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Summary: Image-on-image regression analysis, using images to predict images, is a challenging task, due to 1) the

high dimensionality and 2) the complex spatial dependence structures in image predictors and image outcomes. In

this work, we propose a novel image-on-image regression model, by extending a spatial Bayesian latent factor model

to image data, where low-dimensional latent factors are adopted to make connections between high-dimensional image

outcomes and image predictors. We assign Gaussian process priors to the spatially-varying regression coefficients in

the model, which can well capture the complex spatial dependence among image outcomes as well as that among the

image predictors. We perform simulation studies to evaluate the out-of-sample prediction performance of our method

compared with linear regression and voxel-wise regression methods for different scenarios. The proposed method

achieves better prediction accuracy by effectively accounting for the spatial dependence and efficiently reduces image

dimensions with latent factors. We apply the proposed method to analysis of multimodal image data in the Human

Connectome Project where we predict task-related contrast maps using sub-cortical volumetric seed maps.
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1 Introduction

Image-related regression analysis has attracted increasing scientific interest in many areas,

including medicine (Duff et al., 2015), disease diagnosis (Suk et al., 2017) and neuroscience

(Zhou et al., 2013; Bowman, 2014). In these applications, researchers are often interested in

identifying the association between quantitative images, e.g., functional magnetic resonance

imaging (fMRI) (Glover, 2011), and other variables of interest, e.g. patient clinical charac-

teristics, where the quantitative images are either considered as the outcome variables or

predictors.

Two types of image-related regression models have been extensively studied: scalar-on-

image regression that uses images to predict scalar outcome (Reiss and Ogden, 2010; Gold-

smith et al., 2011; Huang et al., 2013; Wang et al., 2017; Kang et al., 2018), and image-

on-scalar regression which uses a set of scalar predictors to predict the image outcome

(Gelfand et al., 2003; Reiss et al., 2010; Goldsmith and Kitago, 2016; Chen et al., 2016;

Yan and Liu, 2017). Recently there is increasing interest in developing regression models

where both outcomes and predictors are multiple images, to which we refer as the image-

on-image regression. It has many important applications in neuroimaging studies, for in-

stance, one question of great interest is to understand how much the individual variations

in brain activity during task performance can be explained by task-independent imaging

measurements. The answer to this question may further facilitate the researcher to assess

whether the task-invoked brain activities are intrinsic features of individuals who may use

different cognitive processes involving different brain circuits, and thus to a certain degree

the individual variations in brain activation are independent of irrelevant task factors. For a

large set of task conditions spanning several behavioral domains, Tavor et al. (2016) trained

a simple linear regression model to predict task-based fMRI images using structural and

resting-state fMRI images. Based on brain anatomical and functional parcellation, they
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fitted their model one parcel and one subject at a time, assuming independence and an

identical linear relationship across voxels in each parcel. Then they predicted outcomes for

unseen subjects by averaging fitted models across subjects. Although their linear method is

simple to implement for image-on-image regression analysis, it ignores the spatial dependence

structure in images by assuming voxels are mutually independent. Meanwhile, they fitted

their model on the individual level but predicted new subjects using averaged estimations,

which is in conflict with their assumption of individual variation in their imaging outcomes.

The spatial correlations and associations can be hard to model due to their heterogeneity,

complexity and high-dimensionality with a limited sample size. For example, the spatial

correlations between neural activity at different voxels may extend beyond neighboring

voxels, and may not decrease with increasing distance (Bowman, 2014). Also, the spatial

patterns may vary across different types of brain images and even subjects. Moreover, the

effects of features on outcome images may be from the whole image space but not voxel

by voxel. Hence, in order to precisely describe the spatial patterns and associations of

outcome and predictor images, one needs to define voxel-wise parameters in image space.

These parameters are high-dimensional and have complex spatial correlations, leading to

a potentially over-parameterized regression model along with the associated computational

challenges.

In this work, we propose a spatial Bayesian latent factor model for image-on-image regres-

sion. The outcome image is modeled with a linear combination of proper basis functions,

where the basis coefficients are further decomposed into a few latent factors and a loading

matrix. Then latent factors are fitted with predictor images by a scalar-on-image regression

model with voxel-wise spatially varying coefficients in predicting image space. This approach

reduces the image dimension with proper basis functions and link the predictor and the

outcome images with a few latent factors. And the voxel-by-voxel associations between
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predictor and outcome images are able to be evaluated. Thus, our model can make more

accurate predictions compared to the linear model (Tavor et al., 2016) with a small sample

size.

A few image-on-image regression models have beenrecently proposed motivated by various

applications in medical imaging. For example, Sweeney et al. (2013) applied voxel-wise

logistic regression models incorporating Multiple Sclerosis imaging sequences to predict lesion

incidence with T1-weighted, T2-weighted, FLAIR, and PD volumes from a longitudinal

study. The voxel-wise regression method evaluates the population effects and is simple to

implement. However, it ignores the spatial correlations among voxels and thus may lose

power to detect the association between the predictor images and the outcome images.

