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Abstract
Restricted mean survival time (RMST) is a clinically interpretable and meaning-
ful survivalmetric that has gained popularity in recent years. Severalmethods are
available for regression modeling of RMST, most based on pseudo-observations
or what is essentially an inverse-weighted complete-case analysis. No existing
RMST regression method allows for the covariate effects to be expressed as func-
tions over time. This is a considerable limitation, in light of the many hazard
regression methods that do accommodate such effects. To address this void in
the literature, we propose RMST methods that permit estimating time-varying
effects. In particular, we propose an inference framework for directly model-
ing RMST as a continuous function of 𝐿. Large-sample properties are derived.
Simulation studies are performed to evaluate the performance of the methods in
finite sample sizes. The proposed framework is applied to kidney transplant data
obtained from the Scientific Registry of Transplant Recipients.
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1 INTRODUCTION

For time to event data with right censoring, the propor-
tional hazards model (Cox, 1972) has long been the default
for conducting analysis requiring covariate adjustment.
The principal summary measure that results from Cox
regression is the hazard ratio (HR), which is routinely used
to quantify between-group differences. This line of analysis
relies on proportional hazards (PH), which is the assump-
tion that the ratio of the two hazard functions are constant
over time. Although the approach is convenient to imple-
ment, the PH assumption is frequently violated, leading to
difficulties with interpretation (Struthers and Kalbfleisch,
1986; Wei and Schaubel, 2008).
A number of authors have advocated for using summary

statistics beyond the hazard ratio in both clinical trials
and observational data analyses, especially when the
proportional hazards assumption has been called into

doubt (Royston and Parmar, 2011; Schaubel and Wei,
2011; Royston and Parmar, 2013; Uno et al., 2014, 2015).
In particular, the restricted mean survival time (RMST)
has been suggested. Defined as the mean survival time
up to a fixed time, 𝐿, in a given population, the RMST
can simply be thought of as an 𝐿-year life expectancy.
Mathematically, it is written as the area under the survival
curve up to time 𝐿. First proposed in Irwin (1949), RMST
was initially meant as a substitute for the overall mean,
for settings where the presence of censoring prevented
the estimation of the latter. More recently, it has come
to be known as an interesting measure in its own right.
Simulation studies have compared RMST treatment effect
estimation and statistical power with HR-based tests both
under proportional hazards and nonproportional hazards
scenarios. Royston and Parmar (2013), Tian et al. (2018),
and Huang and Kuan (2018) found that under PH sce-
narios, RMST-based and log-rank tests perform similarly
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(with a slight advantage for the log-rank test), while RMST
performs better in non-PH scenarios. Hence, RMST is a
clinically relevant and interpretable measure that does not
depend on the PH assumption and requires little sacrifice
in statistical power even when the PH assumption holds.
Most existing methods estimate RMST indirectly by

integrating under an estimate of the survival curve. Irwin
(1949) used the actuarial estimator for the survival prob-
ability and approximated the area under the curve using
numerical quadrature methods. More recent methods that
extend those of Irwin (1949) by incorporating covariates
tend to proceed initially through hazard regression. Karri-
son (1987) introduced covariate adjustment for the RMST
using a piece-wise exponential hazard model, assuming
covariates affect the hazard in amultiplicativemanner just
as in the Cox model, subsequently obtaining the piece-
wise cumulative hazard, survival probability curve, and the
restricted mean. Zucker (1998) followed a similar proto-
col, using a stratified Coxmodel instead. Evenmore recent
approaches still require four to five sequential steps to
obtain the restricted mean: estimate the regression param-
eter (e.g., through a Cox model); estimate the cumulative
baseline hazard; transform the subject-specific cumula-
tive hazard, then integrate it to obtain the restricted mean
(Chen and Tsiatis, 2001; Zhang and Schaubel, 2011). This
process is cumbersome and computationally expensive in
large data sets, especially to obtain asymptotic standard
errors. Furthermore, through the use of Cox model, this
process also relies on the proportional hazards assump-
tion, which, if untrue, can also lead to bias, inefficient esti-
mation, and a challenging interpretation.
Hence, several authors have suggested to directly model

the RMST itself. Andersen et al. (2004) and Andersen and
Pohar Perme (2010) used imputation based on pseudo-
observations tomodel the RMSTdirectly using generalized
linear models. Tian et al. (2014) employed a different but
similarly direct approach by constructing estimating
equations for RMST based on Inverse Probability of
CensoringWeighting (IPCW) (Robins and Rotnitzky, 1992;
Robins, 1993; Robins and Finkelstein, 2000), similar to the
approach of Zhao et al. for quality adjusted life (Zhao and
Tsiatis, 1997, 1999). Wang and Schaubel (2018) employed
a similar modeling strategy, but further extended the
method to accommodate dependent censoring.
To the best of our knowledge, no existing regression

methods have been proposed for modeling RMST as a
continuous function of the restriction time, 𝐿. Zhao et al.
(2016) makes a strong case for it by looking at the entire
RMST curve, in order to obtain a complete temporal pic-
ture, much like the survival function. We extend this
concept to the regression setting, which has two impor-
tant analytic implications. First, through our proposed
approach, one can obtain RMST predictions for various

restriction times through a single model. Second and
much more importantly, models fitted though our pro-
posed methods yield time-varying covariate effects. The
second property is essential for RMST regression to be on
more equal footing with hazard regression, since the latter
is currently the strong default analysis when time-varying
covariate effects are an objective.
The remainder of this report is organized as follows. In

