstrate that our new method can
yield good estimates of extreme p-values with much
less iterations (and thus less time) than the standard
MC. We apply the standard MC and the importance

sampling approaches to the WTCCC data to confirm the
effectiveness of the new method.

2 METHODS

2.1 Importance sampling for SPU

The SPU tests (Pan et al., 2014) were originally proposed
to improve power under each of multiple alternatives with
varying association patterns between a set of variants and
a trait of interest. They can be applied to either com-
mon variants or rare variants. For this paper, we focus on
common variants, and will comment on rare variants in
the Section 5. Suppose we have the (marginal) Z-statistics
𝒁 = (𝑧(1), 𝑧(2), … , 𝑧(𝑝))′ for 𝑝 SNPs (in a gene), and𝐑 is
an estimate of their covariance matrix with diagonal ele-
ments equal to 1. 𝐑 is often regarded as an estimate of
the LD covariance matrix of the SNPs. Each Z-statistic is
often based on the Wald or score test on each SNP from a
marginal model of the trait on the SNP. For common vari-
ants, the Z-statistics are usually normally distributed (with
a large sample size). Hence, without loss of generality, we
assume throughout this paper that the null distribution of
𝒁 is MVN(0, R). We also assume R is nonsingular (which
is reasonable with large sample sizes and possible pruning
of highly correlated SNPs).
To be powerful for an unknown alternative, multiple

SPU tests are designed, each tailored for a type of alterna-
tive hypotheses. A power index 0 < 𝛾 < ∞ is used to make
a corresponding SPU test powerful for a specific alterna-
tive: 𝑎 SPU(𝛾, 𝒁) test with a smaller/larger 𝛾 is more pow-
erful for a more sparse/dense alternative. We define

SPU (𝛾, 𝒁) = 𝑇𝛾 =

⎧⎪⎨⎪⎩
𝑝∑
𝑖=1

𝑧(𝑖)
𝛾
(0 < 𝛾 < ∞)

max
𝑖

|||𝑧(𝑖)||| (𝛾 = ∞)

,

where 𝛾 is usually chosen from {1, 2, . . . , 8,∞}, which has
been shown empirically to perform well in previous stud-
ies. The standard MC approach to calculating a p-value
is to sample 𝒁𝑏 (𝑏 = 1, 2, … , 𝐵) from its null distribution
MVN(0, 𝐑), then calculate

𝑃SPU(𝛾,𝒁) =
1

𝐵

𝐵∑
𝑏 = 1

𝐼 (|SPU (𝛾, 𝒁𝑏)| > |SPU (𝛾, 𝒁)|) .
However, to accurately estimate a small p-value (e.g., p-

value < 5e-8), we need a large 𝐵 (e.g., > 1e+10), which can
be extremely time consuming. We propose using impor-
tance sampling to estimate a small p-value with a relatively
small 𝐵.
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Suppose𝑓(𝒁𝑏) is the density function of the desired/true
distribution of 𝒁𝑏 under the null. In this case, 𝑓(𝒁𝑏) is the
density function ofMVN(0, 𝐑). We want to use a different
distribution, called the importance distribution, to sample
𝒁𝑏, and the density function of this importance distribu-
tion is 𝑔(𝒁𝑏). 𝑇(𝒁𝑏) is a function of 𝒁𝑏. It can be any test
statistic based on 𝒁𝑏 (e.g., the SPU test statistic with any
power index). Based on the importance sampling theory,
we want to choose an appropriate density function 𝑔(⋅)

such that the ratio 𝑓(𝒁𝑏)∕𝑔(𝒁𝑏) is well defined and then

E𝑓 (𝑇 (𝒁𝑏)) = E𝑔

(
𝑓 (𝒁𝑏)

𝑔 (𝒁𝑏)
𝑇 (𝒁𝑏)

)
,

where E𝑓 and E𝑔 denote the expectations over the density
𝑓(⋅) and 𝑔(⋅), respectively. This equation suggests that if we
sample 𝒁𝑏 under 𝑔, then [

∑𝐵

𝑏 = 1
𝑤𝑏𝑇(𝒁𝑏)]∕𝐵 is an unbi-

ased estimate of E(𝑇(𝒁𝑏)), where 𝑤𝑏 = 𝑓(𝒁𝑏)∕𝑔(𝒁𝑏). Par-
ticularly, we consider

𝑇(𝒁𝑏) = 𝐼(|SPU(𝛾, 𝒁𝑏)| > |SPU(𝛾, 𝒁)|).
𝒁 is the observed statistic, treated as fixed for now.
As a result, 1

𝐵

∑𝐵

𝑏 = 1
𝑤𝑏𝐼(|SPU(𝛾, 𝒁𝑏)| > |SPU(𝛾, 𝒁)|) is an

unbiased estimate of P𝑓(|SPU(𝛾, 𝒁𝑏)| > |SPU(𝛾, 𝒁)|) =

E𝑓 (𝐼(|SPU(𝛾, 𝒁𝑏)| > |SPU(𝛾, 𝒁)|)),which is the p-value of
SPU(𝛾, 𝒁). Here, P𝑓 represents the probability over the
density 𝑓(⋅).
Now the only concern is how to choose a proper 𝑔 to

sample 𝒁𝑏. Denote the observed SPU(𝛾, 𝒁) by 𝑡𝛾. Based on
the idea that 𝑔 should allow 𝑍𝑏 to get to extreme values
(i.e., comparable to the observed 𝑍) much more easily, we
propose the following procedure for different 𝛾’s. We will
discuss the theoretical efficiency of the proposed impor-
tance sampling procedure in the following section, which
will also explain why we use different algorithms for 𝛾 ≤ 2

and 𝛾 > 2.

1. for 𝛾 = 1 or 2: Sample 𝐙𝑏 from MVN(𝜇∗, 𝐑) or
MVN(−𝜇∗, 𝐑)with the same probabilities, where 𝜇∗ =

(
𝑡1

𝑝
,
𝑡1

𝑝
…

𝑡1

𝑝
)′ if 𝛾 = 1; 𝜇∗ = (

√
𝑡2

𝑝
,

√
𝑡2

𝑝
…

√
𝑡2

𝑝
)′ if 𝛾 =

2 (𝑏 = 1, 2…𝐵). Calculate SPU(𝛾, 𝐙𝑏) and the p-value:
𝑃SPU(𝛾,𝑍) =

1

𝐵

∑𝐵

𝑏 = 1
𝑤𝑏𝐼(|SPU(𝛾, 𝑍𝑏)| > |SPU(𝛾, 𝑍)|),

where

1

𝑤𝑏
=
1

2

⎛⎜⎜⎝
𝑒
−
1

2
(𝑍𝑏−𝜇

∗)
′
𝑅−1(𝑍𝑏−𝜇

∗)

𝑒
−
1

2
𝑍𝑏

′𝑅−1𝑍𝑏

+
𝑒
−
1

2
(𝑍𝑏+𝜇

∗)
′
𝑅−1(𝑍𝑏+𝜇

∗)

𝑒
−
1

2
𝑍𝑏

′𝑅−1𝑍𝑏

⎞⎟⎟⎠ .
2. 𝛾 > 2: For each 𝑏, simulate 𝜏 from Unif (1, 2…𝑝)

only once. Sample 𝑍𝑏
(𝜏) from 𝑁(𝑡𝛾

∗, 1) or 𝑁(−𝑡𝛾∗, 1)
with the same probabilities. If 𝛾 is finite, 𝑡𝛾∗ = 𝑡𝛾

1∕𝛾.