Another voxel-wise regression model proposed by Hazra et al. (2017) includes prediction

effects from the neighboring voxels within a given Euclidean distance. The prediction effects

are assumed to be the same when voxels in the predictor image have the same distance to the

voxel in the outcome image. In the outcome images, voxels are assumed to be independent

over space. Their spatial association with the predictor images is restricted to small regions

and only related to the spatial distance. In contrast to the above two voxel-wise regression

methods, our spatial latent factor model may capture more complex spatial dependence

between outcome image and the predictor images. Deep learning has been applied to medical

imaging for image-on-image regression analysis, such as in image recovering and disease

diagnosis (Zhu et al., 2017; Isola et al., 2017; Huang et al., 2018). However, the performance

of deep learning methods relies on very large sample sizes, which we typically do not have in

medical imaging studies. Further, it is difficult to interpret the specific associations among

images based on a deep neural network model.

We organize this manuscript as follows. We first describe our spatial Bayesian latent factor

models in Section 2. In Section 3, we present the proposed Bayesian framework for estimation
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and prediction. In Section 4, we conduct a simulation study under different scenarios and

discuss some criteria used for model evaluation and selection. Next, we illustrate the proposed

method using fMRI data from the Human Connectome Project database. We close with a

discussion of future work.

2 Model

In this section, we present our spatial Bayesian latent factor model for image-on-image

regression analysis. We extend the classical Bayesian latent factor model for functional and

longitudinal data (Montagna et al., 2012) to the case where the functional predictors are

images with complex spatial dependence. Our goal of statistical modelling is fundamentally

different from the one by Montagna et al. (2018) that focused on the meta-analysis of

functional neuroimaging data.

Suppose the data consists of one outcome image and P predictor images from n subjects.

For all subjects, we assume that both outcome and predictor images have been preprocessed

and registered to the same brain region, denoted R. Note that in practice R may refer to the

whole brain or a specific region of interest, which we will refer to as a parcel. For each subject

i(i = 1, . . . , n) at voxel v ∈ R, let Zi(v) and Xip(v)(p = 1, . . . , P ) represent the outcome

image intensity and the pth predictor image intensity, respectively. To identify the association

between Zi(v) and Xip(v
′) in parcelR (either v = v′ or v 6= v′), we develop a spatial Bayesian

latent factor model with three levels of hierarchy (see Figure 1 for illustration).

2.1 Level 1: Approximation of Outcome Images

At Level 1, we approximate the outcome image using a basis expansion approach. Let

{bm(v)}Mm=1 be a set of M spatial knot-dependent basis functions that can capture the

variation of the outcome image in R. For each subject i and any voxel v ∈ R, we assume

Zi(v) = U(v) +
M∑

m=1

θimbm(v) + ei(v), U(v) ∼ N(0, σ2
u), ei(v) ∼ N(0, σ2

e)
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where U(v) represents the population-level spatially-varying intercept. As a prior specifica-

tion, we assume {U(v)}v∈R are independent and identically distributed as normal random

variates with mean zero and variance σ2
u. The random errors ei(v) are assumed to be

independent and identically distributed and follow a normal distribution with mean zero and

variance σ2
e over all subjects across voxels in region R. The parameter θim is the subject-

specific basis coefficient of the mth spatial basis function bm(v). The term
∑M

m=1 θimbm(v)

captures the spatial dependence and smoothness of the subject-specific outcome image among

voxels in R.

2.2 Level 2: Sparse latent factor model for basis coefficients

At Level 2, we build a sparse latent factor model for the basis coefficient θim:

θim =
K∑

k=1

λmkηik + ζim, ζim ∼ N(0, σ2
ζ ),

where {ηik}Kk=1 represents a set of K latent factors for subject i and {λmk}Kk=1 are the

corresponding sparse loading coefficients, indicating the effects of the kth latent factor

on the mth basis coefficient. For the prior specification for the sparse loading coefficients

λmk, we induce the prior distribution through the parameter-expansion approach of Ghosh

and Dunson (2009) leading to more efficient posterior computation. Details are provided

in Section 3. The subject-level random effects {ζim} explain the variation of the basis

coefficient θim that cannot be explained by the latent factors ηik. It also characterizes the

spatial dependence among the outcome images that cannot be captured by the latent factors.

Combining the Level 1 and Level 2 models, we have, for v 6= v′,

Cov[Zi(v), Zi(v
′) | {ηik}Kk=1, ·] = σ2

ζ

M∑

m=1

bm(v)bm(v′),

where “·” represents all other parameters. This implies that the variance of random effects

ζim, i.e. σ2
ζ , captures the conditional covariance between Zi(v) and Zi(v

′) given the latent

factors and other parameters.
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2.3 Level 3: Link to predictor images

In brain imaging applications, we expect the effect size of a single predictor image from

a voxel v′ on the whole outcome image through latent factor ηik is generally very small if

not zero, but the cumulative effect size over all predictors can be large. Thus, to efficiently

reduce the dimension of the parameter space, we consider a summarized predictor image

X̃i(v
′) as a sum of selected predictor images from {Xip(v

′)}Pp=1, i.e.

X̃i(v
′) =

P∑

p=1

γpXip(v
′),

where the latent selection indicator γp is assumed to follow a Bernoulli distribution with prior

probability w, while πp may include prior knowledge about important predictor images.

At Level 3, we link the latent factors with the summarized predictor image via a scalar-

on-image regression model:

ηik =
∑

v′∈R
X̃i(v

′)βk(v
′) + εik, εik ∼ N(0, σ2

ε ),

where the spatially-varying coefficient βk(v
′) represents the spatial effects of the summarized

predictor image at voxel v′ on the kth latent factor; and thus it is factor specific and

shared by all subjects. To account for spatial dependence in predictors, we assign a Gaussian

process (GP) prior to βk(v) and approximate the GP using a basis expansion approach: i.e.

