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SUMMARmntral but challenging problem in genetic studies is to test for (usually weak)

association na complex trait (e.g. a disease status) and sets of multiple genetic variants. Due to

the hc@y most powerful test, data-adaptive tests, such as the adaptive sum of powered
score ( re advantageous in maintaining high power against a wide range of alternatives.
However, there is often no closed-form to accurately and analytically calculate the p-values of many
adaptive tests like aSPU, thus Monte Carlo (MC) simulations are often used, which can be

time-cons @ achieve a stringent significance level (e.g. 5e-8) used in GWAS. To estimate such a

small p-val@e, ed a huge number of MC simulations (e.g. 1e+10). As an alternative, we propose

using impoiance imp]jng to speed up such calculations. We develop some theory to motivate a
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proposed algorithm for the aSPU test, and show that the proposed method is computationally more

efficient thF the svndard MC simulations. Using both simulated and real data, we demonstrate the

superior pemf the new method over the standard MC simulations.
|

Keywords @e test; aSPU; Genome-wide association studies; GWAS; SNPs.

R

Genome- ciation studies (GWASSs), such as one of the first and most influential, conducted by

1. Int on

the Wellcog Trust Case Control Consortium (WTCCC) (2010), have successfully identified many
genetic varj ociated with common disease and complex traits by single SNP-based analysis,
where SNP stands for single-nucleotide polymorphism. However, these results can only explain a
small proporti the heritability for most human traits. One possible reason is that many SNPs have
too sma s to be detected by single SNP-based analysis. Driven by the idea of aggregating
small and g!ssﬂaly sparse signals of multiple SNPs to gain power, researchers have proposed multiple
SNP-based s, in which the goal is to test association between a trait and multiple SNPs, which

can be dra a gene or a pathway. Since there is no uniformly most powerful test, it is desirable to

apply an aSptive test such that high power can be maintained against various alternatives (e.g. Chen et

al 2010;“012; Zhang et al. 2014; Su et al. 2015; Huang et al. 2016; Su etal. 2017; Ma and
Wei2019; Yang &gal. 2019), most of which require Monte Carlo methods to calculate their p-values.
Panetal (2014) peposed such a test, called the adaptive sum of powered score (aSPU) test, based on
combi ily of so-called sum of powered score (SPU) tests, which cover some existing tests,

such as the Sum (or burden) test, the sum of squared score test (Pan 2009) and minP test as special
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cases. In particular, compared to some existing tests, such as the popular Sequence Kernel Association
Test (SKAi) (Wu't al. 2011) and the optimized SKAT (SKAT-O) (Lee et al. 2012), the aSPU test
performs b ituations where a large number of non-associated variants exist (i.e. with sparse
signals). Tg also been extended to pathway-based analysis (Pan et al. 2015) and can simply
I
work with SWAS summary statistics and a reference panel (Kwak and Pan 2015). An asymptotic
theory for e a test for “large n and large p” has been developed (Xu et al. 2016), where n and p
refer to the sample size and the number of SNPs respectively. For “large n and small p”, although the
aSPU test m a non-linear function of a multivariate normal score vector, it is unknown how to
calculate its p-Valui analytically. Thus, Monte Carlo (MC) simulations (Lin 2005) or other resampling
methods ha, sed so far. Given the stringent significance threshold for genome-wide testing (e.g.
at p<5e—8),gs atleast le+9 to le+11 MC simulations (Yu etal 2011) to estimate a small

p-value arauind; a , which will be time-consuming. Hence, we propose importance sampling to speed

up p-va ns for aSPU (and possibly other adaptive tests).

Import was originally proposed to reduce variations in MC simulations (Cochran 1977,
Hesterberg 1995; Asmussen and Glynn, 2007). Its intuition is to sample from a proposed distribution
that overwet, n important target region so that we can obtain samples more frequently from that
region, w ndard Monte Carlo sampling will seldom get any from that region if the
corresp(ﬂabﬂity in that region is extremely small. The proposed distribution is often called a

proposal digiributiom. This method has been frequently used to evaluate the extremes of Gaussian

ther rare-event probabilities, and its efficiency has been carefully studied (Adler et

2014a, 2014b; Jiang, et al. 2017; He and Xu 2018; Li and Xu 2018). Since the
on involves sampling from a rejection region with possibly a small probability from a

null distribution, we propose using importance sampling to speed up the SPU and aSPU tests. The
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applications of importance sampling or other Markov chain Monte Carlo (MCMC) techniques for such
a purpose ie a cosmon theme in the literature (e.g. Kimmel and Shamir 2006; Liang et al 2007; Shi et
al. 2007; Y 011). The recent work of Shi et al. (2018) is most closely related to ours: they also
proposed a% sampling approach called MCMC-CE (Markov Chain Monte Carlo-Cross

H I
Entropy) t(gore efficiently estimate small p-values. A key difference is that we consider a wider range
of tests withrdiffergnt and possibly computationally more efficient proposal distributions. We derive
some theoreticalzesults to support the computational efficiency of our proposed method. We use
simulations emiOnstrate that our new method can yield good estimates of extreme p-values with
much less iterationi (and thus less time) than the standard MC. We apply the standard MC and the

importancec approaches to the WTCCC data to confirm the effectiveness of the new method.