Section 2, we describe the proposed methods, formulating
the notation, data structure, and listing out the assump-
tions. In Section 3, we present the derived asymptotic prop-
erties. In Section 4, we present results from simulation
studies to evaluate the accuracy of the proposed methods.
In Section 5, we apply themethod to the Scientific Registry
of Transplant Recipients (SRTR) kidney transplant data,
illustrating the use of our method. We conclude this report
in Section 6 with a discussion. Asymptotic derivations are
provided in the supporting information.

2 PROPOSEDMETHODS

Let 𝐷𝑖 be the survival time for subject 𝑖, where 𝑖 = 1, … , 𝑛.
Let𝐶𝑖 be the censoring time, assumed to be independent of
𝐷𝑖 conditional on the baseline covariates. The observation
time for subject 𝑖 is 𝑋𝑖 = 𝐷𝑖 ∧ 𝐶𝑖 , where 𝑎 ∧ 𝑏 = min{𝑎, 𝑏}.
The at-risk indicator is denoted by 𝑅𝑖(𝑡) = 𝐼(𝑋𝑖 ≥ 𝑡), and
the event and censoring indicators are Δ𝐷

𝑖
= 𝐼(𝐷𝑖 ≤ 𝐶𝑖)

and Δ𝐶
𝑖
= 𝐼(𝐶𝑖 < 𝐷𝑖), respectively. We denote covariates

predicting 𝐷𝑖 and 𝐶𝑖 by 𝒁𝐷𝑖 and 𝒁𝐶
𝑖
, respectively. Stacking

these covariates and removing redundancy, we obtain 𝒁𝑖 .
Our observed data are then given by {𝑋𝑖, Δ𝐷𝑖 , Δ

𝐶
𝑖
, 𝒁𝑖 ∶ 𝑖 =

1, … , 𝑛}.
Let 𝜏 = max{𝑋𝑖 ∶ 𝑖 = 1,… , 𝑛} be the end of follow-up

time, and 𝐿max be a pre-specified maximal value of 𝐿 after
which estimation becomes potentially unstable and of lit-
tle interest. Naturally, it is required that 𝜏 ≥ 𝐿max. Let 𝑳
be a vector of length 𝐾 where 𝑳 = (𝐿1, 𝐿2, … , 𝐿𝐾)

′ values
sorted in ascending order. For a particular element of 𝑳,
say 𝐿𝑘, the restricted observation time is 𝑌𝑖𝑘 = 𝑋𝑖 ∧ 𝐿𝑘,
and the corresponding observed-event indicator is Δ𝑖𝑘 =
𝐼(𝐷𝑖 ∧ 𝐿𝑘 ≤ 𝐶𝑖). Note that Δ𝑖𝑘 is analogous to a complete-
case indicator, taking the value 1 if subject 𝑖 either dies
before (𝐶𝑖 ∧ 𝐿𝑘) or lives (and remains uncensored) past 𝐿𝑘.
In general, for any arbitrary value of 𝐿, we are interested

in the average survival time up to 𝐿, modeled through an
individual’s covariates:

𝜇𝑖(𝐿) ∶= 𝐸
{
𝐷𝑖 ∧ 𝐿|𝒁𝐷𝑖 }.

As in Wang and Schaubel (2018), we assume the same
direct relationship between the RMST and the baseline
covariates. However, in addition, we assume that the
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covariate effects vary as a function of 𝐿 in the following
equation:

𝑔[𝜇𝑖(𝐿)] ≡ 𝑔
[
𝐸
{
𝐷𝑖 ∧ 𝐿|𝒁𝐷𝑖 }] = 𝜷′𝐷(𝐿)𝒁

𝐷
𝑖
, (1)

where 𝑔 is a strictly monotone link function with a con-
tinuous derivative within an open neighborhood 𝐷(𝐿) of
𝜷𝐷(𝐿). Some conventional examples of 𝑔(𝑥) could be the
identity link, log link, or logistic link. Without any adjust-
ments, (1) is an infinite-dimensional problem and would
generally be inconvenient to estimate. Instead, we address
the problemby assuming that𝜷𝐷(𝐿), a vector of continuous
andmonotonic functions, is able to be parametricallymod-
eled as a function of 𝐿. For example, denote this paramet-
ric model of 𝐿 as 𝜷𝐷(𝐿) = 𝜶0𝐿0(𝐿) +⋯+ 𝜶𝑚𝐿𝑚(𝐿), where
𝐿0(𝐿), 𝐿1(𝐿), … , 𝐿𝑚(𝐿) are functions of 𝐿, that is, para-
metric or spline functions. Let 𝒁𝑖 = (1, 𝑍𝑖1, … , 𝑍𝑖𝑝)

′ and
𝑳(𝐿) = (𝐿0(𝐿), 𝐿1(𝐿), … , 𝐿𝑚(𝐿))

′. Then we can re-express
the covariate vector as follows:

𝒁𝐷
𝑖
(𝐿) = 𝒁𝑖 ⊗ 𝑳(𝐿),

where⊗ denotes theKronecker product. Correspondingly,
let 𝜶0 = (𝛼00, … , 𝛼0𝑚)

′, … , 𝜶𝑝 = (𝛼𝑝0, … , 𝛼𝑝𝑚)
′, such that

the new parameter vector can be written as

𝜷𝐷 =

⎡⎢⎢⎢⎢⎣
𝜶0
𝜶1
⋮

𝜶𝑝

⎤⎥⎥⎥⎥⎦
.

