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Abstract37

The Atmospheric River (AR) Tracking Method Intercomparison Project (ARTMIP)38

is a community effort to systematically assess how the uncertainties from AR detectors39

(ARDTs) impact our scientific understanding of ARs. This study describes the ART-40

MIP Tier 2 experimental design and initial results using the Coupled Model Intercom-41

parison Project (CMIP) Phases 5 and 6 multi-model ensembles. We show that AR statis-42

tics from a given ARDT in CMIP5/6 historical simulations compare remarkably well with43

the MERRA-2 reanalysis. In CMIP5/6 future simulations, most ARDTs project a global44

increase in AR frequency, counts, and sizes, especially along the western coastlines of the45

Pacific and Atlantic oceans. We find that the choice of ARDT is the dominant contrib-46

utor to the uncertainty in projected AR frequency when compared with model choice.47

These results imply that new projects investigating future changes in ARs should explic-48

itly consider ARDT uncertainty as a core part of the experimental design.49

Plain Language Summary50

Atmospheric rivers (ARs) are a type of weather pattern known to be important for51

moving water vapor from the warm, moist tropics to the cool, dry polar regions; when52

they reach midlatitudes in the winter time, they are commonly associated with heavy53

precipitation. Recent studies that assess the impacts of global climate change on ARs54

tend to agree that there will be more ARs in a warmer climate, and that ARs will tend55

to be more extreme. However, it has been increasingly recognized by the AR research56

community that these results may depend on the method used to identify ARs and the57

choice of climate model. This study reports results from a controlled experiment, involv-58

ing an international research community, that aims to show how different AR identifi-59

cation methods and climate models might impact our scientific understanding of ARs60

in the future. This experiment shows that there will likely be more ARs in the future,61

and that ARs will generally have a larger spatial footprint. This experiment also shows62

that uncertainty in these results are large, with the uncertainty from AR identification63

methods outweighing that of climate models. Future efforts to better understand the physics64

of ARs may help us reduce this uncertainty.65

1 Introduction66

Over the past 40 years, research on atmospheric rivers (ARs), filamentary bands67

of intense water vapor transport that were known as tropical cloud plumes in earlier lit-68

erature, has increasingly demonstrated their importance for cloud and precipitation vari-69

ability (Thepenir & Cruette, 1981; McGuirk et al., 1987; Lau & Chan, 1988; Kuhnel, 1989;70

Kiladis & Weickmann, 1992; Rasmusson & Arkin, 1993; Iskenderian, 1995), the global71

hydrological cycle (Newell et al., 1992; Zhu & Newell, 1998; Ralph et al., 2017) and re-72

gional energy and water cycles (Newell & Zhu, 1994; Neiman, Ralph, Wick, Kuo, et al.,73

2008; Ralph et al., 2005; Dettinger et al., 2011; Gimeno et al., 2016; Gershunov et al.,74

2017; Shields, Rosenbloom, et al., 2019). ARs are a main source of precipitation and are75

frequently associated with hydroclimatological impacts in the midlatitude western mar-76

gins of North America (Neiman et al., 2002; Ralph et al., 2004, 2005; Neiman, Ralph,77

Wick, Kuo, et al., 2008; Leung & Qian, 2009; Guan et al., 2010; Warner et al., 2012; Neiman78

et al., 2013; Ralph et al., 2013; Rutz et al., 2014; Huang et al., 2021), South America (Viale79

& Nuñez, 2011; Gimeno et al., 2016), Europe (Stohl et al., 2008; Lavers et al., 2012; Lavers80

& Villarini, 2013; Ramos et al., 2015; Gimeno et al., 2016), and South Africa (Blamey81

et al., 2018; Ramos et al., 2019). AR impacts on surface heat and water mass balance82

in polar regions are increasingly evident (Newell & Zhu, 1994; Gorodetskaya et al., 2014;83

Mattingly et al., 2020; Wille et al., 2019, 2021). Increased understanding of ARs has led84

to improvements in flood forecasting (Lavers, Waliser, et al., 2016; Lavers, Pappenberger,85
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et al., 2016) and in communication of flood-related risks when intense ARs are immi-86

nent (Ralph, Rutz, et al., 2019).87

Numerous recent studies have analyzed ARs in future climate scenarios (e.g., Warner88

et al., 2015; Lavers et al., 2015; Gao et al., 2015a, 2016; Shields & Kiehl, 2016b, 2016a;89

Polade et al., 2017; Espinoza et al., 2018; Gershunov et al., 2019; Rhoades, Jones, Sri-90

vastava, et al., 2020; Rhoades et al., 2021) (see Payne et al. (2020) and references therein).91

Payne et al. (2020) reviews the related studies over the past 10 years and shows that (1)92

studies generally agree that global increases in atmospheric moisture will increase the93

intensity of ARs, and that (2) there is wide uncertainty in the results conveyed in the94

literature, especially in areas outside the well-studied U.S. west coast. Existing studies95

generally agree that the frequency and intensity of ARs will increase, and some studies96

indicate poleward shifts of the AR tracks (Sousa et al., 2020; Shearer et al., 2020). Gershunov97

et al. (2019) show that intermodel differences in future projections of precipitation are98

much lower when considering precipitation due to ARs than those when considering changes99

in bulk precipitation. Given that precipitation is produced by a variety of meteorolog-100

ical phenomena, and that there is no guarantee that the relative proportions of precip-101

itation from various phenomena are the same in models as they are in observations, Gershunov102

et al. (2019) highlight the importance in using a phenomenon-focused study of precip-103

itation in future climate simulations.104

Essentially all of the studies of ARs and future climate (and past climate, e.g., Lora105

et al., 2017; Kiehl et al., 2018; Skinner et al., 2020; Menemenlis et al., 2021) rely on ob-106

jective, quantitative methods to discriminate ARs from the background: AR detectors107

(ARDTs). At present, ARs have a qualitative definition (Ralph et al., 2018), which leaves108

researchers with the task of implementing a quantitative definition of ARs in specific ARDTs.109

