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Abstract20

Megathrust earthquakes and their associated tsunamis cause some of the worst natural dis-21

asters. In addition to earthquakes, a wide range of slip behaviors are present at subduction22

zones, including slow earthquakes that span multiple orders of spatial and temporal scales.23

Out of all types of slow earthquakes, very low frequency earthquakes (VLFEs) are most24

similar to regular earthquakes, and understanding these events may shed light on the stress25

or strength conditions of the megathrust fault. However, the physical nature of VLFEs are26

poorly understood despite their frequent occurrence. Here we show three VLFEs in Casca-27

dia that were dynamically triggered by a 2009 Mw 6.9 earthquake in the Gulf of Califor-28

nia. The VLFEs likely locate in between the seismogenic zone and the Cascadia episodic29

tremor and slip (ETS) zone, including one event with a moment magnitude of 5.7. This is30

the largest VLFE reported to date, causing clear geodetic signals. Our results suggest that31

the Cascadia megathrust fault can slip rapidly in this gap zone, and such a permissible slip32

behavior would allow deeper penetrations of future great megathrust earthquakes in the re-33

gion, indicating greater seismic hazards for the coastal communities. Further, the observed34

seismic sources may represent a new class of slip events, which characteristics do not fit35

current understandings of slow or regular earthquakes.36

Plain Language Summary37

Megathrust earthquakes and their associated tsunamis pose significant hazards in Cascadia.38

In addition to earthquakes, episodic tremor and slip (ETS) events have been discovered in39

the region at depths of 30 to 50 km, 10–15 km below the seismogenic zone. The expected40

slip behavior between the seismogenic and ETS zones remains unknown, leaving the rup-41

ture extents of future megathrust earthquakes unclear. We detect and locate three very low42

frequency earthquakes (VLFEs) in this gap region, including one with a moment magni-43

tude of 5.7. This is the largest VLFE reported to date, and its detection not only shows44

that the megathrust fault can slip rapidly in this gap zone but also challenges current un-45

derstanding of slow earthquake physics.46

1 Introduction47

The Cascadia subduction zone poses serious earthquake and tsunami hazards to48

some of the most populous regions of the United States and Canada. Geological records49

reveal that at least 19 great megathrust earthquakes occurred in the region over the past50

ten thousand years [Walton et al., 2021]. However, as an exceptionally seismically quiet51

subduction zone [Wang and Tréhu, 2016], large megathrust earthquakes in Cascadia have52

never been recorded by modern instrumentation. In contrast, slow earthquakes, which dif-53

fer from regular earthquakes, occur frequently across the whole subduction zone [Brudzin-54

ski and Allen, 2007; Gomberg et al., 2010]. These slow earthquakes encompass a wide55

spectrum of slip behaviors [Peng and Gomberg, 2010], including slow slip events (SSEs) [Dragert56

et al., 2001], very low frequency earthquakes (VLFEs) [Ghosh et al., 2015; Hutchison and57

Ghosh, 2016], low-frequency earthquakes (LFEs) [Bostock et al., 2012; Sweet et al., 2019],58

and non-volcanic seismic tremor [Wech and Creager, 2008; Brown et al., 2009]. In Casca-59

dia, slow slip events and seismic tremor often couple with each other as episodic tremor60

and slip (ETS) events [Rogers and Dragert, 2003; Bartlow et al., 2011].61

These ETS events recur semi-regularly and can propagate up to ∼500 km from cen-62

tral Oregon, US, to Vancouver Island, Canada [Wech and Bartlow, 2014]. They can have63

moment magnitudes equivalent to Mw 6.7 earthquakes with the SSEs releasing most of64

their moments [Dragert et al., 2001; Kao et al., 2010]. Additionally, typical VLFEs in65

the region can have equivalent moment magnitudes ranging from 2.1 to 4.1 [Ghosh et al.,66

2015; Hutchison and Ghosh, 2016; Ide, 2016]. These events accommodate a portion of the67

slip deficit at the subduction zone and concentrate along a band at depths of 30–50 km,68

about 10 to 15 km deeper than the downdip edge of the seismogenic zone [Brudzinski and69
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Allen, 2007; Gomberg et al., 2010; Wang and Tréhu, 2016; Walton et al., 2021]. In be-70

tween the ETS zone and the seismogenic zone on the fault, there is a gap that is not fully71

locked, yet devoid of slow earthquakes [Hyndman and Wang, 1995; Wang et al., 2003;72