If 𝛾 is infinite, 𝑡𝛾∗ = 𝑡𝛾. Conditioning on 𝑍𝑏
(𝜏), gen-

erate (𝑍𝑏
(1), … , 𝑍𝑏

(𝜏−1), 𝑍𝑏
(𝜏+1), … , 𝑍𝑏

(𝑝))′ from
MVN(𝜇∗, 𝚺∗) with 𝜇∗ = 𝑍𝑏

(𝜏) 𝚺12 and 𝚺∗ = 𝚺11 −

𝚺12𝚺12
′. 𝚺11 is 𝐑 without its 𝜏th column and row,

and 𝚺12 = (𝑅𝜏1 … 𝑅𝜏,𝜏−1 𝑅𝜏,𝜏+1 … 𝑅𝜏𝑝)
′. Calculate

SPU(𝛾, 𝑍𝑏) and p-value: 𝑃SPU(𝛾,𝑍) =
1

𝐵

∑𝐵

𝑏=1
𝑤𝑏𝐼

(|SPU(𝛾, 𝑍𝑏)| > |SPU(𝛾, 𝑍)|), where 𝑤𝑏 is defined by

1

𝑤𝑏
=

1

2𝑝

𝑝∑
𝑖 = 1

𝑒
−
1

2

(
𝑍𝑏

(𝑖)−𝑡𝛾
∗
)2

𝑒
−
1

2

(
𝑍𝑏

(𝑖)
)2 +

1

2𝑝

𝑝∑
𝑖 = 1

𝑒
−
1

2

(
𝑍𝑏

(𝑖)+𝑡𝛾
∗
)2

𝑒
−
1

2

(
𝑍𝑏

(𝑖)
)2 .

Note that for 𝛾 = 1 or 2, SPU (𝛾, 𝜇∗) = 𝑡𝛾, and for 𝛾 >
2, SPU (𝛾, (𝑡𝛾

∗, 0, … , 0)′) = … = SPU (𝛾, (0, … , 𝑡𝛾
∗)′) =

𝑡𝛾. This means that the SPU test statistics resulting
from the shifted mean vectors are comparable to the
observed ones, ensuring that we will be able to sample
many extreme statistics but not too many. More rigorous
justification for our proposed choice of the proposal dis-
tributions (i.e., the normal distributions with the shifted
mean vectors) is provided by the two propositions and
following discussions in Section 2.3. More information on
deriving 𝑤𝑏 is also provided in Web Appendix A.
In addition to efficiently estimate the rare-event p-

values, according to the importance sampling theory
(Asmussen and Glynn, 2007), for each 𝛾, an estima-
tor of the variance of 𝑃SPU(𝛾,𝑍) is Var(𝑃SPU(𝛾,𝑍)) =
1

𝐵2

∑𝐵

𝑏 = 1
[𝑤𝑏𝐼(|SPU(𝛾, 𝑍𝑏)| > |SPU(𝛾, 𝑍)|) − 𝑃SPU(𝛾,𝑍)]

2.

With the above variance estimator, we can obtain that
the standard error of our importance sampling estimator
𝑃SPU(𝛾,𝑍) based on B replications is

√
Var(𝑃SPU(𝛾,𝑍)).

Note that the accuracy of the 𝐑 estimate will generally
affect the result of SPU tests and aSPU test (which will be
introduced next), no matter whether we use importance
sampling or the standard approach. The main focus of this
paper is to compare our new method with the standard
approach given the same𝐑 estimate. More information on
estimating 𝐑 can be found elsewhere (Wen and Stephens
2010; Kwak and Pan 2016).

2.2 Importance sampling for aSPU

For the SPU test, smaller 𝛾s work better when the sig-
nals are dense (i.e., many SNPs in the region have nonzero
effects) while larger 𝛾s work better when the signals are
sparse (i.e., only a few SNPs have nonzero effects). The
main idea of the aSPU test is to combine the SPU tests with
different 𝛾s, so that the test will perform well in various
situations. Suppose we choose 𝛾 from Γ = {𝛾1, 𝛾2 … 𝛾𝑟}.
The aSPU test statistic, aSPU(𝑍), is simply the minimum
of 𝑃SPU(𝛾,𝑍)s. Applying the importance sampling method
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for each SPU test separately can give us aSPU(𝑍), but that
does not directly give us the p-value of this test statistic.
We propose to use a mixture sampling procedure that can
calculate not only aSPU(𝑍) but also its p-value.
First, select weight 𝑞𝑖 for each 𝛾𝑖 (𝑖 = 1, 2, … , 𝑟). We

set 𝑞𝑖 =
1

𝑟
for all 𝑖. For each 𝑏, randomly choose 𝛾 accord-

ing to the weights. Follow the procedure for 𝛾 to obtain
𝑍𝑏. For each 𝑍𝑏, we can calculate the SPU test statistics
SPU(𝛾𝑖, 𝑍𝑏) and the weight 𝑤𝑏:

1

𝑤𝑏
=

𝑟∑
𝑖=1

𝑞𝑖

𝑤
(𝛾𝑖)

𝑏

,

1

𝑤
(𝛾𝑖)

𝑏

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

2

(
𝑒
−
1
2
(𝑍𝑏−𝜇

∗)
′
𝑅−1(𝑍𝑏−𝜇

∗)

𝑒
−
1
2
𝑍𝑏

′𝑅−1𝑍𝑏

+
𝑒
−
1
2
(𝑍𝑏+𝜇

∗)
′
𝑅−1(𝑍𝑏+𝜇

∗)

𝑒
−
1
2
𝑍𝑏

′𝑅−1𝑍𝑏

)
if 𝛾𝑖 ≤ 2

1

2𝑝

𝑝∑
𝑗=1

𝑒
−
1
2

(
𝑍𝑏

(𝑗)−𝑡𝛾𝑖
∗
)2

𝑒
−
1
2

(
𝑍𝑏

(𝑗)
)2 +

1

2𝑝

𝑝∑
𝑗=1

𝑒
−
1
2

(
𝑍𝑏

(𝑗)+𝑡𝛾𝑖
∗
)2

𝑒
−
1
2

(
𝑍𝑏

(𝑗)
)2 , 𝑡𝛾𝑖

∗ = 𝑡𝛾𝑖
1∕𝛾 if 2 < 𝛾𝑖 < ∞

1

2𝑝

𝑝∑
𝑗=1

𝑒
−
1
2

(
𝑍𝑏

(𝑗)−𝑡𝛾𝑖
∗
)2

𝑒
−
1
2

(
𝑍𝑏

(𝑗)
)2 +

1

2𝑝

𝑝∑
𝑗=1

𝑒
−
1
2

(
𝑍𝑏

(𝑗)+𝑡𝛾𝑖
∗
)2

𝑒
−
1
2

(
𝑍𝑏

(𝑗)
)2 , 𝑡𝛾𝑖

∗ = 𝑡𝛾𝑖 if 𝛾𝑖 = ∞

,

where 𝜇∗ = ( 𝛾𝑖

√
𝑡𝛾𝑖

𝑝
, 𝛾𝑖

√
𝑡𝛾𝑖

𝑝
… 𝛾𝑖

√
𝑡𝛾𝑖

𝑝
) ′ for 𝛾𝑖 ≤ 2. Note that

for each 𝑏, we only simulate 𝛾 once and use it to generate
𝑍𝑏. Then, we calculate 𝑤𝑏 = 1∕(

∑𝑟

𝑖 = 1
𝑞𝑖∕𝑤

(𝛾𝑖)

𝑏
), using all

𝛾𝑖s we consider (e.g., 1, 2, 4, 8, ∞). This is like simulating
Zb from a mixture of distributions.
Next, we calculate the p-values for the SPU tests and the

aSPU test statistics:

𝑃SPU(𝛾𝑖 ,𝑍) =
1

𝐵

𝐵∑
𝑏 = 1

𝑤𝑏𝐼 (|SPU (𝛾𝑖, 𝑍𝑏)| > |SPU (𝛾𝑖, 𝑍)|) ,
𝑃SPU(𝛾𝑖 ,𝑍𝑏) =

1

𝐵 − 1

∑
𝑏′ = 1,…,𝐵; 𝑏′≠𝑏

𝑤𝑏′𝐼 (|SPU (𝛾𝑖, 𝑍𝑏′)|
> | SPU (𝛾𝑖, 𝑍𝑏)|) ,

aSPU (𝑍) = min
𝑖

(
𝑃SPU(𝛾𝑖 ,𝑍)

)
, aSPU (𝑍𝑏)

= min
𝑖

(
𝑃SPU(𝛾𝑖 ,𝑍𝑏)

)
.