ARDTs typically consist of a set of heuristic rules (e.g., thresholds and filters) that fo-110

cus on identifying anomalously high moisture or moisture transport that occurs in con-111

tiguous, filamentary structures. The design of ARDTs is guided by understanding gained112

through decades of observational and model studies (Browning & Pardoe, 1973; McGuirk113

et al., 1987; Newell et al., 1992; Zhu & Newell, 1998; Lackmann & Gyakum, 1999; Neiman114

et al., 2002; Ralph et al., 2004, 2005; Bao et al., 2006; Neiman, Ralph, Wick, Kuo, et al.,115

2008; Neiman, Ralph, Wick, Lundquist, & Dettinger, 2008; Waliser et al., 2012). The116

number of ARDT algorithms has grown with the number of ARDT studies over the past117

decade, with new ARDTs often being developed for specialized purposes: e.g., ARDTs118

for understanding the global hydrological cycle (Zhu & Newell, 1998; Guan & Waliser,119

2015), observed hydrometeorological extremes (Neiman, Ralph, Wick, Lundquist, & Det-120

tinger, 2008; Rutz et al., 2014), the cryosphere (Gorodetskaya et al., 2014; Wille et al.,121

2021), and regional hydroclimate variability (Gershunov et al., 2017). Even though ARDTs122

are often initially designed with different purposes in mind, Payne et al. (2020) demon-123

strate that there is overlap in what they are ultimately used to study. The community124

has recently started to recognize that uncertainty associated with the numerical defini-125

tion of ARs may have important implications for our understanding of ARs and their126

changes in a future warmer world (Newman et al., 2012; Huning et al., 2017; Shields et127

al., 2018; Guan et al., 2018; Rutz et al., 2019; Ralph, Wilson, et al., 2019; Shields, Rutz,128

et al., 2019; Shields, Rosenbloom, et al., 2019; Lora et al., 2020; O’Brien, Payne, et al.,129

2020; O’Brien, Risser, et al., 2020)130

The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) was131

launched by members of the AR research community in order to systematically assess132

the impact of this uncertainty on our scientific understanding (Shields et al., 2018). The133

First ARTMIP Workshop (Shields, Rutz, et al., 2019) defined a multi-tier experimen-134

tal design focusing on uncertainty in the observational record (Tier 1; Rutz et al., 2019),135

and uncertainty in AR variability and change (Tier 2). Two Tier 2 experiments were launched136

at the Second ARTMIP Workshop (Shields, Rutz, et al., 2019): the Tier 2 C20C+ ex-137

periment and the Tier 2 CMIP5/6 experiment. Both experiments are designed to elu-138
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cidate the effect of uncertainty associated with ARDTs on our understanding of ARs,139

with the former focusing on uncertainty in regional impacts in a single high-resolution140

global model, and the latter focusing on the relative roles of model and ARDT-associated141

uncertainty. A third Tier 2 experiment was launched at the Third ARTMIP Workshop:142

the Tier 2 Reanalysis experiment, which aims to understand how differences across re-143

analyses compare with differences across ARDTs. This manuscript overviews the Tier144

2 CMIP5/6 experiment.145

2 Data and Methods146

We use data from the ARTMIP Tier 1 experiment (Shields et al., 2018; Rutz et147

al., 2019), which provides atmospheric river detections from multiple ARDT algorithms.148

All Tier 1 ARDTs run on a common set of atmospheric fields (e.g., integrated vapor trans-149

port) derived from the Modern-Era Retrospective analysis for Research and Applications,150

Version 2 (MERRA-2; Gelaro et al., 2017). A subset of the Tier 1 algorithms have also151

been run on the Tier 2 input dataset described further on. The subset of algorithms run152

was determined by the subset of ARTMIP participants who volunteered to run their al-153

gorithms on the Tier 2 dataset; these algorithms include ARCONNECT_v2 (Shearer et al.,154

2020), Guan_Waliser_v2 (Guan & Waliser, 2015; Guan et al., 2018), IDL_rel_future155

& IDL_rel_hist (Ramos et al., 2016; Blamey et al., 2018), Lora_v2 (Lora et al., 2017;156

Skinner et al., 2020), Mundhenk_v3 (Mundhenk et al., 2016), PNNL_v1 (Hagos et al., 2015),157

and TECA-BARD v1.0.1 (O’Brien, Risser, et al., 2020), and Tempest (Ullrich & Zarzy-158

cki, 2017; McClenny et al., 2020) (see Table S1). Text S4 describes why choice of reanal-159

ysis unlikely affects the qualitative conclusions of this paper.160

For the Tier 2 input dataset for ARDTs, we derive integrated water vapor (IWV),161

and the components of the integrated vapor transport (IVT) vector from outputs from162

atmosphere-ocean general circulation models associated with the Coupled Model Inter-163

comparison Project (CMIP) 5 (Taylor et al., 2012) and 6 (Eyring et al., 2016; O’Neill164

et al., 2016) multi-model ensembles (hereafter referred to as CMIP5/6 when both en-165

sembles are jointly discussed). We utilize model output from the historical simulations166

in both CMIP5 and CMIP6, and we utilize output from the representative concentra-167

tion pathway 8.5 (RCP8.5, CMIP5) and shared socioeconomic pathways 5-8.5 experi-168

ments (SSP5-8.5, CMIP6). We utilize models that provided specific humidity q (hus)169

and wind −→u (ua and va) at 6-hourly intervals on the native model vertical grid (the 6hrLev170

table); we further restrict the set of models to those which provide model output from171

the same ensemble member for both the historical and future (RCP8.5 and SSP5-8.5)172

simulations. We chose to focus on models providing data on the native model vertical173

grid (either sigma or hybrid-sigma) because this facilitates an accurate calculation of ver-174

tical integrals without having to handle below-ground levels as would be necessary if deal-175

ing with model output on isobaric surfaces; this choice simplifies interpretation of inter-176

ARDT differences in continental interiors, where such below-ground levels are common.177