Brudzinski and Allen, 2007; Gomberg et al., 2010; Priest et al., 2010; Schmalzle et al.,73

2014]. Understanding the slip behaviors in this gap zone gives insight into the stress and74

strength conditions of the megathrust fault, and can lead to improved forecasting of future75

earthquake rupture scenarios [Bruhat and Segall, 2016; Ramos and Huang, 2019]. Studies76

of this gap zone are largely hindered by a lack of robust observations, or the loss of res-77

olution of onshore instruments; hence, little is known about the nature of the gap zone or78

its relation to the locked zone and the ETS zone.79

In a search of the USArray data from August to October 2009, we find that three80

VLFEs occurred over a 5-minute period. Two of the VLFEs likely occurred in the gap81

zone between the seismogenic locked zone and the ETS zone, and one is likely adjacent to82

the gap zone (Figure 1). Geodetic data confirm the best resolved event, with clear obser-83

vations of static strains that are consistent with the seismically derived focal mechanism.84

The VLFEs coincide with surface wave arrivals of the August 2009 Mw 6.9 Canal de Bal-85

lenas earthquake, and we examine whether the VLFEs may have been triggered by the dy-86

namic stresses from the passing waves. These events were also close to the onset area of87

the 2009 Cascadia ETS event and occur three days before its reported initiation [Bartlow88

et al., 2011]. This spatiotemporal correlation between the VLFEs and ETS event suggests89

that these previously unknown VLFEs were either diagnostic of, or played a role in, the90

nucleation process of the 2009 Cascadia ETS event. Most importantly, identifying these91

VLFEs offers new insight into the physical nature of the gap zone.92

2 Datasets and Methods93

2.1 Detecting and Locating VLFEs in Cascadia94

We use an array-based surface wave detector that is developed from the AELUMA95

(Automated Event Location Using a Mesh of Arrays) method [de Groot-Hedlin and Hedlin,96

2015; Fan et al., 2018]. Our approach is data-driven with few assumptions about the na-97

ture of the seismic sources. The AELUMA method can detect and locate seismic sources98

from intermediate-period Rayleigh waves, and it is particularly well-suited for detecting99

unconventional seismic sources that are commonly missed in standard catalogs [Fan et al.,100

2019, 2020]. This is because the method applies to continuous waveforms and can de-101

tect and locate any source of seismic radiation without phase picks or knowing the source102

types [Fan et al., 2018]. We follow the same data processing protocol outlined in Fan103

et al. [2018] and use the same empirical parameters that have been implemented to in-104

vestigate stormquakes and submarine landslides in the Gulf of Mexico [Fan et al., 2019,105

2020]. The only difference is that we use 360 s time-window and 180 s time-step for the106

beamforming procedure instead of using the 600 s time-window and 300 s time-step as107

used in previous studies.108

The method takes advantage of local coherence of the recorded signals, and then109

forms an inverse problem to locate the signal sources assuming the waves propagating110

along the great circle paths [de Groot-Hedlin and Hedlin, 2015; Fan et al., 2018]. We first111

divide the large arrays into small subarrays, each comprising three stations. Second, tau-p112

beamforming analysis is applied to continuous data that are filtered in the 20 to 50 s pe-113

riod band to detect signals, and the detections are screened through a quality control pro-114

cedure [see details in Fan et al., 2018]. The records (LHZ component) are from available115

stations located in the contiguous US during the study period. Due to the signal to noise116

ratios and the quality control steps, not all records are used for the final location. Third,117

the remaining detections are grouped into non-overlapping clusters. Fourth, detections of118

each cluster are used to locate one seismic source and its location uncertainty is empiri-119

cally estimated [Fan et al., 2019, 2020]. During the location step, possible arrival angle120
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anomalies are empirically corrected using earthquakes reported in the Global Centroid121

Moment Tensor Project [Ekström et al., 2012]. Finally, the quality of each located seismic122

event is assessed to avoid duplicates and a catalog is populated with the located events.123

