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Abstract
Image-on-image regression analysis, using images to predict images, is a chal-
lenging task, due to (1) the high dimensionality and (2) the complex spatial
dependence structures in image predictors and image outcomes. In this work,
we propose a novel image-on-image regression model, by extending a spatial
Bayesian latent factormodel to image data, where low-dimensional latent factors
are adopted to make connections between high-dimensional image outcomes
and image predictors. We assign Gaussian process priors to the spatially varying
regression coefficients in the model, which can well capture the complex spatial
dependence among image outcomes as well as that among the image predictors.
We perform simulation studies to evaluate the out-of-sample prediction perfor-
mance of ourmethod compared with linear regression and voxel-wise regression
methods for different scenarios. The proposed method achieves better predic-
tion accuracy by effectively accounting for the spatial dependence and efficiently
reduces image dimensions with latent factors. We apply the proposed method to
analysis of multimodal image data in the Human Connectome Project where we
predict task-related contrast maps using subcortical volumetric seed maps.

KEYWORDS
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1 INTRODUCTION

Image-related regression analysis has attracted increasing
scientific interest in many areas, including medicine
(Duff et al., 2015), disease diagnosis (Suk et al., 2017), and
neuroscience (Zhou et al., 2013; Bowman, 2014). In these
applications, researchers are often interested in identifying
the association between quantitative images, for example,
functional magnetic resonance imaging (fMRI) (Glover,
2011), and other variables of interest, for example, patient
clinical characteristics, where the quantitative images are
either considered as the outcome variables or predictors.
Two types of image-related regressionmodels have been

extensively studied: scalar-on-image regression that uses

images to predict scalar outcome (Reiss and Ogden, 2010;
Goldsmith et al., 2011; Huang et al., 2013; Wang et al., 2017;
Kang et al., 2018) and image-on-scalar regression which
uses a set of scalar predictors to predict the image outcome
(Gelfand et al., 2003; Reiss et al., 2010; Chen et al., 2016;
Goldsmith and Kitago, 2016; Yan and Liu, 2017). Recently
there is increasing interest in developing regression
models where both outcomes and predictors are multiple
images, to which we refer as the image-on-image regres-
sion. It has many important applications in neuroimaging
studies, for instance, one question of great interest is to
understand how much the individual variations in brain
activity during task performance can be explained by
task-independent imaging measurements. The answer to
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this questionmay further facilitate the researcher to assess
whether the task-invoked brain activities are intrinsic
features of individuals who may use different cognitive
processes involving different brain circuits, and thus to a
certain degree the individual variations in brain activation
are independent of irrelevant task factors. For a large set
of task conditions spanning several behavioral domains,
Tavor et al. (2016) trained a simple linear regression model
to predict task-based fMRI images using structural and
resting-state fMRI images. Based on brain anatomical
and functional parcellation, they fitted their model one
parcel and one subject at a time, assuming independence
and an identical linear relationship across voxels in each
parcel. Then they predicted outcomes for unseen subjects
by averaging fitted models across subjects. Although their
linear method is simple to implement for image-on-image
regression analysis, it ignores the spatial dependence
structure in images by assuming voxels are mutually
independent. Meanwhile, they fitted their model on the
individual level but predicted new subjects using averaged
estimations, which is in conflict with their assumption of
individual variation in their imaging outcomes.
The spatial correlations and associations can be hard

to model due to their heterogeneity, complexity and high-
dimensionality with a limited sample size. For example,
the spatial correlations between neural activity at different
voxels may extend beyond neighboring voxels and may
not decrease with increasing distance (Bowman, 2014).
Also, the spatial patterns may vary across different types
of brain images and even subjects. Moreover, the effects of
features on outcome images may be from the whole image
space but not voxel by voxel. Hence, in order to precisely
describe the spatial patterns and associations of outcome
and predictor images, one needs to define voxel-wise
parameters in image space. These parameters are high
dimensional and have complex spatial correlations, lead-
ing to a potentially overparameterized regression model
along with the associated computational challenges.
In this work, we propose a spatial Bayesian latent fac-

tor model for image-on-image regression. The outcome
image ismodeledwith a linear combination of proper basis
functions, where the basis coefficients are further decom-
posed into a few latent factors and a loading matrix. Then
latent factors are fitted with predictor images by a scalar-
on-image regression model with voxel-wise spatially vary-
ing coefficients in predicting image space. This approach
reduces the image dimension with proper basis functions
and links the predictor and the outcome images with a few
latent factors. And the voxel-by-voxel associations between
predictor and outcome images are able to be evaluated.
Thus, ourmodel canmakemore accurate predictions com-
pared to the linear model (Tavor et al., 2016) with a small
sample size.

A few image-on-image regression models have been
recently proposed motivated by various applications in
medical imaging. For example, Sweeney et al. (2013)
applied voxel-wise logistic regression models incorporat-
ing multiple sclerosis imaging sequences to predict lesion
incidencewith T1-weighted, T2-weighted, fluid-attenuated
inversion recovery (FLAIR), and proton attenuation (PD)
volumes from a longitudinal study. The voxel-wise regres-
sion method evaluates the population effects and is simple
to implement. However, it ignores the spatial correlations
among voxels and thus may lose power to detect the asso-
ciation between the predictor images and the outcome
images. Another voxel-wise regression model proposed
by Hazra et al. (2019) includes prediction effects from the
neighboring voxels within a given Euclidean distance.
The prediction effects are assumed to be the same when
voxels in the predictor image have the same distance to
the voxel in the outcome image. In the outcome images,
voxels are assumed to be independent over space. Their
spatial association with the predictor images is restricted
to small regions and only related to the spatial distance. In
contrast to the above two voxel-wise regression methods,
our spatial latent factor model may capture more complex
spatial dependence between outcome image and the
predictor images. Deep learning has been applied to
medical imaging for image-on-image regression analysis,
such as in image recovering and disease diagnosis (Isola
et al., 2017; Zhu et al., 2017; Huang et al., 2018). However,
the performance of deep learning methods relies on very
large sample sizes, which we typically do not have in
medical imaging studies. Further, it is difficult to interpret
the specific associations among images based on a deep
neural network model.
We organize this paper as follows: We first describe our

spatial Bayesian latent factor models in Section 2. In Sec-
tion 3, we present the proposed Bayesian framework for
estimation and prediction. In Section 4, we conduct a sim-
ulation study under different scenarios and discuss some
criteria used for model evaluation and selection. Next, we
illustrate the proposed method using fMRI data from the
Human Connectome Project (HCP) database. We close
with a discussion of future work.