2. Me
2.1 Importance sampling for SPU

The SPU tes etal. 2014) were originally proposed to improve power under each of multiple
alternatives with varying association patterns between a set of variants and a trait of interest. They can
be applied seither common variants or rare variants. For this paper, we focus on common variants, and
will commg “ ¢ variants in the Discussion Section. Suppose we have the (marginal) Z-statistics
Z =z, 237 zP)Y for p SNPs (in a gene), and R is an estimate of their covariance matrix with
diagona qualto 1. R is often regarded as an estimate of the LD covariance matrix of the
SNPs. Mistic is often based on the Wald or score test on each SNP from a marginal model of
the trait on the SN; For common variants, the Z-statistics are usually normally distributed (with a large

sample size). , without loss of generality, we assume throughout this paper that the null

distribution is MVN(0, R). We also assume R is nonsingular (which is reasonable with large

sample sizes and possible pruning of highly correlated SNPs).
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To be powerful for an unknown alternative, multiple SPU tests are designed, each tailored for a type of

alternative iypothies. A powerindex 0 <y < oo is used to make a corresponding SPU test powerful

for a spec'm: a SPU(y, Z) test with a smaller/larger y is more powerful for a more
sparse/de . We define

p
207 (0<y <o)

1
max|z@|  (y =)
l

|

. - (

O SPU(,Z) =T, = { :
\

where y ismchosen from {1, 2, ..., 8, oo}, which has been shown empirically to perform well in

previous studies. !ie standard MC approach to calculating a p-value is to sample Z,, (b =1,2,...,B)

from its nuction MVN(0, R), then calculate

B
1
Pspuiyz) =5 ) 1ISPUG.Zy)| > ISPUG, 2.
b=1

d

However, urately estimate a small p-value (e.g. p-value < 5e-8), we need a large B (e.g.>

le+10), e extremely time-consuming. We propose using importance sampling to estimate a

small p-value with a relatively small B.

Suppose he density function of the desired/true distribution of Z;, under the null. In this
case, f(Z bOiensity function of MVN(O, R). We want to use a different distribution, called the
importanc&istribution, to sample Zj,, and the density function of this importance distribution is
9(Zy). ismdtunction of Z,. It can be any test statistic based on Z, (e.g. the SPU test statistic

with any power me). Based on the importance sampling theory, we want to choose an appropriate

density functio ) suchthat the ratio f(Z,)/g(Zy) is well-defined and then

Z
B (T2 = By C 3

T (Zp)),
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where Ef and E; denote the expectations over the density f(-) and g(-) respectively. This equation

suggests thIt if wwample Zp, under g, then [Z’gzlwb T(Z,)]/B is an unbiased estimate of

E(T(Zy)), ab: f(Z,)/g9(Zp). Particularly, we consider

N T(Z,) = I(|SPU(y,Z},)| > |SPU(y,2)]).

-

Z is the obmatistic, treated as fixed for now. As a result, %Z’lf:l wuI(|SPU(y, Zp)| >
|SPU(y,2) nbiased estimate of Pr(|SPU(y, Zy,)| > [SPU(y, Z)|) = Ef(I(|SPU(y, Z},)| >

|SPU(y,Z)Wh is the p-value of SPU(y,Z). Here Py represents the probability over the density

fO. S
Now the omm is how to choose a proper g to sample Zj,. Denote the observed SPU(y,Z) by

t,. Based on'th¢ id€a that g should allow Zj, to get to extreme values (i.e. comparable to the observed

Z) much m@ce , we propose the following procedure for different y's. We will discuss the

theoreti of the proposed importance sampling procedure in the following section, which

will also why we use different algorithms for y <2 and y > 2.

. fory = !or 2:Sample Z; from MVN(u*,R) or MVN(—u*, R) with the same probabilities, where

= (%,ﬁ ify=1; p* = (\/%\/% %)' ify=2(0b=12..8). Calulate SPU(,Z},)

and theﬂu(yz) = %Zgﬂwbl(ISl’U(y,Zb)l > |SPU(y,Z)|), where

1 * - * 1 * - *
1 e 2@ ) R™Y(Zp—p") e 2 Zptn YR U(Zp+p")

H * ( + )
=5 1 1 .
wy, 2 e—zzer—lzb e—EZbIR_lzb

2.y > 2 :b, simulate 7 from Unif (1,2 ...p) only once. Sample Z,® from N(t,",1) or

N(-t,’, the same probabilities. If y is finite, t,* =t, YY If y is infinite, t," =t,.