βk(v) =
∑M

m=1 αkmbm(v) with αkm ∼ N(0, σ2
α). Typically, a small number of latent factors are

needed to capture important feature information from the selected image predictors at the

population level, contributing to the outcome image prediction. The subject-level random

effects εik are introduced to model the dependence between the basis coefficients θim. In

particular, combining Level 2 and Level 3 models, we have, for m 6= m′,

Cov[θim, θim′ | {X̃ip(v
′), v′ ∈ R}, ·] = σ2

ε

K∑

k=1

λmkλm′k.

This implies that the variance of εik, i.e. σ2
ε controls the covariance of the basis coefficients

given the summarized predictor image through the latent factor models. Thus, εik contributes
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to the complex spatial dependence among outcome images through the correlations between

basis expansion coefficients. This type of spatial dependence cannot be captured by the linear

transform of the predictor images.

2.4 Model Representation

Our proposed Bayesian hierarchical model has an equivalent model representation by

integrating out θim and ηik (see the Web Appendix). From this representation, the conditional

expectation of the outcome image Zi(v) directly links to predictor image Xip(v
′) using tensor

products of spatially varying coefficients and the predictor selection indicators. Specifically,

we have

Zi(v) = U(v) +
∑

v′∈R
ψ(v, v′)

{
P∑

p=1

γpXip(v
′)

}
+ ε̃i(v) + ζ̃i(v) + ei(v),

ψ(v, v′) =
K∑

k=1

λ̃k(v)βk(v
′), ε̃i(v) =

K∑

k=1

εikλ̃k(v), ζ̃i(v) =
M∑

m=1

ζimbm(v), (1)

where the factor specific spatially varying coefficient λ̃k(v) =
∑M

m=1 λmkbm(v) represents the

spatial effects of kth latent factor on the outcome image at voxel v. The bivariate spatially-

varying coefficient ψ(v, v′) represents the total spatial prediction effects on outcome images

from the selected predictor images, i.e. the average change in the outcome image at voxel v per

unit change in the value of the summarized predictor image at voxel v′; and it is decomposed

as the summation of K tensor products of spatially-varying coefficients for two types of

effects: the effects of summarized predictor images on the latent factors, i.e., βk(v) and the

effects of latent factors on the outcome images λ̃k(v). The two spatial random effects ε̃i(v)

and ζ̃i(v) constructed by εik and ζim are introduced to accommodate the spatial dependence

of the outcome images that cannot be explained by predictor images. The expectations of

both ε̃i(v) and ζ̃i(v) are zero and their spatial covariances are controlled by σ2
ε and σ2

ζ ,

respectively. Furthermore, we can obtain the conditional covariance between the outcome
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images given the summarized predictor images and other parameters. For v 6= v′

Cov[Zi(v), Zi(v
′) | {X̃i(v

′′), v′′ ∈ R}, ·] = σ2
ε

K∑

k=1

λ̃k(v)λ̃k(v
′) + σ2

ζ

M∑

m=1

bm(v)bm(v′).

This indicates that the variance parameters of random effects σ2
ε and σ2

ζ along with the factor

loadings λmk contribute to modeling of the complex spatial dependence of outcome images

given the predictor images. This representation implies our model has the ability to retain

complex spatial dependence structures in the outcome and predictors, respectively. Hence,

by introducing random effects ζim and εik, our model is more flexible in borrowing strength

from the entire brain, or parcel, to characterize the association between the outcome images

and predictor images.

2.5 Model Summary

To summarize, we propose a spatial Bayesian latent factor model for image-on-image

regression. We introduce low-dimensional latent factors to link high-dimensional outcome

images with predictor images. In particular, for each subject, we represent the expectation

of the outcome image as a linear combination of multiple spatial basis functions, where

each basis function is associated with one spatial knot. The knot-dependent coefficients

are decomposed into several latent factors. Each latent factor summarizes a feature of the

outcome image. We model each latent factor as a scalar outcome and assume its expectation

is equal to a weighted average of a set of predictors. Each predictor is a linear transformation

of one predictor image, where the corresponding spatially-varying coefficients represent the

spatial effects of the predictor image. We assign Gaussian process (GP) priors to the spatially-

varying coefficients and adopt a basis expansion approach for GP representations, which

are sufficient, flexible and convenient to preserve the complex spatial correlations. With an

appropriate choice of the basis function, the model can capture well the complex spatial

patterns of the outcome image using a smaller number of spatial knots. Thus, our basis

expansion approach may effectively reduce the model dimensionality. More importantly, by
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integrating over the whole feature image space, our model can well predict the outcome

images borrowing the strength not only from the same voxels in the predictor image but also

neighbouring and even long-distance voxels. A small number of spatial latent factors in our

model can effectively capture the association between the predictor images and the outcome

image.

3 Posterior Computation

We develop a Markov chain Monte Carlo (MCMC) algorithm for posterior computation.

For latent factor models, the performance of posterior computation may depend on prior

specifications. In general, we can assign normal and inverse-gamma prior distributions to

factor loadings and residual variances respectively. Although those prior distributions pro-

duce conditionally conjugate posterior distributions and lead to straightforward computation

using a Gibbs sampler, such routine Bayesian implementations are poorly behaved (Ghosh

and Dunson, 2009). To achieve efficient posterior computation for our model, we extend the

parameter expansion (PX) method proposed by Ghosh and Dunson (2009). We construct a

hierarchical model for the latent factors with different covariance structures.