Finally, we can obtain the p-value of the
aSPU test: 𝑃aSPU(𝑍) =

1

𝐵

∑𝐵

𝑏 = 1
𝑤𝑏𝐼(aSPU(𝑍𝑏) <

aSPU(𝑍)), and its variance estimate
1

𝐵2

∑𝐵

𝑏 = 1
[𝑤𝑏𝐼(aSPU(𝑍𝑏) < aSPU(𝑍)) − 𝑃aSPU(𝑍)]

2.

Note that a good choice of 𝑞𝑖 , the weight of each 𝛾𝑖 ,
may make the new approach more efficient. We propose

an adaptive sampling approach that updates the weights
four times during the process. Start from 𝑞𝑖 =

1

𝑟
to get the

first 𝐵∕5 samples. Then, we calculate the p-values of the
observed SPU test statistics only based on the weights and
test statistics of these samples. If 𝛾𝑘 has the smallest p-
value, we double its weight, which means now 𝑞𝑖 =

2

𝑟+1

for 𝑖 = 𝑘, and 𝑞𝑖 =
1

𝑟+1
for 𝑖 ≠ 𝑘. Generate another 𝐵∕5

samples with the new weights and update the weights
again in the same way (double the weight of 𝛾𝑖 that gives
the smallest p-value), using the 𝐵∕5 new samples. Con-
tinue this process to get 𝐵 samples and combine them

to finish the testing procedure. For convenience, we call
the importance sampling methods with fixed weights and
updated weights IMP and IMP2, respectively. Running
IMP or IMP2 once will give us the p-values of aSPU and
the corresponding SPU tests, and our experience suggests
that obtaining the p-values of SPU from mixed samples is
not worse, and sometimes better, than using the approach
described in the previous subsection. Hence, we will only
use IMP and IMP2 in the following. Note that based on the
importance sampling theory, IMP and IMP2 provide unbi-
ased estimates. Their computational efficiency (compared
to the standard approach) will be shown in the simulation
studies.

2.3 Theoretical properties

We have already shown that the estimates generated by
importance sampling are unbiased. In this subsection,
we discuss the efficiency of the new method. Let 𝐿𝛾(𝑥)
denote an estimator of the rare-event probability 𝛼𝛾(𝑥) =

P(|SPU(𝛾, 𝐙)| > |𝑥|), which goes to 0 as |𝑥|→∞. We con-
sider 𝛼𝛾(𝑥) ∈ (0, 1). To estimate 𝛼𝛾(𝑥), which is like com-
puting the p-value of an observed 𝑥, we simulate 𝐵 i.i.d.
samples of 𝐿𝛾(𝑥), {𝐿

(𝑏)
𝛾 (𝑥) ∶ 𝑏 = 1,… , 𝐵} and obtain the

average estimator 𝐿̄𝛾(𝑥) = 𝐵−1
∑𝐵

𝑏 = 1
𝐿
(𝑏)
𝛾 (𝑥).
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One way to look at whether 𝐿̄𝛾(𝑥) is efficient is to con-
sider the relative error |𝐿̄𝛾(𝑥) − 𝛼𝛾(𝑥)|∕𝛼𝛾(𝑥). We want to
control it so that for some prescribed 𝜂, 𝛿 > 0,

P{|𝐿̄𝛾 (𝑥) − 𝛼𝛾 (𝑥) |∕𝛼𝛾 (𝑥) > 𝜂} < 𝛿. (1)

The standard MC method generates samples from
MVN(0,𝐑) and uses 𝐿𝛾(𝑥) = 𝐼(|SPU(𝛾, 𝐙𝑏)| > |𝑥|). As
a result, E(𝐿̄𝛾(𝑥)) = E(𝐿𝛾(𝑥)) = 𝛼𝛾 (𝑥). By Markov’s
inequality,

P{|𝐿̄𝛾 (𝑥) − 𝛼𝛾 (𝑥) |∕𝛼𝛾 (𝑥) > 𝜂} ≤ Var
{
𝐿̄𝛾 (𝑥)

}
∕{

𝛼2𝛾 (𝑥) 𝜂
2
}
= Var

{
𝐿𝛾 (𝑥)

}
∕
{
𝐵𝛼2𝛾 (𝑥) 𝜂

2
}
. (2)

To achieve the relative error control, we want
var{𝐿𝛾(𝑥)}∕{𝐵𝛼

2
𝛾(𝑥)𝜂

2} < 𝛿. As var{𝐿𝛾(𝑥)} = 𝛼𝛾(𝑥)

(1 − 𝛼𝛾(𝑥)) for the standard MC estimator, it needs
𝐵 > 𝜂−2𝛿−1𝛼−1𝛾 (𝑥)(1 − 𝛼𝛾(𝑥)). As 𝛼𝛾(𝑥) → 0, the standard
MC method becomes inefficient and even infeasible
because 𝜂−2𝛿−1𝛼−1𝛾 (𝑥)(1 − 𝛼𝛾(𝑥)) → ∞.
A more efficient estimator is the logarithmic efficient

estimator (Asmussen and Glynn, 2007). An unbiased esti-
mator 𝐿𝛾(𝑥) of 𝛼𝛾(𝑥) is called logarithmic efficient if

lim sup|𝑥|→∞

Var
{
𝐿𝛾 (𝑥)

}
𝛼2−𝜀𝛾 (𝑥)

= 0, (3)

for any 𝜀 > 0. When 𝐿𝛾(𝑥) is logarithmic efficient, inequal-
ity (2) also holds by Markov’s inequality, and therefore
(3) implies that we only need 𝐵 = 𝑂{𝜂−2𝛿−1𝛼−𝜀𝛾 (𝑥)} i.i.d.
replicates of 𝐿𝛾(𝑥), for any 𝜂 > 0. Compared with the stan-
dardMC, the logarithmic efficient estimators substantially
reduce the computational cost, especially for small 𝛼𝛾(𝑥).
To construct a logarithmic efficient estimator, we use the

importance sampling method. We construct the change
of measure estimator (section V.1 of Asmussen and
Glynn, 2007) 𝐿𝛾(𝑥) = 𝑤𝑏 𝐼(|SPU(𝛾, 𝐙𝑏)| > |𝑥|), where
𝑤𝑏 = 𝑓𝛾 (𝐙𝑏)∕𝑔𝛾(𝐙𝑏). To have an insight of how the choice
of 𝑔𝛾(𝐙𝑏) could satisfy requirement (3), we first notice that
(3) is equivalent to

lim inf|𝑥|→∞

log
[
Var

{
𝐿𝛾 (𝑥)

}]
log 𝛼2𝛾 (𝑥)

≥ 1.