Conditioning on 28, generate (Z,, ..., 2,72, 2, ., 7, ®PY from MVN(u* £*) with
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w =2z, (T)le and * = Xy; — X152, Z;1 is R without its tth column and row, and X, =

(R¢q - Rq_l RT' 1+ Rp)'. Calculate SPU(y,Z;,) and p-value:

Pspyu(y.2) = ii wp I(ISPU(y, Z,)| > |SPU(y, Z)|), where wy, is defined by

__(Zb(l) t )2 14 __(Zb(l)_l_t )2

1 Z + 1 z
wy 2pda @®2  2p& L@@

i=1 e 2 i=1

Note that or 2, SPU(y,u*) = t, and for y > 2, SPU(y, (t,",0,...,0)') =...=

SPU(y, (0, @, = t,,. This means that the SPU test statistics resulting from the shifted mean

SCFI

vectors are comparable to the observed ones, ensuring that we will be able to sample many extreme
statistics b$

many. More rigorous justification for our proposed choice of the proposal

distributiongf (1.e. the normal distributions with the shifted mean vectors) is provided by the two

N

Propositions owing discussions in Section 2.3. More information on deriving wy, is also
provided in pendix A (page 7).

In addition to igntly estimate the rare-event p-values, according to the importance sampling theory
(Asmus , 2007), for each v, an estimator of the variance of Pspy(y,z) 1

2
Var (Pspu@z)) = % 5_lwpI(ISPU(,Z,)| > ISPUy, 2)]) — Pspu(y,z)] . With the above variance
estimator, \O)tam that the standard error of our importance sampling estimator Pgspy(y,z) based

JVar(Pspy(y,z))

on B replic

Note th£cy of the R estimate will generally affect the result of SPU tests and aSPU test
(which w!"lge mtroduced next), no matter whether we use importance sampling or the standard

approach. The maill focus of this paper is to compare our new method with the standard approach given

the same ate. More information on estimating R can be found elsewhere (Wen and Stephens

2010; Kwak n2016).
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2.2 Importance sampling for aSPU

For the Maﬂer y's work better when the signals are dense (i.e. many SNPs in the region have

nonzero eflarger y's work better when the signals are sparse (i.e. only a few SNPs have

nonzerogeffects)lhe main idea of the aSPU test is to combine the SPU tests with different y's, so that
the test wﬂh well in various situations. Suppose we choose y from I' = {y;,¥; ... ¥»-}. The
aSPU test @SPU(Z), is simply the minimum of  Pspy (y,7)'s. Applying the importance sampling
method forgac test separately can give us aSPU(Z), but that does not directly give us the p-value
of this test statistic. We propose to use a mixture sampling procedure that can calculate not only

aSPU(Z) s p-value.

First, selecgei;;t q; foreachy; (i=1,2,...,7). Weset q; = % for all i. For each b, randomly

choose y to the weights. Follow the procedure for y to obtain Zj. For each Z;, we can

calculate the SPU test statistics SPU(y;,Z;,) and the weight wy:

,
1_N_4
Wb W}SYI’) ’

1 * —_ * 1 * - *
e 2 Zb—h )Y R™Y(Zp—p") e 3 Zptn )R Zp+p")
+

1
2 ify; <2
2 e—%zer—lzb i

1, —_

e—EZbIR 1Zp
1., 2 p 1,0 2

e 2% -ty 1 e~ 2% Tty )

—'+_Z—" t, =t,Yif2<y; < o
e_%(zb(]))Z 2p e_%(zb(]))z Yi Yi i

j=1
i 5@t | & g3 @+t
—T Q0 t52) — T t,"=t, ify;=o
_1., (Dy2 Z 1, (D2 Yi Yi i
a e ) 2pj=1 e 2%

. . t . . t .
where pu* = ,y:/%‘ y:/%‘) "for y; < 2. Note that for each b, we only simulate y once and

use it to generatc 24,. Then we calculate wy, = 1/(Xi-; q; /ngy")), using all y;'s we consider (e.g. 1, 2,

4, 8, o). This is like simulating Zj, from a mixture of distributions.
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Next, we calculate the p-values for the SPU tests and the aSPU test statistics:

1
= w—_e ) == ) Wil (SPUGZ,)l > 1SPUG,Z,)D),

B—-1
br=1,.,B;br+b

aS‘U(Z) > min; (Pspu(y,2)),  aSPU(Zp) = min;(Pspy (4,2,))-

Finally, wdicaiob@in the p-value of the aSPU test: Paspy(z) = %Z'gzlwbl(aSPU(Zb) < aSPU(2)),

2
and its Varijnate %Z’gﬂ[wbl(aSPU(Zb) < aSPU(Z)) — Paspu(z)] .

