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1  |  INTRODUC TION

Understanding and predicting the transmission of infectious dis-
eases are critical for assessing risk to individuals and informing policy 
changes. Airborne diseases, such as influenza, tuberculosis, measles, 
and SARS-CoV-2, most effectively spread in indoor settings, espe-
cially in spaces with poor ventilation and overcrowding. For example, 
it is now recognized that airborne transmission is the dominant trans-
mission mode of SARS-CoV-2 during the COVID-19 pandemic,1,2 with 
the majority of super-spreading events occurring indoors.1,3-5,

The likelihood of infection depends on the exposure dose—
the number of viral particles inhaled by a susceptible individual—
which is a consequence of both short- and long-range transmission 
routes.2,6-8 Short-range transmission is controlled by the initial 
advection of exhaled respiratory droplets, gravitational settling of 
larger droplets, and evaporation into droplet nuclei.9 Long-range 

transmission of droplet nuclei from a host to a susceptible person 
is governed by complex turbulent airflow, mechanical and passive 
ventilation, thermal buoyancy effects, and air filtration.

Due to their small size, expiratory droplet nuclei move passively 
with background air currents, and their concentration field, C(x, t), 
can be modeled by an advection-diffusion equation

where u is the background fluid velocity,  is the diffusion coefficient, 
and S is a source term that accounts for pathogen inactivation and 
other contributions to changes in the concentration field. A direct solu-
tion to Equation (1) is generally computationally expensive, particularly 
in the Navier–Stokes calculation of the background velocity. Thus, risk 
analyses that require a large number of iterations must rely on a simpli-
fied, or coarse-grained, representation.

(1)�C

�t
+ ∇ ⋅ (uC) − ∇ ⋅ (∇C) = S,
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Abstract
We develop a simple model for assessing risk of airborne disease transmission that 
accounts for non-uniform mixing in indoor spaces and is compatible with existing epi-
demiological models. A database containing 174 high-resolution simulations of airflow 
in classrooms, lecture halls, and buses is generated and used to quantify the spatial 
distribution of expiratory droplet nuclei for a wide range of ventilation rates, expo-
sure times, and room configurations. Imperfect mixing due to obstructions, buoyancy, 
and turbulent dispersion results in concentration fields with significant variance. The 
spatial non-uniformity is found to be accurately described by a shifted lognormal 
distribution. A well-mixed mass balance model is used to predict the mean, and the 
standard deviation is parameterized based on ventilation rate and room geometry. 
When employed in a dose–response function risk model, infection probability can be 
estimated considering spatial heterogeneity that contributes to both short- and long-
range transmission.
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Integrating Equation  (1) over the entire space results in an or-
dinary differential equation—the so-called well-mixed mass balance 
model—whose solution after an exposure time t with initially zero 
concentration is15

where q is the pathogen generation rate (by one or more infected 
sources) due to breathing, speaking, etc., � is a loss coefficients that 
accounts for ventilation, deposition, etc., and V is the volume of the 
room. In this expression, C(t) represents the average concentration 
field assuming a homogeneous environment in which expelled parti-
cles are uniformly distributed within the enclosed space. Under these 
assumptions, the total number of infectious particles inhaled by a sus-
ceptible individual (dose) is related to the concentration field accord-
ing to d(t) = ∫ t

0
pC(�) d�,10 where p is the pulmonary ventilation rate 

(breathing rate) of an individual. When combined with an exponential 
dose–response function, the probability of infection, defined as the 
ratio of number of infections, NI, to number of susceptible individuals, 
NS, can be estimated according to

where k is a constant that depends on the infectiousness of the virus.11 
Alternatively, the probability can be expressed in terms of the quantum 
of infection (or quanta) introduced by Wells,12 which gives rise to the 
well-known Wells–Riley model.13 The aforementioned approaches act 
as the basis of most epidemiological models used today for assessing 
the risk of airborne diseases. For example, such models have been used 
to predict the risk of infection associated with measles,13 tuberculo-
sis,14-16 and more recently SARS-CoV-2.3,4,17,18

A key drawback of the Wells–Riley model and dose–response func-
tions based on a well-mixed mass balance is that the concentration of 
infectious material is assumed to be evenly distributed throughout the 
enclosed space at each instant in time. It is well established that this is 
rarely true, even in spaces with high ventilation rates and strong mix-
ing.19-21 Consequently, infection risk due to short- and long-range expo-
sure cannot be distinguished, and all susceptible individuals are treated 
as equally vulnerable. As pointed out in a review by Sze To and Chao,22 
“[the] spatial distribution of airborne pathogens is one of the most im-
portant factors in infection risk assessment of respiratory disease.”

