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APPENDIX SA: MODEL WITH SECONDARY MARKETS

IN THIS APPENDIX, we develop and solve an extension of the baseline model in which we
allow for trading of securities in secondary markets. This version of the model features
the same source of variation as in the empirical analysis. We show that a parameteriza-
tion of the model that targets cross-sectional empirical estimates from the data delivers
quantitative results similar to those in the baseline model.

SA1. Model

Our secondary market model introduces short-run trading frictions that can account
for the patterns observed in the data. We model this by introducing two additional fea-
tures to the environment. First, each period contains two subperiods: a first subperiod, in
which securities are traded in secondary markets, and a second subperiod, in which se-
curities are traded in primary markets. In particular, within each period, the timing is as
follows. At the beginning of each period, exogenous variables are realized. Global banks
repay outstanding deposits, issue new deposits, raise equity (or pay dividends), and trade
outstanding assets with each other in secondary markets. In the second subperiod, risky
securities are repaid and banks repay outstanding deposits and can issue new deposits,
pay dividends or raise equity, and purchase newly issued risky securities in primary mar-
kets. The second additional feature is the existence of trading networks in the secondary
market. We introduce trading networks with two assumptions. First, we assume that each
EM economy and DM nonfinancial firm issues different varieties of bonds, indexed by �,
that have the same repayment but will feature different holders in equilibrium. Second,
we assume that banks specialize in a particular variety and trade securities of that variety
issued by any EM economy and DM firm.

These new features allow the model to exhibit the same variation found in the empirical
analysis—namely, multiple bonds issued by the same borrower with different holders—
and also give rise to the possibility of bonds with similar characteristics having different
prices in the secondary market. The presence of varieties of securities in which banks
specialize gives rise to banks displaying different portfolios of bonds with similar default
risk, liquidity properties, and other relevant characteristics, which persist over time; this is
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consistent with the facts documented in Section 3. Additionally, the assumption of trading
networks is aimed at capturing the idea that in the short run. Capital is slow moving;
this may be due to the presence of search costs for trading counterparties, information
frictions, or time to adjust portfolios, which potentially leads to limits to arbitrage (see,
e.g., Duffie (2010), Lagos, Rocheteau, and Wright (2017), and references therein).

As in the baseline model, global banks’ objective is to maximize the lifetime discounted
payouts transferred to DM households,

maxEt
∞∑
s=0

βs−tDMπjt+s� (35)

A bank j that specializes in variety � arrives at the period t secondary market with a
portfolio of EM securities {aiEMjt−1(�)}i∈It−1 , DM securities aDMjt−1(�), and deposits djt−1

acquired in the primary market at t − 1. Secondary markets are segmented by variety:
Banks can only trade with others that specialize in the same variety at prices {qi0EMjt (�)}i∈It
for EM securities and q0

DMjt (�) for DM securities. This implies that the index � denotes
both a particular variety of EM and DM security and a particular trading network. We
use the same notation as in the baseline model, and explain the new notation as it is
introduced. We refer to variables in the secondary market with the 0 superscript. The
value of the net worth in the secondary market is given by

n0
jt =

∫
i∈It−1

qi0EMt (�)a
i
EMjt−1(�) di+ q0

DMt (�)aDMjt−1(�) −Rddjt−1� (36)

In the secondary market, banks can purchase existing securities (a0
DMjt (�)�{a

i0
EMjt (�)}i∈It−1 ),

issue equity div0
jt , and issue new deposits d0

jt to be repaid in the period t primary market.
Their flow of funds constraint in the secondary market is given by

n0
jt + d0

jt =
∫
i∈It
qi0EMt (�)a

i0
EMjt (�) di+ q0

DMt (�)a
0
DMjt (�) + div0

jt � (37)

A bank arrives at the primary market with the portfolio of securities and liabilities issued
in the secondary market and a net worth given by the repayment associated with each of
these securities

njt =
∫
i∈It−1

Ri0EMt (�)q
i0
EMt (�)a

i0
EMjt (�) di+R0

DMt (�)q
0
DMt (�)aDMjt (�) −R0

dd
0
jt � (38)

where ({Ri0EMt (�)}i∈It−1�R
0
DMt (�)) are the returns from holding EM and DM securities in

period t, from the secondary market of trading network � until the primary market subpe-
riod, and R0

d the rate on deposits from the secondary to primary markets. In the primary
market, banks face a similar choice problem as in the secondary market: Each bank can
purchase new securities (aDMjt (�)�{aiEMjt (�)}i∈It−1 ), issue equity divjt , and issue new de-
posits djt to be repaid in the period t+ 1 secondary market. Its flow of funds constraint in
the primary market is given by

njt + djt =
∫
i∈It
qiEMt (�)a

i
EMjt (�) di+ qDMt (�)aDMjt (�) + divjt � (39)
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Banks face the same frictions to finance their investments in both primary and secondary
markets. They face occasionally binding borrowing constraints,

d0
jt ≤ κn0

jt and djt ≤ κnjt� (40)

a cost of C(div� n) = φ(−div
n

) per unit of equity raised in the primary market, and
C(div0� n0) = φ( −div0

n0 ) per unit of equity raised in the secondary market. The net payouts
to DM households are

πjt = div0
jt

(
1 + Idiv0

jt<0C
(
div0

jt � n
0
jt

)) + divjt
(
1 + Idivjt<0C(divjt � njt)

)
� (41)

Finally, each subperiod experiences an i.i.d. exit shock that occurs with probability 1−σ
in primary markets and 1 −σ0 in secondary markets, with σ = σ0 in the calibrated model.
Banks that exit repay outstanding deposits, sell their securities in the relevant market,
and transfer the net proceedings to their owners. In each subperiod, a mass of new banks
equal to the exit probability enter the economy, so that the total mass of global banks is
always fixed at one. The new entrants are endowed with units of the final good n and n0

in the primary market and secondary market, respectively. Aggregating banks within a
trading network, we obtain an expression for net worth in the secondary market stage at
the trading network level:

N0
t (�) = σ

[∫
i∈It−1

qi0EMt (�)A
i
EMt−1(�) di+ q0

DMt (�)ADMt−1(�) −RdDt−1(�)
]

+ (1 − σ)n0� (42)

where the variables in capital letters with a dependence on � refer to the aggregate coun-
terparts for the trading network �.