3.1 Prior Specifications via Parameter Expansion

Our model needs additional constraints to ensure the K latent factors are identifiable.

Write θi = (θim)M×1, Λ = (λmk)M×K , ηi = (ηik)K×1, ζi = (ζim)M×1, X̃ i = {X̃i(v)}|R|×1,

βk = {βk(v)}|R|×1, β = {βk(v)}|R|×K , εi = (εik)K×1, αk = (αkm)M×1 α = (αkm)K×M and

b = {bk(v)}|R|×K , where |R| represents the number of voxels inR. The matrix representations

of the original inferential models in Levels 2 and 3 are shown in Table 1.

Following the PX approach, we develop a working model and the corresponding trans-

formations between inferential and working parameters as shown in Table 1. We introduce

parameters Φ = diag{φ2
1, . . . , φ

2
K} and the sign function S(x) = 1 if x ≥ 1 and −1 otherwise.

An extra working intercept term µ∗i is included to efficiently estimate the working latent
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factor η∗i = (η∗ik). The working factor loading matrix Λ∗ = (λ∗mk)M×K is lower triangular

with no constraints on its elements. Instead of specifying a prior distribution for Λ directly,

we induce a prior distribution for Λ∗ and then transform it to the prior distribution for Λ.

These prior distributions placed on the working parameters are specified as follows: for m =

1, . . . ,M , λ∗mk ∼ N(0, σ2
λ) if k ≤ min(m,K), and λ∗mk ∼ δ0 if min(m,K) < k ≤ K, where δ0

is a measure concentrated at zero. µ∗i ∼ NK(0, σ2
µIK) for i = 1, · · · , N ; φ2

k ∼ Gamma(aφ, bφ)

and α∗k ∼ NM(0, σ2
αIM) for k = 1, · · · , K. Hyperparameters σ2

λ, σ
2
µ, σ

2
α, aφ and bφ can be

prespecified.

According to the above working model representation and prior specifications, we develop

an efficient Gibbs sampler for posterior computation (see the Appendix). Of note, the PX

approach leads to an over-parametrized working model and thus the posterior computation

may exhibit poor mixing due to lack of identifiability (Ghosh and Dunson, 2009) for the

working parameters. However, the parameters in the original inferential model are still

identifiable and the Markov chain mixes much better. Estimation and prediction details

are given in the Web Appendix.

3.2 Basis Functions and Number of Latent Factors

It is challenging to choose the number of basis functions. Since the bases are locally

concentrated, the more basis functions that are included in the model, the richer the spatially-

varying patterns of the outcome image the model can capture. On the other hand, to

reduce computational costs, the number of basis functions is usually chosen to be much

smaller than the number of voxels. In addition, the appropriate basis functions are unknown

in advance. Conceptually, any basis functions, like B-spline bases and Gaussian kernels,

can be chosen for the smooth images. Here, we choose a 3D isotropic Gaussian kernel.

bm(v) = exp{−b‖v − ψm‖2}, v ∈ R, m = 1, 2, . . . ,M, with kernel locations {ψm}Mm=1 and

parameter b controlling smoothness. Flexible approaches are available for estimating M , b
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and {ψm}Mm=1 for basis functions. One approach is to perform fully Bayesian inference with

appropriate prior specifications for these parameters. However, this approach suffers very

large computational burden as the basis function is re-evaluated at each iteration of the

MCMC algorithm. Therefore we adopt a relatively less computationally-intensive approach.

We first choose a reasonable number of bases M as well as kernel locations {ψm}Mm=1, and

then we determine the smooth parameter b by minimizing the mean squared error (MSE) and

mean squared prediction error (MSPE) of outcome images via cross validation (CV). The

metrics MSE and MSPE are averaged over data sets, observations and voxels. Suppose we

consider J-fold cross validation. For the jth (j = 1, . . . , J) fold, let Itsj and Itrj represent the

indices of the subjects in the test set and training set, respectively. Let Ẑi(v) for i ∈ Itrj and

Z̃i(v) for i ∈ Itsj represent the fitted and predicted outcome image at voxel v, respectively. We

have Ẑi(v) = E[Zi(v) | {θ̂im}Mm=1, Û(v)] = Û(v)+
∑M

m=1 θ̂imbm(s), where Û(v) and θ̂im are the

posterior mean estimates of U(v) and θ̂im. And Z̃i(v) = E[Zi(v) | {Xip(v
′), v′ ∈ R}Pp=1, ·] =

Û(v)+
∑

v′∈R
∑P

p=1 ψ̂(v, v′)γ̂pXip(v
′), where ψ̂(v, v′) and γ̂p are the posterior mean estimates

of ψ(v, v′) and γp. Then MSE is defined as
∑J

j=1

∑
i∈Itrj

∑
v∈R

{
Zi(v)− Ẑi(v)

}2

/(J |Itrj ||R|),

and MSPE is defined as
∑J

j=1

∑
i∈Itsj

∑
v∈R

{
Zi(v) − Z̃i(v)

}2

/(J |Itsj ||R|), where |Itrj |, |Itsj |

and |R| represent the training sample size, the test sample size and the number of voxels

used in the CV study, respectively.