A variety of approaches have been proposed to address the 
shortcomings of well-mixed models in recent years. Multi-zone (or 
zonal ventilation) models divide the space into sub-volumes (zones), 
each of which are assumed well-mixed with homogeneous compo-
sition.19,23,24 Susceptible individuals located in different zones are 
exposed to a different dose and thus experience different levels of 
infection risk. This approach is typically used in settings with multiple 
rooms or spaces with partitions, such as in hospitals,25-27 commercial 
airliners,28,29 and apartment buildings.30 Several extensions to the 
multi-zone model have been proposed. Nicas31 developed a proba-
bilistic model based on Markov chains, where each zone is treated 

as well-mixed but the concentration from one zone to another is 
described probabilistically, allowing for some variability in infection 
risk to be captured. Noakes and Sleigh19 proposed a stochastic ver-
sion of the Wells–Riley model, where mixing between zones is lim-
ited. While multi-zone models have shown significant improvement 
over previous epidemiological models, the treatment of each zone as 
well-mixed precludes them from identifying infection to susceptible 
people in close proximity to the infectious source, unless detailed 
information regarding transport between interconnected spaces is 
known a-priori.32

Sun and Zhai33 generalized the Wells–Riley model by introducing a 
distance index and a ventilation index to quantify the impact of social 
distance and ventilation effectiveness on the probability of infection. 
Guo et al.34 showed that this model yields reasonable accuracy against 
available data. However, they point out that it does not account for 
the location of infectors and fails to capture the spatial distribution of 
infection probability. Accordingly, Guo et al.34 introduced a so-called 
spatial flow impact factor into the Wells–Riley model and demon-
strated success in predicting the spatial distribution of infection proba-
bility, which was used to identify optimal placement of individuals and 
facilities (e.g., air purifiers) in a simulated hospital ward. However, such 
an approach requires detailed flow measurements via experiments or 
computational analysis of the specific confined space prior to its use.

Computational fluid dynamics (CFD) has gained popularity in re-
cent years for quantifying the spatial distribution of pathogens in 
confined spaces. Due to the wide range of length and time scales 
present in turbulent flows, obtaining the local velocity field, u, in 
Equation (1) via a direct solution to the Navier–Stokes equations is 
often not tractable except for early stage, short-range propagation 

(2)C(t) =
q

�V
(1 − e−�t),

(3) ≡ NI

NS

= 1 − e−d∕k ,

Practical implications

•	 Spatial variation in aerosol concentration is significant 
in indoor settings, with standard deviations comparable 
to the mean, and should be accounted for during risk 
assessment.

•	 The classical well-mixed mass balance provides an ac-
curate estimate of the mean concentration, but fails to 
capture spatial variation that distinguishes short- and 
long-range transmission.

•	 The concentration distribution was found to be nearly 
lognormal for all of the indoor settings considered.

•	 The model developed in this work can be integrated 
within existing epidemiological models to capture non-
uniform mixing for general indoor settings.

•	 Treating the exposure dose as a probability density 
function results in a distribution of infection probabili-
ties (as opposed to a single value obtained from classi-
cal approaches), that informs impact of social distancing 
among other safety guidelines.
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of expiratory flows such as coughs or sneezes.35-37 Instead, the 
mean flow field is often obtained via the Reynolds-averaged Navier-
Stokes (RANS) equations, for example, using a k − � turbulence 
model.38-43 The concentration field obtained from CFD can then be 
employed in a dose–response function or used to inform multi-zone 
models.21,39,44 Due to its high computational cost, CFD is tradition-
ally used to study specific scenarios under a limited number of per-
mutations. Thus, its use for general risk assessment remains limited.

In this work, a general model is developed that accounts for spa-
tial non-uniformity in indoor spaces. A large database of CFD results is 
generated for a wide range of representative spaces (see Figure 1). The 
location of infected individuals, room geometry, ventilation rate, and ex-
posure duration are varied to obtain a statistically significant representa-
tion of disease transmission in confined spaces. Details on the numerical 
simulations followed by a statistical analysis of the concentration fields 
are provided in Section 2. In Section 3, a model is proposed for its prob-
ability density function and is employed in a dose–response function to 
quantify the effect of non-uniform mixing on risk of infection.