2 MODEL

In this section,we present our spatial Bayesian latent factor
model for image-on-image regression analysis. We extend
the classical Bayesian latent factor model for functional
and longitudinal data (Montagna et al., 2012) to the case
where the functional predictors are images with complex
spatial dependence. Our goal of statistical modeling is fun-
damentally different from the one byMontagna et al. (2018)
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F IGURE 1 Graphical representation of the proposed spatial Bayesian latent factor model for image-on-image regression analysis

that focused on themeta-analysis of functional neuroimag-
ing data.
Suppose the data consists of one outcome image and

𝑃 predictor images from 𝑛 subjects. For all subjects, we
assume that both outcome and predictor images have
been preprocessed and registered to the same brain region,
denoted. Note that in practicemay refer to the whole
brain or a specific region of interest, which we will refer to
as a parcel. For each subject 𝑖(𝑖 = 1, … , 𝑛) at voxel 𝑣 ∈ ,
let 𝑍𝑖(𝑣) and 𝑋𝑖𝑝(𝑣)(𝑝 = 1,… , 𝑃) represent the outcome
image intensity and the 𝑝th predictor image intensity,
respectively. To identify the association between 𝑍𝑖(𝑣) and
𝑋𝑖𝑝(𝑣

′) in parcel  (either 𝑣 = 𝑣′ or 𝑣 ≠ 𝑣′), we develop
a spatial Bayesian latent factor model with three levels of
hierarchy (see Figure 1 for illustration).

2.1 Level 1: Approximation of outcome
images

At Level 1, we approximate the outcome image using a
basis expansion approach. Let {𝑏𝑚(𝑣)}𝑀

𝑚=1
be a set of𝑀 spa-

tial knot-dependent basis functions that can capture the
variation of the outcome image in . For each subject 𝑖

and any voxel 𝑣 ∈ , we assume

𝑍𝑖(𝑣) = 𝑈(𝑣) +

𝑀∑
𝑚=1

𝜃𝑖𝑚𝑏𝑚(𝑣) + 𝑒𝑖(𝑣), 𝑈(𝑣) ∼ N(0, 𝜎2
𝑢),

𝑒𝑖(𝑣) ∼ N(0, 𝜎2
𝑒 ),

where 𝑈(𝑣) represents the population-level spatially
varying intercept. As a prior specification, we assume
{𝑈(𝑣)}𝑣∈ are independent and identically distributed as
normal random variates with mean zero and variance 𝜎2

𝑢.
The random errors 𝑒𝑖(𝑣) are assumed to be independent
and identically distributed and follow a normal distribu-
tion with mean zero and variance 𝜎2

𝑒 over all subjects
across voxels in region. The parameter 𝜃𝑖𝑚 is the subject-
specific basis coefficient of the 𝑚th spatial basis func-
tion 𝑏𝑚(𝑣). The term

∑𝑀

𝑚=1
𝜃𝑖𝑚𝑏𝑚(𝑣) captures the spatial

dependence and smoothness of the subject-specific out-
come image among voxels in.

2.2 Level 2: Sparse latent factor model
for basis coefficients

At Level 2, we build a sparse latent factor model for the
basis coefficient 𝜃𝑖𝑚:

𝜃𝑖𝑚 =

𝐾∑
𝑘=1

𝜆𝑚𝑘𝜂𝑖𝑘 + 𝜁𝑖𝑚, 𝜁𝑖𝑚 ∼ N(0, 𝜎2
𝜁
),

where {𝜂𝑖𝑘}
𝐾
𝑘=1

represents a set of 𝐾 latent factors for sub-
ject 𝑖 and {𝜆𝑚𝑘}

𝐾
𝑘=1

are the corresponding sparse loading
coefficients, indicating the effects of the 𝑘th latent factor
on the 𝑚th basis coefficient. For the prior specification
for the sparse loading coefficients 𝜆𝑚𝑘, we induce the
prior distribution through the parameter-expansion (PX)
approach of Ghosh and Dunson (2009) leading to more
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efficient posterior computation. Details are provided in
Section 3. The subject-level random effects {𝜁𝑖𝑚} explain
the variation of the basis coefficient 𝜃𝑖𝑚 that cannot be
explained by the latent factors 𝜂𝑖𝑘. It also characterizes
the spatial dependence among the outcome images that
cannot be captured by the latent factors. Combining the
Level 1 and Level 2 models, we have, for 𝑣 ≠ 𝑣′,

Cov[𝑍𝑖(𝑣), 𝑍𝑖(𝑣
′) ∣ {𝜂𝑖𝑘}

𝐾
𝑘=1

, ⋅] = 𝜎2
𝜁

𝑀∑
𝑚=1

𝑏𝑚(𝑣)𝑏𝑚(𝑣′),

where “⋅” represents all other parameters. This implies
that the variance of random effects 𝜁𝑖𝑚, that is, 𝜎2

𝜁
, captures

the conditional covariance between 𝑍𝑖(𝑣) and 𝑍𝑖(𝑣
′) given

the latent factors and other parameters.

2.3 Level 3: Link to predictor images

In brain imaging applications, we expect the effect size
of a single predictor image from a voxel 𝑣′ on the whole
outcome image through latent factor 𝜂𝑖𝑘 is generally very
small if not zero, but the cumulative effect size over all
predictors can be large. Thus, to efficiently reduce the
dimension of the parameter space, we consider a summa-
rized predictor image 𝑋𝑖(𝑣

′) as a sum of selected predictor
images from {𝑋𝑖𝑝(𝑣

′)}𝑃
𝑝=1

, that is,

𝑋𝑖(𝑣
′) =

𝑃∑
𝑝=1

𝛾𝑝𝑋𝑖𝑝(𝑣
′),

where the latent selection indicator 𝛾𝑝 is assumed to fol-
low a Bernoulli distributionwith prior probability𝑤, while
𝜋𝑝 may include prior knowledge about important predic-
tor images.
At Level 3, we link the latent factors with the sum-

marized predictor image via a scalar-on-image regression
model:

𝜂𝑖𝑘 =
∑
𝑣′∈

𝑋𝑖(𝑣
′)𝛽𝑘(𝑣

′) + 𝜖𝑖𝑘, 𝜖𝑖𝑘 ∼ N(0, 𝜎2
𝜖 ),

where the spatially varying coefficient 𝛽𝑘(𝑣
′) represents

the spatial effects of the summarized predictor image at
voxel 𝑣′ on the 𝑘th latent factor; and thus it is factor spe-
cific and shared by all subjects. To account for spatial
dependence in predictors, we assign a Gaussian process
(GP) prior to 𝛽𝑘(𝑣) and approximate the GP using a basis
expansion approach: that is , 𝛽𝑘(𝑣) =

∑𝑀

𝑚=1
𝛼𝑘𝑚𝑏𝑚(𝑣)with

𝛼𝑘𝑚 ∼ N(0, 𝜎2
𝛼). Typically, a small number of latent factors

are needed to capture important feature information from
the selected image predictors at the population level, con-

tributing to the outcome image prediction. The subject-
level random effects 𝜖𝑖𝑘 are introduced tomodel the depen-
dence between the basis coefficients 𝜃𝑖𝑚. In particular,
combining Level 2 and Level 3 models, we have, for 𝑚 ≠

𝑚′,

Cov[𝜃𝑖𝑚, 𝜃𝑖𝑚′ ∣ {𝑋𝑖𝑝(𝑣
′), 𝑣′ ∈ }, ⋅] = 𝜎2

𝜖

𝐾∑
𝑘=1

𝜆𝑚𝑘𝜆𝑚′𝑘.