At the time that the Tier 1 input dataset was constructed (in Summer 2019), we were178

able to access 6 models from CMIP5 (CCSM4, CSIRO-Mk3-6, CanESM2, IPSL-CM5A-179

LR, IPSL-CM5B-L, and NorESM1-M) and 3 models from CMIP6 (BCC-CSM2-MR, IPSL-180

CM6A-LR, MRI-ESM2-0; Xin et al., 2019; Yukimoto et al., 2019; Boucher et al., 2019)181

that satisfied these constraints (see Table S1): 9 models in total and one ensemble mem-182

ber from each model. We focus on the 1981-2010 time period for the historical reference183

period, and we calculate trends over the 1951-2099 period (some data are missing due184

to data availability and corruption issues, and years with these issues are not included185

in calculations; see Text S3). Examination of the 1951-2099 timeseries at a variety of lo-186

cations show that changes in AR frequency are close to linear; therefore the trends pre-187

sented here can be used to infer discrete changes in AR frequency at arbitrary timepe-188

riods (e.g., mid-century and end-of-century). The models selected represent a range of189

horizontal resolutions (ranging from approximately 100 km to 300 km), and the RCP8.5190
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and SSP5-8.5 scenarios represent aggressive emission trajectories with large amounts of191

radiative forcing (nominally 8.5 W/m2) by end-of-century.192

The mass-weighted vertical integrals of water vapor (ρq) and water vapor trans-193

port (ρ−→u q) are calculated from all native model levels in the CMIP5/6 output as:194

IWV = −1

g

N∑
k=1

qk∆pk (1)

−−→
IVT = −1

g
〈

N∑
k=1

ukqk∆pk,

N∑
k=1

vkqk∆pk〉, (2)

where index k corresponds to model levels going from the surface (k = 1) to the top195

of the model atmosphere (k = N), and ∆pk is the difference in level pressures, estimated196

at level k. The total vapor transport is calculated as the vector magnitude: IVT =
∣∣∣−−→IVT

∣∣∣.197

These ARDTs consist of a mixture of algorithms that detect ARs globally (global198

algorithms) and algorithms designed for specific regions (regional algorithms); see Ta-199

ble S1. We focus most of the analysis in this manuscript on the location of the AR tracks,200

changes in these tracks, and uncertainty therein. We therefore focus the bulk of the dis-201

cussion on the global subset of algorithms; the full set of algorithms is discussed in Sec-202

tion 3.3 when comparing the relative magnitudes of uncertainty related to ARDT de-203

sign and model choice.204

2.1 Tier 2 CMIP5/6 Experiment Overview205

All Tier 2 CMIP5/6 ARDT contributions use the common dataset of IWV, IVT,206

and
−−→
IVT described in Section 2, which come from 9 models in the CMIP5 and CMIP6207

multi-model ensembles. ARDT outputs are regridded to a common 4◦x5◦ latitude-longitude208

grid. We assess the CMIP5/6 models by comparing annual spatial patterns of AR fre-209

quency between the Tier 1 and Tier 2 experiments, for each detection scheme indepen-210

dently, focusing on spatial pattern correlation and spatial variability. Given the 6-hourly211

frequency of the dataset, we report frequency as ‘equivalent’ AR days, which we define212

as 0.25 times the total number of timesteps with AR conditions. We provide details about213

Tier 2-specific modifications to ARDTs in Text S1 and details about missing data in Text S3.214

Grouping algorithms by the type of criteria applied (relative versus absolute thresh-215

olds) and degree of restrictiveness (magnitude of thresholds employed, number of crite-216

ria involved) can reduce the spread associated with ARDTs (Rutz et al., 2019; Ralph,217

Wilson, et al., 2019). Here, we group ARDTs into three categories, based on their treat-218

ment of thresholds: absolute (ARCONNECT_v2, PNNL_v1, and Lora_v2 ), fixed relative (Guan_Waliser_v2,219

IDL_rel_future, IDL_rel_hist, and Mundhenk_v3), and relative (Tempest and TECA-BARD v1.0.1).220

The categorizations are described and justified in Text S2. A key motivation for this cat-221

egorization is aggregating ARDTs by their sensitivity to thermodynamic changes in IVT,222

with the assumption that ARDTs employing absolute thresholds to moisture fields will223

be the most sensitive, and ARDTs employing time-dependent thresholds will be least224

sensitive.225

3 Results226

3.1 Evaluation of Historical Simulations227

We show maps of annual average AR frequency from the Tier 1 (MERRA-2) ex-228

periments for the 6 global ARDT algorithms in the top row of Figure 1. The ARDTs229

show broad consistency in the spatial patterns of ARs. All ARDTs identify well-known230

AR tracks, with distinct maxima in the midlatitude Pacific and the Atlantic, and with231

a circumglobal maximum in the Southern Ocean; these AR tracks have been described232

–5–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Atmospheres

in papers using multiple ARDTs (e.g., Zhu & Newell, 1998; Lavers et al., 2012; Guan233

& Waliser, 2015; Gimeno et al., 2016; Lora et al., 2020). The ARDTs also identify sig-234

nificant areas with little or no AR activity: the tropics, northeastern Asia, northeast-235

ern South America, tropical and subtropical Africa, the subtropical eastern Pacific (near236

the cold tongue region), as well as interiors of both polar regions (except for with Guan_Waliser_V2).237

The ARDTs differ significantly in the relative frequency of AR conditions. Some of the238

ARDTs identify AR conditions occurring upwards of 30 days per year (approximately239

one twelfth of the time) in the main AR tracks, and other ARDTs identify AR condi-240

tions occurring fewer than 10 days per year. These results are consistent with previous241

ARDT comparisons, indicating a wide range of restrictiveness across ARDTs (Ralph,242

Wilson, et al., 2019; Rutz et al., 2019; Lora et al., 2020). The algorithms also differ in243

the degree to which the AR tracks penetrate inland and the maximum poleward exten-244

sion of the AR tracks (poleward non-zero AR boundary), with the Guan_Waliser_v2 al-245

gorithm commonly identifying ARs in continental interiors and polar regions, and TECA-BARD v1.0.1246

rarely identifying ARs in continental interiors and polar regions. The average frequency247

of ARs (the top-right panel in Figure 1) exhibits a similar spatial pattern to the vari-248

ous ARDTs, with ARs occurring approximately 10 days per year in the core AR track.249