2  |  SIMUL ATION DETAIL S

This section provides details on the numerical simulations used to 
generate spatio-temporal concentration fields that will be used to 
inform the probabilistic model proposed in Section 3. We consider 
several representative indoor spaces: an urban bus; a 30-student 
classroom; a large college-style lecture hall; and a music rehearsal 
space, as depicted in Figure  1. Room dimensions and ventila-
tion specifications are modeled after spaces at the University of 
Michigan. Details on the computational mesh and boundary condi-
tions used in each case are summarized in Appendix A.

2.1  |  Governing equations

The airflow is assumed to be incompressible and turbulent, gov-
erned by

where p is the kinematic pressure, g is the acceleration due to gravity, 
and �t is the effective viscosity that accounts for both molecular and 
turbulent diffusion. The turbulent viscosity is obtained from the k − � 
turbulence model.45 Due to the small density variations of the air, the 
Boussinesq approximation is employed, so that density variations only 
appear in the gravitational term. The nominal air density is �0 = 1.2 kg/
m3 and the local density, �, varies based on the temperature field ac-
cording to the ideal gas law. The equation governing temperature is

where �t = �t∕Prt + �∕Pr is the effective thermal diffusivity, and 
Prt = 0.9 and Pr = 0.71 are the turbulent and laminar Prandtl numbers, 
respectively. The concentration field is solved according to Equation (1), 
where the diffusion coefficient is given by  = �t∕Sct + �∕Sc, 
where Sct = Sc = 1 are the turbulent and laminar Schmidt numbers, 
respectively.

For each case, a precursor simulation is performed to generate a 
fully developed turbulent flow field inside the domain. The resulting 
flow field is used as the initial condition at which point the infected 
individual begins shedding aerosols. Occupants are represented by 
human-size manikins (standing and sitting) with uniform temperature 
of 32°C. The mouth and nose are modeled as an integrated round patch 
with a diameter of 4 cm and temperature of 34°C (see Figure 1B). A tur-
bulence intensity of 10% and a mixing length of 7.5 mm are enforced 
at the vicinity of mouth. In each simulation, it is assumed that only one 
infected person is present. Multiple simulations are run for each case, 
varying the location of the infector. A constant virus shedding rate of 
q = 50 s−1 is enforced as a boundary condition at the nose/mouth of the 
infected individual with a breathing rate of p = 6 l/min, corresponding 
to a highly contagious person speaking continuously and loudly.18,46

2.2  |  Flow field and concentration distribution

In total, 174 simulations are performed: 163 of the 30-student class-
room; eight of the lecture hall; one of the music hall; and two of 
the urban bus. Each indoor space is characterized by its volume V, 
height H, aspect ratio 

√

A∕H, where A = V∕H is the floor area, and (4)�u

�t
+ u ⋅ ∇u = − ∇p + ∇ ⋅

[

�t
(

∇u + ∇uT
)]

− g ⋅ x∇

(

�

�0

)

,

(5)�T

�t
+ ∇ ⋅ (uT) − ∇ ⋅ (�t∇T) = 0,

F I G U R E  1 Schematic of the various 
geometries used in the numerical 
simulations. (A) Classroom. (B) Zoom-in 
of the infected individual (color shows 
concentration, arrows depict fluid 
streamlines). (C) Lecture hall. (D) Rehearsal 
hall. (E) Urban bus

(A)

(C)

(D)
(E)

(B)
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ventilation rate denoted by the number of air changes per hour 
(ACH). The volume, ACH, and duration contribute to the mean con-
centration, C, per Equation (2), where the loss coefficient is related 
to ACH according to � = ACH∕3600. The variation in concentration 
field is found to depend on the room geometry (

√

A∕H) and relative 
position of the infector to the location of the return and supply vents 
(see Appendix B). Thus, for the analysis presented herein, averaging 
is performed over the volume of the indoor space Ω ∈ V and over 
different realizations by varying the location of the infector, accord-
ing to

and

where C and Cstd are the mean and standard deviation of the concentra-
tion field, respectively, C(x, t) is the local concentration at time t, and N 
is the number of realizations. It should be noted that in the region near 
the infector's mouth, the concentration is extremely high and quickly 
drops before reaching susceptible individuals. Thus, computational cells 
containing the largest 0.1% values near the infector are removed.

The mean and standard deviation of the concentration field 
obtained from each case are summarized in Appendix  B. Several 
important observations can immediately be made. First, the well-
mixed mass balance model (2) yields an accurate prediction of the 
mean concentration when compared to the CFD results for all of 
the cases considered. Second, the variation about the mean, char-
acterized by Cstd, is large, with values comparable to or larger than 
the mean. This has important consequences in risk assessment since 
the infection dose of an individual may vary significantly about the 
mean, depending on the relative proximity to the infector or supply 
and return vents. In addition, the variation in concentration is seen 
to be correlated with the room geometry: Cstd tends to increase with 
increasing aspect ratio.