In addition, since E{𝐿2𝛾(𝑥)} ≥ Var{𝐿𝛾(𝑥)} and E{𝐿2𝛾(𝑥)} ≥
[E{𝐿𝛾(𝑥)}]

2 = 𝛼2𝛾 (𝑥), (3) is also equivalent to

lim|𝑥|→∞

log E
{
𝐿2𝛾 (𝑥)

}
log 𝛼2𝛾 (𝑥)

= 1, (4)

the proof of which is provided in the supplementary mate-
rials. Then, for the change of measure estimator 𝐿𝛾(𝑥), if

we choose 𝑔𝛾(𝐙𝑏) = 𝑓𝛾 (𝐙𝑏), 𝐿𝛾(𝑥) reduces to the stan-
dardMCestimator 𝐼(|SPU(𝛾, 𝐙𝑏)| > |𝑥|), and the left-hand
side of (4) then equals 1/2, which is smaller than 1, the
right-hand side. On the other hand, consider 𝐺𝑥(⋅) to be
the conditional probability measure given |SPU(𝛾, 𝐙𝑏)| >|𝑥|, and has the density 𝑓

𝐺𝑥
𝛾 (𝒁𝑏) = 𝛼−1𝛾 (𝑥)𝑓𝛾(𝐙𝑏); then

if we choose 𝑔𝛾(𝐙𝑏) = 𝑓
𝐺𝑥
𝛾 (𝒁𝑏), the left-hand side of (4)

is exactly 1. Note that this change of measure is of no
practical use since 𝐿𝛾(𝑥) depends on the unknown 𝛼𝛾(𝑥).
But if we can find a change of measure 𝑔𝛾(𝐙𝑏) that is a
good approximation of 𝑓𝐺𝑥𝛾 (𝒁𝑏), the conditional probabil-
ity measure given |SPU(𝛾, 𝐙𝑏)| > |𝑥|, we would expect (4)
to hold and the corresponding estimator 𝐿𝛾(𝑥) to be effi-
cient. In other words, the logarithmic efficiency criterion
requires that the new density 𝑔𝛾(𝐙𝑏) is a good approxi-
mation of the conditional distribution of interest. We then
show that the new density 𝑔𝛾(𝐙𝑏) given by the proposed
importance sampling could approximate the conditional
probability measure 𝑓𝐺𝑥𝛾 (𝑍𝑏)well. We first present the the-
oretical result (Proposition 1) showing that the proposed
sampling method is logarithmic efficient for 𝛾 = 1 and
𝛾 = ∞.

Proposition 1. When |𝑥|→∞, 𝐿𝛾(𝑥) = 𝑤𝑏𝐼(|SPU
(𝛾, 𝑍𝑏)| > |𝑥|) is logarithmic efficient for 𝛾 = 1, ∞.

Note that when proving Proposition 1 for 𝛾 = 1, instead
of choosing 𝜇∗ = (𝑡1, 𝑡1 … 𝑡1)

′∕𝑝 as previously described,
we use 𝜇∗ = 𝐑1𝑎0, where 𝑎0 = |𝑡1|∕(1′𝐑1) and 1 is a
𝑝-dimensional vector with all elements equal to 1. If 𝐑
is an identity matrix, then 𝜇∗ = 𝐑1 𝑎0 = (𝑡1, 𝑡1 … 𝑡1)

′∕𝑝.
From our experience, using (𝑡1, 𝑡1 … 𝑡1)

′∕𝑝 or 𝐑1𝑎0 does
notmake a huge difference. Hence, wewill still use the for-
mer in this paper, while the function in our package allows
both ways.
We then discuss the sampling procedures for 𝛾 = 2

and 2 < 𝛾 < ∞, which will be shown to be similar to
the cases of 𝛾 = 1 and 𝛾 = ∞, respectively. When 𝛾 =

2, SPU(2, 𝐙) =
∑𝑝

𝑖=1
(𝑧(𝑖))2 , and we know (𝑧(𝑖))2 ∼ 𝜒2

1
,

which is a light tail distribution, i.e., it decays at an expo-
nential rate or faster. Note that when 𝛾 = 1, SPU(1, 𝐙) =∑𝑝

𝑖=1
𝑧(𝑖) and 𝑧(𝑖) ∼ N(0, 1) also has light tail. We then

know that the two cases when 𝛾 = 1 and 𝛾 = 2 are simi-
lar in the sense that they simulate the tail probabilities of a
sum of light tail distributions. Following the discussion on
rare-event simulations with light tail distributions in chap-
ter VI.2 in Asmussen and Glynn (2007), this motivates us
to use a similar sampling procedure when 𝛾 = 1, 2. Then
analogous to the case when 𝛾 = 1, we expect that when
𝛾 = 2, the change ofmeasure 𝑔2(𝑍𝑏) is also a good approx-
imation to the conditional probability measure 𝑓𝐺𝑥

2
(𝑍𝑏).

We provide an illustrative example for 𝛾 = 2when𝑝 = 1

in Figure 1; the figure appears in color in the electronic
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F IGURE 1 Density plots of three distributions. This figure appears in color in the electronic version of this article, and any mention of
color refers to that version

version of this article, and any mention of color refers
to that version. The targeted conditional distribution is
𝑓1(𝑧) = 𝑃(𝑧 | 𝑧2⟩42) and the proposed bimodal mixture
distribution is 𝑓3. For comparison, we also consider a sin-
gle normal 𝑓2 with a large variance to approximate 𝑓1. It
can be seen that the bimodal mixture distribution 𝑓3 pro-
vides a better approximation of 𝑓1 than 𝑓2 does.
For 2 < 𝛾 < ∞, we show below that (𝑧(𝑖))𝛾s follow heavy

tail distributions.

Proposition 2. For 𝛾 = ∞,

lim|𝑡∞|→∞

P {SPU (∞,𝐙) > |𝑡∞|}
P
{||𝑧(𝑖)|| > |𝑡∞|} = 𝑝.

For even 𝛾, 2 < 𝛾 < ∞,

liminf|𝑡𝛾|→∞

P
{
SPU (𝛾, 𝐙) >

|||𝑡𝛾|||}
P
{(

𝑧(𝑖)
)𝛾

>
|||𝑡𝛾|||} ≥ 𝑝; (5)

when we further assume 𝐑 = 𝐈𝑝 ,

lim|𝑡𝛾|→∞

P
{
SPU (𝛾, 𝐙) >

|||𝑡𝛾|||}
P
{(

𝑧(𝑖)
)𝛾

>
|||𝑡𝛾|||} = 𝑝. (6)

Note that (6) suggests that marginally (𝑧(𝑖))𝛾’s with
2 < 𝛾 < ∞ satisfies the definition of “subexponential" dis-
tributions (see, e.g., Teugels, 1975), which is a type of
heavy tail distribution. Specifically, the proof of Propo-

sition 2 shows that P{(𝑧(𝑖))𝛾 > 𝑥} decays at rate 𝑒
−
1

2
𝑥2∕𝛾 ,

which is slower than the exponential rate as 𝛾 > 2. In

addition, when 𝑧(𝑖)’s are jointly independent, Proposi-
tion 2 shows that P{SPU(∞,𝐙) > |𝑡∞|} ∼ 𝑝P{|𝑧(𝑖)| > |𝑡∞|}
and P{SPU(𝛾, 𝐙) > |𝑡𝛾|} ∼ 𝑝P{(z(𝑖))𝛾 > |𝑡𝛾|} for 2 < 𝛾 < ∞.
Therefore,

P
{
SPU (𝛾, 𝐙) >

|||𝑡𝛾|||} ∼ P

{
SPU (∞,𝐙) >

|||𝑡𝛾|||1∕𝛾
}

= P

{
max
1≤𝑖≤𝑝

(
𝑧(𝑖)
)𝛾

>
|||𝑡𝛾|||
}
.