Simulated ARs in the Tier 2 CMIP5/6 experiment are remarkably consistent with250

those in the Tier 1 MERRA-2 experiment. Results from an arbitrary model–MRI-ESM-251

2-0 from the CMIP6 multimodel ensemble–are shown in the second row of Figure 1, and252

a similar plot showing results from all possible model-ARDT pairs is shown in Figure S1.253

The placement of the AR tracks (and opposing gaps in ARs) are very similar when com-254

paring spatial maps for a given ARDT. The algorithm-mean AR frequencies (last col-255

umn) show very little difference between Tier 1 and 2; this is true for all models ana-256

lyzed (see Figure S1).257

Each ARDT has idiosyncratic spatial patterns that are expressed in both Tier 1258

and Tier 2. This suggests that the spatial pattern maps are an emergent property of each259

ARDT, and that these spatial patterns are relatively insensitive to significant changes260

in the representation of the underlying atmospheric dynamics. For example, the diffuse261

spatial pattern associated with the Guan_Waliser_v2 (GW) algorithm is evident in Tier262

1 and in all Tier 2 simulations (Figures S1 and S2), and the multi-model mean for the263

GW algorithm exhibits a similar spatial pattern. This suggests that there is much more264

variability in AR frequency across ARDT algorithms than there is across simulations;265

we quantify this in Section 3.3.266

Figure 2a quantitatively shows that CMIP5 and CMIP6 simulations compare well267

with the MERRA-2 reanalysis when compared within a single ARDT. Spatial correla-268

tion coefficients between the AR frequency maps in individual Tier 2 simulations and269

the corresponding Tier 1 map are above r = 0.95 for most ARDT-model pairs (32 out270

of 52 pairs), and the ratio of spatial standard deviations of AR frequency (Tier 2 divided271

by Tier 1) is between 0.75 and 1.25 for 40 out of 52 ARDT-model pairs. The Taylor skill272

scores (Taylor, 2001) are above 0.9 for 37 out of 52 ARDT-model pairs. Variability ex-273

ists, with some ARDT-model pairs reaching as high as r ≈ 0.97 and only 5 ARDT-model274

pairs with correlation coefficients between 0.8 and 0.9 (and skill scores below 0.85); like-275

wise, one combination (ARCONNECT_v2 and CMIP5 IPSL-CM5A-LR) has variability that276

is too low by approximately 25%, and one combination (Tempest and CMIP5 IPSL-CM5B-277

LR) has variability that is about 50% too high. Overall, this emphasizes the high de-278

gree of similarity between simulated ARs and ARs in MERRA-2, when comparing re-279

sults using a single ARDT.280

Altogether, the various ARDTs portray a similar assessment of model skill, with281

essentially all of the models analyzed appearing to be ‘fit for purpose’. This is true even282

for the lowest resolution simulations (e.g., CMIP5 CanESM2 with a nominal 310 km hor-283

izontal resolution in the tropics; see Table S1), which have some of the highest correla-284

tion coefficients. (Note that the AR detection process was performed at the original model285
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resolution, prior to regridding to a common grid for comparison with reanalysis.). A sur-286

vey of the literature (Gao et al., 2015b; Hagos et al., 2015; Shields & Kiehl, 2016b; Guan287

& Waliser, 2017; Payne et al., 2020; Reid et al., 2020; Rhoades, Jones, O’Brien, et al.,288

2020) indicates a mix of possible resolution effects, with some indication that the effect289

of resolution may depend on the experimental setup (e.g., coupled vs uncoupled; Guan290

& Waliser, 2017). We hypothesize that resolution effects may depend on the ARDT used;291

these effects could be studied more systematically by applying multiple ARDTs to the292

CMIP6 HighResMIP experiment (Haarsma et al., 2016). The ARTMIP community has293

discussed the possibility of coordinating a Tier 2 Resolution experiment (O’Brien, Payne,294

et al., 2020) to explore this more systematically.295

Results associated with the Tempest algorithm are a somewhat notable exception:296

five of the models evaluated with Tempest have high spatial variability relative to MERRA-297

2, and relatively low spatial correlations. This may be related to some differences in the298

implementation of Tempest between the Tier 1 and Tier 2 experiments (see Text S1).299

3.2 Projected Changes in AR Frequency, Count, and Size300

When the ARDTs are applied to the various future simulations described in Sec-301

tion 2, they project a variety of trends in AR frequency. Figure 1 (third row) shows that302

most ARDTs applied to the MRI-ESM2-0 simulation indicate increases in AR frequency303

in the main AR tracks. Within each algorithm, the trends from the MRI-ESM2-0 sim-304

ulation are quantitatively and qualitatively similar to trends from other simulations (see305

Figure S3), as indicated by the similarity between the MRI-ESM2-0 trends and the multi-306

model trends shown in the bottom row of Figure 1. The average trend across all model-307

ARDT combinations (lower right panel of Figure 1) likewise indicates an increase in AR308

frequency in the midlatitude storm tracks, with increases of ∼5 AR days per year per309

century (an approximate 50% increase). In addition to this increase in AR frequency in310

the mid-latitude storm tracks, it is also important to note an increase in the areas with311

historically rare or close to zero frequency of the ARs, such as southern Asia and Africa,312

the Arctic Ocean and the Antarctic ice sheet. There are essentially no ocean basins where313

the model-ARDT mean indicates a decrease in AR frequency.314

The climatological pattern of AR frequency is primarily controlled by changes in315