To select the number of latent factors, a set of widely used model comparison criteria can

be considered, such as deviance information criteria (DIC), Bayesian information criteria

(BIC), Bayes factors (BF) and R-squared. One can fit the model multiple times with different

values of K and choose the optimal value based on the above criteria. This approach is

computationally intensive. We consider an alternative approach in light of our latent factor

model. In our model, redundant latent factors may have very sparse, zero-, or near zero,

concentrated loadings. Hence, the optimal number of latent factors has a loading matrix
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with nonzero-concentrated and distinguishable loading vectors. Some metrics can help us

to measure the variation and sparseness of each loading vector, based on which we can

determine how many loading vectors are non-redundant. Here, we adopt a metric as the

number of values in each loading vector outside the 90% credible interval (CI) of the whole

estimated loading matrix, termed as 90% significant loading counts (SLC). Loading vectors

corresponding to important latent factors should have large 90% SLC since they account for

most of the variation of the loading matrix. On the contrary, the SLC of those redundant

loading vectors are close to zero and similar to each other. Some other metrics, such as mean

or standard deviation of loading vectors, etc., can be used as well. We find that 90% SLC is

more robust in choosing the correct number of latent factors in our simulation study. More

precisely, we first fit the model with a large number of latent factors, for example, K = 20 in

practice; then we summarize the estimated loading vectors using the 90% SLC and determine

the optimal number K using a modified Elbow method (Kodinariya and Makwana, 2013).

Specifically, we sort 90% SLC of all loading vectors in a descending order and create a

trajectory of 90% SLC versus the number of latent factors. Our “elbow criterion” is that the

optimal number K is chosen at the change point of the trajectory after which the 90% SLC

almost remains unchanged and close to zero. Finally, we refit the model with the choice of

K for estimation and prediction.

4 Simulation Study

4.1 Data Generation and Method

Simulation studies were conducted to compare the performance of our proposed method

with two other models: linear regression (Tavor et al., 2016) and voxel-wise regression. The

three methods serve as the generating models in three different scenarios, respectively. In

each scenario, we generate 10 data sets, each of which contains 100 observations in the

training set with another 50 observations in the test set. Each simulated observation has
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a two-dimensional outcome image and a set of 20 two-dimensional predictor images on a

32× 32 equally-spaced grid. In the simulation studies, we treat the whole image space as a

single parcel. Specifically, we generate predictor images from a Gaussian process with mean

zero and covariance c(v1, v2) = 0.01 exp{−15× d2v1,v2}, where dv1,v2 is the Euclidean distance

between any two grid points v1 and v2.

Scenario 1. We simulate outcome images from the following linear regression model

Zi(v) = βi0 +
20∑

p=1

βipXip(v) + εi(v), for i = 1, . . . , 150,

where linear coefficients βip are the same over the space but varied among observations. The

error terms εi(v) are independently sampled from a normal distribution with mean zero and

variance 0.1. The true value of βip is drawn from a normal distribution with mean µp and

variance σ2
p, where σ2

p is drawn from a gamma distribution with shape 0.1 and rate 0.1. The

mean µp is sampled from the uniform distribution on [−3.5,−1.5] ∪ [1.5, 3.5] if p ≤ 5, and

µp is generated from a uniform distribution on [−0.5, 0.5], otherwise.

Scenario 2. We generate outcome images from the following voxel-wise regression model:

Zi(v) = β0(v) +
20∑

p=1

βp(v)Xip(v) + εi(v), for i = 1, . . . , 150,

where εi(v) are independently sampled from N(0, 0.1). We simulate βp(v) from a Gaussian

process with mean zero and correlation kernel exp{−15d2v1,v2}. The marginal variance of

βp(v) is 2.0 for p ≤ 5 and 0.5 otherwise.

Scenario 3. We simulate data from our spatial Bayesian latent factor (SBLF) model (see

Figure 1 in the Web Appendix for an illustration). We first define a set of basis functions

using Gaussian kernels with equally spaced kernel where the knots are defined on grid points

{1, · · · , 32} × {1, · · · , 32}. We follow the parameter expansion method to generate working

parameters and then take the transformations to obtain the original parameters. The true

number of latent factors, K, is set to 5. Loading elements are first generated from a normal

distribution. Then, for each simulated loading vector, we replace those simulated values
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outside its 50% CI by zero’s to maintain the sparsity of the loading matrix. For the imaging

predictor indicator γp = 1.0 if p ≤ 5 and γp = 0 otherwise.

We choose the values of parameters in these three scenarios in terms of the signal-to-

noise ratio (SNR), a measure of signal strength relative to background noise, defined as

Var [E{Zi(v) | Xi1(v), . . . , XiP (v)}] /Var{εi(v)}. To ensure comparable results in different

scenarios, we choose the parameter values such that the SNR’s of simulated observations

in the three scenarios have similar distributions with mean 30 and range [1, 100].

We run the MCMC algorithm for 25,000 iterations with 15,000 burn-in. We compute the

posterior mean and credible intervals for the parameters of interest. For all the parameters

with Gamma priors in Section 3.1, we set both shape and scale parameters to 1.0. We fix

σ2
λ = σ2

µ = σ2
α = 1.0. For other hyperprior specifications, ω ∼ Beta(1.0, 1.0). All initial values

are sampled from their corresponding prior distributions, except that the initial values of γp

are 1.0. Further, we fit the model with 1, 5, 10 and 20 latent factors respectively.