This implies that the conditional probability

P

{
max
1≤𝑖≤𝑝

(𝑧(𝑖))𝛾 >
|||𝑡𝛾||| |||| SPU (𝛾, 𝐙) >

|||𝑡𝛾|||
}

=

P

{
max
1≤𝑖≤𝑝

(𝑧(𝑖))
𝛾
>
|||𝑡𝛾||| , SPU (𝛾, 𝐙) >

|||𝑡𝛾|||
}

P
{
SPU (𝛾, 𝐙) >

|||𝑡𝛾|||} → 1, (7)

as P{max1≤𝑖≤𝑝(𝑧
(𝑖))𝛾 > |𝑡𝛾|, SPU(𝛾, 𝐙)⟩|𝑡𝛾|} = P{ma

x1≤𝑖≤𝑝(𝑧
(𝑖))𝛾 > |𝑡𝛾|}. For a general correlation𝐑, following

similar analysis, we have the conditional probability
(7) ≤ 1, and under certain technical weak-dependence
assumptions, it can be further shown that (7) is close to 1
(Geluk and Tang, 2009). The conditional probability (8)
approaching 1 suggests that conditioning on the event
SPU(𝛾, 𝐙) > |𝑡𝛾|, the probability of one single 𝑧(𝑖) to
become large tends to be big. Intuitively, our proposed
sampling procedures for 2 < 𝛾 < ∞ and 𝛾 = ∞ mimic
this tail behavior of one single 𝑧(𝑖) being large. Specifically,
we randomly sample one index 𝜏 and shift the mean of
𝑧(𝜏) to ±𝑡∗𝛾 so that the probability of (𝑧(𝜏))𝛾 being large is
big. Then conditioning on this “large” one, we sample
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TABLE 1 Mean p-values (SD) [computation time in seconds] of different methods on one data set using 12 runs. 𝑘 = 10, 𝜃 = 0.26,
Γ = (1, 2, 4, 8, ∞). Average computation times for the SPU tests are the same as those for aSPU

SPU(1) (1.5e-6, 2.1e-6)a

𝑩 = 𝟏𝟎𝟑 𝑩 = 𝟏𝟎𝟒 𝑩 = 𝟏𝟎𝟓 𝑩 = 𝟏𝟎𝟔

STD 0 (0) 0 (0) 0 (0) 1.2e-6 (1.0e-6)
IMP 2.3e-6 (1.3e-6) 1.8e-6 (4.0e-7) 1.7e-6 (8.0e-8) 1.7e-6 (3.0e-8)
IMP2 1.9e-6 (7.0e-7) 1.7e-6 (2.1e-7) 1.7e-6 (3.7e-8) 1.7e-6 (2.7e-8)
SPU(2) (1.6e-4, 1.7e-4) a

𝑩 = 𝟏𝟎𝟑 𝑩 = 𝟏𝟎𝟒 𝑩 = 𝟏𝟎𝟓 𝑩 = 𝟏𝟎𝟔

STD 2.5e-4 (6.2e-4) 1.6e-4 (1.4e-4) 1.7e-4 (3.7e-5) 1.7e-4 (8.4e-6)
IMP 1.7e-4 (1.1e-4) 1.5e-4 (3.3e-5) 1.7e-4 (1.5e-5) 1.6e-4 (5.3e-6)
IMP2 9.9e-5 (7.7e-5) 1.4e-4 (9.0e-5) 1.6e-4 (2.0e-5) 1.6e-4 (6.8e-6)
SPU(4) (6.5e-4, 6.6e-4) a

𝑩 = 𝟏𝟎𝟑 𝑩 = 𝟏𝟎𝟒 𝑩 = 𝟏𝟎𝟓 𝑩 = 𝟏𝟎𝟔

STD 5.8e-4 (6.7e-4) 6.3e-4 (2.6e-4) 6.3e-4 (8.6e-5) 6.6e-4 (3.1e-5)
IMP 6.9e-4 (1.4e-4) 6.5e-4 (2.7e-5) 6.6e-4 (1.2e-5) 6.6e-4 (4.0e-6)
IMP2 6.4e-4 (1.2e-4) 6.5e-4 (4.9e-5) 6.6e-4 (1.2e-5) 6.5e-4 (4.6e-6)
SPU(∞) (2.5e-2, 2.5e-2) a

𝑩 = 𝟏𝟎𝟑 𝑩 = 𝟏𝟎𝟒 𝑩 = 𝟏𝟎𝟓 𝑩 = 𝟏𝟎𝟔

STD 2.4e-2 (4.3e-3) 2.4e-2 (1.4e-3) 2.5e-2 (6.5e-4) 2.5e-2 (1.3e-4)
IMP 2.6e-2 (3.0e-3) 2.5e-2 (3.3e-4) 2.5e-2 (2.1e-4) 2.5e-2 (5.5e-5)
IMP2 2.6e-2 (2.8e-3) 2.5e-2 (9.0e-4) 2.5e-2 (2.9e-4) 2.5e-2 (9.8e-5)
aSPU (5.8e-6, 6.8e-6) a

𝑩 = 𝟏𝟎𝟑 𝑩 = 𝟏𝟎𝟒 𝑩 = 𝟏𝟎𝟓 𝑩 = 𝟏𝟎𝟔

STD 1.0e-3 (0)
[0.068]

1.0e-4 (0)
[0.57]

1.0e-5 (0)
[5.9]

5.1e-6 (3.4e-6)
[48]

IMP 9.0e-6 (4.1e-6)
[0.024]

6.6e-6 (1.7e-6)
[0.12]

6.0e-6 (3.0e-7)
[1.1]

6.0e-6 (9.3e-8)
[11]

IMP2 1.3e-5 (6.9e-6)
[0.024]

7.1e-6 (2.0e-6)
[0.099]

5.9e-6 (2.0e-7)
[0.72]

5.9e-6 (8.9e-8)
[7.9]

a95% confidence intervals of p-values based on STD with 10ˆ8 iterations.

the remaining 𝑧(𝑖)s. Following the discussions on the
rare-event simulation of the summation of heavy tail
distributions in chapter VI.3 in Asmussen and Glynn
(2007), we also expect that the change of measure 𝑔𝛾(𝐙𝑏)
could approximate the conditional probability measure
𝑓
𝐺𝑥
𝛾 (𝐙𝑏) well, similarly to the case when 𝛾 = ∞.
As for aSPU, we also expect the proposed sampling pro-

cedure to be efficient because it is based on a combination
of the procedures for SPU. Proofs of the propositions can
be found in Web Appendix A.

2.4 Comparison with other methods

We would like to mention that there are other approaches
that can potentially improve upon standard MC, but
most of them cannot be directly applied to the aSPU test.
For example, the saddle-point approximation (Daniels
1954) cannot be easily applied because it requires the
moment generating function of the target statistic. The

moment generating function of the aSPU statistic does
not have a simple closed-form, as the aSPU statistic is a
complicated combination of the high order moments of
multivariate Gaussian random vectors. The MCMC-CE
method proposed by Shi et al. (2019) seems comparable
to our method since it also incorporates the importance
sampling technique and can be used to test SNP sets.
Nevertheless, this approach cannot be directly applied to
aSPU since the aSPU test statistic cannot be written as an
explicit function of some multivariate normal variables.
In fact, MCMC-CE cannot be easily applied to SPU(𝛾)
with 𝛾 > 2 either. More discussions and some simulation
results for comparing IMP with MCMC-CE are provided
in the supplementary materials.