Instantaneous snapshots of the airflow and concentration 
field in two of the classroom configurations are shown in Figure 2. 
Turbulent mixing and recirculation are driven by the return and 
supply vents. The concentration field is diffused and convected by 
the air currents away from the infector to neighboring susceptible 
individuals. Because each case considers one infector, increas-
ing the aspect ratio from 

√

A∕H = 2 in Figure  2B to 
√

A∕H = 3 in 
Figure  2C yields larger variation in the concentration field. This 
can be attributed to inadequate diffusion over the duration t drop-
let nuclei are being emitted. In the absence of any background air-
flow, transport of C is entirely controlled by diffusion. Because of 
the diffusion time A∕ ≫ dt, a larger surface area results in greater 
non-uniformity.

The probability density function (PDF) of concentration through-
out the space in Figure  2D shows (I) significant regions with con-
centration below the mean, corresponding to locations far from the 

infector; (II) high probability events of concentration near the mean 
value; and (III) a long tail with values significantly above the mean 
corresponding to regions near the infector. Thus, the PDF captures 
effects of both short-range (high C) and long-range (low and inter-
mediate C) transmission.

Larger volume spaces, namely the lecture hall and music re-
hearsal hall considered here, exhibit vastly different behavior com-
pared to the smaller classrooms. As shown in Figure  3, the large 
height of the lecture hall results in significant vertical displacement 
of the concentration field. We attribute this behavior to buoyancy 
effects. The combined effect of convection by ventilation (or wind 
if windows are open) and buoyancy can be characterized by the 
densimetric Froude number according to Fr = U∕

√

g�H,47 where U 
is a velocity scale associated with the supply vents (proportional 
to the ACH), and g� = g�ΔT, where � = 1∕293 K−1 is the thermal ex-
pansion coefficient of air at room temperature, and ΔT ≈ 14 K is the 
temperature difference between the infector and ambient air. If the 
ACH is sufficiently high to mix the space, the spatial variation in the 
concentration field will decrease. However, if there exists a signif-
icant temperature difference across the height of the room, the air 
can become stratified, trapping droplet nuclei near the ceiling (as 
shown in Figure 3). For the cases considered herein, Fr = 1. Thus, in 
spaces with large H (relative to the height of a person), the concen-
tration distribution is expected to be controlled by buoyancy.

3  |  PROBABILISTIC MODEL

3.1  |  Model development

To capture the spatial non-uniformity in aerosol concentration for 
risk assessment, we propose to model the PDF based on a small 
number of input parameters that characterize the indoor space. We 
adopt a presumed-shape PDF approach, where the concentration 
distribution is taken to be a shifted and scaled lognormal distribu-
tion. The two parameters that govern a standard lognormal distribu-
tion of a random variable X are μ and �, corresponding to the mean 
and standard deviation of ln(X), respectively. The probability density 
function of X is

and the mean and standard deviation of X are given by X = e�+�
2∕2 and 

Xstd =
√

(e�
2
− 1)e2�+�

2 , respectively. To model the concentration dis-
tribution, we scale and shift X to match the mean and standard devia-
tion of the concentration field, C, according to

Solving for X in terms of C and substituting into Equation (8) yields the 
probability density of C.

(6)C =
1

N

N
∑

i=1

[

1

V ∫ΩC(x, t)dV
]

,

(7)C2
std

=
1

N

N
∑

i=1

[

1

V ∫Ω
(

C(x, t)−C
)2

dV

]

,

(8)P(X) =
1

X�
√

2�
e
−

1

2�2
(lnX−�)2

,

(9)C =
X − X

Xstd
Cstd + C.
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The parameters μ and � govern the shape of the template lognor-
mal distribution for the nondimensional variable, X. Based on fitting 
experiments with the CFD simulation dataset, we have found that 
� = 0 and � = 0.9 perform well in minimizing the error in the probabil-
ity distributions. The PDF of C then only depends on the concentration 
mean, C, and the concentration standard deviation, Cstd . The well-
mixed model per Equation (2) is used for the former, and the latter is 
parameterized using the room geometry and ventilation parameters.