The problem of global bank j specializing in variety � is to choose state-contingent plans
{((ai0EMjt (�)� a

i
EMjt+1(�))i∈[0�μEM]� a

0
DMjt (�)� aDMjt (�)�div0

jt �divjt � d0
jt� djt)}

∞
t=0 to maximize (7)

subject to flow of funds and financial constraints (36)–(41). The bank’s problem is char-
acterized by asset-pricing conditions for the secondary and primary market:

Ri0EMt (�) =R0
DMt (�)� (43)

E

[
ν0
t+1(�)

qi0EMt+1(�)
qiEMt (�)

]
= E

[
ν0
t+1(�)

q0
DMt+1(�)
qDMt (�)

]
≡Ret (�)� (44)

for all � and securities i with positive investments, where ν0
t+1(�) is the marginal value of

net worth of a bank specializing in variety � in secondary markets of period t + 1.1 The
first equation states that required returns from holding any security of a given variety

1The marginal value of net worth in the secondary market, ν0
t+1(�), and in the primary market, νt+1, satisfy

two difference equations:

ν0
t (�) = (

1 − σ0) + σ0 max
{

1
4φ

(
νtR

0
d − 1

)2 + νtR0
d;

1
4φ

(
νtR

0
DMt (�) − 1

)2 + νt
[
R0

DMt (�)(1 + κ) − κR0
d

]}
�
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from secondary to primary markets are the same.2 Similarly, the second equation states
that required returns from holding any security of a given variety from primary markets
of period t to secondary markets of period t+1 are the same. The optimal choices of debt
financing are characterized by the following complementary slackness conditions:(

Ret (�) −E
[
ν0
t+1(�)

]
Rd

)
(κnjt − djt) = 0 and

(
R0

DMt (�) −R0
d

)(
κn0

jt − d0
jt

) = 0� (45)

These equations state that the borrowing constraint will bind whenever the expected risk-
adjusted returns on assets exceed those from deposits. The optimal equity choices are
given by3

−2φ
(

divjt
njt

)
= βDMR

e
t (�) − 1 and − 2φ

(div0
jt

n0
jt

)
= νtR0

DMt (�) − 1� (46)

In both primary and secondary markets, higher required returns lead to larger equity
issuance.

The DM households’ problem is similar to that in the baseline model, with the addition
that households can also choose intraperiod deposits (from secondary to primary markets
of period t). Given that DM households are risk neutral and do not discount time between
secondary and primary markets, the equilibrium interest rate for intraperiod deposits is
R0
d = 1.
The EM economy faces a problem that is similar to that in the baseline economy, with

the only difference being that it can choose to issue debt of different varieties bEMit+1(�)
for � ∈ [0�1]. EM households only make choices in the primary-market subperiod. We
assume that the repayment/default decision applies to all outstanding varieties.4 The EM
budget constraint under repayment is given by

cit = yEMt + zit +
∫ [
qiEMt (�)

(
bit+1(�) − ξbit (�)

) − bit (�)
]

d�� (47)

It follows that for EMs to issue positive bonds of any two varieties, their prices should be
equal,

qiEMt (�) = qiEMt

(
�′)� (48)

νt = (1 − σ) + σmax
{

1
4φ

(
E

[
ν0
t+1(�)

] − 1
)2 +E

[
ν0
t+1(�)

];
1

4φ

(
βDME

[
ν0
t+1(�)

q0
DMt+1(�)
qDMt (s)

]
− 1

)2

+βDM

(
E

[
ν0
t+1(�)

q0
DMt+1(�)
qDMt (�)

]
(1 + κ) −E

[
ν0
t+1(�)

]
Rdκ

)}
�

These equations are obtained by solving the banks’ recursive problems, which we omit for brevity. They are
available upon request.

2In this case, since there is no uncertainty between secondary and primary markets, required returns are
equal to realized returns.

3These choices are in those states in which the return of injecting one additional unit of equity in the banks
and investing it in risky assets is larger than the inverse of the DM discount factor, that is, the right-hand sides
of (46) are positive. Note that in the optimal equity choice in the secondary market, the relevant DM discount
factor is one. We focus on parameterizations in which this condition always holds.

4This assumption is motivated by the fact that cross-default clauses in bonds prevent discriminatory defaults
on different securities, especially when issued in the same market.



GLOBAL BANKS AND SYSTEMIC DEBT CRISES 5

for all �� �′ ∈ [0�1]. Using this condition, the EM households’ problem can be collapsed
to the same as in the baseline model in which the EM households choose total borrowing
bit+1 = ∫

bit+1(�) d�. The split of total debt between varieties is determined by the demand
for securities, since each EM household is indifferent between issuing any of them.

Nonfinancial DM firms face the same problem as in the baseline model, but with the
difference that they can issue securities of different varieties and they only make decisions
in the primary-market subperiod. Similar to EM economies, in equilibrium, prices of the
DM securities for different varieties in the primary market will be the same. Additionally,
if we assume that the aggregate amount of DM securities is equal to the capital stock,
ADMt = kt+1, then the prices of the securities will be equal to one, qiDMt (�) = 1, for all �.

Finally, we define returns and EM bond prices in equilibrium. Returns from hold-
ing securities from secondary markets until primary markets are given by Ri0EMt+1(�) =
ιit+1(1+ξqiEMt+1(�))

qi0EMt (�)
and R0

DMt+1(�) = ωt+1[αAα−1
DMt+1−δ]

q0
DMt (�)

. The price of EM bonds in primary mar-

kets is given by qiEMt (�) = E[ν0
t+1(�)qi0EMt+1(�)]

Ret+1(�) .

DEFINITION 1: Given global banks’ initial portfolios (((aiEMj0(�))i∈[0�μEM]� aDMj0(�)�
dj�0)j∈[0�1])�∈[0�1], EM households’ initial debt positions (bi0)i∈[0�μEM], and state-contingent
processes {ωt� yEMt � (zit�ψit)i∈[0�μEM]}, a competitive equilibrium in the global economy is
a sequence of prices {(wt� (qi0EMt (�)� q

i
EMt)i∈[0�μEM]� q

0
DMt (�)� qDMt)∞

�=0}
∞
t=0 and allocations for

DM households {cDMt � d
0
t+1� dt+1}∞

t=0, EM households {((cit� bit+1(�)� ιit)�∈[0�1])i∈[0�μEM]}∞
t=0,

nonfinancial firms {ht�kt+1}∞
t=0, and global banks {(((ai0EMjt+1(�)� aiEMjt+1(�))i∈[0�μEM]�

a0
DMjt+1(�)� aDMjt+1(�)� d0

jt+1� djt+1�div0
jt �divjt)j∈[0�1])}∞

�=0}
∞
t=0 such that:

(i) Allocations solve agents’ problems at the equilibrium prices,
(ii) Assets and labor markets clear.