Hence, we can rewrite model (1) as

𝑔[𝜇𝑖(𝐿)] ≡ 𝑔
[
𝐸
{
𝐷𝑖 ∧ 𝐿|𝒁𝐷𝑖 }] = 𝜷′𝐷(𝐿)𝒁

𝐷
𝑖
= 𝜷′𝐷𝒁

𝐷
𝑖
(𝐿).

(2)
This parametrization in effect reduces an infinite-
dimensional problem to a finite-dimensional one, thereby
making it more convenient to estimate the regression
parameter. The specific parametrization of 𝛽𝑘(𝐿) requires
careful consideration and should be supported by graph-
ical evidence. For relationships that do not seem to be
simply linear, the authors recommend fitting a spline
as an initial choice. The knots of the spline should be
pre-selected and evenly span across the represented data
to ensure a comprehensive fit. Further exploration of this
issue is given in Section 6.
Based on (2), in the absence of censoring, we can derive

the following estimating equation:

1

𝑛

𝑛∑
𝑖=1

𝐾∑
𝑘=1

𝒁𝐷
𝑖
(𝐿𝑘)[𝑌𝑖𝑘 − 𝑔−1{𝜷′𝒁𝐷

𝑖
(𝐿𝑘)}] = 𝟎. (3)

In effect, this is a stacked version of the estimating equa-
tion presented in Wang and Schaubel (2018), where each
new iteration of the data (for each value of 𝐿𝑘) is stacked
to make a complete vector of responses. Each individual
is now represented in the data set 𝐾 times through its
relationship with individual 𝐿𝑘𝑠. The complete response
vector is then used to fit a model that incorporates each 𝐿𝑘
as part of the covariate information. We then estimate the
assumed model through generalized estimating equations
(GEE). To retain flexibility and robustness, we utilize
a working independence correlation structure for each
individual.
As with most survival data, we are unlikely to observe

𝐷𝑖 for all patients due to censoring. In this report, we will
focus on independent censoring and make the standard
assumption that 𝐶𝑖 ⟂ 𝐷𝑖|𝒁𝑖 . We further assume that the
hazard for censoring time 𝐶𝑖 follows a proportional haz-
ards model (Cox, 1972),

𝜆𝐶
𝑖
(𝑡) = 𝜆𝐶

0
(𝑡) exp(𝜷′

𝐶
𝒁𝐶
𝑖
). (4)

Then, each subject-specific cumulative hazards is given
by Λ𝐶

𝑖
(𝑡) = ∫ 𝑡

0
𝜆𝐶
𝑖
(𝑢)𝑑𝑢 for 𝑖 = 1, … , 𝑛. In the presence

of censoring, 𝐸(𝒁𝐷
𝑖
(𝐿𝑘)[𝑌𝑖𝑘 − 𝑔−1{𝜷′𝒁𝐷

𝑖
(𝐿𝑘)}]) ≠ 𝟎, but

we can show that the IPCW weighted expectation
𝐸(𝒁𝐷

𝑖
(𝐿𝑘)Δ𝑖𝑘𝑊

𝐶
𝑖
(𝑌𝑖𝑘)[𝑌𝑖𝑘 − 𝑔−1{𝜷′𝒁𝐷

𝑖
(𝐿𝑘)}]) has mean 𝟎,

where𝑊𝐶
𝑖
(𝑡) = exp{Λ𝐶

𝑖
(𝑡)}.

We then present the following estimating equation,
proven in the supporting information to be unbiased for
𝜷′𝐷 :

𝚽∗(𝜷)∶ =
1

𝑛

𝑛∑
𝑖=1

𝐾∑
𝑘=1

𝒁𝐷
𝑖
(𝐿𝑘)Δ𝑖𝑘𝑊

𝐶
𝑖
(𝑌𝑖𝑘)

× [𝑌𝑖𝑘 − 𝑔−1{𝜷′𝒁𝐷
𝑖
(𝐿𝑘)}] = 𝟎. (5)

Because the cumulative censoring hazard is usually not
known in real data settings, the following empirical esti-
mating equation substitutes for Λ𝐶

𝑖
(𝑡) using the standard

partial likelihood (Cox, 1975) and Breslow–Aalen (Breslow,
1972) estimator,

𝚽(𝜷)∶ =
1

𝑛

𝑛∑
𝑖=1

𝐾∑
𝑘=1

𝒁𝐷
𝑖
(𝐿𝑘)Δ𝑖𝑘𝑊

𝐶
𝑖
(𝑌𝑖𝑘)