B
1
Pspu(y;2) = EZ wpI(ISPU(y;,Zy,)| > |SPU(y;,2))),
b=1

$

Note that a ice of q;, the weight of each y;, may make the new approach more efficient. We

propose anl sampling approach that updates the weights four times during the process. Start
from q; =& td % he first B/5 samples. Then we calculate the p-values of the observed SPU test

statistic on the weights and test statistics of these samples. If y; has the smallest p-value,

. . 2 ) 1 .
we double it , which means now q; = —y for i =k,and q; = —y for i # k. Generate

another B/5 samples with the new weights and update the weights again in the same way (double the

3

weight of ives the smallest p-value), using the B/5 new samples. Continue this process to get
B samples bine them to finish the testing procedure. For convenience, we call the importance
sampling methods with fixed weights and updated weights IMP and IMP2 respectively. Running IMP
or IMP illgive us the p-values of aSPU and the corresponding SPU tests, and our experience
suggests g the p-values of SPU from mixed samples is not worse, and sometimes better,
than using the appr;ch described in the previous subsection. Hence, we will only use IMP and IMP2 in
the followin; that based on the importance sampling theory, IMP and IMP2 provide unbiased
estimates.{nputational efficiency (compared to the standard approach) will be shown in the
simulation studies.
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2.3 Theoretical properties

We havM)wn that the estimates generated by importance sampling are unbiased. In this

subsectionthe efficiency of the new method. Let L, (x) denote an estimator of the

rare—eVﬁltWy ay, (x) = P(ISPU(y, Z)| > |x|), which goes to 0 as |x| — . We consider
a,(x) € (Mstimate @, (x), which is like computing the p-value of an observed x, we simulate
B iid. sarfiples ofAL,, (x), {Lg,b) (x):b=1,...,B} and obtain the average estimator Zy x) =

SC

One way't hether Zy (x) is efficient is to consider the relative error |Zy ) — a, () |/, (x).

U

We want to control it so that for some prescribed 1, § > 0,

P{ILy (x) — &y ()] /ey (x) > 1} < 6. (D

dll

The standa Carlo method generates samples from MVN(O,R) and uses Ly, (x) =

I(|SPU(y, x|). Asaresult, E(Zy(x)) = E(Ly (x)) = a}, (x). By Markov's inequality,
P{ILy (x) — a, ()| /ay, (x) >} < Var{Ly (x)}/{a3(x)n?} =
Var{L, ()}/{Baj(x)n}. 2

To achieve ve error control, we want var{L, (x)}/{Baj(x)n?} < 6. As var{L,(x)} =

or

a, (x)(1 -, (x)) for the standard Monte Carlo estimator, it needs B >n~25" a5, (x)(1 — a, (x)).

h

As a,, (x) g 0, thggstandard Monte Carlo method becomes inefficient and even infeasible because

n‘zé“la;s ay, (x)) - oo.

A more effici imator is the logarithmic efficient estimator (Asmussen and Glynn, 2007). An

{

unbiase r L, (x) of a,(x) is called logarithmic efficient if
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. Var{L, (x)} (3)
limSuP 22y O

for any € > n L, (x) is logarithmic efficient, inequality (2) also holds by Markov's inequality,

and theref that we only need B = 0{n~261a;#(x)} iid. replicates of L, (x), for any
I

n > 0. CorSared with the standard MC, the logarithmic efficient estimators substantially reduce the

computatio@especially for small a, (x).

To construwithmic efficient estimator, we use the importance sampling method. We construct
the change of measure estimator (Section V.1 of Asmussen and Glynn, 2007)
L,(x) =w, v, Zy)| > |x|), where wy, = f,,(Zp)/9,(Zp). To have an insight of how the choice

of g, (Zp)€ould satisfy requirement (3), we first notice that (3) is equivalent to
log[Var{L, (x
lim inf gl {Zy( )] >1
x| log ay (x)
In addition, SE{L%,(JC)} > Var{L, (x)} and E{L2 (x)} = [E{L,(x)}]* = af(x), (3) is also
equival

L i 108 E{L7 ()} _ " (4

1|00 log a? (x) ’

the proof of is provided in the supplementary materials. Then for the change of measure
estimator &x ;: if we choose gy, (Zp) = f, (Zp), Ly, (x) reduces to the standard MC estimator

I (|SPU(M’|), and the left hand side of (4) then equals 1/2, which is smaller than 1, the right
hand side. @er hand, consider G, (-) to be the conditional probability measure given

|SPU(y,Zp) and has the density j;,G" (Zp) = a;l(x)ﬁ,(zb); then if we choose g, (Zp) =

fyG" (Zp), and side of (4) is exactly 1. Note that this change of measure is of no practical use

since L, (x) depends on the unknown a,, (x). But if we can find a change of measure g, (Zp) thatis a
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good approximation of fyG" (Zp), the conditional probability measure given |SPU(y,Zp)| > |x|, we

would expit @) tihold and the corresponding estimator L, (x) to be efficient. In other words, the

logarithmic mcriterion requires that the new density g, (Z) is a good approximation of the

conditional
H

importanceSamglinF could approximate the conditional probability measure ]S,Gx (Zp) well. We first

of interest. We then show that the new density g, (Z;) given by the proposed

present theffheoretigal result (Proposition 1) showing that the proposed sampling method is logarithmic

efficient fomand Yy = oo,

Propositi |x| = oo, L, (x) = wpI(ISPU(y, Zp)| > |x|) is logarithmic efficient for

y =100

Note that Ging Proposition 1 for y = 1, instead of choosing u* = (t;,t; ...t;)"/p as

previously m, we use u* = Rlagy, where ag = |t;|/(1'R1) and 1 is a p-dimensional vector

with all ualto 1. If R is an identity matrix, then u* = Rlagy = (¢4, t; ... t;)’/p. From our
experience, Usi 1Lt .t1)"/p or Rla, does not make a huge difference. Hence, we will still use

the former m this paper, while the function in our package allows both ways.