AR size, AR occurrence (count), and AR location. Two ARDTs (TECA-BARD v1.0.1 and316

to a lesser extent Tempest) suggest poleward shifts in AR location (Figure 1, bottom row,317

and Figure S3), whereas ARCONNECT_v2, GuanWaliser_v2, Lora_v2, and Mundhenk_v3318

indicate quasi-global increases in AR frequency. We discuss why differences in the quan-319

titative definition of ARs may cause different behavior in future climate simulations and320

its implications in Section 4. We have run the same analysis for seasonal averages for321

all four seasons, and the seasonal climatology and seasonal trends are similar to the an-322

nual average results presented in Figure 1.323

We decompose the changes in AR frequency by changes in AR area A and AR count324

N ; Figure 2b shows the median size of AR objects versus the median number of AR ob-325

jects counted at any given time. In the historical simulations, the ARDTs appear to clus-326

ter along a continuum, with ARDTs typically detecting 5–20 ARs, which is consistent327

with manual counts of ARs in synoptic maps (Zhu & Newell, 1998; O’Brien, Risser, et328

al., 2020). Tempest is a notable exception, with AR counts ranging from 20–50. In or-329

der to aid in interpreting the continuum along which the ARDTs lay in Figure 2b, we330

add lines of constant global area A⊕ percentage (calculated as 100%·A·N/A⊕). These331

show that algorithms typically detect ARs such that approximately 5% of the Earth’s332

surface is covered in AR objects in the historical simulations. Therefore, we can inter-333

pret the relative location of ARDTs in Figure 2b as an indicator of the relative spatial334

coherence of AR objects: ARDTs on the left detect few, large AR objects and ARDTs335

on the right detect many small AR objects. This grouping along lines of constant global336
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area fraction is an emergent collective behavior of the ARDTs, and we speculate that337

it is associated with the tuning process for each algorithm. AR coherence might make338

a useful measure for objective grouping of AR results in future ARTMIP studies.339

Figure 2b shows that four of the ARDTs (except Tempest and TECA-BARD v1.0.1)340

tend to detect more ARs and larger ARs in the future simulations. These changes re-341

sult in increases in the global area coverage of AR objects: changing from ∼5% global342

area to ∼7% global area. The global count of AR objects does not change in the TECA-BARD v1.0.1343

algorithm, though there are slight increases in AR area in some simulations. In contrast,344

the Tempest algorithm indicates increases in global AR count, with very little change345

in AR area.346

There is an indication that the resolution of the underlying model may affect the347

characteristics of detected ARs for some ARDTs. The CMIP6 BCC-CSM2-MR, CMIP6348

MRI-ESM2-0, and CMIP5 CCSM4 simulations–which are the three highest resolution349

simulations analyzed (Table S1)–tend to occur on the right side of each ARDT cluster:350

ARs in these simulations are systematically less coherent. However, the model resolu-351

tion does not appear to affect the climate change signal evident in Figure 2b. Further,352

the CMIP5/6 simulations analyzed here do not attempt to control for model resolution;353

the CMIP6 HighResMIP experiment (Haarsma et al., 2016) could provide a way to ex-354

amine resolution effects more systematically.355

3.3 Sources of Uncertainty in End-of-Century Projections of ARs356

The results in Figure 1 indicate that there may be substantial uncertainty in fu-357

ture AR frequency associated with choice of ARDT. Further, it is not clear from the spa-358

tial maps in Figure 1 whether the trends in AR frequency evident over the ocean (e.g.,359

the decrease in the southeastern Atlantic) extend to the coastal areas where AR pres-360

ence matters for western-coastal water cycles and hydrometeorological impacts. We quan-361

tify these changes and their uncertainty in Figure 2c,d, which show the mean trend in362

AR frequency for the Pacific (Figure 2c) and Atlantic west coasts (Figure 2d) from 1951-363

2099. Figure 2c,d shows trends for all ARDTs listed in Table S1: both regional and global364

ARDTs.365

Figure 2c,d shows that coastal areas in both the Pacific and Atlantic show increas-366

ing trends in AR frequency (+2–5 AR days per year per century in the midlatitudes),367

and the full spread of the blue and light blue shading in Figure 2c,d shows the full range368

of trends from all ARDTs and all models. There are two areas where TECA-BARD v1.0.1369

indicates weakly decreasing trends (Figure S3 shows the trends by model and by algo-370

rithm): southern Chile, near 40◦S, and near the entrance of the Mediterranean Sea from371

35◦N to almost 60◦N, which spans the Mediterranean, Iberian Peninsula and British Isles.372

It is noteworthy that this decrease is compensated by an increase in AR frequency pole-373

ward of these regions, indicating a poleward shift in the AR frequency. Otherwise all model-374

ARDT combinations indicate increasing trends in landfalling AR frequency for both Pa-375

cific and Atlantic ARs in both hemispheres.376

Large uncertainty appears in the magnitude of the trends, which ranges from just377

below 0 days/yr/century to over 15 days/year/century, depending on location. There378

are two main components of uncertainty in these trends: uncertainty associated with choice379

of model simulation, and uncertainty associated with choice of ARDT. We decompose380

the uncertainty as σ2
T ≈ σ2

A + σ2
M , where σ2

T is the total variance, σ2
A is the variance381

across ARDTs of each ARDT’s multi-model mean, and σ2
M is the variance across mod-382

els for each model’s multi-ARDT mean. These variances can equivalently be viewed as383

the variance down the rightmost column in Figure S3 (σ2
M ) and the variance across the384

bottommost row in Figure S3 (σ2
A), (excluding the multi-model/multi-ARDT mean in385

the bottom right corner of Figure S3 and excluding trends from MERRA-2).386
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Figure 2. (a) A Taylor diagram comparing the spatial correlation (azimuthal axis) and spatial

variability (radial axis) of AR frequency between CMIP5 and 6 simulations (denoted by different

symbols) and the MERRA-2 reanalysis. Colors indicate different AR detection algorithms (legend

in panel b). Gray dashed lines show lines of constant skill score (Taylor, 2001). (b) Median AR

area vs global median AR count for all available combinations of ARDTs (marker colors) and

simulations (marker symbols). Filled symbols indicate calculations performed on the 1981-2010

period of each simulation, and open symbols indicate calculations on the 2070-2099 period (two

exceptions noted in Text S3). Gray contours show lines of constant fractional areal coverage

of ARs (shown as a percentage of Earth’s area), calculated as the product of AR area and AR

count, divided by Earth’s area. (c and d) Trends in AR frequency (black curve) and associated

total range of uncertainty (blue and light blue shading) for the west-facing (c) Pacific coastline

and (d) Atlantic coastline. Dark blue shading indicates the portion of uncertainty associated

with AR detection and the light blue shading indicates the portion of the spread associated

with models (across both CMIP5 and CMIP6). The area of dark blue shading is proportional

to σ2
A/σ

2
T · (max − min), where ‘max’ and ‘min’ are the minimum and maximum trend at each

latitude. (e and f) as in (c and d), but showing individual ARDT-model combinations. Markers

indicate simulations (legend in panel b) and colors indicate the ARDT classification. Bold lines

indicate the mean trend across the ARDT classification. The inset maps in (c) and (d) show the