4.2 Results

Table 2 shows estimation and prediction accuracy for the three scenarios, including MSE,

MSPE and the proportion of observations for which our method produces smaller MSE or

MSPE compared to the other methods. The method used as the true generating model in

each scenario has the smallest MSE for test sets. In Scenario 1, when the data are generated

from the linear regression model, SBLF performs better the other methods for about 20% to

30% of observations in the test sets. With a similar SNR, in Scenario 2, when the data are

generated from the voxel-wise regression model, SBLF achieves a smaller MSPE and over

90% better predictions than the voxel-wise regression method. In Scenario 3, when the data

are generated from SBLF, SBLF with a correct number of latent factors K leads to the best

performance and an incorrect K can result in less accurate prediction.

As we discussed in Section 3.2, it is of interest to evaluate different criteria for selecting
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the number of latent factors K. Our simulation study in Scenario 3 indicates that some of

the widely used model comparison criteria, including DIC, BIC, BF and R-squared, could

not help to identify the correct value of K. Specifically, BIC always prefers small K, while

R-squared and BF favor large K. The selection of K using DIC varied widely across the 10

simulated data sets. However, the MSPE for outcomes of test sets is a robust measure for

choosing K. As shown in Table 2, in Scenario 3, SBLF with a correct value of K, K = 5, has

the smallest MSPE and the largest proportion of better performing observations than other

methods in all ten repeated studies. Figure 2 shows designed metric for loading vectors from

1 to 20, based on which we correctly determine the value of K (K = 5) using our Elbow

method mentioned in Section 3.2). Since posterior inference on predictor selection is biased

when K = 20, we fit the model with K = 5. The estimated posterior inclusion probability

for the first five predictors were all one and all other predictors have posterior inclusion

probability equal to zero.

5 Application

5.1 The motivating HCP data

We apply our SBLF model to analyze a subset of neuroimaging data from the Human

Connectome Project (HCP). Our goal is to make predictions on the individual task-evoked

images using the corresponding task-independent images. Tavor et al. (2016) performed a

similar analysis on the same data set using a simple linear regression approach ignoring

the spatial dependence among voxels within parcels. Their analysis focused on the cortical

surface imaging measurements, while our model is developed for analysis of the volumetric

imaging data on 19 sub-cortical regions. The data set is comprised of 98 subjects’ functional

and structure imaging data from the Q3 release. Details of all acquisition parameters and

processing mechanisms are described in Barch et al. (2013).

We focus on the 19 sub-cortical regions consisting of 31,870 voxels. The outcome image is
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the faces-shapes contrast map derived from the EMOTION task fMRI data. The predictor

images are 32 sub-cortical seed maps derived from the resting-state fMRI data. Details

about the 32 sub-cortical seed maps can be found in Tavor et al. (2016). See examples of

the outcome and predictor images shown in Figures in the Web Appendix. It is well known

that the amygdalae consistently associate with emotional functioning (Phan et al., 2002).

Hence, we report results on the left and right amygdala as examples to demonstrate our

application analysis and results. There are 315 and 332 volumetric voxels within the left and

right amygdala regions respectively and their corresponding example outcome and predictor

maps are shown in the Web Appendix.

5.2 Analysis

For SBLF, we adopt the same prior specifications as those used in the simulation study.

The initial values of the predictor selection indicators are set to one. For all other parameters,

the initial values are randomly sampled from their prior distributions. We specify the basis

functions for the left and right amygdala containing 51 and 58 knots respectively. To choose

a good hyper-parameter b in the basis functions, we use cross validation and consider three

candidate values {1/10, 1/20, 1/30}. The basis functions with the three values are shown in

Figures 7–9 in the Web Appendix. To choose the number of latent factors, we start with

a large number K = 20 and applied the Elbow method to select the number of latent

factors and refit the model with this number of latent factors. We run our proposed MCMC

algorithm for 50,000 iterations with 25,000 burn-in iterations. We check the convergence of

all the MCMC simulations using the Gelman-Rubin diagnostics (Gelman et al., 1992). Given

each selected hyper-parameter b and number of latent factors K, we run five MCMC chains

with different initial values. The potential scale reduction factors (PSRF) are estimated

for each voxel in the outcome images. The point estimates of PSRF range from 1.000 to

1.005 (median 1.000, mean 1.000) and the upper confidence limits have the maximum value
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1.016 (median 1.000, mean 1.000), indicating convergence of the MCMC algorithm. For

comparisons, we also fit the data using the simple linear regression approach (Tavor et al.,

2016). For each of the 19 sub-cortical regions, we separately perform the analysis using both

methods.

5.3 Results

Table 3 shows the 10-fold cross-validation prediction accuracy using SBLF with different

values of b and K compared with the other two methods. For both the left and the right

amygdala, when b = 10, SBLF has the smallest averaged MSPE and the largest proportions

of better predicted outcomes for test sets than the other methods. Compared with the linear

and voxel-wise regression methods, SBLF has the smallest MSE for fitting the outcome

images in the training data set for all the combinations of K and b. For the left amygdala

region, the optimal choice for the number latent factors is 9, with MSPE = 1.168 which is

smaller than that of both linear regression (1.357) and voxel-wise regression (1.540). For over

69% and 65% of outcome images in the test set, SBLF produces a smaller MPSE compared

to linear regression and voxel-wise regression, respectively. These proportions for the right

amygdala are even larger (77.55% and 73.47%), as shown in Table 3.