× [𝑌𝑖𝑘 − 𝑔−1{𝜷′𝒁𝐷
𝑖
(𝐿𝑘)}] = 𝟎. (6)

The solution to (6) is shown to provide for consistent
estimation of 𝜷𝐷 ; asymptotic properties are discussed in
Section 3.
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3 ASYMPTOTIC PROPERTIES

We specify the following regularity conditions (a)–(g):

(a) {𝑋𝑖, Δ𝐷𝑖 , Δ
𝐶
𝑖
, 𝒁𝑖}, 𝑖 = 1, 2, … , 𝑛 are independently and

identically distributed.
(b) 𝑃{𝑅𝑖(𝑡) = 1} > 0 𝑓𝑜𝑟 𝑡 ∈ (0, 𝜏), 𝑖 = 1, … , 𝑛.
(c) |𝑍𝑖𝑘| < 𝑀𝑍 < ∞ for 𝑖 = 1, … , 𝑛, where 𝑍𝑖𝑘 is the 𝑘th

component of 𝒁𝑖 .
(d) Λ𝐶

𝑖
(𝜏) < ∞ and Λ𝐶

𝑖
(𝑡) is absolutely continuous for 𝑡 ∈

(0, 𝜏].
(e) There exist neighborhoods 𝐶 of 𝜷𝐶 such that for 𝑘 =

0, 1, 2,

sup
𝑡∈(0,𝜏],𝜷∈𝜷𝐶

‖‖‖‖‖ 1𝑛
𝑛∑
𝑖=1

exp(𝜷′𝒁𝐶
𝑖
)𝑅𝑖(𝑡)𝒁

𝐶⊗𝑘
𝑖

− 𝒓
(𝑘)
𝐶
(𝑡; 𝜷)

‖‖‖‖‖ 𝑝
F→ 0,

where 𝒗⊗0 = 1, 𝒗⊗1 = 𝒗, 𝒗⊗2 = 𝒗′𝒗, and

𝒓
(𝑘)
𝐶
(𝑡; 𝜷) = 𝐸[exp(𝜷′𝒁𝐶

𝑖
)𝑅𝑖(𝑡)𝒁

𝐶⊗𝑘
𝑖

].

(f) Define ℎ(𝑥) = 𝜕𝑔−1(𝑥)∕𝜕𝑥, where ℎ exists and is con-
tinuous in an open neighborhood 𝐷(𝐿) of 𝜷𝐷(𝐿).

(g) Matrices𝑨(𝜷𝐷),𝛀𝐶(𝜷𝐶) are both positive definite, and
are defined below:

𝑨(𝜷𝐷) = 𝐸

[
𝐾∑
𝑘=1

𝒁𝐷
𝑖
(𝐿𝑘)

⊗2ℎ{𝜷′𝐷𝒁
𝐷
𝑖
(𝐿𝑘)}

]

𝛀𝐶(𝜷𝐶) = 𝐸

[
∫

𝜏

0

{
𝒓
(2)
𝐶
(𝑡; 𝜷𝐶)

𝑟
(0)
𝐶
(𝑡; 𝜷𝐶)

− 𝒛̄𝐶(𝑡; 𝜷𝐶)
⊗2

}
𝑑𝑁𝐶

𝑖
(𝑡)

]
,

where

𝒛̄𝐶(𝑡; 𝜷) =
𝒓
(1)
𝐶
(𝑡; 𝜷)

𝑟
(0)
𝐶
(𝑡; 𝜷)

.

Condition (a) could be relaxed, but additional techni-
cal developments would be needed to compensate. Con-
dition (b) is required for identifiability. Conditions (c)–(f)
are required for the convergence of stochastic integrals in
several proofs. In (g), matrices 𝑨(𝜷𝐷),𝛀𝐶(𝜷𝐶) are at least
nonnegative definite and will be positive-definite provided
the covariate vectors are specified sensibly.
The main asymptotic results are presented below, in

Theorems (1) and (2), with proofs presented in the support-
ing information.

Theorem 1. Under regularity conditions (a)–(g), as 𝑛 →
∞,

√
𝑛𝚽(𝜷𝐷) converges in distribution to a𝑁𝑜𝑟𝑚𝑎𝑙(𝟎,

𝑩(𝜷𝐷)), where 𝑩𝑖(𝜷) =
∑𝐾

𝑘=1
{𝝐𝑖𝑘(𝜷) + 𝛀𝐶(𝜷𝐶)

−1𝑼𝐶
𝑖
(𝜷𝐶)

𝑲𝐶(𝜷)} and 𝑩(𝜷) ≡ 𝐸{𝑩𝑖(𝜷)
⊗2}, where we define:

𝝐𝑖𝑘(𝜷𝐷) = 𝒁𝐷
𝑖
(𝐿𝑘)Δ𝑖𝑘𝑊

𝐶
𝑖
(𝑌𝑖𝑘)[𝑌𝑖𝑘 − 𝑔−1{𝜷′𝐷𝒁

𝐷
𝑖
(𝐿𝑘)}]

𝑼𝐶
𝑖
(𝜷𝐶) = ∫

𝜏

0

{𝒁𝐶
𝑖
− 𝒛̄𝐶(𝑢; 𝜷𝐶)}𝑑𝑀

𝐶
𝑖
(𝑢)

𝑫𝐶
𝑖
(𝑡) = ∫

𝑡

0

{𝒁𝐶
𝑖
− 𝒛̄𝐶(𝑢; 𝜷𝐶)}𝑑Λ

𝐶
𝑖
(𝑢)

𝑲𝐶(𝜷) ≡ 𝐸[𝝐𝑖𝑘(𝜷)𝑫
𝐶
𝑖
(𝑌𝑖𝑘)

′].