Pacific and Atlantic coast masks respectively.
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This decomposition shows that uncertainty associated with choice of ARDT ac-387

counts for most of the spread in the climate change signal across all latitudes in both388

the Pacific and Atlantic coasts. In essence, uncertainty associated with the numerical389

definition of ARs dominates the combined uncertainty associated with choice of model390

and choice of model epoch (CMIP5 vs CMIP6). As shown in Figures 1 and 2, compar-391

ison against reanalysis shows that most ARDT-model pairs perform well when compared392

with reanalysis, so this measure of model skill does not provide a way to reduce the un-393

certainty, since all ARDTs perform equivalently well on average. If there were a stan-394

dard against which to rank ARDTs, it might be possible to utilize ARDT-weighting ap-395

proaches to narrow the spread; but such a standard currently does not exist, and so such396

a weighting approach is not possible.397

The spread in the number of detected ARs accounts for some of the spread in trends.398

If the trends in Figures 2c–f are normalized by the number of ARs detected, the rela-399

tive magnitude of the ARDT-related uncertainty drops, though it is still large: above400

50% of the total spread in the midlatitudes. (Note that this quantity is ill-defined in re-401

gions, such as the tropics, where few or no ARs are detected.) As suggested by O’Brien,402

Risser, et al. (2020), this suggests that constraining the total number of ARs is of cen-403

tral importance to reducing uncertainty about AR variability and change.404

4 Discussion and Conclusions405

While there have been studies examining future changes in ARs (e.g., Payne et406

al., 2020) and studies examining uncertainty related to choice of ARDT (e.g., Rutz et407

al., 2019), no existing study has attempted to quantify the attribution of ARDT uncer-408

tainty for climate change by evaluating model uncertainty versus ARDT uncertainty. The409

ARTMIP Tier2 CMIP5/6 experiment provides a unique opportunity for such a study.410

The results from this experiment show that most ARDTs project an increase in AR fre-411

quency, with mean trends of approximately +2-5 AR days/year per century along the412

western coastlines of North America, South America, Southern Africa, and Europe (Fig-413

ure 2c,d). These changes are relatively large, given that the AR frequency in coastal re-414

gions is typically between 10-20 AR days per year, though this depends strongly on ge-415

ographic region and the ARDT used (Figure 1). However, there is considerable spread416

in the magnitude, with some ARDT-model combinations indicating negative trends (south-417

ern Chile and the European west coast from the Iberian Peninsula to the British Isles)418

with a clear AR shift poleward and other ARDT-model combinations indicating posi-419

tive trends of ARs in all regions with a magnitude up to ∼15 AR days per century. Care420

must be taken when making general statements about the sign of AR frequency/size/count421

trends, since this work shows that the sign and magnitude of the trends are linked to choices422

that ARDT designers make when translating the qualitative AMS definition into a quan-423

titative definition. Specific statements can be made if one settles on a narrow quanti-424

tative definition, as is typically done when seeking answers to questions about processes425

or impacts related to ARs (e.g. orographic precipitation, ice sheet melt, or process drivers).426

Globally, all ARDTs indicate either an increase in the total number of ARs, an in-427

crease in the areal extent of ARs, or both (Figure 2b). In the historical simulations, the428

AR area vs size relationship for all ARDTs approximately falls along a line of constant429

global coverage, with ARDTs in the historical simulations detecting ARs that cover ap-430

proximately 5% of the global area. This number is somewhat smaller than the 10% global431

area indicated by Zhu and Newell (1998), which is likely because we are considering the432

total global coverage, including the tropics, rather than the fraction of zonal circumfer-433

ence in the midlatitudes. It is nevertheless qualitatively consistent in the sense that ar-434

eas of anomalously high moisture transport occupy a small fraction of the global area.435

The global areal coverage increases in the future simulations to some degree in all ARDT436

algorithms, with most indicating a several percent increase in the areal extent of ARs437

due to increases in both AR size and count.438
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Figure 3. Trends in IVT, IWV, and UV≡IVT/IWV among the CMIP5/6 models, calculated

from approximately 1950–2100. Panels (a-c) show the mean trend, and panels (d-f) show the

standard deviation of the trends. Trends for each model are shown in Figure S4.

These results further show that future changes in AR frequency can qualitatively439

differ depending on the type of ARDT used. We aggregate trends by AR classification440

(see Sections 2 and Text S2) in Figures 2e,f. This aggregation shows that use of any ab-441

solute thresholds (absolute ARDTs) and time-independent relative thresholds (fixed rel-442

ative ARDTs) tend to produce increases in AR frequency, whereas use of time-dependent443

relative thresholds (relative ARDTs) tend to produce patterns more indicative of a pole-444

ward shift. Absolute ARDTs and fixed relative ARDTs, with thresholds that do not change445

in time, would be expected to increase the frequency of exceedence of regions above the446

historical thresholds: more detected AR days in a warmer climate. Such ARDTs are de-447

signed to detect increases in occurrence of regions with high IVT, which are important448

for AR impacts. In contrast, relative ARDTs (e.g., TECA-BARD v1.0.1) are designed to449

only account for dynamical–rather than thermodynamical–changes in ARs.450

To illustrate the thermodynamic and dynamic changes in IVT, Figures 3a–c shows451

the model-mean trend in IVT, IWV and the moisture-weighted wind UV ≡ IVT/IWV452

(it can readily be demonstrated that UV represents the vertically averaged wind, weighted453

by the specific humidity at each height). The model spread in these trends are shown454

in Figures 3d–f (Figure S4 shows the trends for each model). Both the IVT and IWV455

fields increase at a rate of 20–40% per century in the model simulations, whereas the UV456

field has much smaller changes: decreases in wind of 5–15%/century in most of the trop-457

ics and midlatitudes and increases of similar magnitude in the polar regions. Because458

IVT is the product of IWV and UV, the fractional trend in IVT can be decomposed into459

a sum of the fractional trends in each quantity:460

1

IVT

∂IVT

∂t
=

1

IWV

∂IWV

∂t
+

1

UV

∂UV

∂t
.