Table 2 in the Web Appendix displays results for all 19 sub-cortical regions compared with

the linear regression method. The squared errors of outcomes from our model are about 10.2

times smaller than the linear regression method on average for all 19 regions. Our model has

much larger R-Squared values than the linear regression method across all regions (0.934

v.s. 0.428 on average). Hence, our SBLF model performs better than the linear regression

model (Tavor et al., 2016) for predicting the task-evoked functional brain activity from the

task-free volumetric images in the sub-cortical regions.

From MCMC samples of the predictor selection indicators, γ, we can estimate the posterior

inclusion probability for each predictor image, indicating the uncertainty of including the
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corresponding predictor images into the model. For each amygdala region, by placing a

threshold value on the posterior inclusion probability, we can obtain a set of predictor images

that are associated with the outcome image with certain uncertainty level. We vary the

threshold from 0.0 to 0.9 and list the corresponding set of predictor images in the Web

Appendix. For the right amygdala region, the posterior probability of including the 28th

cortical seed map into the model is larger than 0.6. Among all the predictor images, this

cortical seed map has the strongest association with the faces-shapes contrast image in the

Emotion domain. Similarly, in the left amygdala region, the same predictor image also has

a relative strong association (the posterior inclusion probability larger than 0.5) with the

outcomes in the same task domain. However, in the left amygdala region, the 13th and 15th

predictor images have more contributions to the outcome predictions given their estimations

of their γ’s over 0.8 in the left amygdala region. These strong associations do not appear

in the right amygdala regions. These two sub-cortical seed maps are from the cerebellum

sub-cortical seeds, indicating the significant associations between cerebellum structure and

emotional functions in left amygdala. These results are consistent with some previous findings

in neuroimaging and neurological research (Turner et al., 2007; Habas et al., 2009; Baumann

and Mattingley, 2012; Habas, 2018). It has been shown that cerebellum is involved in neural

processes underlying the regulation of emotional responses (Baumann and Mattingley, 2012).

In particular, the role of the cerebellum in the modulation of neural networks that subserve

processing of emotional material has been studied by analyzing the functional imaging data

of lesion patients (Turner et al., 2007). The results indicated that the “normal” emotional

response to frightening stimuli in patients with cerebellar damage may be associated with

relatively lower activity in the amygdala and other limbic and paralimbic regions. In addition,

recent resting state fMRI studies (Habas et al., 2009; Habas, 2018) have identified the intrinsic

functional connectivity signals between the cerebellum and the amygdaloid nucleus.
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Understanding how the predictor images are associated with the outcome images is also

of interest. As presented (1), ψ(v, v′) represents the spatial prediction effect on a voxel v in

the outcome image from any voxel v′ in the summarized predictor image. Figure 3 shows

the estimated values ψ(v, v′) on five outcome voxels v in the left amygdala region. The same

predictor image has various effects on different outcome voxels. For example, the first outcome

voxel (the first row in Figure 3) is negatively associated with nearby voxels in predictor

images, while the last two voxels (the forth and fifth rows) have more positive effects from

voxels in similar locations in the predictor images. In contrast, there is no significant effect

from the predictor images on the other two voxels (the second and third rows). Meanwhile,

significant associations appear among not only nearby voxels but also voxels that are farther

away. For example, for the first outcome voxel (x = −20, y = −4, z = −30) in Figure 3, some

distant voxels in the image slice (z = −18) are positively associated with it, while nearby

voxels have significant negative effects. These estimated associations between predictor and

outcome images from our proposed model can be important in exploring brain functions and

cannot be obtained by the other two methods.

6 Discussion

In this work, we propose a spatial Bayesian latent factor model for image-on-image re-

gression. We use low-dimensional latent factors as a bridge connecting the outcome image

and predictor images in the same high-dimensional imaging space. Our proposed method

is flexible enough to model the spatial dependence through pre-specified basis functions

without imposing strong assumptions about the spatial patterns. Our SBLF model can

identify the associations between the outcome image and predictor images across the whole

image space, not restricted to voxels from the same locations or nearby neighbors. The low-

dimensional latent factors integrate information from predictor images through a regression

model with spatially-varying coefficients. This regression model can include other clinical
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patient characteristics as well. Our method can be applied to jointly analyze multimodality

imaging data, such as resting-state fMRI, task-based fMRI, and structural MRI.

We now discuss the limitations and potential future directions for our method. First, the

cross-validation approach to determining the number of basis functions and the number of

latent factors is very computationally intensive. An alternative is to treat these as unknown

parameters and assign a multinomial prior distribution (Ghosh and Dunson, 2009), then we

can make fully Bayesian inference on the model. This approach requires a trans-dimensional

MCMC algorithm, which can be quite challenging in practice. Second, we make a strong

assumption that the spatially-varying coefficients are common for all predictor images, while

the spatial predictive effects of different predictor images can be different. This assumption

may reduce the power to detect the predictive effects of some predictor images and may

inflate the false positive rate. We can relax this assumption by introducing predictor specific

spatially-varying coefficient parameters. This modification obviously increases model com-

plexity which may require informative priors to ensure parameter identifiability and develop

more efficient computational algorithms. Third, different subjects may have heterogeneous

associations between task related brain activity and resting-state activity. Our current SBLF

model cannot capture this heterogeneity. We can potentially extend our model by introducing

subject-specific spatially-varying coefficients with clustering structures. Fourth, our current

model focuses on volumetric data, however we can modify our algorithm to brain surface

data by projecting the cortex data onto a sphere and then generate smooth basis functions