Linear regression of the CFD data of the classrooms, lecture hall, 
and rehearsal hall (see Table B1) shows that a reasonable model for 
the standard deviation is given by

where CWM is the mean concentration obtained from the well-mixed 
mass balance (2), ACH0 = 1, H0 = 1 m, and the coefficients are 

�0 = − 1.01, �1 = 0.11, �2 = 0.33, and �3 = 0.10. As described above, 
ACH captures the effects of turbulent mixing on the spatial distribu-
tion of the concentration field, while 

√

A∕H and H account for inade-
quate diffusion from the infector to the surroundings and buoyancy, 
respectively. We have found that a two-parameter model using ACH 
and 

√

A∕H is sufficient for the classrooms, but inclusion of H is needed 
to capture the spatial non-uniformity in the lecture hall and music hall. 
The model given in Equation (10) results in an R2 value of 0.97 over all 
of the cases listed in Table B1. The model is developed for 0 ≤ ACH ≤ 6 
h−1, 2 ≤ √

A∕H ≤ 3, and 2.45 ≤ H ≤ 8.26 m, and therefore, caution 
should be exercised when using values outside of this range.

As shown in Figure  4, the normalized standard deviation in-
creases linearly with aspect ratio. As noted earlier, ACH increases 
mixing in the room, resulting in smaller values of Cstd in general. 
However, ACH also acts to dilute the air, resulting in a reduction of 
the mean concentration–recall ACH appears in the loss coefficient 
� in Equation  (2). Consequently, Cstd∕CWM is observed to increase 

(10)Cstd

CWM

= �0 + �1
ACH

ACH0

+ �2

√

A

H
+ �3

H

H0

,

F I G U R E  2 Concentration C contours 
and streamlines inside classrooms with 
ACH = 3 at different aspect ratios 

√

A∕H. 
(A) Schematic of the classroom indicating 
location of the infector, supply vents, and 
return. (B) 

√

A∕H = 2. (C) 
√

A∕H = 3. (D) 
PDF of concentration from (C) highlighting 
high probability events of moderate 
concentration (I), moderate probability of 
high concentration (II), and low probability 
of maximum concentration (III)

(B)(A)

(C)

(D)



6 of 12  |     TAN et al.

with ACH. Further comparisons between the standard deviation ob-
tained from CFD with Equation (10) are given in Table 1. Overall good 
agreement is observed over all of the indoor spaces considered. The 
largest discrepancy can be observed with the urban bus operated at 
ACH=16. As the regression was performed using ACH ∈ [0, 6], this 
value falls outside of the training set. It should also be noted that 
the buses were simulated using a clean air delivery rate of 20% (see 

Appendix A4), and thus, the ventilation rate used in (10) is 5 times 
larger than the ACH used in predicting the mean.

Examples of the fully integrated PDF model, combining 
Equations (8–10) with � = 0 and � = 0.9, are shown in Figure 5. For 
each case, the general trend observed in the CFD results is cap-
tured exceptionally well. The heavy-tailed nature of the distribu-
tion yields significant probability of concentration greater than the 

F I G U R E  3 Instantaneous airflow 
streamlines and contour of concentration 
(C = 120 m−3) inside the lecture hall at 
t = 5400 s

(A) 

(B) 

F I G U R E  4 Standard deviation of the 
concentration field inside a classroom 
normalized by the mean obtained from 
a well-mixed mass balance. CFD results 
(symbols), model given by Equation (10) 
(dashed lines) for ACH = 1 (°), ACH = 3 ((
), and ACH = 6 (( )

(A) (B)
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mean, corresponding to locations near the infector. Meanwhile, re-
gions with local concentration below the mean are most probable, 
representative of long-range exposure. In the following section, the 
proposed model will be employed within a dose–response function 
to assess its impact on infection probability.

3.2  |  Demonstration

Dose–response modeling is commonly used to estimate individual-
level probability of infection based on the concentration of infec-
tious aerosols.11,22,48 We consider the exponential dose–response 
function given by Equation (3), where the dose represents the total 
number of infectious particles an individual would inhale according to 
d = pCt.10 The pulmonary ventilation rate is taken to be p = 1 × 10−4 
m3/s (6  l/min), the concentration C is sampled from the proposed 

PDF model (9), and t is the duration. The parameter k typically varies 
between 75 and 500.11,48 Watanabe et al.11 found k = 410 provides 
a good fit for SARS coronavirus (SARS-CoV-1) based on data sets of 
infected mice, and this value is used in the present study.