We detected three seismic sources (E1, E2, and E3) in Cascadia soon after the 2009124

Canal de Ballenas earthquake that are likely VLFEs (Figures 1,2). Due to the spatiotem-125

poral correlation between the 2009 Canal de Ballenas earthquake and the detected sources,126

we hypothesize that the detected sources were triggered by the 2009 earthquake. We will127

discuss this hypothesis in later sections. These three VLFEs were detected by 84, 57, and128

187 subarrays, respectively. In particular, E3 can be clearly seen in the record section129

when the traces are aligned with respect to its location (Figure 3). Their location uncer-130

tainties are shown as the dashed lines in Figure 2. The location uncertainty of the detected131

seismic sources are computed by examining the spatial structure of a suite of grids within132

a misfit threshold [Fan et al., 2018]. Based on the optimal location, grids that can min-133

imize the misfit values within 25% of the optimal value are taken as possible source lo-134

cations [Fan et al., 2018]. From the set of possible sources, we compute a distance co-135

variance matrix and use its eigenvectors and eigenvalues to define a location uncertainty-136

ellipse with the optimal solution in the center [Fan et al., 2018] (Figure 2). This approach137

can provide a formal way to address statistical location uncertainty due to data availability.138

However, the misfit threshold is chosen subjectively. In our case, the 25% of the optimal139

value is a conservative choice, and the results represent the lower-bound of the resolution.140

In later parts, we will evaluate the event locations with local strainmeter records, which141

provide independent constraints on the results.142

2.2 Determining Focal-mechanism of the VLFEs143

We use a cross-correlation method to estimate the focal-mechanism (Figure 4). The144

approach shares similarities with the grid-search centroid moment tensor inversion method,145

which has been applied to search VLFEs in Cascadia and offshore Japan [e.g., Ito and146

Obara, 2006; Ghosh et al., 2015]. Our method resolves the event focal-mechanism, dura-147

tion, and the event depth based on a VLFE catalog (Figure 4). Instead of searching the148

possible combinations of the fault geometry (strike, rake, dip) and event depth, we fix the149

E3 epicenter as the resolved location from our surface wave detector and use a VLFE cat-150

alog of events beneath southern Vancouver Island and northern Washington State [Ide,151

2016] to forward calculate synthetic seismograms. Based on the amplitudes of the VLFE-152

related waves, we initially assume the event has a seismic moment of 2 × 1018 N ·M.153

The catalog has 112 events, and for each focal-mechanism (Figure 4), we compute three-154

component synthetic waveforms for sources at depth from 5 km to 50 km with a 5 km155

increment. We also investigate a set of source durations assuming a Gaussian function156

shape with the duration as 6 times the standard deviation; we test durations from 0.9 s to157

257.1 s.158

The synthetic waveforms are computed for each station at vertical, north-south, and159

east-west directions with the Instaseis method [Driel et al., 2015]. The Instaseis method160

pre-computes a Green’s function database with the axisymmetric spectral-element method161

AxiSEM [Nissen-Meyer et al., 2014]. Here, we use the Green’s functions calculated with162

the anisotropic version of the PREM model up to 5 s [Dziewonski and Anderson, 1981].163

These synthetic seismograms are then filtered at 25 to 50 s period band and are cross-164

correlated with the observed three-component waveforms of the best-resolved event, E3,165

in the same frequency band. We use all available stations in the continental US with epi-166

central distances from 500 km to 3300 km (up to 30◦ epicentral distance, Figure 5). For167

each station, a representative cross-correlation coefficient is taken as the geometric mean168

of the cross-correlation coefficients of the three components (e.g., Figure 5), the preferred169

depth for the focal-mechanism maximizes the total summation of the representative cross-170

correlation coefficients from all stations. The optimal solution, including both the focal-171

mechanism and the event depth, has the maximum total summation of cross-correlation172
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coefficients. After obtaining an optimal solution, we calculate the amplitude ratios be-173

tween the synthetic waveforms and the observations for all the stations and component174