We then dihsampling procedures for y = 2 and 2 < y < oo, which will be shown to be similar
to the casel and y = oo respectively. When y = 2, SPU(2,Z) = Zf=1(z(i))2, and we know
(z(D) 2~ y? awhiehwis a light tail distribution, i.e., it decays at an exponential rate or faster. Note that
when L) = Zlez(") and z() ~N(0,1) also has light tail. We then know that the two
cases wheF:land y = 2 are similar in the sense that they simulate the tail probabilities of a sum

of light tail ons. Following the discussion on rare-event simulations with light tail distributions

in Chapt Asmussen and Glynn (2007), this motivates us to use a similar sampling procedure

when y = 1, 2."1¥4gn analogous to the case when y = 1, we expect that when y = 2, the change of

measure g,(Z;) is also a good approximation to the conditional probability measure fZG" (Z,). We
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provide an illustrative example for y = 2 when p = 1 in Figure 1; the figure appears in color in the

electronic frsion i this article, and any mention of color refers to that version. The targeted

conditional ion is f;(z) = P(z | z? > 4?) and the proposed bimodal mixture distribution is
f5. Forco , we also consider a single normal f, with a large variance to approximate f;. It can
I

be seen tha@the bimodal mixture distribution f3; provides a better approximation of f; than f, does.

F

For 2 < y& @ show below that (z(9)"'s follow heavy tail distributions.

C

Propositi

Us

P{SPU(0,Z) > |to|}
twlow  PzO[> [t}

A
8

Foreven v,

m .. . P{SPU(y,Z)>|tyl}
1 > 5
Ityleo P{(Z(i))y>|ty|} )
when ZSwme R=1,,
P{SPU(y,Z)>|ty|} _ 6)

m .
e pl(20) > ey}

Note that sts that marginally (z(Y)"’swith 2 <y < oo satisfies the definition of

or

“subexporigntial” distributions (see, e.g,, Teugels, 1975), whichis a type of heavy tail

g

distribugi ically, the proof of Proposition 2 shows that P{(z())Y > x} decays at rate

;

_l Z/Y . e i)
e 2", whichis Sbower than the exponential rate as y > 2. Inaddition, when zW’s are

U

jointly independeat, Proposition 2 shows that P{SPU(0,Z) > |te|} ~ pP{|z®| > |ts|} and

P{SPU ty|}~ pP{(z®D) > |ty |} for 2 <y < oo, Therefore,

A
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PSPUCLZ) > |} ~ P {5PUCe0,2) > [ty [} = P{max (20) > |5 |}

This impd conditional probability

- P{max (zO)>Ityl, SPU(y.2)>ltyl}
— SIsSp
P{lrgggg:::f: > |ty | SPU(Y,Z) > |ty |} = PRPUG DS -1,

as P{m@(i))y > |t,|,SPU(y,Z) > |t |} = P{max ;< (zD)Y > |¢, |}. For a general

correlatiomowing similar analysis, we have the conditional probability (7) < 1, and

under certaih teChnical weak-dependence assumptions, it can be further shown that (7) is
closeto 1 E\d Tang, 2009). The conditional probability (8) approaching 1 suggests that
conditionice event SPU(y,Z) > |t, |, the probability of one single z(® tobecome large

tends to be big. Intuitively, our proposed sampling procedures for 2 <y < oo and y = o
CIB

mimic this vior of one single z(9 being large. Specifically, we randomly sample one

shift the mean of z(™ to tt, so that the probability of (z(™M)? beinglarge is
itioning on this “large” one, we sample the remaining z(’s. Following the

discussions on the rare-event simulation of the summation of heavy tail distributions in Chapter

index

big. Th

VL.3in Asr&nd Glynn (2007), we also expect that the change of measure g, (Z,) could

approximnditional probability measure f;/Gx (Z,) well, similarly to the case when
e -

As for Wo expect the proposed sampling procedure to be efficient because it is based on a

combinatiomwocedures for SPU. Proofs of the propositions canbe found in Web Appendix A.
2.4 Com p g with Other Methods

We would like ntion that there are other approaches that can potentially improve upon standard

MC, but most of them cannot be directly applied to the aSPU test. For example, the saddle-point
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approximation (Daniels 1954) cannot be easily applied because it requires the moment
generatin%unctir of the target statistic. The moment generating function of the aSPU statistic
does not m closed-form, as the aSPU statistic is a complicated combination of the
high orde f multivariate Gaussian random vectors. The MCMC-CE (Markov Chain
I
Monte Cax!—Cross Entropy) method proposed by Shi et al. (2018) seems comparable to our method
since it alsgfincorp@rates the importance sampling technique and can be used to test SNP sets.
Nevertheless, t pproach cannot be directly applied to aSPU since the aSPU test statistic cannot be
written as aW@Xpli€1t function of some multivariate normal variables. In fact, MCMC-CE cannot be

easily applied to SBU(y) with y > 2 either. More discussions and some simulation results for

comparing : MCMC-CE are provided in the supplementary materials.