The shifted lognormal concentration PDF is sampled using a 
discrete inverse cumulative distribution function (CDF) method. 
N = 104 random numbers ui are generated from a uniform distribu-
tion between 0 and 1, and these are mapped to concentration values 
via Ci = CDF−1(ui), where the discrete CDF is evaluated by cumula-
tive sums of the PDF values, and its inverse is computed by linear in-
terpolation of point data. Specifically, to obtain the CDF, which is the 
integral of the PDF, the shifted lognormal PDF is sampled at 1000 
uniformly spaced concentration values and the CDF at each of these 
samples is computed by summing and normalizing the PDF values at 
all lower concentrations. This discrete representation of the CDF is 
then linearly interpolated to allow for the calculation of the CDF and 
its inverse at an arbitrary concentration value.

Predictions of infection probability are shown in Figure 6. In 
each case, a single infected person is presumed to reside within 
the space. The relative placement of the infector to susceptible 
individuals and to return and supply vents is accounted for in the 
modeled concentration PDF from which the samples are drawn. 
It can be seen that the probability of infection based on a dose 
obtained from the well-mixed mass balance is representative of 
the mean value obtained from sampling the concentration PDF. 
As expected, increasing ACH in the classroom leads to lower in-
fection risk. Due to the large size of the music and lecture halls, 
infection probability is lower compared to the classroom despite 
having relatively low ACH.

TA B L E  1 Predictions of Cstd from CFD and the model given by 
Equation (10)

Description ACH Cstd (CFD) Cstd (model)

Classroom 1 335.26 329.56

Classroom 3 255.7 251.38

Classroom 6 233.56 211.58

Lecture hall 1 52.8 45.75

Lecture hall 6 20.24 19.44

Rehearsal hall 0 43.48 51.22

Urban bus 1.6 469.33 595.75

Urban bus 16 74.53 1903.6

F I G U R E  5 Concentration PDF 
obtained from CFD ( ) and model using 
Equations (8)–(10) with � = 0 and � = 0.9 
( ). Mean obtained from the well-mixed 
mass balance (– –). (A) Classroom with 
V = 120 m3 and ACH = 1 averaged over 
N = 6 infector positions. (B) Classroom 
with V = 240 m3 and ACH = 3, averaged 
over N = 3 infector positions. (C) 
Rehearsal hall with ACH = 0 and N = 1. (D) 
Lecture hall with ACH = 1, averaged over 
N = 4 infector positions

(A) (B) 

(C) (D) 
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Importantly, the probability of infection sampled from the proposed 
PDF model provides critical information that cannot be gleaned from 
a well-mixed assumption alone. Namely, the distribution of infection 
probability about the mean is large. At two standard deviations above 
and below the mean, probability of infection can be more than 2 times 
larger or 50 times smaller than what a well-mixed assumption would 
predict, as a consequence of the relative position of the susceptible 
individual. Therefore, upper and lower bounds of infection probability, 
or ideally the entire distribution, should be taken into account when 
determining safety guidelines for mitigating airborne transmission.

4  |  CONCLUSIONS

This work presents a simple probabilistic model that captures spa-
tial heterogeneity of airborne pathogens. Dispersion of expiratory 
droplet nuclei in classrooms, lecture halls, and buses was simu-
lated using the three-dimensional unsteady Reynolds-averaged 
Navier–Stokes equations. A database containing 174  simula-
tions was generated and used to quantify the spatial distribution 
of droplet nuclei for a wide range of ventilation rates, exposure 
times, and room configurations.

The classical well-mixed mass balance was found to provide an 
accurate estimate of the mean concentration. However, the con-
centration field was found to be highly non-uniform, with standard 
deviations comparable to the mean. We attribute this spatial varia-
tion to three mechanisms: (i) turbulent mixing characterized by the 
ventilation rate; (ii) inadequate diffusion characterized by the lateral 

area of the room; and (iii) vertical displacement due to buoyancy in 
spaces with high ceilings.

To date, well-mixed models are primarily used to make quanti-
tative risk assessment for decision-making. We show quantitatively 
how much the concentration distribution (mean and standard devia-
tion) varies and its implications on risk of infection. It was found that 
the concentration field can be modeled using a shifted and scaled 
lognormal distribution. A simple expression for the standard devi-
ation was proposed based on easy-to-measure parameters (ventila-
tion rate and room geometry). By sampling the exposure dose from 
the modeled concentration distribution in a dose–response func-
tion, events corresponding to short- and long-range transmission 
are captured. This was found to yield an order of magnitude change 
in probability of infection compared to what a well-mixed assump-
tion predicts depending on the relative position of the susceptible 
individual.