This implies that the variance of 𝜖𝑖𝑘, that is 𝜎2
𝜖 controls

the covariance of the basis coefficients given the summa-
rized predictor image through the latent factor models.
Thus, 𝜖𝑖𝑘 contributes to the complex spatial dependence
among outcome images through the correlations between
basis expansion coefficients. This type of spatial depen-
dence cannot be captured by the linear transform of the
predictor images.

2.4 Model representation

Our proposed Bayesian hierarchical model has an equiv-
alent model representation by integrating out 𝜃𝑖𝑚 and 𝜂𝑖𝑘

(see theWebAppendix). From this representation, the con-
ditional expectation of the outcome image 𝑍𝑖(𝑣) directly
links to predictor image 𝑋𝑖𝑝(𝑣

′) using tensor products of
spatially varying coefficients and the predictor selection
indicators. Specifically, we have

𝑍𝑖(𝑣) = 𝑈(𝑣) +
∑
𝑣′∈

𝜓(𝑣, 𝑣′)

{
𝑃∑

𝑝=1

𝛾𝑝𝑋𝑖𝑝(𝑣
′)

}

+𝜖̃𝑖(𝑣) + 𝜁𝑖(𝑣) + 𝑒𝑖(𝑣),

𝜓(𝑣, 𝑣′) =

𝐾∑
𝑘=1

𝜆̃𝑘(𝑣)𝛽𝑘(𝑣
′), 𝜖̃𝑖(𝑣) =

𝐾∑
𝑘=1

𝜖𝑖𝑘𝜆̃𝑘(𝑣),

𝜁𝑖(𝑣) =

𝑀∑
𝑚=1

𝜁𝑖𝑚𝑏𝑚(𝑣), (1)

where the factor-specific spatially varying coefficient
𝜆̃𝑘(𝑣) =

∑𝑀

𝑚=1
𝜆𝑚𝑘𝑏𝑚(𝑣) represents the spatial effects of

𝑘th latent factor on the outcome image at voxel 𝑣. The
bivariate spatially varying coefficient 𝜓(𝑣, 𝑣′) represents
the total spatial prediction effects on outcome images from
the selected predictor images, that is the average change
in the outcome image at voxel 𝑣 per unit change in the
value of the summarized predictor image at voxel 𝑣′; and
it is decomposed as the summation of 𝐾 tensor products
of spatially varying coefficients for two types of effects:
the effects of summarized predictor images on the latent
factors, that is, 𝛽𝑘(𝑣) and the effects of latent factors on
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the outcome images 𝜆̃𝑘(𝑣). The two spatial random effects
𝜖̃𝑖(𝑣) and 𝜁𝑖(𝑣) constructed by 𝜖𝑖𝑘 and 𝜁𝑖𝑚 are introduced
to accommodate the spatial dependence of the outcome
images that cannot be explained by predictor images. The
expectations of both 𝜖̃𝑖(𝑣) and 𝜁𝑖(𝑣) are zero, and their spa-
tial covariances are controlled by 𝜎2

𝜖 and 𝜎2
𝜁
, respectively.

Furthermore, we can obtain the conditional covariance
between the outcome images given the summarized pre-
dictor images and other parameters. For 𝑣 ≠ 𝑣′

Cov[𝑍𝑖(𝑣), 𝑍𝑖(𝑣
′) ∣ {𝑋𝑖(𝑣

′′), 𝑣′′ ∈ }, ⋅]

= 𝜎2
𝜖

𝐾∑
𝑘=1

𝜆̃𝑘(𝑣)𝜆̃𝑘(𝑣
′) + 𝜎2

𝜁

𝑀∑
𝑚=1

𝑏𝑚(𝑣)𝑏𝑚(𝑣′).

This indicates that the variance parameters of random
effects 𝜎2

𝜖 and 𝜎2
𝜁
along with the factor loadings 𝜆𝑚𝑘 con-

tribute to modeling of the complex spatial dependence of
outcome images given the predictor images. This repre-
sentation implies our model has the ability to retain com-
plex spatial dependence structures in the outcome and
predictors, respectively. Hence, by introducing random
effects 𝜁𝑖𝑚 and 𝜖𝑖𝑘, our model is more flexible in borrowing
strength from the entire brain, or parcel, to characterize
the association between the outcome images and predic-
tor images.

2.5 Model summary

To summarize, we propose a spatial Bayesian latent fac-
tor model for image-on-image regression. We introduce
low-dimensional latent factors to link high-dimensional
outcome images with predictor images. In particular, for
each subject, we represent the expectation of the outcome
image as a linear combination of multiple spatial basis
functions, where each basis function is associatedwith one
spatial knot. The knot-dependent coefficients are decom-
posed into several latent factors. Each latent factor sum-
marizes a feature of the outcome image. We model each
latent factor as a scalar outcome and assume its expecta-
tion is equal to a weighted average of a set of predictors.
Each predictor is a linear transformation of one predictor
image, where the corresponding spatially varying coeffi-
cients represent the spatial effects of the predictor image.
We assign GP priors to the spatially varying coefficients
and adopt a basis expansion approach for GP representa-
tions, which are sufficient, flexible, and convenient to pre-
serve the complex spatial correlations.With an appropriate
choice of the basis function, the model can capture well
the complex spatial patterns of the outcome image using a
smaller number of spatial knots. Thus, our basis expansion

approach may effectively reduce the model dimensional-
ity. More importantly, by integrating over the whole fea-
ture image space, our model can well predict the outcome
images borrowing the strength not only from the same vox-
els in the predictor image but also neighboring and even
long-distance voxels. A small number of spatial latent fac-
tors in our model can effectively capture the association
between the predictor images and the outcome image.