Proof of Theorem 1 uses results presented in Zhang and
Schaubel (2011).Mainly, we borrow techniques for express-
ing the asymptotic empirical weight in terms of the true
weight for independent censoring times. Theorem 1 sets
the stage for the next theorem.

Theorem 2. Under regularity conditions (a)–(g), as 𝑛 →
∞, 𝜷𝐷 converges in probability to 𝜷𝐷 , and

√
𝑛(𝜷𝐷 − 𝜷𝐷)

converges in distribution to𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 𝑨(𝜷𝐷)−1𝑩(𝜷𝐷)
𝑨(𝜷𝐷)

−1).

The proof of consistency follows from the use of the
Inverse Function Theorem (Foutz, 1977). The asymptotic
normality and variance follows from the combination of
Theorem 1 and a sequence of Taylor expansions.
We propose a variance estimator that is computationally

more convenient than that derived in Theorem 2. Specif-
ically, the weight function is treated as known, such the
middle matrix involves only 𝝐𝑖𝑘(𝜷), which implies the fol-
lowing variance estimator

𝑉(𝜷𝐷) = 𝑨(𝜷𝐷)
−1𝑩∗(𝜷𝐷)𝑨(𝜷𝐷)

−1, (7)

where 𝑩∗(𝜷) = 𝐸{(
∑𝐾

𝑘=1
𝝐𝑖𝑘(𝜷))

⊗2}. Treating the IPCW
weights as fixed has a long history, dating back at least
to the works of Robins et al. (2000). Moreover, Wang
and Schaubel (2018) demonstrated through simulation
that there was no practical difference between standard
errors that treated the weights as fixed versus random.
The asymptotic standard error (ASE) estimator given in (7)
will be used in Sections 4 and 5. Computationally, (7) can
be quickly computed with built-in commands in standard
software (e.g., R, SAS), using any function that can handle
weighted GEE data structures.

4 SIMULATION STUDY

For each subject, 𝑖 = 1, … , 𝑛, we first generated a baseline
covariate with two elements, 𝒁𝑖 = (𝑍𝑖1, 𝑍𝑖2)

′, with each
element generated from a Unif(-1,1) distribution. The
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death time, 𝐷𝑖 , was then generated from an exponential
distribution with

𝐸[𝐷𝑖|𝒁𝑖] = 𝑔−1(𝛼0 + 𝛼1𝑍𝑖1 + 𝛼2𝑍𝑖2). (8)

Parameter settings were chosen to cover a wide variety of
realistic scenarios. For 𝑔(𝑥) = 𝑥, we set 𝜶 = [4, 2.5, −2.5]′

for the “strong” covariate effect scenario, and set 𝜶 = [4,

0.75, −0.75]′ to represent weaker covariate effects. Note
that Cox regression under the “strong” scenario yields
hazard ratios of 𝐻𝑅1 ≈ 0.45 and 𝐻𝑅1 ≈ 2.15 for 𝑍𝑖1 and
𝑍𝑖2, respectively; the “weak” covariate setting lines up
with 𝐻𝑅1 ≈ 0.80 and 𝐻𝑅2 ≈ 1.20. For 𝑔(𝑥) = log(𝑥), we
set 𝜶 = [1.25, log(2), − log(2)]′ and 𝜶 = [1.25, log(1.25),

− log(1.25)]′ for the strong and weak covariate effect
scenarios, respectively. For the log link, the strong
setting yields hazard ratios 𝐻𝑅1 ≈ 0.5 and 𝐻𝑅2 ≈ 2.0,
while the weak setting corresponds to 𝐻𝑅1 ≈ 0.80 and
𝐻𝑅2 ≈ 1.25. Although we did not directly generate the
restricted mean survival time 𝐷𝑖 ∧ 𝐿, we can induce
its relationship with the two covariates through Monte
Carlo methods (with population size 10 million for each
configuration).
With respect to censoring, we examined scenarios with

a low (15% censored), moderate (30%), and high (45%) pro-
portion censored. Independent censoring time, 𝐶𝑖 , was
generated from the following hazard,

𝜆𝐶
𝑖
(𝑡) = 𝜆𝐶0 exp(𝛽𝐶1𝑍𝑖1 + 𝛽𝐶2𝑍𝑖2).