It is worth analyzing how each asset market clears. Denote as J (�) the set of banks that
specialize in variety �. Market clearing in the primary market implies∫

j∈J (�)
qiEMta

i
EMjt (�) dj = qiEMtbit+1(�)� (49)

∫
�∈[0�1]

∫
j∈J (�)

qDMt (�)aDMjt (�) dj d�= kt+1� (50)

Equation (49) refers to the market clearing of variety � issued by EM economy i. In
this case, since EMs are indifferent in how they split their total issuance into different
varieties, equilibrium quantities are determined by their demand and prices are the same
for all varieties of a given economy i. Equation (50) refers to market clearing of the DM
risky security. Market clearing in the secondary market of trading network � implies∫

j∈J (�)
qi0EMta

i0
EMjt (�) dj =

∫
j∈J (�)

qi0EMta
i
EMjt−1(�) dj� (51)

∫
j∈J (�)

q0
DMt (�)a

0
DMjt dj =

∫
j∈J (�)

q0
DMt (�)aDMjt−1 dj� (52)

In each secondary market, the stock of outstanding securities is given by the amount
of securities of that type purchased by banks in the same trading network in the previous
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primary market. Hence, ex post heterogeneity across trading networks can give rise to the
price dispersion of securities of different varieties. Importantly, these prices can only arise
in secondary markets. In primary markets, the fact that each EM household and DM firm
can issue any variety prevents these price differences’ persistence.

SA2. Financial Frictions and Secondary-Market Elasticity

This section illustrates how the secondary-market elasticity of bond yields to banks’
net worth is informative of the degree of financial frictions faced by banks. In the sec-
ondary market, the outstanding stock of securities is fixed from previous issuance and the
equilibrium rate of return should be such that the excess supply of funds, or demand for
additional securities, is zero. The excess supply is increasing in required returns in the
secondary market, since, as noted in (46), optimal equity issuance is increasing in returns.
If returns are higher, banks are willing to increase their equity issuance to lend more
funds to EMs by purchasing additional securities. Equilibrium in the secondary market is
depicted in Supplementary Material Figure SA1.

Consider now a trading network composed of more distressed banks that have lower
net worth due to a lower share of retained earnings σ0(�). This implies that banks have
less resources available to purchase securities in the secondary market, which reduces
the excess supply of funds for a given required return, as depicted by the dotted line in
Supplementary Material Figure SA1(a), and increases the equilibrium required return.
The net worth of banks in this trading network also falls, since all of their assets are now
worth less.

How much secondary market prices respond to shocks to σ0(�) depends on the banks’
marginal cost of issuing equity, φ. Consider an economy with high costs of equity issuance
(high φ). In this economy, the excess supply of funds is steep, since banks require a signif-
icant increase in returns to issue equity to finance purchases of additional risky securities.
As shown in Supplementary Material Figure SA1(a), a shock to σ0(�) will be associated
with a large drop in price, and a large increase in required returns, to induce equity is-
suance to purchase the outstanding stock of securities. Consider now an economy with
low φ. In this economy, it is less costly for banks to issue equity; therefore, prices and re-
turns need to respond less to the same magnitude shock to σ0(�) to induce equity issuance

FIGURE SA1.—Equilibrium in the Secondary Market.
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TABLE SAI

MODEL WITH SECONDARY MARKETS: MODEL AND DATA MOMENTS.

Target Data Model

Average EM debt 15�0% 13�2%
EM default frequency 1�5% 1�3%
Average EM-bond spreads 410 bp 497 bp
Volatility of EM-bond spreads 173 bp 138 bp
Correlation between EM-bond spreads and endowment −31% −85%
Volatility of global banks’ net worth (NW) 0�28 0.21
Correlation between global banks’ NW and systemic EM endowment 40% 39%
Share of EM securities in global banks’ total risky assets 10% 10%
Secondary market cross-sectional semi-elasticity EM spreads to banks’ NW 0.056 0.057
Global banks’ total-assets-to-equity ratio 3.8 4.3
Global banks’ assets returns from secondary to primary markets stages 1 1.01

Primary market aggregate semi-elasticity EM spreads to banks’ NW 0.056 0.031

Note: This table shows the set of data moments targeted in our calibration and their model counterparts, obtained by simulating a
panel of countries from the calibrated model and computing the average of individual countries’ moments. The data moments regard-
ing EM debt, default frequency, and bond spreads were computed using a sample of EMs with available data for the period 1994–2014.
Supplementary Material SB2 details the sample and data sources. Data moments on global banks’ net worth were computed using
the cyclical component in the stock price of publicly traded US banks that have data coverage for the period of analysis (tracked by
the XLF index). The share of global banks’ exposure to EMs was measured by combining data on individual banks’ balance sheets in
the sample of banks from our empirical section (detailed in Appendix Table CI) with aggregate data on debt position. The elasticity
of EM-bond spreads to global banks’ net worth corresponds to the average of the empirical estimates in Section 3.4. See Section 4.1.1
and Supplementary Material SA for a detailed discussion of the model counterpart of this data object.

and restore equilibrium. This can be seen in Supplementary Material Figure SA1(b). This
analysis suggests that, as in the baseline model, the degree of price drops in response to
shocks to banks’ net worth is informative of the degree of financial frictions banks face.
The difference is that in this model, this differential response is also manifested at the
cross-section of bond varieties in secondary markets.

SA3. Mapping the Secondary-Markets Model to the Data

We recreate the episode of analysis from the empirical section in the secondary-markets
model. We do this by focusing on an aggregate negative shock to ω, combined with an
unexpected idiosyncratic shock to the fraction of earnings that are retained at each trading
network. This shock is introduced with a mean-preserving spread to the parameter σ0(�),
and can capture differential initial levels of capitalization due to bank-specific runs or
exogenous recapitalizations. This combination of shocks introduces expost heterogeneity
across trading networks and allows us to study the differential effect on securities from
the same borrower held by different investors.

We then use this model to quantitatively reproduce the empirical analysis from Sec-
tion 3 in model-simulated data. The objective is to show that a parameterization that tar-
gets the cross-sectional elasticity estimated from the data generates quantitative results
that are in line with those of the baseline model. We parameterize this model by calibrat-
ing the same set of moments as in the baseline model, with the main difference being
that instead of targeting the aggregate elasticity, we now target the cross-sectional elastic-
ity from the secondary markets.5 The targeted moments are reported in Supplementary
Material Table SAI.

5This model also features one parameter, n0, that is not in the baseline model. We calibrate it so that the
within-period average return from holding risky debt from the secondary market to the primary market is one.
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FIGURE SA2.—Change in Yield to Maturity and Holders’ Net Worth: Model-simulated Data. Notes: Panel
(A) shows the model-simulated data on changes in bond-yield and in the log market value of net worth. The
horizontal axis includes the demeaned change in net worth for each variety (and trading network). The vertical
axis shows the demeaned change in bond yields of different countries and varieties. Panel (B) shows the same
graph as in panel (A), but now the change in yields is reduced to a residual from the country-average change
in yields.