3 SIMULATION STUDIES

We did some simulations to compare the numerical per-
formance and speed of the importance sampling and the
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TABLE 2 Mean p-values (SD) of different methods on one dataset using 12 runs. 𝑘 = 3, 𝜃 = 0.41, Γ = (1, 2, 4, 8, ∞). Average
computation times are similar to Table 1

SPU(1) (1.2e-1, 1.2e-1)a

𝑩 = 𝟏𝟎𝟑 𝑩 = 𝟏𝟎𝟒 𝑩 = 𝟏𝟎𝟓 𝑩 = 𝟏𝟎𝟔

STD 1.2e-1 (1.2e-2) 1.2e-1 (2.7e-3) 1.2e-1 (1.2e-3) 1.2e-1 (4.6e-4)
IMP 1.2e-1 (1.7e-2) 1.1e-1 (5.2e-3) 1.2e-1 (1.6e-3) 1.2e-1 (5.0e-4)
IMP2 1.2e-1 (2.0e-2) 1.2e-1 (6.4e-3) 1.2e-1 (2.3e-3) 1.2e-1 (8.1e-4)
SPU(2) (2.1e-6, 2.3e-6) a

𝑩 = 𝟏𝟎𝟑 𝑩 = 𝟏𝟎𝟒 𝑩 = 𝟏𝟎𝟓 𝑩 = 𝟏𝟎𝟔

STD 0 (0) 0 (0) 1.7e-6 (3.9e-6) 1.9e-6 (1.1e-6)
IMP 5.1e-7 (4.7e-7) 1.0e-6 (4.9e-7) 1.3e-6 (4.7e-7) 2.5e-6 (8.8e-7)
IMP2 2.7e-6 (6.1e-6) 1.1e-6 (6.0e-7) 1.7e-6 (6.8e-7) 2.4e-6 (1.0e-6)
SPU(4) (4.7e-8, 7.9e-8) a

𝑩 = 𝟏𝟎𝟑 𝑩 = 𝟏𝟎𝟒 𝑩 = 𝟏𝟎𝟓 𝑩 = 𝟏𝟎𝟔

STD 0 (0) 0 (0) 0 (0) 0 (0)
IMP 5.8e-8 (1.7e-8) 6.1e-8 (7.4e-9) 6.2e-8 (2.7e-9) 6.1e-8 (8.5e-10)
IMP2 6.1e-8 (2.1e-8) 6.3e-8 (9.0e-9) 6.0e-8 (1.6e-9) 6.1e-8 (6.5e-10)
SPU(∞) (3.1e-9, 1.5e-8) a

𝑩 = 𝟏𝟎𝟑 𝑩 = 𝟏𝟎𝟒 𝑩 = 𝟏𝟎𝟓 𝑩 = 𝟏𝟎𝟔

STD 0 (0) 0 (0) 0 (0) 0 (0)
IMP 6.5e-9 (7.4e-10) 6.7e-9 (2.4e-10) 6.7e-9 (6.0e-11) 6.7e-9 (2.1e-11)
IMP2 6.7e-9 (9.4e-10) 6.7e-9 (2.5e-10) 6.7e-9 (6.9e-11) 6.7e-9 (2.2e-11)
aSPU (2.3e-8, 4.7e-8) a

𝑩 = 𝟏𝟎𝟑 𝑩 = 𝟏𝟎𝟒 𝑩 = 𝟏𝟎𝟓 𝑩 = 𝟏𝟎𝟔

STD 1.0e-3 (0) 1.0e-4 (0) 1.0e-5 (0) 1.0e-6 (0)
IMP 4.5e-6 (8.5e-6) 6.6e-8 (8.6e-8) 2.7e-8 (3.2e-9) 2.5e-8 (6.1e-10)
IMP2 1.1e-5 (2.3e-5) 6.0e-8 (4.1e-8) 2.9e-8 (6.9e-9) 2.5e-8 (1.3e-9)

a95% confidence intervals of p-values based on STD with 10ˆ9 iterations.

standard MC (denoted STD) with GWAS summary statis-
tics. First, we looked at the Blood Cell Consortium (BCX)
GWAS data (Chami et al., 2016) on hematocrit (HCT)
with 808 subjects of European ancestry, focusing on chro-
mosome 22. We used 381 subjects of European ancestry
from the 1000 Genomes Project data (The 1000 Genomes
Project Consortium, 2015) as our reference panel. Then,
we selected 𝑝 = 20 SNPs that were present in both data
sets with minor allele frequencies > 0.05. For each sub-
ject 𝑖, the trait 𝑌𝑖 was simulated by a linear model 𝑌𝑖 =∑𝑝

𝑗=1
𝑋𝑖𝑗𝛽𝑖𝑗 + 𝑒𝑖 , where 𝑒𝑖 followed a standard normal dis-

tribution, and 𝑋𝑖𝑗 was the genotype of SNP 𝑗 for subject 𝑖.
We assumed that 𝛽𝑖𝑗 = 𝜃 > 0 for 𝑗 = 1, … , 𝑘, and 𝛽𝑖𝑗 =
0 for 𝑗 = 𝑘 + 1, … , 𝑞, which means the first 𝑘 SNPs were
causal with effect size 𝜃, and the rest of the SNPs had
no effect on the trait. The data were generated once, and
then analyzed by different methods multiple times. We
also applied the standardMC-based aSPU test with at least
1e+7 iterations to give the approximate “true” p-values of
SPU and aSPU, as well as their confidence intervals.
As shown in Table 1, the standard MC (STD) failed to

give good approximations to the p-values when 𝐵 was

not large enough, while IMP and IMP2 were always
able to provide better estimates. In most cases, IMP was
very efficient since its estimates were close to the results
of STD with at least 1e+8 iterations and had relatively
small standard deviations. IMP2 performed close to, but
not significantly better than, IMP. In terms of speed,
also shown in Table 1, even with the same number of
iterations, the functions of IMP and IMP2 implemented
in Rcpp were much faster than the standard function
for SPUs. We performed the analyses on a single laptop.
For the IMP function, 1e+5 iterations took about one
second and 1e+6 iterations took about 10 seconds. In
practice, 1e+5 is usually large enough for the importance
sampling methods, while the standard MC needs a huge
𝐵 (e.g., 1e+8 or 1e+9) to work well, which means using
IMP and IMP2 may save a large amount of computing
time.
We looked at another scenario with three significant

SNPs and much smaller p-values. As shown in Table 2,
IMP provided very good estimates for most tests with 1e+5
(and sometimes even 1e+4) iterations, which agreed well
with the results from STDwith 1e+9 iterations. Again, STD
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F IGURE 2 Computation time (in
seconds) of different methods with different
numbers of SNPs (𝑝) (averaged over 10 runs).
This figure appears in color in the electronic
version of this article, and any mention of
color refers to that version. 𝑝 = 20 𝑝 = 50

𝑝 = 100 𝑝 = 150

failed to obtain valid results in most cases, and IMP2 per-
formed similarly to IMP.
To further examine how the computation time changes

with different numbers of SNPs and different numbers of
iterations, we carried out more simulation studies with
𝑝 = 20, 50, 100, 150 and 𝐵 = 103 , 104, 105, 106. Since
these studies were only focused on computation time, to
keep things simple, we simulated Z-scores (𝑍1, 𝑍2, … , 𝑍𝑝)

from a multivariate normal distribution with mean 0 and
𝐶𝑜𝑣(𝑍𝑗1 , 𝑍𝑗2) = (0.5)|𝑗1−𝑗2| .We applied differentmethods
to these Z-scores 10 times and plotted the mean computa-
tion time in Figure 2. We only looked at aSPU since the
SPU tests share the same computation time as a part of the
aSPU function. As expected, all methods took longer time
as 𝑝 increased, while IMP and IMP2 (implemented with
Rcpp) were already able to save time compared to the stan-
dard MC (STD) (implemented in the aSPU package) with
the same and not too small number of iterations (e.g., 1e+5
or 1e+6), whichwas consistentwith Table 1. Since in reality
IMP and IMP2 require much less iterations than STD (e.g.,
1e+6 vs. 1e+9), the actual time saved may be even more.
For 𝑝 = 150, STD with 1e+9 iterations is expected to take
more than 60 h (since it already takes about 4 min to do
1e+6 iterations), while IMPwith 1e+6 iterations only takes
about 2min. These resultswere based on a single CPUwith
R version 3.5.3. In practice, multiple cores can be used to
shorten the computation time, but usually we need to test
thousands of SNP sets instead of just one, so IMP and IMP2
will still have an obvious advantage.