based on spherical harmonic kernels.
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Figure 1. Graphical representation of the proposed spatial Bayesian latent factor model
for image-on-image regression analysis.
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Figure 2. Elbow method plot with metric values of the posterior mean estimations of
loading vector in simulation study Scenario 3, fitted with K = 20 (true K = 5). The metric
is the number of values in each loading vectors outside the 90% credible interval of the whole
loading matrix.
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Figure 3. Spatially varying prediction effects ψ(v, v′) on five different response voxels v
from all predictor voxels v′. Both v and v′ are in the left amygdala maps. All maps are plotted
on the same color scale varying from blue for negative values to red for positive values. This
figure appears in color in the electronic version of this article, and any mention of color refers
to that version.
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Table 1
Inferential and working models for parameter expansion approach with i = 1, 2, · · · , N, k = 1, · · · ,K, m = 1, · · · ,M .

Inferential Model Working Model Transformations

θi = Ληi + ζi θi = Λ∗η∗i + ζi λmk = S(λ∗kk)φ
−1
k λ∗mk

ηi = βTX̃ i + εi η∗i = µ∗i + [β∗]TX̃ i + ε∗ ηik = S(λ∗kk)φk
(
η∗ik − µ∗ik

)

β = bα β∗ = bα∗ βk = S(λ∗kk)φkβ
∗
k

ζi ∼ N(0, σ2
ζI) ζi ∼ N(0, σ2

ζI) αk = S(λ∗kk)φkα
∗
k

εi ∼ N(0, σ2
εI) ε∗i ∼ N(0, σ2

εΦ
−1) εik = S(λ∗kk)φkε

∗
ik
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Table 2
Simulation study results for Scenarios 1-3. In each scenario, three models are fitted and their results compared in

terms of 1) MSE, 2) MSPE and 3) the proportions of observations with smaller MSE/MSPE using SBLF than the
linear (%) or voxel-wise regressions (%*). Results of multiple values of K used in our method are included and the

true value of K used for simulations in Scenario 3 is K = 5.

Generating Analysis
K

Training Test
Model Method MSE % %* MSPE % %*

Linear - 0.010 - - 1.024 - -
Voxel-wise - 1.016 - - 1.050 - -

Scenario 1

SBLF

1 0.014 0.00 100.00 1.231 23.40 27.20
(Linear) 5 0.014 0.00 100.00 1.395 31.60 34.20

10 0.014 0.00 100.00 1.474 29.40 32.60
20 0.014 0.00 100.00 1.509 26.00 27.80

Linear - 0.136 - - 0.511 - -
Voxel-wise - 0.008 - - 0.496 - -

Scenario 2

SBLF

1 0.023 100.00 0.00 0.314 94.40 92.80
(Voxel-wise) 5 0.023 100.00 0.00 0.316 94.20 92.60

10 0.023 100.00 0.00 0.322 93.40 91.80
20 0.023 100.00 0.00 0.341 91.80 90.80

Linear - 0.896 - - 3.656 - -
Voxel-wise - 2.510 - - 3.642 - -

Scenario 3

SBLF

1 0.149 100.00 100.00 3.436 59.80 56.40
(SBLF) 5 0.149 100.00 100.00 1.633 94.80 94.40

10 0.149 100.00 100.00 1.923 89.40 89.00
20 0.149 100.00 100.00 3.347 58.80 57.20
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Table 3
Results for the left (1) and the right (2) amygdala. Performance of three different methods are compared in terms of
1) MSE, 2) MSPE and 3) the proportions of observations with smaller MSE/MSPE using SBLF than the linear (%)
or voxel-wise regressions (%*). MSE/MSPE is reported as the averaged values over all voxels, subjects and 10-folds
cross validation. Two tuning parameters, bandwidth value b for basis functions and the number of latent factors K,

are tested to determine their optimal values b∗ and K∗. The SBLF model is re-fitted with the value of K∗

determined using the Elbow method with K = 20.

(1) Left amygdala region

Method Bandwidth NO. of Latents
Training Test

MSE % %* MSPE % %*

Linear - - 0.562 - - 1.357 - -
Voxel-wise - - 0.644 - - 1.540 - -

SBLF

b∗ = 10
K = 20 0.060 100.00 100.00 1.198 66.33 63.37
K∗ = 9 0.063 100.00 100.00 1.168 69.39 66.30

b = 20
K = 20 0.009 100.00 100.00 1.304 54.08 60.02
K∗ = 8 0.009 100.00 100.00 1.348 51.02 58.16

b = 30
K = 20 0.005 100.00 100.00 1.830 29.59 40.82
K∗ = 5 0.005 100.00 100.00 1.830 20.41 40.82

(2) Right amygdala region

Method Bandwidth NO. of Latents
Training Test

MSE % %* MSPE % %*

Linear - - 0.651 - - 1.539 - -
Voxel-wise - - 0.735 - - 1.866 - -

SBLF

b∗ = 10
K = 20 0.066 100.00 100.00 1.359 70.41 73.47
K∗ = 10 0.069 100.00 100.00 1.260 77.55 73.47

b = 20
K = 20 0.010 100.00 100.00 1.398 68.37 74.49
K∗ = 7 0.010 100.00 100.00 1.941 38.78 50.00

b = 30
K = 20 0.005 100.00 100.00 2.127 19.39 42.86
K∗ = 5 0.006 100.00 100.00 3.195 10.26 12.82