To compute the cross-sectional elasticity, we feed into the model a shock to ω such that
banks’ aggregate net worth falls by the same amount as it did in the window around the
Lehman episode (see Table I), together with unexpected idiosyncratic shocks to the cap-
italization of banks in different trading networks. In order to generate dispersion across
trading networks, we simulate various σ0(�) from a lognormal distribution with mean
0�71 (which is the calibrated value σ0 in the model) and standard deviation 0�13. We cal-
ibrate the standard deviation so that the cross-sectional standard deviation of the fall in
net worth across trading networks is the same as the cross-sectional standard deviation of
the residualized fall in net worth per bond in the empirical section, 7%. We then compute
yields to maturity (obtained from secondary-market prices) of 50 varieties of bonds from
60 countries in the model, maintaining the share of average bonds per country found
in the data. We also compute the log-change in the market value of net worth in each
of the 50 trading networks that trade different varieties. Supplementary Material Fig-
ure SA2(a) shows the raw simulated data, with the demeaned change in net worth at the
variety/trading-network level on the horizontal axis and the demeaned change in yields
on the vertical axis. The negative slope of the line of best fit indicates a negative relation-
ship between the change in bond yield and the change in bond holders’ net worth. This
relationship does not fully explain the simulated data, as there is dispersion in changes
in yields of a given variety due to heterogeneity in the default risk that comes from dif-
ferent borrowers. Once this borrower heterogeneity is filtered out with fixed effects, the

This moment is introduced to capture the high-frequency notion of the secondary market subperiod in which
there is no time discounting and zero net returns.
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FIGURE SA3.—Response in the Secondary-markets Model During the Lehman Episode. Notes: Data
(dashed lines) refers to the average of sovereign-bond spreads (in bps) and the cyclical component of con-
sumption (standarized) in a sample of EMs (see Supplementary Material SB2). Model (solid lines) refers to
the response of the variables to a sequence of shocks {εωt� εEMt} that targets the dynamics of global banks’ net
worth and EMs’ systemic endowment during 2007–2011 (see Figure SB2).

change in net worth accounts for most of the residual change in yields (see Supplementary
Material Figure SA2(b)).

We then estimate the regression on model-simulated data:

�ytm0
i� = αi +ηxs� logV 0

(
N0
�

) + εi�� (53)

where �ytm0
i� is the within-period change in the yield to maturity of a bond of variety �,

issued by economy i, where the period corresponds to the joint shock to ω and σ0(�); αi
is a borrower fixed effect; � logV 0(N0

� ) is the change in the aggregate log market value
of net worth of banks that trade variety �. This regression is equivalent to the empirical
regression (17) without controls, as these are not featured in the model. The estimated
cross-sectional elasticity is ηxs = −0�057, which is close to the empirical target.

We then compute the elasticity at the aggregate level as a nontargeted moment, com-
puted as in our baseline model. The untargeted aggregate elasticity is −0�031 (see last row
of Supplementary Material Table SAI), which is negative but slightly smaller in absolute
value than the cross-sectional elasticity. The quantitative differences between the cross-
sectional and aggregate elasticity are due to differences in the supply of bonds in primary
and secondary markets. In secondary markets, the supply of outstanding bonds is fixed
from the previous period. In primary markets, the supply of bonds (or equivalently, the
demand of funds) comes from solving the EM households’ problem and is decreasing in
the required returns. The presence of this downward-sloping demand of funds attenuates
the aggregate elasticity relative to the cross-sectional one, which is computed purely from
the price dynamics in the secondary markets.
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SA4. Aggregate Quantitative Results

This section summarizes the main quantitative aggregate results in the model with sec-
ondary markets. We first recompute the exercise that analyzes the dynamics of spreads
and consumption during the global financial crisis in this version of the model. Supple-
mentary Material Figure SA3 shows that the dynamics of these variables are similar to
those observed in the data. In addition, the conditional decomposition of shocks in this
model still suggests a major role of DM shocks in explaining the dynamics of spreads.
Finally, we also perform the unconditional decomposition of spreads in this model and
find that the intermediation premium accounts for roughly one-third of the fluctuations in
spreads. These results suggest that the calibrated model with secondary markets delivers
quantitative results that are similar to those observed in the baseline model. Results are
available upon request.

APPENDIX SB: QUANTITATIVE ANALYSIS

SB1. Solution Method

As discussed in Appendix A1, our model’s agent heterogeneity and aggregate un-
certainty imply that the distribution of assets in the world economy, �, an infinite-
dimensional object, is a state variable in agents’ individual problems. To solve for the
equilibrium of the model numerically, we follow a common practice in existing algorithms
and use as state variables a set of statistics that summarize the information from this dis-
tribution (see Algan et al. (2014), for a review of algorithms to solve models with hetero-
geneous agents and aggregate uncertainty).

The detailed choices in our solution method are guided by three features of our model.
First, an individual EM’s problems involve a default choice without commitment, which
requires the use of global methods in the solution of these problems. Second, with default
risk, the degree of aggregate uncertainty in the economy significantly affects the debt–
price schedules EMs face as well as their policy functions. Therefore, we choose a method
that uses summary statistics as part of the state variables in the agents’ individual prob-
lems.6 The curse of dimensionality in the solution of these problems then naturally limits
the dimension of the vector of states summarizing the distribution of assets. Finally, in our
economy, the debt–price schedules individual EMs face depend on the perceived policy
for banks’ DM-firm-invested assets, ÂDM(s), which governs DM firms’ marginal product
of capital. In equilibrium, perceived policies must coincide with actual policies. To avoid
inaccuracies originating from this perceived policy function, we allow for an auxiliary ag-
gregate variable ÂDM—which describes aggregate investment in DM firms at the end of
the period—as a state variable in agents’ individual problems. Using ÂDM as a state also
has the advantage that the approximate solution is always consistent with market clearing.

From these considerations, our approximate solution considers the following problems
for individual agents. We express global banks’ recursive problem as

ν(sx) = (1 − σ) + σmax
{

1
4φ

(
E
[
ν
(
s′x

)] − 1
)2 +E

[
ν
(
s′x

)];
1

4φ
(
βDME

[
ν
(
s′x

)
RDM

(
s′x� sx

)] − 1
)2 +βDM

(
E
[
ν
(
s′x

)
RDM

(
s′x� sx

)]
(1 + κ)

6The relevance of the degree of aggregate uncertainty in our model causes us to depart from algorithms
that involve perturbation methods around a solution of the model with no aggregate uncertainty (e.g., Reiter
(2009)), which have typical computational speed and allow for a large set of state variables.



GLOBAL BANKS AND SYSTEMIC DEBT CRISES 11

−E
[
ν
(
s′x

)]
Rdκ

)}
(54)

Â′
DM =FA(sx� ÂDM)� (55)

where FA(·) denotes the forecasting rule assumed to be used by agents under the approx-
imate solution and sx is the exogenous aggregate state.