For all settings, 𝛽𝐶1 = log(1.5) and 𝛽𝐶2 = − log(1.5). We
varied 𝜆𝐶0 in order to generate the desired percent
censored; censoring parameters are given in the table
captions.
We present the results for sample size 𝑛 = 1000, under

low, moderate, and high censoring scenarios. For each set-
ting, 500 iterates were generated. In Tables 1 and 2, we
present results for the strong covariate setting for the lin-
ear and log links, respectively. For illustrative purposes,
we will select 𝐿 = {5, 7.5, 10}. Tables 1 and 2 contain the
true values, bias, empirical standard deviation (ESD), the
asymptotic standard error (ASE), and empirical coverage
probabilities (CP) corresponding to the asymptotic 95%
confidence intervals.
The general conclusion from Tables 1 and 2 is that,

in moderate samples, the proposed estimator is approx-
imately unbiased. Furthermore, the ESDs matched the
ASEs very closely, supporting the accuracy of the deriva-
tions, and that treating the inverse probability censoring
weights as known is adequate for maintaining estima-
tion accuracy of the standard errors. The empirical cov-
erage probabilities are similarly very close to the nominal
level.

TABLE 1 Simulation results: linear link, strong covariate
effect. Data were generated using 𝜷𝑫 = [4, 2.5, −2.5]. True 𝜷𝑫 are
given by [2.621, 1.006, −1.006] for 𝐿 = 5, [3.140, 1.440, −1.440] for
𝐿 = 7.5, and [3.453, 1.753, −1.756] for 𝐿 = 10. For low censoring
(15%), 𝜆𝐶0 = 0.025, 𝜷𝑪 = [− log(1.5), log(1.5)]. For moderate
censoring (30%), 𝜆𝐶0 = 0.1, 𝜷𝑪 = [− log(1.5), log(1.5)]. For high
censoring (45%), 𝜆𝐶0 = 0.225, 𝜷𝑪 = [− log(1.5), log(1.5)]

L Censor % Parameter BIAS ESD ASE CP
𝛽0 −0.001 0.053 0.055 0.960

15 𝛽1 −0.004 0.098 0.095 0.944
𝛽2 −0.009 0.100 0.095 0.940
𝛽0 −0.003 0.056 0.062 0.976

5 30 𝛽1 0.004 0.101 0.106 0.958
𝛽2 0.003 0.107 0.106 0.942
𝛽0 −0.002 0.064 0.079 0.982

45 𝛽1 −0.004 0.121 0.131 0.964
𝛽2 −0.001 0.123 0.132 0.956
𝛽0 −0.005 0.073 0.078 0.964

15 𝛽1 −0.011 0.138 0.136 0.944
𝛽2 −0.008 0.141 0.136 0.958
𝛽0 −0.009 0.081 0.094 0.974

7.5 30 𝛽1 −0.003 0.145 0.160 0.964
𝛽2 0.009 0.160 0.160 0.944
𝛽0 −0.009 0.099 0.133 0.988

45 𝛽1 −0.017 0.194 0.220 0.974
𝛽2 0.003 0.195 0.220 0.968
𝛽0 −0.005 0.089 0.097 0.968

15 𝛽1 −0.009 0.170 0.171 0.950
𝛽2 −0.009 0.173 0.170 0.964
𝛽0 −0.011 0.104 0.124 0.970

10 30 𝛽1 −0.005 0.197 0.213 0.978
𝛽2 0.008 0.210 0.211 0.954
𝛽0 −0.016 0.132 0.197 0.992

45 𝛽1 −0.037 0.290 0.323 0.982
𝛽2 −0.011 0.287 0.323 0.964

Figure 1 displays plots comparing 𝜷(𝐿) with 𝜷(𝐿) from
the 30% censoring scenario shown in Table 1. The proposed
estimator is quite accurate across all 𝐿 values plotted, as
evidenced by the fact that “estimated” and “true” lines are
practically indistinguishable.
Additional simulation results are provided in the Sup-

porting Information. In particular, we show results for
weak covariate effects in Web Tables 1 and 2. Results
are very similar those afore-described for Tables 1 and
2. We show results for smaller sample sizes (𝑛 = 500

and 𝑛 = 250) in Web Tables 3 and 4. Results are accept-
able, although residual bias is greater than that shown in
Tables 1 and 2, and CP is a bit lower, as one would expect.
In Web Tables 5 and 6, we compare the efficiency of the
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TABLE 2 Simulation results: log link, strong covariate effect.
Data were generated using 𝜷𝑫 = [1.25, log(2), − log(2)]. True 𝜷𝑫 are
given by [0.923, 0.359, −0.359] for 𝐿 = 5, [1.074, 0.451, −0.451] for
𝐿 = 7.5, and [1.148, 0.515, −0.515] for 𝐿 = 10. For low censoring
(15%), 𝜆𝐶0 = 0.025, 𝜷𝑪 = [− log(1.5), log(1.5)]. For moderate
censoring (30%), 𝜆𝐶0 = 0.1, 𝜷𝑪 = [− log(1.5), log(1.5)]. For high
censoring (45%), 𝜆𝐶0 = 0.225, 𝜷𝑪 = [− log(1.5), log(1.5)]

L Censor % Parameter BIAS ESD ASE CP
𝛽0 −0.001 0.022 0.023 0.946

15 𝛽1 0.001 0.035 0.036 0.956
𝛽2 −0.004 0.034 0.036 0.964
𝛽0 −0.001 0.023 0.026 0.974

5 30 𝛽1 0.001 0.041 0.041 0.956
𝛽2 0.001 0.037 0.041 0.974
𝛽0 −0.001 0.028 0.034 0.986