In addition to shown in Tables 1 and 2, we examined
how our new methods performed in some more extreme
scenarios with even smaller p-values. The results showed
that IMP was able to yield good estimates with 1e+6 iter-
ations, which could potentially cut down the computa-
tion time from more than 20 d (for STD) to less than 30
s. Detailed information is provided in the supplementary
materials.

4 APPLICATIONS TO THEWTCCC
DATA

To further demonstrate the advantage of IMP and IMP2
over the standard MC approach with real data, we applied
the methods to the 4572 genes with complete data in
the WTCCC (Wellcome Trust Case Control Consortium
2010) GWAS of Crohn’s disease, which had 1748 cases (i.e.,
patients with Crohn’s disease) and 2938 controls after pre-
processing. The number of SNPs in each gene varied; in
total therewere 66849 SNPs. One aimwas to identifywhich
geneswere associatedwithCrohn’s disease by applying the
powerful aSPU test. Our goal was to show that in such an
analysis, for nonextreme p-values IMP, IMP2 and standard
MC would give similar results, while for extreme p-values,
IMP and IMP2 could yield valid estimateswithmuch fewer
iterations than the standard MC. Before applying different
methods, we obtained the Z-scores from marginal logis-
tic regression for each SNP based on the individual level
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F IGURE 3 QQ plots of -log10(p-values). Case-control. Top left: STD observed vs. expected. Top right: IMP observed vs. expected. Middle:
IMP2 observed vs. expected. Bottom left: STD vs. IMP. Bottom right: STD vs. IMP2
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F IGURE 4 QQ plots of -log10(p-values). Control-control

case-control data, and then used the whole control group
as a reference panel to estimate 𝐑. For the importance
sampling approach, we first tried 1e+3 iterations. If the
p-value of one gene turned out to be less than 0.01, we
would use 1e+5 iterations to get a more accurate p-value
for this gene. Then we compared the QQ plots of IMP,
IMP2, and the standard MC (as implemented in aSPUs).

The standard MC (STD) used 1e+6 iterations. As Figure 3
shows, the results of IMP, IMP2, and the standard MC
were very similar for almost all (large) p-values, except
that IMP and IMP2 were able to give three extremely small
p-values (e.g., < 1e-10) using no more than 1e+5 itera-
tions, while the smallest (nonzero) p-value that the stan-
dard MC could give was 1e-6 using 1e+6 iterations. The
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bottom panels of Figure 3 directly compare the p-values
of the methods to confirm that IMP and IMP2 perform
closely to STD when the p-value is not extreme. To see
whether IMP and IMP2 could control type I errors, we did
the same analysis with a control-control design. We ran-
domly chose half of the 4686 subjects to be the control
group and the rest to be the “case” group. Thenwe used the
new “disease status” to calculate the Z-scores and applied
different methods with the same reference panel as done
before. As shown in Figure 4, without extremely small p-
values, all three methods gave similar results, and were
able to control the type I error rate satisfactorily. These two
studies (case-control and control-control) showed IMPand
IMP2had no problem estimating nonextreme p-values (the
results were almost the same as the standard MC) while
being able to calculate extreme p-values with much fewer
iterations.

5 DISCUSSION

We have presented an importance sampling approach,
IMP, to speed up the p-value calculation for the adaptive
aSPU test. The main idea is to design a suitable proposal
distribution to facilitate more frequent sampling of more
extreme values (from the tails of the null distribution),
and then calculate the p-values using the samples and
their weights. Our derived theoretical results show that the
newmethod achieves high efficiency. In addition, we have
also proposed another more sophisticated implementation
of importance sampling, called IMP2, which updates the
weights during the sampling process. Although we con-
jectured that IMP2 might perform better than IMP, the
simulation study and real data application showed their
similar performance, both estimating small p-values bet-
ter and much faster than the standard MC simulation. To
estimate a p-value around 5e-8, the standard MC approach
usually needs at least 1e+9 iterations (taking about 20+ h),
while IMP can do it efficiently with 1e+5 iterations (about
1 s).
In the future, wemaymodify the scheme of updating the

weights to make IMP2 more efficient. More importantly, it
is possible and worthwhile to extend our proposed impor-
tance sampling approach to other tests that require MC
simulations with normal variates (or with other known
distribution) to calculate their p-values. Besides, we have
been focusing on common variants in this paper. A main
challenge for applying our new method to rare variants is
that their Z-statistics can no longer be well approximated
by a normal (or other known) distribution, and thus we
cannot directly apply our proposed importance sampling
technique with a multivariate normal distribution. More
investigation is warranted.

ACKNOWLEDGEMENTS
In our opinion, the first two authors should be treated
as the co–first authors. We thank the editors and review-
ers for many insightful and helpful comments. This
research was supported by NIH grants R01GM113250,
R01GM126002, R01HL105397, R01HL116720, R21AG057038
and R01AG065636; by NSF grants DMS 1711226, DMS
1712717, SES 1659328 and SES-1846747; and by theMSI at the
University ofMinnesota. This studymakes use of data gen-
erated by the WTCCC; a full list of the investigators who
contributed to the generation of the data is available from
www.wtccc.org.uk; funding for the projectwas provided by
the Wellcome Trust under award 076113 and 085475.

DATA AVAILAB IL ITY STATEMENT
The Blood Cell Consortium (BCX) GWAS data concerning
red blood cells (Chami et al., 2016) is publicly available at
http://www.mhi-humangenetics.org/resources. The 1000
Genomes Project data (The 1000 Genomes Project
Consortium 2015) is available at http://www.internatio
nalgenome.org/data. The WTCCC data (Wellcome Trust
Case Control Consortium 2010) is available upon request
at https://www.wtccc.org.uk.

ORCID
WeiPan https://orcid.org/0000-0002-1159-0582

REFERENCES
Adler R. J., Blanchet J. H. and Liu J. (2012). Efficient Monte Carlo for
high excursions of Gaussian random fields. The Annals of Applied
Probability, 22(3), 1167–1214.

Asmussen S. and Glynn P. W. (2007). Stochastic Simulation: Algo-
rithms and Analysis, Volume 57. New York, NY: Springer Science
& Business Media.

Chami N., Chen M. H., Slater A. J., Eicher J. D., Evangelou E., Tajud-
din S. M., Love-Gregory L., Kacprowski T., Schick U. M., Nomura
A., et al. (2016). Exome genotyping identifies pleiotropic variants
associated with red blood cell traits. American Journal of Human
Genetics, 99, 8–21.