The similarity of the IVT and IWV trend magnitudes implies that most of the trend in461

IVT is due to the thermodynamic component: the increase in atmospheric water vapor462

content due to Clausius-Clapeyron (CC) scaling. In contrast, the dynamic change is more463

indicative of a poleward shift in the magnitude of moisture-transporting winds. It is worth464

noting that the results presented in Figure 3 are independent of ARDT, though they do465

help explain some of the differences across ARDTs.466

The literature documents two major modes of AR change associated with climate467

change: (1) a quasi-global increase in IVT associated with CC scaling (thermodynamic;468

Payne et al., 2020), and (2) a poleward shift in ARs (dynamic; Payne et al., 2020) as-469

sociated with the poleward shift in the midlatitude storm tracks (Chang et al., 2012).470
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Poleward shift patterns appear to co-exist to some extent with quasi-global increases in471

AR frequency in some simulations (e.g., the CMIP5 CSIRO-MK3-6-0 simulation; see Fig-472

ure S3) for all ARDTs. We argue that absolute ARDTs and fixed relative ARDTs are473

more sensitive to thermodynamic changes than relative ARDTs. The strongest increase474

in the absolute and fixed relative ARDTs compared to relative ARDTs explains the sen-475

sitivity to ARDT choice especially approaching colder and drier polar regions. The fu-476

ture, much stronger, increase in high latitude temperature associated with polar ampli-477

fication, compared to other regions, together with hydrological cycle intensification will478

be more evident in the absolute and fixed relative ARDTs compared to the relative ARDTs.479

This categorization of ARDTs does not perfectly explain the spread in trends, as480

Tempest and TECA-BARD v1.0.1 trends in Figure 1 are qualitatively different; as such481

the mean trends for the relative ARDTs in Figures 2e,f should be interpreted with cau-482

tion. We hypothesize that they differ due to how the two methods identify relative peaks483

in the IVT field: Tempest uses the Laplacian to find local ridges in the IVT field, whereas484

the percentile-based approach in TECA-BARD v1.0.1 seeks out the relatively highest IVT485

locations in each timestep. It is possible that Tempest identifies relatively small, weak486

ARs that TECA-BARD v1.0.1 misses because they are weak enough to fall below its rel-487

ative threshold. If this is the case, it could imply that the contrasting regions, where Tempest488

shows an increase and TECA-BARD v1.0.1 shows a decrease, are associated with an in-489

crease in the occurrence of relatively weak ARs that TECA-BARD v1.0.1 misses. This is490

worth studying in a future paper.491

It is worth noting here that trend patterns in the MERRA-2 reanalysis are sim-492

ilar across ARDTs (Figure S3), with all ARDTs indicating a poleward shift in ARs. This493

might suggest that the observed poleward shift in the storm tracks (Fyfe, 2003; Davis494

& Rosenlof, 2012; Pena-Ortiz et al., 2013; Tilinina et al., 2013; Lucas et al., 2014; Man-495

ney & Hegglin, 2018) dominates over quasi-global increases in IVT in the historical record.496

This should be investigated further as part of the Tier 2 Reanalysis experiment.497

The algorithm-wise validation of simulated ARs (Figure 2a) shows that models ex-498

hibit spatial patterns of AR occurrence similar to those in reanalysis, as evidenced by499

high Taylor skill scores for spatial correlations and standard deviations. This is a note-500

worthy result in the context of the ARDT uncertainty shown here. If only one algorithm501

is used in a study, such validation could give false confidence in the robustness of results.502

It therefore seems important to explicitly include ARDT uncertainty as part of evalu-503

ation of a model’s ability to represent ARs, which, relatedly, points to the utility of ap-504

propriate ensemble weighting strategies to help reduce such uncertainty (e.g., Massoud505

et al., 2019). It also highlights the value of AR-related, but not ARDT-dependent, eval-506

uations of models (e.g., Payne & Magnusdottir, 2015).507

Recent work involving manual identification of ARs by experts (Prabhat et al., 2020;508

O’Brien, Risser, et al., 2020) suggests that the spread in AR algorithm behavior is linked509

to differences in opinion about what does and does not constitute an AR. O’Brien, Risser,510

et al. (2020) show that this spread in subjective opinion projects directly on to quan-511

titative differences in the sign of the correlation coefficient between an El Niño index and512

global AR count. Such differences in subjective opinion likely also play a role in the quan-513

titative choices made by various ARDT designers. Gimeno et al. (2021) add some dis-514

cussion concerning the diversity of the different meteorological patterns that can be as-515

sociated with the qualitative definition of ARs, and there is no guarantee that all so-called516

ARs are associated with the same meteorological patterns. Given this spread in expert517

opinion, and given that there is no agreed-upon theoretical or numerical definition of what518

defines an AR, there is presently no way to objectively assess whether one ARDT is bet-519

ter than another.520

Somewhat relatedly, the ARTMIP project has established that different AR detec-521

tors are designed with different–and equally legitimate–purposes (Shields et al., 2018;522
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Rutz et al., 2019; Ralph, Wilson, et al., 2019). Some ARDTs intentionally choose to dis-523

criminate ARs from the background based on absolute thresholds in IVT (e.g., Rutz et524

al., 2014), since it is well-established that coastal orographic precipitation is directly linked525

to IVT magnitude (Neiman et al., 2002; Ralph et al., 2004, 2005; Neiman, Ralph, Wick,526

Kuo, et al., 2008; Ralph, Rutz, et al., 2019); such a design choice makes it easy to re-527

late ARDT results directly to hydrometeorological impacts. Other algorithms (e.g., Shields528