3 POSTERIOR COMPUTATION

We develop a Markov chain Monte Carlo (MCMC) algo-
rithm for posterior computation. For latent factor models,
the performance of posterior computation may depend on
prior specifications. In general, we can assign normal and
inverse-gamma prior distributions to factor loadings and
residual variances, respectively. Although those prior dis-
tributions produce conditionally conjugate posterior dis-
tributions and lead to straightforward computation using
a Gibbs sampler, such routine Bayesian implementations
are poorly behaved (Ghosh and Dunson, 2009). To achieve
efficient posterior computation for our model, we extend
the PXmethod proposed by Ghosh andDunson (2009).We
construct a hierarchical model for the latent factors with
different covariance structures.

3.1 Prior specifications via parameter
expansion

Our model needs additional constraints to ensure that the
𝐾 latent factors are identifiable. Write 𝜽𝑖 = (𝜃𝑖𝑚)𝑀×1, 𝚲 =

(𝜆𝑚𝑘)𝑀×𝐾 , 𝜼𝑖 = (𝜂𝑖𝑘)𝐾×1, 𝜻𝑖 = (𝜁𝑖𝑚)𝑀×1, 𝑿̃𝑖 = {𝑋̃𝑖(𝑣)}||×1,
𝜷𝑘 = {𝛽𝑘(𝑣)}||×1, 𝜷 = {𝛽𝑘(𝑣)}||×𝐾 , 𝝐𝑖 = (𝜖𝑖𝑘)𝐾×1, 𝜶𝑘 =

(𝛼𝑘𝑚)𝑀×1 𝜶 = (𝛼𝑘𝑚)𝐾×𝑀 , and 𝒃 = {𝑏𝑘(𝑣)}||×𝐾 , where ||
represents the number of voxels in. Thematrix represen-
tations of the original inferential models in Levels 2 and 3
are shown in Table 1.
Following the PX approach, we develop a working

model and the corresponding transformations between
inferential and working parameters as shown in Table 1.
We introduce parameters𝚽 = diag{𝜙2

1
, … , 𝜙2

𝐾} and the sign
function 𝑆(𝑥) = 1 if 𝑥 ≥ 1 and −1 otherwise. An extra
working intercept term 𝝁∗

𝑖
is included to efficiently esti-

mate the working latent factor 𝜼∗
𝑖
= (𝜂∗

𝑖𝑘
). The working

factor loading matrix 𝚲∗ = (𝜆∗
𝑚𝑘

)𝑀×𝐾 is lower triangu-
lar with no constraints on its elements. Instead of spec-
ifying a prior distribution for 𝚲 directly, we induce a
prior distribution for 𝚲∗ and then transform it to the
prior distribution for 𝚲. These prior distributions placed
on the working parameters are specified as follows: for
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TABLE 1 Inferential and working models for PX approach with 𝑖 = 1, 2, … ,𝑁, 𝑘 = 1,… , 𝐾, 𝑚 = 1,… ,𝑀

Inferential model Working model Transformations
𝜽𝑖 = 𝚲𝜼𝑖 + 𝜻𝑖 𝜽𝑖 = 𝚲∗𝜼∗

𝑖
+ 𝜻𝑖 𝜆𝑚𝑘 = 𝑆(𝜆∗

𝑘𝑘
)𝜙−1

𝑘
𝜆∗
𝑚𝑘

𝜼𝑖 = 𝜷𝑇𝑿̃𝑖 + 𝝐𝑖 𝜼∗
𝑖
= 𝝁∗

𝑖
+ [𝜷∗]𝑇𝑿̃𝑖 + 𝝐∗ 𝜂𝑖𝑘 = 𝑆(𝜆∗

𝑘𝑘
)𝜙𝑘(𝜂

∗
𝑖𝑘

− 𝜇∗
𝑖𝑘
)

𝜷 = 𝒃𝜶 𝜷∗ = 𝒃𝜶∗ 𝜷𝑘 = 𝑆(𝜆∗
𝑘𝑘

)𝜙𝑘𝜷
∗
𝑘

𝜻𝑖 ∼ N(0, 𝜎2
𝜁
𝑰) 𝜻𝑖 ∼ N(𝟎, 𝜎2

𝜁
𝑰) 𝜶𝑘 = 𝑆(𝜆∗

𝑘𝑘
)𝜙𝑘𝜶

∗
𝑘

𝝐𝑖 ∼ N(0, 𝜎2
𝜖 𝑰) 𝝐∗

𝑖
∼ N(𝟎, 𝜎2

𝜖𝚽
−1) 𝜖𝑖𝑘 = 𝑆(𝜆∗

𝑘𝑘
)𝜙𝑘𝜖

∗
𝑖𝑘

𝑚 = 1,… ,𝑀, 𝜆∗
𝑚𝑘

∼ N(0, 𝜎2
𝜆
) if 𝑘 ≤ min(𝑚,𝐾), and 𝜆∗

𝑚𝑘
∼

𝛿0 if min(𝑚,𝐾) < 𝑘 ≤ 𝐾, where 𝛿0 is a measure con-
centrated at zero. 𝝁∗

𝑖
∼ N𝐾(𝟎, 𝜎2

𝜇𝑰𝐾) for 𝑖 = 1, … ,𝑁; 𝜙2
𝑘
∼

Gamma(𝑎𝜙, 𝑏𝜙) and 𝜶∗
𝑘
∼ N𝑀(𝟎, 𝜎2

𝛼𝑰𝑀) for 𝑘 = 1,… , 𝐾.
Hyperparameters 𝜎2

𝜆
, 𝜎2

𝜇, 𝜎
2
𝛼, 𝑎𝜙, and 𝑏𝜙 can be prespeci-

fied.
According to the above working model representation

and prior specifications, we develop an efficient Gibbs
sampler for posterior computation (see the Appendix). Of
note, the PX approach leads to an overparameterizedwork-
ing model and thus the posterior computation may exhibit
poor mixing due to lack of identifiability (Ghosh and
Dunson, 2009) for the working parameters. However, the
parameters in the original inferentialmodel are still identi-
fiable and theMarkov chainmixesmuchbetter. Estimation
and prediction details are given in the Web Appendix.