3. Si ] Studies

We did some simulations to compare the numerical performance and speed of the importance sampling
and the stan (denoted STD) with GWAS summary statistics. First, we looked at the Blood Cell
Conso GWAS data (Chami et al. 2016) on hematocrit (HCT) with 808 subjects of
European festry, focusing on chromosome 22. We used 381 subjects of European ancestry from the
1000 Geno ject data (The 1000 Genomes Project Consortium 2015) as our reference panel. Then
we selecteD SNPs that were present in both datasets with minor allele frequencies > 0.05. For
each su‘t@raﬁ Y; was simulated by a linear model Y; = Zz}’:lXi iBij + ei, where e; followed
a standaMstrlbution, and X;; was the genotype of SNP j for subject i. We assumed that

Bij =6 >E 1,...,k,and B;; = 0 for j = k +1,...,q, which means the first k SNPs were

causal with effectsize 6, and the rest of the SNPs had no effect on the trait. The data were generated

once, a nalyzed by different methods multiple times. We also applied the standard MC-based
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aSPU test with at least le+7 iterations to give the approximate “true” p-values of SPU and aSPU, as

well as thei conﬁ$nce mntervals.
As shown e standard MC (STD) failed to give good approximations to the p-values when

B was pet langesemough, while IMP and IMP2 were always able to provide better estimates. In most

cases, IMPL}/ efficient since its estimates were close to the results of STD with at least 1e+8
iterations a@latively small standard deviations. IMP2 performed close to, but not significantly

better than . M\ terms of speed, also shown in Table 1, even with the same number of iterations, the

functions o d IMP2 implemented in Rcpp were much faster than the standard function for
SPUs. We

dthe analyses on a single laptop. For the IMP function, le+5 iterations took about
one seconfnd le+6 iterations took about 10 seconds. In practice, le+5 is usually large enough for the
importance m methods, while the standard MC needs a huge B (e.g. 1e+8 or 1e+9) to work

well, which%ine sing IMP and IMP2 may save a large amount of computing time.

We looked ata r scenario with 3 significant SNPs and much smaller p-values. As shown in Table

2, IMP provided very good estimates for most tests with le+5 (and sometimes even le+4) iterations,

which agre@d well with the results from STD with 1e+9 iterations. Again, STD failed to obtain valid

results in vas, and IMP2 performed similarly to IMP.

To furﬂrhow the computation time changes with different numbers of SNPs and different
number. s, we carried out more simulation studies with p = 20,50,100, 150 and

B =103, 10%,105, 10°. Since these studies were only focused on computation time, to keep things

(0.5)l1=J2l, We applied different methods to these Z-scores 10 times and plotted

simple, WGE Z-scores (Z1,Z3,...,Zp) from a multivariate normal distribution with mean 0
and Cov =

the mean comp n time in Figure 2. We only looked at aSPU since the SPU tests share the same

computation time as a part of the aSPU function. As expected, all methods took longer time as p
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increased, while IMP and IMP2 (implemented with Rcpp) were already able to save time compared to

the standari MC (sl D) (implemented in the aSPU package) with the same and not too small number of

iterations (m e+6), which was consistent with Table 1. Since in reality IMP and IMP2 require

much less n STD (e.g. let6vs. le+9), the actual time saved may be even more. For
I
p = 150, with le+9 iterations is expected to take more than 60 hours (since it already takes about

4 minutes @6 iterations), while IMP with 1e+6 iterations only takes about 2 minutes. These
results wer%n a single CPU with R version 3.5.3. In practice, multiple cores canbe used to

shorten the tion time, but usually we need to test thousands of SNP sets instead of just one, so

p
IMP and IMP2 W;'!isti]l have an obvious advantage.

In addition {fo shown in Tables 1-2, we examined how our new methods performed in some more

extreme smith even smaller p-values. The results showed that IMP was able to yield good

estimates iterations, which could potentially cut down the computation time from more than
20 days to less than 30 seconds. Detailed information is provided in the supplementary
materia

4. Apslications to the WTCCC Data

To further @ ate the advantage of IMP and IMP2 over the standard MC approach with real data,

we applied t ods to the 4572 genes with complete data in the WTCCC (Wellcome Trust Case
Controﬁ?_OIO) GWAS of Crohn’s disease, which had 1748 cases (i.e. patients with Crohn’s
disease) an controls after preprocessing. The number of SNPs in each gene varied; in total there
were 66849 SNPss dne aim was to identify which genes were associated with Crohn’s disease by
applying th 1aSPU test. Our goal was to show that in such an analysis, for non-extreme

p-values IMP? and standard MC would give similar results, while for extreme p-values, IMP and