& Kiehl, 2016b; O’Brien, Risser, et al., 2020) intentionally use relative thresholds in or-529

der to avoid increases in AR detection due to long-term increases in atmospheric water530

vapor. Both are valid for the purposes for which they were designed: absolute methods531

detect areas that will likely lead to hydrometeorological impacts–which will increase in532

a warmer climate–and relative methods seek to focus on the core of regions associated533

with anomalous vapor transport.534

These results suggest that new projects investigating future changes in the statis-535

tics and characteristics of ARs should explicitly consider ARDT uncertainty as a core536

part of the experimental design. This study makes it clear that ARDT design choices537

can have a major impact on the results of climate change studies, and with dozens of ARDTs538

in use (Rutz et al., 2019), the uncertainty associated with their varying methods will not539

be going away soon. Furthermore, using multiple ARDTs can be advantageous. For ex-540

ample, will an increase in ARs and precipitation result primarily from an increase in IWV541

or an increase in UV wind? Having ARDTs that weigh these variables differently can542

help answer these questions. The Bayesian, multi-ARDT approach of O’Brien, Risser,543

et al. (2020) can quantify parametric uncertainty associated with a single ARDT, but544

it is not yet clear how parametric uncertainty compares to structural uncertainty (i.e.,545

choices in what heuristic rules to employ in the ARDT). There are at least four ARDT546

codes that are now in the public domain (Mundhenk_v1, Guan_Waliser_v2, Tempest, and547

TECA-BARD v1.0.1; see https://www.cgd.ucar.edu/projects/artmip/algorithms548

.html for a full list of ARDTs that have participated in ARTMIP), and we encourage549

current and future ARDT designers to likewise enter their codes into the public domain550

in order to facilitate such uncertainty exploration in future studies.551

Ralph et al. (2018) provide a concise, qualitative definition of ARs, and this has552

been a major benefit to the AR research community. They intentionally chose to “leave553

specifications of how the boundaries of an AR are to be quantified open for future and554

specialized developments.” The results in this manuscript demonstrate that the choice555

of how to define AR boundaries–the fundamental job of an ARDT–have a demonstra-556

bly large control on the statistics of ARs detected in future climate simulations. These557

results suggest that the AR research community would further benefit from studies that558

aim to quantitatively constrain the definition of ARs; e.g., with first-principles analy-559

ses that constrain AR properties like size, count, etc. Such constraints could help reduce560

uncertainty associated with ARDT design choice (and parameter choice), and by exten-561

sion they could constrain results concerning ARs and future climate change. That said,562

given that different experiments motivate different ARDT design choices (e.g., absolute563

vs relative thresholds), it seems unavoidable that some of this uncertainty is irreducible.564

It is clear, however, that it is imperative for studies to explore and understand the im-565

plications of this uncertainty.566

This study focuses on a bulk, global perspective of uncertainty associated with ARDTs567

and simulations in the Tier 2 CMIP5/6 experiment. There are many other types of more568

detailed analyses that others could take on. For example, this study has not considered569

the temporal characteristics of ARs, since relatively few existing ARDTs track ARs as570

they propagate in time; a recent study by Zhou et al. (2021) uses a common temporal571

tracking algorithm on multiple ARDTs, and such an approach could be applied to the572

Tier 2 dataset. We encourage others in the research community to utilize this dataset573

for research on future ARs and climate change (see data availability statement in Ac-574

knowledgements). In particular, it seems valuable to revisit past studies of ARs and fu-575
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ture climate change in the context of ARDT uncertainty. Payne et al. (2020) review the576

numerous results concerning the future of ARs that have appeared in the literature in577

the last decade. There are almost as many ARDTs as there are such results, which makes578

intercomparison of the results challenging. The Tier 2 CMIP5/6 dataset provides a way579

to revisit many–if not all–of these previous results within a uniform experimental frame-580

work.581

Prior to ARTMIP, it was assumed that the various ARDTs in the literature were582

simply different methods of looking at the same dynamical phenomenon. Recent papers583

associated with ARTMIP show that that is true for strong ARs (with high IVT, e.g., Rutz584

et al., 2019; Lora et al., 2020), but that there is disagreement among the various ARDTs585

for weaker ARs. Further, Zhang et al. (2019) show that approximately 20% of ARs are586

not associated with a nearby extratropical cyclone (under their ARDT criteria), suggest-587

ing that this subset of ARs may have a different dynamical origin. This raises some que-588

sions that remain unanswered. Are some ARDTs simply missing ARs that other ARDTs589

are identifying, or is there more than one type of dynamical phenomenon that produces590

AR-like objects; are some ARDTs more sensitive to one dynamical phenomenon and oth-591

ers are more sensitive to another ; and if there are multiple dynamical causes of ARs, do592

they have different spatiotemporal responses to climate change? These questions are likely593

answerable with the datasets that have been produced by the ARTMIP project.594

In summary, this initial analysis of the Tier 2 CMIP5/6 experiment shows that most595

ARDTs and simulations indicate an increasing trend in AR frequency, size, and num-596

ber in future simulations with strong radiative forcing. It also shows the critical impor-597

tance of understanding the implications of uncertainty for AR-related research. Finally,598

this paper introduces the publicly-available Tier 2 CMIP5/6 dataset, which may be a599

valuable resource for answering fundamental questions about ARs and about ARs and600

climate change.601
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Viale, M., & Nuñez, M. N. (2011). Climatology of winter orographic precipi-1093

tation over the subtropical central Andes and associated synoptic and re-1094

gional characteristics. Journal of Hydrometeorology , 12 (4), 481–507. doi:1095

10.1175/2010JHM1284.11096

Waliser, D. E., Moncrieff, M. W., Burridge, D., Fink, A. H., Gochis, D., Goswami,1097

B. N., . . . Yuter, S. (2012, aug). The Year of Tropical Convection (May1098

2008April 2010): Climate Variability and Weather Highlights. Bulletin of1099

the American Meteorological Society , 93 (8), 1189–1218. Retrieved from1100

http://journals.ametsoc.org/doi/abs/10.1175/2011BAMS3095.1 doi:1101

10.1175/2011BAMS3095.11102
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