3.2 Basis functions and number of
latent factors

It is challenging to choose the number of basis functions.
Since the bases are locally concentrated, the more basis
functions that are included in the model, the richer the
spatially varying patterns of the outcome image the model
can capture. On the other hand, to reduce computational
costs, the number of basis functions is usually chosen to
be much smaller than the number of voxels. In addition,
the appropriate basis functions are unknown in advance.
Conceptually, any basis functions, like B-spline bases
and Gaussian kernels, can be chosen for the smooth
images. Here, we choose a three-dimensional (3D)
isotropic Gaussian kernel. 𝑏𝑚(𝑣) = exp{−𝑏‖𝑣 − 𝜓𝑚‖2},
𝑣 ∈ ,𝑚 = 1, 2, … ,𝑀, with kernel locations {𝜓𝑚}𝑀

𝑚=1
and

parameter 𝑏 controlling smoothness. Flexible approaches
are available for estimating 𝑀, 𝑏, and {𝜓𝑚}𝑀

𝑚=1
for basis

functions. One approach is to perform fully Bayesian
inference with appropriate prior specifications for these
parameters. However, this approach suffers very large
computational burden as the basis function is reevaluated
at each iteration of the MCMC algorithm. Therefore,
we adopt a relatively less computationally intensive
approach. We first choose a reasonable number of bases

𝑀 as well as kernel locations {𝜓𝑚}𝑀
𝑚=1

, and then we
determine the smooth parameter 𝑏 by minimizing the
mean squared error (MSE) and mean squared prediction
error (MSPE) of outcome images via cross validation
(CV). The metrics MSE and MSPE are averaged over
datasets, observations, and voxels. Suppose we consider
𝐽-fold cross validation. For the 𝑗th (𝑗 = 1,… , 𝐽) fold, let
ts
𝑗

and tr
𝑗
represent the indices of the subjects in the

test set and training set, respectively. Let 𝑍̂𝑖(𝑣) for 𝑖 ∈ tr
𝑗

and 𝑍̃𝑖(𝑣) for 𝑖 ∈ ts
𝑗

represent the fitted and predicted
outcome image at voxel 𝑣, respectively. We have 𝑍̂𝑖(𝑣) =

E[𝑍𝑖(𝑣) ∣ {𝜃̂𝑖𝑚}𝑀
𝑚=1

, 𝑈̂(𝑣)] = 𝑈̂(𝑣) +
∑𝑀

𝑚=1
𝜃̂𝑖𝑚𝑏𝑚(𝑠),

where 𝑈̂(𝑣) and 𝜃̂𝑖𝑚 are the posterior mean estimates
of 𝑈(𝑣) and 𝜃̂𝑖𝑚. And 𝑍̃𝑖(𝑣) = E[𝑍𝑖(𝑣) ∣ {𝑋𝑖𝑝(𝑣

′), 𝑣′ ∈

}𝑃
𝑝=1

, ⋅] = 𝑈̂(𝑣) +
∑

𝑣′∈

∑𝑃

𝑝=1
𝜓̂(𝑣, 𝑣′)𝛾̂𝑝𝑋𝑖𝑝(𝑣

′), where
𝜓̂(𝑣, 𝑣′) and 𝛾̂𝑝 are the posterior mean esti-
mates of 𝜓(𝑣, 𝑣′) and 𝛾𝑝. Then MSE is defined as∑𝐽

𝑗=1

∑
𝑖∈tr

𝑗

∑
𝑣∈

{𝑍𝑖(𝑣) − 𝑍̂𝑖(𝑣)}
2∕(𝐽|tr

𝑗
|||), and

MSPE is defined as
∑𝐽

𝑗=1

∑
𝑖∈ts

𝑗

∑
𝑣∈

{𝑍𝑖(𝑣) −

𝑍̃𝑖(𝑣)}
2∕(𝐽|ts

𝑗
|||), where |tr

𝑗
|, |ts

𝑗
|, and || rep-

resent the training sample size, the test sample size, and
the number of voxels used in the CV study, respectively.
To select the number of latent factors, a set of widely

usedmodel comparison criteria can be considered, such as
deviance information criteria (DIC), Bayesian information
criteria (BIC), Bayes factors (BF), and R-squared. One can
fit the model multiple times with different values of 𝐾 and
choose the optimal value based on the above criteria. This
approach is computationally intensive. We consider an
alternative approach in light of our latent factor model. In
our model, redundant latent factors may have very sparse,
zero-, or near zero concentrated loadings. Hence, the opti-
mal number of latent factors has a loading matrix with
nonzero-concentrated anddistinguishable loading vectors.
Some metrics can help us to measure the variation and
sparseness of each loading vector, based on which we can
determine how many loading vectors are nonredundant.
Here, we adopt a metric as the number of values in each
loading vector outside the 90% credible interval (CI) of the
whole estimated loading matrix, termed as 90% significant
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loading counts (SLC). Loading vectors corresponding to
important latent factors should have large 90% SLC since
they account formost of the variation of the loadingmatrix.
On the contrary, the SLC of those redundant loading vec-
tors are close to zero and similar to each other. Some other
metrics, such asmean or standard deviation of loading vec-
tors, etc., can be used as well. We find that 90% SLC is
more robust in choosing the correct number of latent fac-
tors in our simulation study. More precisely, we first fit the
model with a large number of latent factors, for example,
𝐾 = 20 in practice; thenwe summarize the estimated load-
ing vectors using the 90% SLC and determine the optimal
number 𝐾 using a modified Elbow method (Kodinariya
and Makwana, 2013). Specifically, we sort 90% SLC of all
loading vectors in a descending order and create a trajec-
tory of 90% SLC versus the number of latent factors. Our
“elbow criterion” is that the optimal number𝐾 is chosen at
the change point of the trajectory after which the 90% SLC
almost remains unchanged and close to zero. Finally, we
refit themodel with the choice of𝐾 for estimation and pre-
diction.

4 SIMULATION STUDY

4.1 Data generation and method

Simulation studies were conducted to compare the perfor-
mance of our proposed method with two other models:
linear regression (Tavor et al., 2016) and voxel-wise regres-
sion. The three methods serve as the generating models in
three different scenarios, respectively. In each scenario, we
generate 10 datasets, each of which contains 100 observa-
tions in the training set with another 50 observations in the
test set. Each simulated observation has a two-dimensional
outcome image and a set of 20 two-dimensional predictor
images on a 32 × 32 equally spaced grid. In the simulation
studies, we treat the whole image space as a single par-
cel. Specifically, we generate predictor images from a GP
with mean zero and covariance 𝑐(𝑣1, 𝑣2) = 0.01 exp{−15 ×

𝑑2
𝑣1,𝑣2

}, where 𝑑𝑣1,𝑣2 is the Euclidean distance between any
two grid points 𝑣1 and 𝑣2.
Scenario 1. We simulate outcome images from the fol-

lowing linear regression model:

𝑍𝑖(𝑣) = 𝛽𝑖0 +

20∑
𝑝=1

𝛽𝑖𝑝𝑋𝑖𝑝(𝑣) + 𝜖𝑖(𝑣), for 𝑖 = 1, … , 150,

where linear coefficients 𝛽𝑖𝑝 are the same over the space
but varied among observations. The error terms 𝜖𝑖(𝑣) are
independently sampled from a normal distribution with
mean zero and variance 0.1. The true value of 𝛽𝑖𝑝 is drawn
from a normal distribution with mean 𝜇𝑝 and variance 𝜎2

𝑝,

where 𝜎2
𝑝 is drawn from a gamma distribution with shape

0.1 and rate 0.1. The mean 𝜇𝑝 is sampled from the uniform
distribution on [−3.5, −1.5] ∪ [1.5, 3.5] if 𝑝 ≤ 5, and 𝜇𝑝 is
generated from a uniform distribution on [−0.5, 0.5], oth-
erwise.
Scenario 2. We generate outcome images from the fol-

lowing voxel-wise regression model:

𝑍𝑖(𝑣) = 𝛽0(𝑣) +

20∑
𝑝=1

𝛽𝑝(𝑣)𝑋𝑖𝑝(𝑣) + 𝜖𝑖(𝑣), for 𝑖 = 1, … , 150,

where 𝜖𝑖(𝑣) are independently sampled from N(0, 0.1). We
simulate 𝛽𝑝(𝑣) from a GP with mean zero and correlation
kernel exp{−15𝑑2

𝑣1,𝑣2
}. The marginal variance of 𝛽𝑝(𝑣) is

2.0 for 𝑝 ≤ 5 and 0.5 otherwise.
Scenario 3. We simulate data from our spatial Bayesian

latent factor (SBLF) model (see Figure 1 in the Web
Appendix for an illustration). We first define a set of basis
functions using Gaussian kernels with equally spaced ker-
nel where the knots are defined on grid points {1, … , 32} ×

{1, … , 32}. We follow the PX method to generate working
parameters and then take the transformations to obtain
the original parameters. The true number of latent factors,
𝐾, is set to 5. Loading elements are first generated from a
normal distribution. Then, for each simulated loading vec-
tor, we replace those simulated values outside its 50% CI
by zero’s to maintain the sparsity of the loading matrix.
For the imaging predictor, indicator 𝛾𝑝 = 1.0 if 𝑝 ≤ 5 and
𝛾𝑝 = 0 otherwise.
We choose the values of parameters in these three

scenarios in terms of the signal-to-noise ratio (SNR), a
measure of signal strength relative to background noise,
defined as Var[E{𝑍𝑖(𝑣) ∣ 𝑋𝑖1(𝑣), … , 𝑋𝑖𝑃(𝑣)}]∕Var{𝜖𝑖(𝑣)}. To
ensure comparable results in different scenarios, we
choose the parameter values such that the SNRs of sim-
ulated observations in the three scenarios have similar dis-
tributions with mean 30 and range [1, 100].
We run the MCMC algorithm for 25,000 iterations with

15,000 burn-in. We compute the posterior mean and CIs
for the parameters of interest. For all the parameters with
Gamma priors in Section 3.1, we set both shape and scale
parameters to 1.0. We fix 𝜎2

𝜆
= 𝜎2

𝜇 = 𝜎2
𝛼 = 1.0. For other

hyperprior specifications,𝜔 ∼ Beta(1.0, 1.0). All initial val-
ues are sampled from their corresponding prior distribu-
tions, except that the initial values of 𝛾𝑝 are 1.0. Further, we
fit themodelwith 1, 5, 10, and 20 latent factors, respectively.

4.2 Results

Table 2 shows estimation and prediction accuracy for the
three scenarios, includingMSE,MSPE, and the proportion
of observations for which our method produces smaller
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TABLE 2 Simulation study results for Scenarios 1–3

Generating Analysis Training Test
model method K MSE % %* MSPE % %*

Linear – 0.010 – – 1.024 – –
Voxel-wise – 1.016 – – 1.050 – –

Scenario 1 SBLF 1 0.014 0.00 100.00 1.231 23.40 27.20
(linear) 5 0.014 0.00 100.00 1.395 31.60 34.20

10 0.014 0.00 100.00 1.474 29.40 32.60
20 0.014 0.00 100.00 1.509 26.00 27.80

Linear – 0.136 – – 0.511 – –
Voxel-wise – 0.008 – – 0.496 – –

Scenario 2 SBLF 1 0.023 100.00 0.00 0.314 94.40 92.80
(voxel-wise) 5 0.023 100.00 0.00 0.316 94.20 92.60

10 0.023 100.00 0.00 0.322 93.40 91.80
20 0.023 100.00 0.00 0.341 91.80 90.80

Linear – 0.896 – – 3.656 – –
Voxel-wise – 2.510 – – 3.642 – –

Scenario 3 SBLF 1 0.149 100.00 100.00 3.436 59.80 56.40
(SBLF) 5 0.149 100.00 100.00 1.633 94.80 94.40

10 0.149 100.00 100.00 1.923 89.40 89.00
20 0.149 100.00 100.00 3.347 58.80 57.20

In each scenario, threemodels are fitted and their results compared in terms of (1)MSE, (2)MSPE, and (3) the proportions of observations with smallerMSE/MSPE
using SBLF than the linear (%) or voxel-wise regressions (%*). Results of multiple values of 𝐾 used in our method are included, and the true value of 𝐾 used for
simulations in Scenario 3 is 𝐾 = 5.

MSEorMSPEcompared to the othermethods. Themethod
used as the true generating model in each scenario has
the smallest MSE for test sets. In Scenario 1, when the
data are generated from the linear regression model, SBLF
performs better the other methods for about 20%–30%
of observations in the test sets. With a similar SNR, in
Scenario 2, when the data are generated from the voxel-
wise regressionmodel, SBLF achieves a smaller MSPE and
over 90% better predictions than the voxel-wise regression
method. In Scenario 3, when the data are generated from
SBLF, SBLFwith a correct number of latent factors𝐾 leads
to the best performance and an incorrect 𝐾 can result in
less accurate prediction.
Aswe discussed in Section 3.2, it is of interest to evaluate

different criteria for selecting the number of latent factors
𝐾. Our simulation study in Scenario 3 indicates that some
of the widely used model comparison criteria, including
DIC, BIC, BF, and R-squared, could not help to identify the
correct value of𝐾. Specifically, BIC always prefers small𝐾,
while R-squared and BF favor large 𝐾. The selection of 𝐾
using DIC varied widely across the 10 simulated datasets.
However, the MSPE for outcomes of test sets is a robust
measure for choosing 𝐾. As shown in Table 2, in Scenario
3, SBLF with a correct value of 𝐾, 𝐾 = 5, has the small-
est MSPE and the largest proportion of better performing
observations than other methods in all 10 repeated studies.