IMP2 could yield valid estimates with much fewer iterations than the standard MC. Before applying
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different methods, we obtained the Z-scores from marginal logistic regression for each SNP based on
the individal levebcase-control data, and then used the whole control group as a reference panelto
estimate importance sampling approach, we first tried 1e+3 iterations. If the p-value of one
gene tumms than 0.01, we would use le+5 iterations to get a more accurate p-value for this
I
gene. Ther&e compared the QQ plots of IMP, IMP2 and the standard MC (as implemented in aSPUs).
The standa TD) used le+6 iterations. As Figure 3 shows, the results of IMP,IMP2 and the
standard MC weze very similar for almost all (large) p-values, except that IMP and IMP2 were able to
give three m small p-values (e.g. < le-10) using no more than le+5 iterations, while the
smallest (non-zero i)- value that the standard MC could give was le-6 using 1e+6 iterations. The bottom
panels of Fj irectly compare the p-values of the methods to confirm that IMP and IMP2 perform
closely to g:the p-value is not extreme. To see whether IMP and IMP2 could control type |
errors, we mme analysis with a control-control design. We randomly chose half of the 4686
subject ntrol group and the rest to be the “case” group. Then we used the new “disease
status” to the Z-scores and applied different methods with the same reference panelas done
before. As shown in Figure 4, without extremely small p-values, all three methods gave similar results,

and were Mtrol the type I error rate satisfactorily. These two studies (case-control and

control-co W ed IMP and IMP2 had no problem estimating non-extreme p-values (the results

were ah‘fne as the standard MC) while being able to calculate extreme p-values with much
fewer i

We have presentedsmn importance sampling approach, IMP, to speed up the p-value calculation for the
adaptiv est. The main idea is to design a suitable proposal distribution to facilitate more
frequent sampling of more extreme values (from the tails of the null distribution), and then calculate the
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p-values using the samples and their weights. Our derived theoretical results show that the new method
achieves h:Illi efﬁw’ ncy. In addition, we have also proposed another more sophisticated

implementags importance sampling, called IMP2, which updates the weights during the sampling
process. A onjectured that IMP2 might perform better than IMP, the simulation study and

I

real data a}siication showed their similar performance, both estimating small p-values better and much
faster than ffic stanflard Monte Carlo simulation. To estimate a p-value around 5e-8, the standard MC
approach umeds at least 1e+9 iterations (taking about 20+ hours), while IMP can do it efficiently

with le+5 ites@tiof€ (about 1 second).

In the fuhl::y modify the scheme of updating the weights to make IMP2 more efficient. More
importanth@ssible and worthwhile to extend our proposed importance sampling approach to

other tests t gre Monte Carlo simulations with normal variates (or with other known distribution)
to calculatemalues. Besides, we have been focusing on common variants in this paper. A main

challenge ing our new method to rare variants is that their Z statistics can no longer be well

V]

approxi ormal (or other known) distribution, and thus we cannot directly apply our

proposed importance sampling technique with a multivariate normal distribution. More investigation is

[

warranted.
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Table IHes (SD) [computation time in seconds] of different methods on one dataset using

12 runs. k0.26, ['=(1,2,4,8,00). Average computation times for the SPU tests are the

same asgthqsegiQigadPU.

SPU(1) (1.5¢-6, 2.1e-6)*

scr

B =103 B = 10* B =10° B =106
0 (0) 0 (0) 0 (0) 1.2¢-6 (1.0e-6)
IMP 23e-6 (1.3e-6)  1.8¢-6 (4.0e-7)  1.7e-6 (8.0e-8) 1.7e-6 (3.0e-8)
IMP 1.9¢-6 (7.0e-7)  1.7e-6 (2.1e-7)  1.7e-6 (3.7e-8) 1.7e-6 (2.7¢-8)

SPU(2) (1.6e-4, 1.7e-4)*

B =103 B =10* B =10° B =10°

2.5¢-4 (6.2¢-4) 1.6e-4 (1.4e-4) 1.7e-4 (3.7¢-5) 1.7e-4 (8.4¢-6)

1.7e-4 (1.1e-4) 1.5e-4 (3.3¢-5) 1.7e-4 (1.5¢-5) 1.6e-4 (5.3¢-6)

9.9¢-5(7.7e-5)  l.4e-4 (9.0e-5)  1.6e-4 (2.0e-5) 1.6e-4 (6.8¢-6)

SPU(4) (6.5¢-4, 6.6e-4)*

B =103 B =10* B =10°% B = 10°

5.8¢-4 (6.7e-4)  6.3e-4(2.6e-4)  63e-4(8.6e-5)  6.6e-4 (3.1e-5)

Author M3
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IMP 6.9¢-4 (1.4e-4)

6.5e-4 (2.7e-5)

6.6e-4 (1.2¢-5)

6.6e-4 (4.0¢-6)

INH 6.4e-4 (1.2¢-4)

6.5¢-4 (4.9¢-5)

6.6¢-4 (1.2¢-5)

6.5¢-4 (4.6¢-6)

SPU() (2.5¢-2, 2.5¢-2)*

rip

B =103

B =10*

B =10°

B =10°

STDO 2.4e-2 (4.3¢-3)