Individual EMs’ repayment decision under our approximate solution is characterized
by

V (b�z� sx� ÂDM) = max
ι
ιV r(b�z� sx� ÂDM) + (1 − ι)V d(z� sx� ÂDM)� (56)

where V r(b�z� sx� ÂDM) denotes the value of repayment described by

V r(b�z� sx� ÂDM) = max
b′ u(c) +βE[

V
(
b′� z′� s′x� Â

′
DM

)]
� (57)

s.t. c = yEM + z− b+ q(b′� z� sx� ÂDM

)(
b′ − ξb)� (55)�

q
(
b′� z� sx� ÂDM

) = E
[
v
(
s′x� Â

′
DM

)
ι̃
(
b′� z′� s′x� Â

′
DM

)(
1 + ξq(b′′� z′� s′x� Â

′
DM

))]
E
[
v
(
s′x� Â

′
DM

)
RDM

(
s′x� Â

′
DM

)] �

and V d(z� sx� ÂDM), the value of default, is given by

V d(z� sx� ÂDM) = u(c) +βE[
φV r

(
0� z′s′x� Â

′
DM

) + (1 −φ)V d
(
z′� s′x� Â

′
DM

)]
� (58)

s.t. c = H(yEM + z)� (55)�

For the forecasting rule, FA(·), our benchmark algorithm follows Krusell and Smith
(1998) in parameterizing an assumed functional form for the rule and using an itera-
tive procedure with model-simulated data to estimate the parameters of the functional
form. To render the procedure parsimonious, we assume a log-linear forecasting rule in
{ω�ÂDM} and reduce the aggregate state space to (sx� ÂDM).7 Our algorithm then pro-
ceeds as follows:

(1) Specify the initial forecasting rule, denoted F j
A(·) for j = 0.

(2) Solve individual agents’ problems, given the forecasting rule F j
A(·) for j = 0, using

value function iteration.
(3) Simulate data from the model using the policy functions obtained in (2) for a given

sequence of exogenous variables, s̃x ≡ {sx�t}Tt=1, where T is the time length of the
panel of model-simulated data. Estimate the parameters of the forecasting rule
with model-simulated data and denote the new forecasting rule F j+1

A (·). Defining
F j(s̃x) as the sequence of forecasts under the rule F j

A(·) for the sequence s̃x, com-
pute the distance δj+1 ≡ ‖F̃ j+1(s̃x) − F̃ j(s̃x)‖.

(4) Update the forecasting rule and iterate in steps (2) and (3) for j = 1�2�3� � � �, until
δj+1 is sufficiently small.

7Borrowers only need (sx� ÂDM) to infer current required returns. Adding moments related to the joint dis-
tribution of assets could potentially improve forecastability, but we find that first moments of debt and deposits
do not make significant improvements and would be subject to the curse of dimensionality. Considering richer
forecasting rules leads to convergence problems in the iterative procedure.
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In each period t of the simulation, we need to evaluate whether the borrowing con-
straint binds. We start by guessing that the constraint does not bind. This requires finding
the policy ĀDM such that ReDM(s) = E[ν(s′)]Rd , evaluating borrowers’ policies, computing
lenders’ dividends from the optimality condition and deposits from the flow of funds con-
straint, and checking whether d′

Rd
< κN . If this is the case, we find that period’s solution

and move on to the next period. If not, we find A∗
DM such that markets clear when the

borrowing constraint is binding.
We analyze the goodness-of-fit of the assumed forecasting rule following Den Haan

(2010), who suggests testing the accuracy of the forecast rule by performing a multiperiod
forecasting without updating the endogenous state variable. This method does not adjust
for deviations from the true endogenous state, and thus provides some sense of diver-
gence in the model. Since the relevant variable for the borrower is the bond price, we
simulate a series of bond prices under the true policy ÂDM and compare it with a series of
bond prices under the multiperiod forecast of the policy Âf

DM. The steps are as follows:
(1) Draw a sample for the exogenous processes sx.
(2) Solve for the equilibrium prices and allocations in each period. In particular, obtain

a realization for {ÂDM�t}Tt=1.
(3) Let Âf

DM�0 = ÂDM�0 and construct Âf
DM�t =FA(ωt� Â

f
DM�t−1).

(4) Draw a series for idiosyncratic endowments, z, to simulate an individual borrower.
Compute a series of bond prices {qt}Tt=1 using the actual realization of {ÂDM�t}Tt=1

and a series of bond prices {qft }Tt=1 using {Âf
DM�t}Tt=1.

(5) Construct a series for log residuals {log(qt) − log(qft )}Tt=1 and its R2.
The R2 of the series is 97%. Supplementary Material Figure SB1 shows a subset of the
time series for the log residuals, as well as the estimated density for the entire time series
excluding default episodes. These results show that forecasts do not exhibit the accumu-

FIGURE SB1.—Fundamental Accuracy Plot. Notes: The left panel shows a subset of the time series of the
actual and forecasted versions of the bond price for a simulated individual economy. The right panel shows
the estimated density of the log residuals for the entire sample. On the x-axis, we have the value for the log
residual and on the y-axis the density value.
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lation of errors over time. The predicted series closely follows the actual series for bond
prices, which suggests that the main driver for the DM policy is the ω shock. In addition,
the residuals are centered around zero most of the time, although mildly skewed; 65%
of the absolute values of the log residuals are less than 0�5%; 81% are less than 1%; and
96% are less than 2�5%.

SB2. Data Used in Quantitative Analysis

SB2.1. EM Country Data

Our sample consists of the following countries: Argentina, Brazil, Bulgaria, Chile,
China, Colombia, Croatia, Ecuador, El Salvador, Hungary, Indonesia, Jamaica, Latvia,
Lithuania, Malaysia, Mexico, Morocco, Pakistan, Panama, Peru, Philippines, Poland, Rus-
sia, South Africa, Thailand, Turkey, Ukraine, and Venezuela. For all countries in the sam-
ple, we collect data on sovereign spreads, real GDP, real consumption, and trade balance
over GDP. Sovereign spreads are a summary measure computed by JP Morgan on a syn-
thetic basket of bonds for each country. It measures the implicit interest-rate premium
required by investors to be willing to invest in a defaultable bond of that particular coun-
try. Spread data were obtained from Datastream. Data on real GDP, real consumption,
and trade balance ratio were obtained from national sources and the IMF. The sample
period is from 1994 to 2014, but data on particular countries may have different starting
and ending points, depending on availability.

SB2.2. Global Banks’ Net Worth

The data moments on global banks’ net worth were computed using the cyclical compo-
nent in the stock price of publicly traded US banks that have data coverage for the period
of analysis (tracked by the XLF index).

We also obtain institution-level data to compute two key moments of the calibration:
the leverage of financial intermediaries and their estimated exposure to EM debt. We
obtain the data used in these estimates from the intermediaries’ annual reports (from
AnnualReports.com), which include balance-sheet information and off-balance-sheet in-
formation on assets under management.