F IGURE 2 Elbow method plot with metric values of the
posterior mean estimations of loading vector in simulation study
Scenario 3, fitted with 𝐾 = 20 (true 𝐾 = 5). The metric is the
number of values in each loading vectors outside the 90% CI of the
whole loading matrix

Figure 2 shows designed metric for loading vectors from
1 to 20, based on which we correctly determine the value
of 𝐾 (𝐾 = 5) using our Elbow method mentioned in Sec-
tion 3.2). Since posterior inference on predictor selection
is biased when 𝐾 = 20, we fit the model with 𝐾 = 5. The



80 GUO et al.

estimated posterior inclusion probability for the first five
predictors was all one, and all other predictors have poste-
rior inclusion probability equal to zero.

5 APPLICATION

5.1 The motivating HCP data

We apply our SBLF model to analyze a subset of neu-
roimaging data from the HCP. Our goal is to make pre-
dictions on the individual task-evoked images using the
corresponding task-independent images. Tavor et al. (2016)
performed a similar analysis on the same dataset using
a simple linear regression approach ignoring the spatial
dependence among voxels within parcels. Their analysis
focused on the cortical surface imaging measurements,
while ourmodel is developed for analysis of the volumetric
imaging data on 19 subcortical regions. The dataset is com-
prised of 98 subjects’ functional and structure imaging data
from the Q3 release. Details of all acquisition parameters
and processing mechanisms are described in Barch et al.
(2013).
We focus on the 19 subcortical regions consisting of

31,870 voxels. The outcome image is the faces-shapes con-
trast map derived from the EMOTION task fMRI data. The
predictor images are 32 subcortical seedmaps derived from
the resting-state fMRI data. Details about the 32 subcortical
seed maps can be found in Tavor et al. (2016). (See exam-
ples of the outcome and predictor images shown in figures
in the Web Appendix.) It is well known that the amyg-
dalae consistently associate with emotional functioning
(Phan et al., 2002). Hence, we report results on the left and
right amygdala as examples to demonstrate our application
analysis and results. There are 315 and 332 volumetric vox-
els within the left and right amygdala regions, respectively,
and their corresponding example outcome and predictor
maps are shown in the Web Appendix.

5.2 Analysis

For SBLF, we adopt the same prior specifications as those
used in the simulation study. The initial values of the pre-
dictor selection indicators are set to one. For all other
parameters, the initial values are randomly sampled from
their prior distributions. We specify the basis functions for
the left and right amygdala containing 51 and 58 knots,
respectively. To choose a good hyperparameter 𝑏 in the
basis functions, we use cross validation and consider three
candidate values {1∕10, 1∕20, 1∕30}. The basis functions
with the three values are shown in Figures 7– 9 in the Web
Appendix. To choose the number of latent factors, we start

with a large number𝐾 = 20 and applied theElbowmethod
to select the number of latent factors and refit the model
with this number of latent factors. We run our proposed
MCMC algorithm for 50,000 iterations with 25,000 burn-
in iterations. We check the convergence of all the MCMC
simulations using theGelman–Rubin diagnostics (Gelman
and Rubin, 1992). Given each selected hyperparameter 𝑏

and number of latent factors 𝐾, we run five MCMC chains
with different initial values. The potential scale reduction
factors (PSRF) are estimated for each voxel in the outcome
images. The point estimates of the PSRF range from 1.000
to 1.005 (median 1.000, mean 1.000), and the upper confi-
dence limits have themaximum value 1.016 (median 1.000,
mean 1.000), indicating convergence of the MCMC algo-
rithm. For comparisons, we also fit the data using the sim-
ple linear regression approach (Tavor et al., 2016). For each
of the 19 subcortical regions, we separately perform the
analysis using both methods.

5.3 Results

Table 3 shows the 10-fold cross-validation prediction accu-
racy using SBLFwith different values of 𝑏 and𝐾 compared
with the other twomethods. For both the left and the right
amygdala, when 𝑏 = 10, SBLF has the smallest averaged
MSPE and the largest proportions of better predicted
outcomes for test sets than the other methods. Compared
with the linear and voxel-wise regression methods, SBLF
has the smallest MSE for fitting the outcome images in
the training dataset for all the combinations of 𝐾 and 𝑏.
For the left amygdala region, the optimal choice for the
number latent factors is 9, with MSPE = 1.168 which is
smaller than that of both linear regression (1.357) and
voxel-wise regression (1.540). For over 69% and 65% of
outcome images in the test set, SBLF produces a smaller
MPSE compared to linear regression and voxel-wise
regression, respectively. These proportions for the right
amygdala are even larger (77.55% and 73.47%), as shown in
Table 3.
Table 2 in the Web Appendix displays results for all

19 subcortical regions compared with the linear regres-
sion method. The squared errors of outcomes from our
model are about 10.2 times smaller than the linear regres-
sion method on average for all 19 regions. Our model has
much larger R-squared values than the linear regression
method across all regions (0.934 vs. 0.428 on average).
Hence, our SBLF model performs better than the linear
regressionmodel (Tavor et al., 2016) for predicting the task-
evoked functional brain activity from the task-free volu-
metric images in the subcortical regions.
From MCMC samples of the predictor selection indica-

tors, 𝜸 , we can estimate the posterior inclusion probability
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TABLE 3 Results for the left (1) and the right (2) amygdala

(1) Left amygdala region
Training Test

Method Bandwidth
Number
of latents MSE % %* MSPE % %*

Linear – – 0.562 – – 1.357 – –
Voxel-wise – – 0.644 – – 1.540 – –
SBLF 𝑏∗ = 10 𝐾 = 20 0.060 100.00 100.00 1.198 66.33 63.37

𝐾∗ = 9 0.063 100.00 100.00 1.168 69.39 66.30
𝑏 = 20 𝐾 = 20 0.009 100.00 100.00 1.304 54.08 60.02

𝐾∗ = 8 0.009 100.00 100.00 1.348 51.02 58.16
𝑏 = 30 𝐾 = 20 0.005 100.00 100.00 1.830 29.59 40.82

𝐾∗ = 5 0.005 100.00 100.00 1.830 20.41 40.82
(2) Right amygdala region

Training Test
Method Bandwidth

Number
of latents MSE % %* MSPE % %*

Linear – – 0.651 – – 1.539 – –
Voxel-wise – – 0.735 – – 1.866 – –
SBLF 𝑏∗ = 10 𝐾 = 20 0.066 100.00 100.00 1.359 70.41 73.47