ChenL. S.,Hutter C.M., Potter J. D., LiuY., PrenticeR. L., et al. (2010).
Insights into colon cancer etiology via a regularized approach
to gene set analysis of GWAS data. American Journal of Human
Genetics 86, 860–871.

Cochran W. G. (1977). Sampling Techniques, 3rd edition. New York:
John Wiley & Sons.

He Y. and Xu G. (2018). Estimating tail probabilities of the ratio of
the largest eigenvalue to the trace of a Wishart matrix. Journal of
Multivariate Analysis, 166, 320–334.

Daniels, H. E. (1954). Saddlepoint approximations in statistics. The
Annals of Mathematical Statistics, 25 (4): 631–650.

Geluk, J. and Tang, Q. (2009). Asymptotic tail probabilities of sums
of dependent subexponential random variables. Journal of Theo-
retical Probability, 22(4):871.

Hesterberg T. (1995). Weighted average importance sampling and
defensive mixture distributions. Technometrics, 37(2), 185–194.

http://www.mhi-humangenetics.org/resources
http://www.internationalgenome.org/data
http://www.internationalgenome.org/data
https://www.wtccc.org.uk
https://orcid.org/0000-0002-1159-0582
https://orcid.org/0000-0002-1159-0582


DENG et al. 273

Huang J., Wang K., Wei P., Liu X., Liu X., Tan K., Boerwinkle E.,
Potash J.B. andHan S. (2016). FLAGS: a flexible and adaptive asso-
ciation test for gene sets using summary statistics. Genetics, 202,
919–929.

Jiang T., Leder K. and Xu G. (2017). Rare-event analysis for extremal
eigenvalues of white Wishart matrices. The Annals of Statistics,
45(4), 1609–1637.

Kimmel G. and Shamir R. (2006). A fast method for computing high-
significance disease association in large population-based studies.
American Journal of Human Genetics, 79, 481–492.

Kwak I. Y. and Pan W. (2015). Adaptive gene- and pathway-trait
association testing with GWAS summary statistics. Bioinformatic,
32(8), 1178–1184.

Kwak I. Y. and Pan W. (2016). Adaptive gene- and pathway-trait
association testingwith GWAS summary statistics. Bioinformatics.
32(8), 1178–1184.

Lee S., Emond M. J., Bamshad M. J., Barnes K. C., Rieder M. J.,
NickersonD. A., NHLBI GOExome Sequencing Project-ESP Lung
Project Team, Christiani D. C., Wurfel M. M. and Lin X. (2012).
Optimal unified approach for rare variant association testing with
application to small sample case-control whole-exome sequencing
studies. American Journal of Human Genetics 91, 224–237.

Li X. and XuG. (2018). Uniformly efficient simulation for extremes of
Gaussian random fields. Journal of Applied Probability, 55(1), 157–
178.

Liang F., Liu C. and Carroll R.J. (2007). Stochastic approximation
in Monte Carlo computation. Journal of the American Statistical
Association, 102, 305–320.

Lin D.Y. (2005) An efficientMonte Carlo approach to assessing statis-
tical significance in genomic studies. Bioinformatics, 21, 781–787.

Liu J. and Xu G. (2014a). On the conditional distributions and the
efficient simulations of exponential integrals of Gaussian random
fields. Annals of Applied Probability 24(4), 1691–1738.

Liu J. and Xu G. (2014b). Efficient simulations for the exponen-
tial integrals of Hölder continuous Gaussian random fields. ACM
Trans on Modeling Comp Sim, 24(2), 9:1–9:24.

Ma Y. and Wei P. (2019). FunSPU: a versatile and adaptive multi-
ple functional annotation-based association test of whole-genome
sequencing data. Plos Genetics, 15(4), e1008081.

Pan W. (2009). Asymptotic tests of association with multiple SNPs in
linkage disequilibrium. Genetic Epidemiology, 33(6), 497–507.

Pan W., Kim J., Zhang Y., Shen X. and Wei P. (2014). A powerful and
adaptive association test for rare variants. Genetics, 197(4), 1081–
1095.

Pan W., Kwak I. Y. and Wei, P. (2015). A powerful pathway-based
adaptive test for genetic associationwith common or rare variants.
American Journal of Human Genetics, 97(1), 86–98.

Shi J., SiegmundD. andYakir B. (2007). Importance sampling for esti-
mating p values in linkage analysis. Journal of the American Sta-
tistical Association, 102, 929–937.

Shi Y., Wang M., Shi W., Lee J.-H., Kang H. and Jiang H. (2019).
Accurate and efficient estimation of small P-values with the cross-
entropy method: applications in genomic data analysis, Bioinfor-
matics, 35, 2441–2448.

Su Y.R., GaudermanW.J., Berhane K. and Lewinger J.P. (2015). Adap-
tive set-based methods for association testing. Genetic Epidemiol-
ogy, 40, 113–122.

Su Y.-R., Di C.-Z., Hsu L. and Genetics and Epidemiology of Col-
orectal Cancer Consortium. (2017). A unified powerful set-based
test for sequencing data analysis of GxE interactions. Biostatistics
(Oxford, England), 18, 119–131.

Teugels J. L. (1975). The class of subexponential distributions. The
Annals of Probability, 1000–1011.

The 1000 Genomes Project Consortium (2015). A global reference for
human genetic variation, Nature, 526, 68–74.

Wellcome Trust Case Control Consortium (2010). Genome-wide
association study of CNVs in 16,000 cases of eight common
diseases and 3,000 shared controls. Nature, 464(7289), 713–
720.

Wen X. and Stephens M. (2010). Using linear predictors to impute
allele frequencies from summary or pooled genotype data. The
Annals of Applied Statistics, 4, 1158–1182.

Wu M. C., Lee S., Cai T., Li Y., Boehnke M. and Lin X. (2011). Rare-
variant association testing for sequencing data with the sequence
kernel association test. American Journal of Human Genetics 89,
82–93.

Xu G., Lin L., Wei P. and Pan W. (2016). An adaptive two-sample test
for high-dimensional means. Biometrika, 103(3), 609–624.

Yang T., Chen H., Tang H., Li D. and Wei P. (2019). A powerful and
data-adaptive test for rare-variant–based gene-environment inter-
action analysis. Statistics in Medicine, 38, 1230–1244.

Yu K., Liang F., Ciampa J. and Chatterjee N. (2011). Efficient p-value
evaluation for resampling-based tests. Biostatistics (Oxford, Eng-
land), 12, 582–593.

Zhang H., Shi J., Liang F., Wheeler W., Stolzenberg-Solomon R. and
Yu K. (2014). A fast multilocus test with adaptive SNP selection
for large-scale genetic-association studies. European Journal of
Human Genetics, 22, 696–702.

SUPPORT ING INFORMATION
Web Appendices, Tables, and Figures referenced in Sec-
tions 2.3, 2.4 and 3 are available with this paper at the Bio-
metrics website on Wiley Online Library. The new meth-
ods implemented in an R package will be available at
https://github.com/yangq001/IMP.

How to cite this article: Deng Y, He Y, Xu G, Pan
W. Speeding up Monte Carlo simulations for the
adaptive sum of powered score test with
importance sampling. Biometrics. 2022;78:261–273.
https://doi.org/10.1111/biom.13407

https://doi.org/10.1111/biom.13407

	Speeding up Monte Carlo simulations for the adaptive sum of powered score test with importance sampling
	Abstract
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Importance sampling for SPU
	2.2 | Importance sampling for aSPU
	2.3 | Theoretical properties
	2.4 | Comparison with other methods

	3 | SIMULATION STUDIES
	4 | APPLICATIONS TO THE WTCCC DATA
	5 | DISCUSSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