45 𝛽1 0.001 0.047 0.053 0.978
𝛽2 −0.001 0.050 0.054 0.958
𝛽0 −0.003 0.026 0.027 0.952

15 𝛽1 0.000 0.041 0.043 0.948
𝛽2 −0.004 0.041 0.043 0.954
𝛽0 −0.002 0.028 0.033 0.970

7.5 30 𝛽1 0.002 0.049 0.051 0.974
𝛽2 0.005 0.046 0.051 0.968
𝛽0 −0.005 0.039 0.048 0.980

45 𝛽1 0.004 0.066 0.073 0.960
𝛽2 0.002 0.072 0.074 0.960
𝛽0 −0.003 0.029 0.029 0.956

15 𝛽1 −0.000 0.045 0.048 0.962
𝛽2 −0.005 0.047 0.048 0.948
𝛽0 −0.001 0.031 0.039 0.976

10 30 𝛽1 0.003 0.058 0.061 0.966
𝛽2 0.007 0.056 0.061 0.956
𝛽0 −0.008 0.052 0.062 0.966

45 𝛽1 0.006 0.089 0.093 0.956
𝛽2 0.001 0.096 0.095 0.952

proposed methods with that of Wang and Schaubel (2018);
efficiency is shown to be approximately equal for the two
approaches. Finally, we evaluated the impact of increasing
the number of 𝑘 values (i.e., the number of stacked data
sets) in Web Tables 7 and 8. It appears that slight gains in
efficiency can be achieved by increasing 𝐾.

5 ANALYSIS OF KIDNEY
TRANSPLANTATION DATA

We applied our proposed method to estimating time to
graft failure in kidney-transplantation recipients. The data

were obtained from the SRTR. The SRTR data system
includes data on all donors, wait-listed candidates, and
transplant recipients in the United States, as submitted by
members of the Organ Procurement and Transplantation
Network (OPTN), and has been described elsewhere.
The Health Resources and Services Administration,
U.S. Department of Health and Human Services pro-
vides oversight to the activities of the OPTN and SRTR
contractors.
The study population includes end stage renal disease

patients who received a kidney transplant between Jan-
uary 01, 2000 and December 31, 2014. For this analysis,
we included only those who received deceased donor
kidneys, excluded all recipients younger than 18 years
of age and those who have received a previous kidney
transplants. Graft failure, our main event of interest,
is defined as the minimum of death, transplant failure
(return to dialysis), and re-transplantation. This is con-
sistent with the majority of previous kidney transplant
literature (Zhong et al., 2019). Each patient was followed
from the date of transplant to the earliest of graft failure
or censoring date, or the end of observation period of
December 31, 2014. Independent censoring occurred
through a loss of follow-up or administrative censoring.
For this analysis, a total of 𝑛 = 127, 082 patients were
included in the study population. A total of 45,516 (35.8%)
patients experienced graft failure. Of these, 48.6% of them
died, 50.6% experienced transplant failure, and 0.8% had a
re-transplant.
To illustrate our method, we chose a set of five baseline

recipient covariates: age, gender, height, weight, and log
of the kidney donor recipient index (log-KDRI) (Rao et al.,
2009). Age, height, weight, and log-KDRI are continuous,
while gender is binary. We selected our 𝑳 = [1, 2, 3, … , 10]′

years. In this case, the 𝐿max is set to be 10 years. The data
were replicated and assorted into an expanded data set,
with 𝑌𝑖𝑘 = 𝑌𝑖 ∧ 𝐿𝑘, 𝑘 = 1, 2, … , 10. The same 𝑳 was also
used to fit the model, using individual 𝐿′

𝑘
𝑠 as knots in the

parametric spline. Although we opted to use the same vec-
tor both to create the expanded data set as well as to fit
the parametric spline model, the two could be chosen sep-
arately if desired.
In Figure 2, we plot time-varying effects for some of the

more prominent covariates. Due to our having shifted con-
tinuous covariates, the intercept (top left panel) pertains to
a 40-year oldmalewho is 170 cm tall, weighs 80 kg, receives
a kidney transplant from a deceased donor with KDRI= 1,
which is approximately the 25th percentile of donor qual-
ity, per Zhong et al. (2019).
We chose here to use the linear link for ease of inter-

pretability, but other link functions could also be used if
desired. To find 𝛽𝑍𝑘 (𝐿) for a particular covariate 𝑍𝑘 using
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F IGURE 1 Comparison between true covariate values and estimated covariate values as a function of 𝐿 for linear link. Data were
generated using 𝜷𝑫 = [4, 2.5, −2.5]. Censoring was generated at 30%, with 𝜆𝐶0 = 0.1, 𝜷𝑪 = [− log(1.5), log(1.5)]

this spline parametrization, we follow the following for-
mula:

𝛽𝑍𝑘 (𝐿) = 𝛼̂𝑘0𝐿 + 𝛼̂𝑘1(𝐿 − 1)+ + 𝛼̂𝑘2(𝐿 − 2)+ + 𝛼̂𝑘3(𝐿 − 3)+

+ 𝛼̂𝑘4(𝐿 − 4)+ + 𝛼̂𝑘5(𝐿 − 5)+ + 𝛼̂𝑘6(𝐿 − 6)+

+ 𝛼̂𝑘7(𝐿 − 7)+ + 𝛼̂𝑘8(𝐿 − 8)+ + 𝛼̂𝑘9(𝐿 − 9)+,

where 𝑎+ = max{𝑎, 0}.
Similarly, we can obtain 𝑉{𝛽𝑍𝑘 (𝐿)} by requesting the

standard robust variance–covariance matrix from GEE
software/functions. Since the spline terms are constant
(zero variance), one can simply obtain the variance

using relevant elements in the variance–covariance
matrix and summing through the sum of variance
formula.
In Figure 3, we present RMST predictions for various

covariate patterns. Covariate sets 1 and 3 represent lower
risk patients, while 2 and 4 correspond to patients that
are higher risk. Contrasts between the predicted RMST
values across patients generally become more pronounced
as 𝐿 increases. Note that due to the use of spline terms,
this pattern is not forced by the model. Covariate sets,
represented by different colors, appears in color in the
electronic version of this article, and any mention of color
refers to that version.
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F IGURE 2 Analysis of SRTR data: estimated covariate effects as a function of time since transplant

6 DISCUSSION

In this report, we developed a method for modeling
restricted mean survival time as a function of the restric-
tion time. Unlike existing methods, the proposed methods
allow covariate effects to depend on restriction time.
The methods also permit the analyst to obtain RMST
predictions for several time horizons through a single
model. Our method requires specifying a maximum
“reasonable” restriction time, 𝐿max , after which RMST is
then modeled as a parametric function of 𝐿 on (0, 𝐿max].
Our method amounts to developing a “super-model,”
through stacking data sets defined by 𝐿𝑘 values that map
out a grid over (0, 𝐿max]. Through our methods, one can
create a flexible and temporal picture of covariate effects
as a function of 𝐿. The proposed variance estimator is
convenient to implement and was shown to work well in
moderate samples. Furthermore, computational feasibility
in larger data sets is implied by our method having easily
been able to handle national organ transplant registry
data.

The proposed methods allow the covariate effects to
depend on time,which is amajor advantage overWang and
Schaubel (2018). The flexibility to use time-varying effects
is well-accepted and frequently utilized in the context of
hazard regression. Moreover, the work of Zhao et al. (2016)
underscores the importance of viewingRMSTas a function
of restriction time in comparing groups nonparametrically.
The major advantage of our work over Zhao et al. is that
our proposed methods utilize regression, while Zhao et al.
(2016) uses nonparametric comparisons. Zhao et al. (2018)
would generally not be applicable to observational stud-
ies requiring simultaneous estimation of many predictors
and/or when some predictors are continuous; for example,
the transplant registry study we analyzed in Section 5.
The proposedmethods require IPCW,which is generally

known to be subject to instability. It should be noted that
small remaining-uncensored probabilities are less of an
issue in RMST modeling, provided that a sensible value
of 𝐿 (or, in our case, 𝐿max) is chosen. It is not necessary
to compute the weight function too far into the tail of the
observation time distribution, hence avoiding scenarios
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F IGURE 3 Predicted RMST projections by covariate pattern
and time. Covariate Set 1 refers to a 65-year old female who received
an organ with KDRI of 0.75. Covariate Set 2 is a 45-year old female
who received an organ with KDRI of 1.35. Covariate Set 3 refers to a
30-year old male who received an organ with KDRI of 0.75.
Covariate Set 4 refers to a 40-year old male who received an organ
with KDRI of 1.5. All recipients were assumed to be 170 cm in height
and 80 kg in weight. This figure appears in color in the electronic
version of this article, and any mention of color refers to that
version.

where there are very few subjects remaining at-risk (which
leads to large and unstable weights). We illustrate this
phenomenon in Web Figure 1, which shows box plots of
the IPCW weight function versus 𝐿 for the SRTR data
analyzed in Section 5. The plot reveals that variability in
the weight function increases as 𝐿 increases, as does the
maximum weight. However, unrealistically large weights
are not observed, as the maximum weight observed is
27 at 𝐿 = 10, and the vast majority of weights at 𝐿 = 10

were less than 3, which is very reasonable for a data set
with sample size of 127,082. In the event that unduly large
weights did occur, one could cap the weight function.
In addition to choosing 𝐿max, the two other main deci-

sions involved in our method are the vector components
of 𝑳 used to create the expanded data set, and the pre-
cise parametric model (including specification of knots, if
appropriate) used to fit the expanded data set. In our expe-
rience, for the first question, it is generally important to
create a well spread out grid that includes copies of the

data both smaller and larger than 𝐿′𝑠 of interest. For the
second question, we propose that investigators fit separate
models at a grid of 𝐿 values to preliminarily determine the
functional form of covariate effects and use that as a guide
to determine the specific parametrization. For example, in
the SRTR data set, it was clear after this step that a simple
linear model would be deficient. On both of these topics,
further research would help elucidate the pros and cons of
particular approaches.
Finally, to illustrate our method, we applied it to kidney

transplantation data to study posttransplant outcomes. To
our knowledge, this is the first paper to provide a temporal
model of RMST in the kidney transplantation setting.
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