Finally, we note the proposed model is complementary to many 
existing epidemiological models. For example, additional effects can 
be included in the well-mixed mass balance, such as deactivation due 
to ultraviolet lights or air filters.10 The concentration PDF can also 
be employed within multi-zone models to incorporate spatial het-
erogeneity within each zone. In addition, the effect of masks can be 
incorporated by adjusting the mean in the well-mixed mass balance 
and the breathing rate used in estimating the dose. Due to its low 
computational cost, the proposed model can be easily integrated 
into risk analyses for determining safety guidelines for mitigat-
ing airborne transmission, which to date have relied on well-mixed 
assumptions.17,48

F I G U R E  6 Histograms of the 
probability of infection in different 
scenarios. Each case consists of 
104 uniform random samples of the 
concentration PDF obtained from 
the proposed model. The vertical line 
denotes probability of infection using a 
dose obtained from the well-mixed mass 
balance. The classrooms have V = 180 m3 
and 

√

A∕H = 2.5

(A) (B) 

(C) (D) 
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APPENDIX A

ADDITIONAL S IMUL ATION DE TAIL S
Details on the numerical simulations performed in this study are pro-
vided in Tables A1 and A2 below. In each case, the computational do-
main is divided into a set of non-overlapping hexahedral cells. Local 
grid refinement is applied to small features, such as the return and 
supply vents, occupants, interior walls, tables, and seats. A grid refine-
ment study of the present configuration can be found in Zhang et al.43.

A.1 | Classroom
For the classroom simulations, three different volumes are consid-
ered: 120 m3, 180 m3, and 240 m3. For the 120 m3 cases, fixed di-
mensions (8.95 m × 5.46 m × 2.45 m) are used to analyze the effect 
of different positions of infectors and different ACH values. For the 
180  m3 and 240  m3 cases, to analyze the effect of the geometry, 
multiple dimensions with different aspect ratio values are used 
(shown in Table B1).

For all the classroom cases, similar HVAC systems are applied. The 
width of the inlet vents is 5  cm and the length of the inlet vents 
equals to the length of the classroom (shown in Figure 1A). The size 
of the outlet vents is the same for each case, which is 0.3 m × 0.6 m 
× 2 (two outlets). The maximum ACH value of this HVAC is 6, and 
different ACH values (1,3,6) are used for simulations.

The infector is placed at six different locations within the simula-
tions, both close and far relative to the supply/return vents within 
the room (see Figure A1).

A.2 | Lecture hall
A stereolithography (STL) file is created using computer-aided design 
(CAD) software to represent the geometry of the Chrysler Lecture 
Hall at the University of Michigan (shown in Figure 1C), which has 

a large volume of 1753  m3. Manikins of 46  sitting students and a 
standing instructor, seats, and instruments are placed inside the hall. 
Four different infector positions are chosen (one for each simula-
tion). The entire simulation period is 90 min, where the sick person 
emits in the whole period. Different ACH values (1,6) are used for 
simulations.

A.3 | Music rehearsal hall
A rectangular box is adopted to represent the simplified geometry 
of a music rehearsal hall, which has a large volume of 2488 m3 with 
dimensions of 19.82 m × 15.24 m × 8.24 m (L ×W × H). Manikins of 
14 sitting students and a standing conductor, seats, and instruments 
are placed inside the hall. The entire simulation period consists of 
two 40-min classes with a 20-min break in between, where the sick 
person only emits during classes. No HVAC system is present in this 
hall, and the airflow is mainly driven by pulmonary ventilation of the 
occupants and temperature gradients. A door is set to balance the 
pressure inside the domain.

A.4 | Urban bus
For the bus simulations, an urban bus that is used on the campus of 
the University of Michigan is studied. The geometry including the 
interior of the cabin, windows, doors, seats, handrails, ventilation 
supply and return are determined from a laser scanner and used for 
generating the computational grid of the fluid domain. A rendering 
of the bus is shown in Figure 1E. The bus dimensions are 12.1 m × 
2.58 m × 2.95 m (L ×W × H) with a total interior volume of 52 m3. A 
total of 42 supply vents are located along both sides of the bus ceil-
ing and have an orientation such that air exits vertically downward. 
The single ventilation fan draws air from the passenger compartment 
through a return vent in the back of the bus and adds 20% fresh air 
from outside before returning the air to the cabin through supply 

https://doi.org/10.1111/ina.13015
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vents. Each supply vent has a dimension of 9 in by 1 in (0.229  m 
by 0.0254 m), and the single return vent is 4 ft by 1.5 ft (1.22 m by 
0.457 m). This HVAC system can provide a maximum flow rate of 
2,500 ft3 /min (70.8 m3/min), which is equivalent to an ACH of 16 
considering the fresh air rate of 20%. With such ventilation system, 
the airflow moves up and down in transverse direction and the net 
flow is rearward through the compartment. Manikins are placed at 
different locations inside the bus: a driver sitting behind the wheel 
and standing passengers. Further details can be found in Zhang et 
al.43.