We compute two measures of leverage. The first measure corresponds to the “book
value” of leverage, which is defined as the ratio of total assets to total equity. The second
measure, which we label “AUM adjusted leverage,” incorporates assets under manage-
ment in the measurement of leverage. In particular, it is defined as the ratio of the sum of
total assets in the institution’s balance-sheet and assets under management to the sum of
total equity in the balance-sheet and assets under management. We compute this measure
because, in our model, financial intermediaries are aimed at capturing a consolidated en-
tity that maximizes the joint value of the owners’ equity in the firm and the owners of the
assets under management. Table CII reports the two measures of leverage for 28 financial
intermediaries in our sample for the year 2006. On average, the book value of leverage is
19 and the adjusted leverage is 3.8.

To estimate the exposure of total assets to EM debt, we proceed in two steps. In the
first step, we identify government and private-sector securities reported in the institu-
tion’s assets side of the balance-sheet that are disaggregated by country. For example,
HSBC reports the holdings of government bonds issued by the US, UK, Hong Kong, and
other governments. The second step consists of estimating how much of the share of the
other governments’ debt holdings can be attributed to emerging markets and how much

http://AnnualReports.com
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to advanced economies that are not the US, UK, or Hong Kong. We estimate this by
using WEO data; in particular, we distribute the holdings of other governments’ debt ac-
cording to the ratio of emerging-market government debt to the sum of emerging-market
government debt and that from advanced economies that are not the US, UK, or Hong
Kong.

Formally, denote NEM and NDM the set of emerging and advanced economies. Denote
Nj ⊆ NDM the set of advanced economies for which bank j reports disaggregated data;
{(dji)i∈Nj} the amount of holdings by institution j of bonds issued by government i; and
Dj the total government debt holdings by institution j. We can compute the holdings of
other nonreported governments as dj�other ≡Dj − ∑

i∈Nj dji. Finally, let dWEO
i denote the

outstanding debt of government i in the WEO data set. We then estimate the share of

EM holdings by institution j as sjEM = dj�other
Dj

∑
i∈NEM

dWEO
i∑

i /∈Nj d
WEO
i

.

Finally, we follow a similar procedure for estimating intermediaries’ exposure to private
EM securities. Table CI reports the estimated exposure of 25 financial intermediaries in
our sample for the year 2006, with an average of 10%.

SB3. Additional Quantitative Results From the Baseline Model

FIGURE SB2.—Global Financial Crises: Aggregate Drivers. Notes: Global banks’ net worth and EMs’ sys-
temic endowment were proxied, respectively, by the stock price of publicly traded US banks (XLF index) and
by the average GDP in a sample of EMs (detailed in Supplementary Material SB2). Data. Objects in the fig-
ure (dashed lines) refer to the cyclical components of these variables, expressed as deviations from a log-linear
trend and standardized. Model. Objects in the figure (solid lines) refer to the dynamic response of global banks’
net worth and EMs’ systemic endowment to a sequence of shocks {εωt� εEMt} that target the data objects during
2007–2011. Responses in the model were computed starting from the ergodic aggregate states. Variables in the
model are expressed in log deviations from their ergodic means and standardized. Calibration of the model is
detailed in Section 4.1.
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FIGURE SB3.—Amplification Sorted by Intermediaries’ Exposure to EMs and the Dispersion of EM Debt.
Notes: These figures show the dynamics of spreads (in bps) following a 2-s.d. shock to the systemic (solid line)
and idiosyncratic (dashed line) endowment. In the first row, global banks’ exposure to EMs is 10%; in the
second row, banks’ exposure is 35%. In the first column, the initial distribution of EM debt is the ergodic one;
in the second column, the initial distribution has twice the dispersion.

SB4. Alternative Calibration Strategies

This section describes alternative calibration strategies and extensions of the baseline
model. We consider five model extensions: one that targets a lower elasticity (Alternative
Elasticity); one that allows for different stochastic processes for idiosyncratic and aggre-
gate EM endowments (Measured Income Process); one that calibrates financial intermedi-
aries to only asset managers (Asset Managers); one with a state-contingent cost of external
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TABLE SBI

ROBUSTNESS: FIXED PARAMETERS.

Constant State-Contingent

βEM d0 d1 σ μEM σDM κ n̄ ρDM,EM φ βDM

Baseline Model 0�90 0�03 14�0 0�71 2�02 0�07 3�50 0�46 0�45 2�50 0�98
Robustness

i. Alternative Elasticity 0�90 0�03 14�0 0�71 2�06 0�07 4�00 0�70 0�45 0�70 0�98
ii. Measured Income 0�92 0�06 14�0 0�71 1�95 0�07 3�40 0�35 0�45 3�50 0�98

Process∗

iii. Asset Managers 0�90 0�03 14�0 0�80 1�95 0�25 0�00 0�80 0�47 0�90 0�98
iv. High Leverage 0�90 0�03 14�0 0�7 2�06 0�04 7�00 0�29 0�50 3�00 0�98
v. Time-varying φ 0�90 0�03 14�0 0�71 2�14 0�06 3�50 0�37 0�50 φ1 = 3�00 0�98

φ2 = 0�50
vi. Time-varying βDM 0�90 0�03 14�0 0�71 2�05 0�07 3�50 0�46 0�45 2�50 β1 = 0�98

β2 = −0�20

Note: This table describes the values parameters take in each robustness exercise. Parameters are categorized between those
that are always constant vs those that are state-contingent in some exercises. Alternative elasticity refers to the case in which we
target ηEM�N = 0�022; Measured Income Process is the case in which the systemic and idiosyncratic components of endowment are
calibrated as in the data; Asset Managers refers to the case with κ= 0; High Leverage refers to the case with κ= 7; Time-varying φ is
for a state-contingent φ(ω); Time-varying βDM is the scenario with state-contingent risk-free rate rf (ω). ∗ Parameters for measured
EM income process are ρz = 0�82, σz = 0�025, ρEM = 0�70, σEM = 0�016.

finance (Cost of External Finance); and one that introduces global liquidity policies with a
state-contingent funding rate for banks (Liquidity Policies).

SB4.1. Alternative Elasticity

This extension consists of an alternative calibration strategy that targets an elasticity
ηEM�N = −0�022 while keeping all other targets unchanged. This alternative elasticity is
estimated with contemporaneous regressions (see Panel B of Table II). Row (i) of Supple-
mentary Material Table SBI shows the new set of calibrated parameters. The remaining
parameters are set to the same value as in the baseline calibration. Row (i) of Supplemen-
tary Material Table SBII reports the targeted moments. Appendix Table CIV shows that
it is still the case that global banks play an important role during systemic debt crises by
transmitting DM shocks rather than amplifying EM-origin shocks. In addition, Table VI
shows that the contribution of the intermediation premium to total spreads is lower under
this alternative calibration, but still quantitatively important.