2.4e-2 (1.4e-3)

2.5e-2 (6.5¢-4)

2.5e-2 (1.3e-4)

IMPe 3 2.6¢-2 (3.0e-3)

2.5¢-2 (3.3e-4)

2.5e-2 (2.1e-4)

2.5e-2 (5.5¢-5)

2.6e-2 (2.8¢-3)

2.5¢-2 (9.0e-4)

2.5¢-2 (2.9¢-4)

2.5¢-2 (9.8¢-5)

aSPU (5.8e-6, 6.8¢-6)*

—
=

B =10* B =105 B =106
STD 1.0e-3 (0) 1.0e-4 (0) 1.0e-5 (0) 5.1e-6 (3.4e-6)
[0.068] [0.57] [5.9] [48]

#

9.0e-6 (4.1¢-6)

[0.024]

6.6e-6 (1.7e-6)

[0.12]

6.0e-6 (3.0e-7)

[1.1]

6.0e-6 (9.3¢-8)

[11]

1.3¢-5 (6.9¢-6)

O
—
e

[0.024]

7.1e-6 (2.0e-6)

[0.099]

5.9¢-6 (2.0e-7)

[0.72]

5.9e-6 (8.9¢-8)

[7.9]
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Table 2 Mean p-values (SD) of different methods on one datasetusing 12 runs. k = 3, 8 = 0.41,

=(, 2I18I 00 "\Vﬂage computation times are similar to Table 1.

SPU(1) (1.2¢-1, 1.2e-1)*

B =103 B =10*

i

B =10°

B = 10°

[05]
—

1.2e-1(1.2e2)  1.2e-1(2.7e-3)

1.2e-1 (1.2¢-3)

1.2e-1 (4.6¢-4)

e

M 1.2¢-1 (1.7¢-2) 1.le-1 (5.2¢-3)

1.2¢-1 (1.6e-3)

1.2¢-1 (5.0e-4)

IMP2 1.2e-1 (2.0e-2) 1.2¢-1 (6.4¢-3)

1.2e-1 (2.3¢-3)

1.2¢-1 (8.1e-4)

SPU(2) (2.1e-6, 2.3e-6)*

Manise

B =103 B =10* B =10°% B = 10°
0(0) 0(0) 1.7e-6 (3.9¢-6) 1.9e-6 (1.1e-6)
IMP 5.1e-7 (4.7e-7) 1.0e-6 (4.9¢-7) 1.3e-6 (4.7¢-7) 2.5e-6 (8.8¢e-7)

IMP 2.7e-6 (6.1e-6) 1.1e-6 (6.0e-7)

1.7e-6 (6.8¢-7)

2.4e-6 (1.0e-6)

0l

SPU(4) (4.7¢-8, 7.9¢-8)*

th

B =103 B = 10* B =10° B =10°¢
STD: 0 (0) 0 (0) 0 (0) 0(0)
IMP 5.8¢-8 (1.7¢-8) 6.1e-8 (7.4¢-9) 6.2¢-8 (2.7¢-9)  6.1e-8 (8.5¢-10)
IMP2 6.1e-8 (2.1e-8) 6.3¢-8 (9.0e-9) 6.0e-8 (1.6e-9)  6.1e-8 (6.5¢-10)
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SPU(o0) (3.1¢-9, 1.5¢-8)*

{

B =103 B =10* B =10°

B = 10°

STIQ 0 (0) 0 (0) 0(0)

0 (0)

H I
IMIL 6.5¢-9 (7.4e-10)  6.7e-9 (2.4e-10)  6.7¢-9 (6.0e-11)

6.7¢-9 (2.1e-11)

C

IMP 6.7¢-9 (9.4e-10)  6.7¢-9 (2.5¢-10)  6.7e-9 (6.9¢-11)

6.7¢-9 (2.2e-11)

aSPU (2.3¢-8, 4.7e-8)*

hu%

B =103 B =10* B =10° B =106

1.0e-3 (0) 1.0e-4 (0) 1.0e-5 (0) 1.0e-6 (0)
IMP 4.5¢-6(8.5¢-6)  6.6e-8(8.6e-8)  2.7e-8 (3.2¢-9)  2.5¢-8 (6.1e-10)
IMP2 E 1.1e-5 (2.3e-5)  6.0e-8 (4.1e-8)  2.9¢-8 (6.9¢-9)  2.5¢-8(1.3e-9)

* 95% confidence intervals of p-values based on STD with 10”9 iterations.
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Figure 1 Density plots of three distributions. This figure appears in color in the electronic version of

this articleiFnd an'mention of color refers to that version.
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Figure 2 Computation time (in seconds) of different methods with different numbers of SNPs (p)

(averaged *er 10 'ms). This figure appears in color in the electronic version of this article, and any

mention ofm to that version.
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Figure 3 QQ plots of -log;o(p-values). Case-control. Top left: STD observed vs. expected. Top right:

IMP obseﬁd Vs. 'ﬁpected. Middle: IMP2 observed vs. expected. Bottom left: STD vs. IMP. Bottom

right: STD
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