𝐾∗ = 10 0.069 100.00 100.00 1.260 77.55 73.47
𝑏 = 20 𝐾 = 20 0.010 100.00 100.00 1.398 68.37 74.49

𝐾∗ = 7 0.010 100.00 100.00 1.941 38.78 50.00
𝑏 = 30 𝐾 = 20 0.005 100.00 100.00 2.127 19.39 42.86

𝐾∗ = 5 0.006 100.00 100.00 3.195 10.26 12.82

Performance of three different methods are compared in terms of (1) MSE, (2) MSPE, and (3) the proportions of observations with smaller MSE/MSPE using SBLF
than the linear (%) or voxel-wise regressions (%*). MSE/MSPE is reported as the averaged values over all voxels, subjects, and 10-folds cross validation. Two tuning
parameters, bandwidth value 𝑏 for basis functions, and the number of latent factors 𝐾, are tested to determine their optimal values 𝑏∗ and 𝐾∗. The SBLF model is
refitted with the value of 𝐾∗ determined using the Elbow method with 𝐾 = 20.

for each predictor image, indicating the uncertainty of
including the corresponding predictor images into the
model. For each amygdala region, by placing a threshold
value on the posterior inclusion probability, we can obtain
a set of predictor images that are associated with the
outcome image with certain uncertainty level. We vary the
threshold from 0.0 to 0.9 and list the corresponding set of
predictor images in theWebAppendix. For the right amyg-
dala region, the posterior probability of including the 28th
cortical seed map into the model is larger than 0.6. Among
all the predictor images, this cortical seed map has the
strongest association with the faces-shapes contrast image
in the Emotion domain. Similarly, in the left amygdala
region, the same predictor image also has a relative strong
association (the posterior inclusion probability larger
than 0.5) with the outcomes in the same task domain.
However, in the left amygdala region, the 13th and 15th
predictor images have more contributions to the outcome
predictions given their estimations of their 𝛾s over 0.8 in
the left amygdala region. These strong associations do not
appear in the right amygdala regions. These two subcorti-
cal seed maps are from the cerebellum subcortical seeds,
indicating the significant associations between cerebellum

structure and emotional functions in left amygdala. These
results are consistent with some previous findings in neu-
roimaging and neurological research (Turner et al., 2007;
Habas et al., 2009; Baumann and Mattingley, 2012; Habas,
2018). It has been shown that cerebellum is involved in
neural processes underlying the regulation of emotional
responses (Baumann and Mattingley, 2012). In particular,
the role of the cerebellum in the modulation of neural
networks that subserve processing of emotional material
has been studied by analyzing the functional imaging data
of lesion patients (Turner et al., 2007). The results indi-
cated that the “normal” emotional response to frightening
stimuli in patients with cerebellar damage may be asso-
ciated with relatively lower activity in the amygdala and
other limbic and paralimbic regions. In addition, recent
resting state fMRI studies (Habas et al., 2009; Habas,
2018) have identified the intrinsic functional connectivity
signals between the cerebellum and the amygdaloid
nucleus.
Understanding how the predictor images are associated

with the outcome images is also of interest. As presented
(1), 𝜓(𝑣, 𝑣′) represents the spatial prediction effect on a
voxel 𝑣 in the outcome image from any voxel 𝑣′ in the
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F IGURE 3 Spatially varying prediction effects 𝜓(𝑣, 𝑣′) on five different response voxels 𝑣 from all predictor voxels 𝑣′. Both 𝑣 and 𝑣′ are
in the left amygdala maps. All maps are plotted on the same color scale varying from blue for negative values to red for positive values. This
figure appears in color in the electronic version of this article, and any mention of color refers to that version

summarized predictor image. Figure 3 shows the estimated
values 𝜓(𝑣, 𝑣′) on five outcome voxels 𝑣 in the left amyg-
dala region. The same predictor image has various
effects on different outcome voxels. For example, the first
outcome voxel (the first row in Figure 3) is negatively
associated with nearby voxels in predictor images, while
the last two voxels (the fourth and fifth rows) have more
positive effects from voxels in similar locations in the

predictor images. In contrast, there is no significant effect
from the predictor images on the other two voxels (the
second and third rows). Meanwhile, significant associa-
tions appear among not only nearby voxels but also voxels
that are farther away. For example, for the first outcome
voxel (𝑥 = −20, 𝑦 = −4, 𝑧 = −30) in Figure 3, some dis-
tant voxels in the image slice (𝑧 = −18) are positively
associated with it, while nearby voxels have significant
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negative effects. These estimated associations between
predictor and outcome images from our proposed model
can be important in exploring brain functions and cannot
be obtained by the other two methods.

6 DISCUSSION

In this work, we propose a spatial Bayesian latent
factor model for image-on-image regression. We use
low-dimensional latent factors as a bridge connecting
the outcome image and predictor images in the same
high-dimensional imaging space. Our proposed method is
flexible enough to model the spatial dependence through
prespecified basis functions without imposing strong
assumptions about the spatial patterns. Our SBLF model
can identify the associations between the outcome image
and predictor images across the whole image space, not
restricted to voxels from the same locations or nearby
neighbors. The low-dimensional latent factors integrate
information from predictor images through a regression
model with spatially varying coefficients. This regression
model can include other clinical patient characteristics
as well. Our method can be applied to jointly analyze
multimodality imaging data, such as resting-state fMRI,
task-based fMRI, and structural MRI.
We now discuss the limitations and potential future

directions for our method. First, the cross-validation
approach to determining the number of basis functions
and the number of latent factors is very computation-
ally intensive. An alternative is to treat these as unknown
parameters and assign a multinomial prior distribu-
tion (Ghosh and Dunson, 2009), then we can make fully
Bayesian inference on the model. This approach requires
a trans-dimensional MCMC algorithm, which can be quite
challenging in practice. Second, wemake a strong assump-
tion that the spatially varying coefficients are common for
all predictor images, while the spatial predictive effects of
different predictor images can be different. This assump-
tion may reduce the power to detect the predictive effects
of some predictor images and may inflate the false positive
rate.We can relax this assumption by introducing predictor
specific spatially varying coefficient parameters. Thismod-
ification obviously increases model complexity whichmay
require informative priors to ensure parameter identifiabil-
ity and develop more efficient computational algorithms.
Third, different subjects may have heterogeneous associa-
tions between task-related brain activity and resting-state
activity. Our current SBLF model cannot capture this het-
erogeneity. We can potentially extend our model by intro-
ducing subject-specific spatially varying coefficients with
clustering structures. Fourth, our current model focuses
on volumetric data; however, we canmodify our algorithm

to brain surface data by projecting the cortex data onto a
sphere and then generate smooth basis functions based on
spherical harmonic kernels.
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