SB4.2. Measured Income Process

This model extension allows for different stochastic processes for idiosyncratic and
aggregate EM endowments.8 We measure the systemic EM endowment as the cross-
sectional average of the HP cycle of GDP for each of the countries in the sample. For
each country, we measure its idiosyncratic component as the residual between the coun-
try’s observed HP cycle of output and the constructed systemic component. We assume
that both are first-order autoregressive. The calibrated parameters and targeted moments
are reported in row (ii) of Supplementary Material Tables SBI and SBII, respectively. In
Table VI and Appendix Table CIV, we show that the key quantitative insights of the paper
regarding the role of global banks still hold.

8In the baseline calibration, we restricted these to follow the same stochastic process.
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SB4.3. Asset Managers and High Leverage

We consider two alternative calibrations involving changes in the κ parameter. The first
exercise is aimed at capturing the case in which asset managers (nonlevered institutions)
are the only type of global financial intermediaries in the economy. To this end, we re-
calibrate the model for the case when κ= 0. It is worth highlighting the fact that in this
case, recursive problem (18) corresponds to a consolidated problem that maximizes the
joint value of the owners’ equity in the asset-management firm and the owners of the
assets under management (i.e., its customers, who are assumed to be members of the
DM household). In this case, the cost of raising external funds refers to either the cost of
raising new external equity or the cost of expanding the customer base. This formulation
abstracts from frictions between managers and customers, which are beyond the scope of
the paper.

The calibrated parameters and targeted moments are reported in row (iii) of Supple-
mentary Material Tables SBI and SBII, respectively. In Table VI and Appendix Table CIV,
we show that these nonlevered institutions play a role similar to that of global banks in our
baseline model. This is the case because the main mechanism by which negative shocks
to intermediaries’ net worth increase required returns in risky assets is still in play, since
intermediaries face a higher marginal cost of raising external finance.

The second exercise is to set κ = 7 (twice that of the baseline calibration), aim at ob-
taining a higher level of average leverage. In this case, the recursive problem of the bank
is the same as in the baseline model. The calibrated parameters and targeted moments
are reported in row (iv) of Supplementary Material Tables SBI and SBII, respectively. In
Table VI and Appendix Table CIV, we show that the key quantitative insights of the paper
regarding the role of global banks still hold.

SB4.4. Cost of External Finance

This model extension allows for a time-varying marginal cost of raising external finance
(φt). It is intended to capture the notion that it can be less costly for intermediaries to
raise external funding during tranquil times. We parameterize the marginal cost of raising
equity as φ(ω) = φ1ω

−φ2 , with φ1 > 0, φ2 > 0.9 The calibrated parameters and targeted
moments are reported in row (v) of Supplementary Material Tables SBI and SBII, re-
spectively. We set φ1 = 3 and φ2 = 0�5 to match the EM elasticity ηEM�N = −0�056 and
the skewness of EM spreads of 0�64, as observed in the data. Appendix Table CIV shows
that it is still the case that the majority of the rise in spreads during the Lehman episode,
as well as a significant fraction of the variation in consumption, can be explained by the
transmission of DM shocks through global banks.

SB4.5. Liquidity Policies

The last model extension is to introduce global liquidity policies that cause the risk-
free funding rate for banks to vary with the state. We introduce these policies by allowing
the discount factor of DM households, which in equilibrium determines the deposit rate,
to vary with the aggregate DM exogenous state. We parameterize the risk-free rate as
R−1
d (ω) = βDM(ω) = β1ω

β2 .10 The calibrated parameters and targeted moments are re-

9For numerical stability, we restrict φ to take values within the interval [0�4�5�0].
10For numerical stability, we restrict rf to take values within the interval [1�005�1�04].
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ported in row (vi) of Supplementary Material Tables SBI and SBII, respectively. We keep
the baseline parameters and choose β1 = 0�98 and β2 = −0�2 to match the data moments
of an average risk-free rate of 2% and a covariance of the risk-free rate and the log of the
market value of intermediaries’ net worth of 0.18. In Appendix Figure C4, we show that
in the model with liquidity provision, the effect of the ω shock on EM bond yields and
EM aggregate consumption is attenuated by roughly one-half when compared with the
baseline economy. This is because funding rates decrease in response to the shock; this
allows intermediaries to access funding at cheaper rates and mitigate the impact on their
demand for risky assets.

SB5. The Role of Global Banks’ Equity Issuance Cost, φ

Supplementary Material Table SBIII shows the impact of the marginal cost of equity
issuance, φ, on the composition of the EM-spread risk premium—defined as the sum of
intermediation premium and pure risk components of EM spreads. In particular, the ex-
ercise is to set φ to values below and above the baseline calibration, without recalibrating,
and document the variation in the decomposition of risk. The case φ = 0 resembles an
economy without global banks, in line with such canonical models as Eaton and Gersovitz
(1981) and Arellano (2008). The first panel shows the average spreads of decomposi-
tion and the second panel its volatility. The main takeaway is that financial frictions drive
global banks’ role in determining sovereign spreads, with higher costs of equity issuance
being associated with a greater contribution of risk or intermediation premium to total
spreads, for both the average and the standard deviation.

TABLE SBIII

EQUITY ISSUANCE COSTS AND UNCONDITIONAL DECOMPOSITION OF EM-BOND SPREADS.

Equity Cost

Baseline φ= 0�0 φ= 0�9 φ= 4�0 φ= 8�0

(A) Average
Total Spread 416 bp 285 bp 396 bp 417 bp 422 bp
Default Premium 239 bp 285 bp 258 bp 230 bp 229 bp
Risk Premium 177 bp 0 bp 139 bp 186 bp 193 bp
Contribution Risk Premium 42�5% 0�0% 35�0% 44�7% 45�8%

(B) Standard Deviation
Total Spread 152 bp 139 bp 137 bp 151 bp 152 bp
Default Premium 116 bp 139 bp 123 bp 112 bp 111 bp
Risk Premium 70 bp 0 bp 21 bp 75 bp 79 bp
Contribution Risk Premium 46�1% 0�0% 15�3% 49�7% 52�0%

Note: This table shows a decomposition of the model’s predicted EM-bond spreads into their default- and risk-premium compo-
nents for different values of global banks’ costs of raising equity, φ. The model’s other parameters are those detailed in Section 4.1. We
define the default-premium component of spreads as the bond spreads that would be observed, given EMs’ equilibrium sequence re-
payment and borrowing policies, if debt were priced by a risk-neutral lender. To compute the default-premium component of spreads,
we compute a sequence of risk-neutral prices, q̃iEMt = Et [βDMιit+1(1 + ξq̃iEMt+1)], where {ιit}

∞
t=0 denotes the sequence of state-

contingent repayment policies from our baseline economy. We then compute EM yields to maturity based on risk-neutral prices
{q̃iEMt}

∞
t=0. We define the risk premium as the difference between the spreads predicted by the model and the default-premium

component. Panel (A) shows the unconditional average of each variable and panel (B) the unconditional volatility.
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SB6. Cross-Sectional Asset Pricing

This Appendix provides details on the empirical exercises that assess the market value
of net worth of financial intermediaries as a risk factor in pricing the cross-sectional re-
turns on EMs in the model. We start by describing the theoretical setup and then discuss
our implementation of the exercises in the observed and model-simulated data.