Boundary name Boundary conditions

HVAC supply vents Velocity inlet with uniform flow, 25°C, 10% turbulence intensity, and 
turbulence length scale is 5 × 10−3 m

HVAC return Pressure outlet

Mouth Constant exhalation, 6 l/min, 34°C, 2.5% turbulence intensity, 
turbulence length scale is 7.5 × 10−3 m and q = 50 s−1

Manikins No-slip and 32°C

Other surfaces No-slip and adiabatic walls

Material parameters � = 1.5 × 10−5 m2/s, T0 = 20◦C, � = 3 × 10−3 K−1, Pr = 0.71, Prt = 0.9, 
g = 9.81 m/s2, Sc = 1, Sct = 1

TA B L E  A 2 Boundary conditions and 
material properties

F I G U R E  A 1 Six positions of the infector used in the classroom 
simulations.

TA B L E  A 1 Mesh resolution and the range of total number of cells

Scenario

Mesh resolution [mm]
No. of cells 
[million]Background Supply vents HVAC return Mouth Other surfaces

Classroom 100 6.2 12.5 3.1 6.2 4.07–4.24

Lecture hall 100 12.5 12.5 3.1 25 6.47

Rehearsal 125 – – 3.9 7.8 3.17

Urban Bus 125 2 31.2 3.9 7.8 5.86



12 of 12  |     TAN et al.

APPENDIX B

Simulation results

Description
Volume 
[m3]

√

A

H
 

[–]
ACH 
[h−1]

Duration 
[min]

C (Well-
mixed) [m−3] C [m−3]

Cstd 
[m−3]

Classroom 120 2.85 1 90 1166 1165.7 335.2

Classroom 120 2.85 3 90 495 498 255.7

Classroom 120 2.85 6 90 250.2 259 233.6

Classroom 180 2 1 90 776.9 780.6 111.2

Classroom 180 2 3 90 329.6 332.7 86.3

Classroom 180 2 6 90 166.6 178.7 109.4

Classroom 180 2.3 1 90 776.9 759.5 113.7

Classroom 180 2.3 3 90 329.6 356.7 136.9

Classroom 180 2.3 6 90 166.6 176.3 125.6

Classroom 180 2.5 1 90 776.9 790.7 177.2

Classroom 180 2.5 3 90 329.6 361.2 162.6

Classroom 180 2.5 6 90 166.6 169.8 132.3

Classroom 180 2.6 1 90 776.9 790.7 215.5

Classroom 180 2.6 3 90 329.6 359.2 165.7

Classroom 180 2.6 6 90 166.6 170.7 129

Classroom 180 2.8 1 90 776.9 779.6 236.7

Classroom 180 2.8 3 90 329.6 347.3 195.6

Classroom 180 2.8 6 90 166.6 166.3 144.3

Classroom 180 3 1 90 776.9 786.2 273.6

Classroom 180 3 3 90 329.6 342.3 204.5

Classroom 180 3 6 90 166.6 161.3 155.9

Classroom 240 2 1 90 582.6 600.5 126

Classroom 240 2 3 90 247.2 271.9 91.8

Classroom 240 2 6 90 125.0 132.7 93

Classroom 240 2.5 1 90 582.6 592.6 167.9

Classroom 240 2.5 3 90 247.2 263 121.4

Classroom 240 2.5 6 90 125 130 105

Classroom 240 3 1 90 582.6 581.7 183

Classroom 240 3 3 90 247.2 264.3 147

Classroom 240 3 6 90 125 128.4 101

Lecture Hall 1753 2.45 1 90 79.8 83.9 52.8

Lecture Hall 1753 2.45 6 90 17.1 21.6 20.2

Music Hall 2488 2.1 0 80 96.5 96.5 122.1

Bus 52 2.2 16 15 213 183.7 74.5

Bus 52 2.2 1.6 15 713.7 680 469.3

TA B L E  B 1 Mean and standard 
deviation of the concentration field 
obtained from CFD. Mean obtained from 
the well-mixed mass balance (2) shown for 
reference