In the model, the stochastic discount factor (SDF) that prices EM debt is a nonlinear
function of the model’s state variables. In this exercise, we consider a linearized factor
version of the SDF that takes the form of

mt+1 = 1 − b(ft+1 −μ)� (59)

where ft is the factor vector (which can be multidimensional), μ is its mean, and b is the
factor loading. In most of the exercises, we consider a single factor given by the market
value of global banks’ net worth. As we will see, this factor conveys the relevant informa-
tion on price securities. The linear-factor model implies that the excess expected returns
of any portfolio j are given by

E
[
r̃ej

] = λ′
fβjf � (60)

where r̃ej is the log excess return, λf = �ffb, with �ff being the variance-covariance matrix
of the factors, and βjf is the exposure of each portfolio j to the risk factor f .

The objective of our exercise is to assess how well approximated are excess expected
returns under (60). We use a two-stage cross-sectional regression approach (see Cochrane
(2005), Chapter 12) to estimate portfolios’ exposure to the risk factor, the price of risk,
and the cross-sectional predicted returns. In the first stage, we use the time series of the
factor and the portfolio returns to obtain estimates of the exposures βj�f by estimating

rejt = cj +βjf ft + εjt � (61)

In the second stage, we estimate the price of risk λf from the cross-sectional regression

r̄ej = β′
jf λf + uj� (62)

where r̄ej is the average return (across time) of portfolio j. We then use the estimated price
of risk to predict cross-sectional returns and compare them with the actual values.

Implementation With Observed Data. We first compute this estimation exercise on
the observed data. We consider the six sovereign bond portfolios analyzed by Borri and
Verdelhan (2011), which vary in the degree of default risk and comovement with mar-
ket returns. Panels (A) and (B) of Supplementary Material Table SBIV report summary
statistics of the realized returns of these bond portfolios at monthly and annual frequen-
cies, respectively. We measure the factor as the monthly variation in the stock price of
publicly traded US banks, tracked by the XLF index. Panel (A) of Supplementary Mate-
rial Figure SB4 shows that the linear-factor model correctly predicts the cross-section of
observed expected returns for the six bond portfolios.

Implementation With Model-Simulated Data. To implement this approach in our
model, we first construct six EM portfolios similar to those in Borri and Verdelhan (2011).
Portfolios are based on (i) the covariance of EM returns with the log-change in the market
value of net worth and (ii) the default probability as measured by EM spreads. Data are
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TABLE SBIV

BOND PORTFOLIOS: SUMMARY STATISTICS.

βj Low High

Default Prob. Low Medium High Low Medium High

Portfolios 1 2 3 4 5 6

Panel A. Data (Monthly Frequency)
Mean 2�5% 4�6% 7�4% 7�4% 10�7% 14�7%
Std. Dev. 32�0% 37�0% 55�0% 31�8% 39�8% 66�0%
Sharpe Ratio 0�08 0�12 0�13 0�23 0�27 0�22

Panel B. Data (Annual Frequency)
Mean 2�0% 3�8% 5�7% 6�6% 9�6% 12�1%
Std. Dev. 5�9% 8�4% 18�3% 8�1% 11�7% 27�5%
Sharpe Ratio 0�34 0�45 0�31 0�82 0�81 0�44

Panel C. Model (Annual Frequency)
Mean 2�9% 4�0% 5�6% 3�1% 4�3% 6�0%
Std. Dev. 3�8% 4�4% 5�5% 4�0% 4�6% 5�8%
Sharpe Ratio 0�75 0�89 1�01 0�77 0�93 1�03

Note: This table shows summary statistics for EM portfolio returns, in both the model and the data. In the data, portfolio returns
are obtained from Borri and Verdelhan (2011) at monthly frequency. In the model, we construct portfolios and returns as explained
in Supplementary Material SB6.

simulated data for T = 1000 periods and N = 1000 borrowing countries. The covariance
is measured by computing a 5-year rolling window estimation of

rEM
i�t = αi +βEM

i�t ft + εi�t� (63)

where rEM
i�t are the returns on country i during the 5-year window ending in period t, ft is

the risk factor during this window, andβi�t is the measured covariance for that country and
window. Assuming a rebalancing period of 5 years, we sort countries by having low versus
high βEM

i�t . For each of these two groups, we further differentiate countries by having low,
medium, or high spreads. Panel (C) of Supplementary Material Table SBIV reports sum-
mary statistics of the simulated returns of these bond portfolios. We measure the factor as
the log variation in the market value of global banks’ net worth in the model. Panel (B) of
Supplementary Material Figure SB4 shows that the linear-factor model correctly predicts
the cross-section of model-simulated expected returns for the six bond portfolios, which
suggests that the market value of global banks’ net worth conveys the information rele-
vant to price EM bonds in the model. For comparison purposes, the figure also shows the
goodness-of- fit of a linear-factor model in which the factors are the model’s aggregate
state variables. As expected, this alternative model provides almost a full accounting of
the cross-sectional variation in returns.

Implementation with observed returns and the model-implied market price of risk. We
consider a third exercise in which we use the model-estimated market price of risk, λf ,
together with data-estimated loadings of bond portfolios, to estimate the observed cross-
sectional excess expected returns. The goodness-of-fit of this exercise, reported in Panel
(A) of Supplementary Material Figure SB4, suggests that the calibrated model also prices
well the observed cross-sectional sovereign risk.
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FIGURE SB4.—Cross-sectional Asset Pricing: Actual Versus Fitted. Notes: These figures contrast the cross–
sectional returns on six EM–bond portfolio holdings (y-axis) against the realized returns (x-axis), for both
model-simulated and actual data. In the data, portfolios are obtained from Borri and Verdelhan (2011) for
the period 1995 to 2011. In the model, portfolios are constructed based on (i) the covariance of EM returns
with the log-change in V (N) and (ii) the default probability as measured by EM bond spreads. We consider
the log-change in global banks’ market value of net worth as a unique risk factor (V (N) in the model and
XLF in the data), and use a standard cross-sectional regression approach to compute the price of risk and the
predicted returns. Panel (A) shows results in the data and compares them with the case in which we instead
use the model-implied value of the price of risk, while keeping the first-stage estimated factor loadings fixed.
Panel (B) shows the results of the model and compares them with the case in which we instead use aggregate
states {YEM�ω�A

′
DM} to price EM portfolios.
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