(Figure 4d), and the median value of the ratio distribution (0.25 for E3) is used to scale175

the initial seismic moment to compute for the VLFE moment.176

Given the noise level of the records, we can only estimate the focal-mechanism177

for one of the detected seismic sources in Cascadia (E3), which has waveforms that are178

separated from the surface waves of the Canal de Ballenas earthquake (Figure 3). It is179

challenging to analyze events E1 and E2 in more detail because the high amplitude coda180

waves from the Canal de Ballenas earthquake construe the VLFE signal (Figure 3). The181

near-field stations in the Pacific Northwest (inset, Figure 1) are not used to analyze E3 due182

to the interference between its surface waves and those of the Canal de Ballenas earth-183

quake (Figure S1).184

2.3 Dynamic and Static Deformation185

With our starting estimates that seismic moments of the VLFEs are on the order186

of 1018 N ·M, geodetic methods may detect the associated static deformation and verify187

our results. We use strainmeters because they are generally sensitive to static strains from188

small-to-moderate crustal earthquakes, and can give precise onset timing of the static de-189

formation, unlike with more commonly used space geodetic techniques (i.e., GNSS, In-190

SAR). They can also measure broadband dynamic strains from the Canal de Ballenas191

event, which allows us to robustly estimate dynamic stresses at the times of the detected192

seismic sources. We will later examine the relations between the dynamic stress and the193

observed VLFEs.194

In particular, we use strain data from borehole strainmeters (BSMs) in the Network195

of the Americas (NOTA) (Figure 6a) These BSMs are four-component Gladwin-type dif-196

ferential capacitance strainmeters [Gladwin, 1984]. Unprocessed data given in capacitance197

bridge counts are converted to linear strains using standard linearization procedure [Bar-198

bour and Crowell, 2017]. We outline the steps taken to analyze both dynamic strains from199

the source, and static strains from the VLFEs.200

2.3.1 Dynamic Strains from the Canal de Ballenas Source201

For analyses of the teleseismic waves, we analyze the root-mean-square strain time-202

series ε for the given time window, given by ε =
√[

g2
1 + g

2
2 + g

2
3 + g

2
4
]
/4, where g1 is203

the linear strain timeseries for gauge one, for example. We then calculate the peak value204

of the RMS strain timeseries, ε̂ , after applying a two-pass Butterworth highpass filter with205

a corner frequency of 0.004 Hz (250 s period) to mask out all non-seismic signals that206

strainmeters have well-known sensitivies to (e.g., tides, atmospheric pressure, etc.); this is207

the peak dynamic strain (PDS).208

Following Hill [2008], we estimate peak dynamic stress (ŝ) as the observed peak209

RMS strain scaled by twice the crustal shear modulus µ (ŝ = 2µε̂). We use µ = 30 × 109
210

Pa to be consistent with the crustal velocity and density model used to locate the VLFEs.211

This is a simplistic estimate of the true stresse perturbation, which might be larger if the212

event occurred where material properties contrast strongly; however, at Cascadia, contrasts213

in S-wave velocity (VS) at the slab interface are generally within a few percent [Porritt214

et al., 2011], which translates to a smaller perturbation in µ, given that µ = ρV2
S , where ρ215

is density.216

2.3.2 Static Strains from the Local VLFEs217

Theoretically, the lowest detectable static strain is about 0.1–0.2 ×10−9 [parts-per-218

billion (ppb), or nanostrain]. Following Wyatt [1988] this implies that strain from an event219

–5–



Confidential manuscript submitted to AGU Advances

with 1018 N ·M seismic moment will be undetectable beyond a few hundred kilometers.220

However, because of noise and other unrelated signals, the practical limit of detection of221

an event of this size is ∼100–130 km. Relative to the location of VLFE event E3, this222

limitation leaves 14 possible NOTA stations. However, data from four of these stations223

are either unavailable or too contaminated with non-seismic signals such that only stations224

B003, B004, B014, B007, B001, B013, B009, B010, B011, and B926 are useful for ana-225

lyzing static strains (Figure 7).226

The distances from these stations to VLFE event E3 range from 34 to 116 km, which227

implies that static strains will be much less than 100 ppb [Wyatt, 1988]; at these levels,228

the observed PDS from the 2009 Canal de Ballenas earthquake is at least 3–4 times but229

possibly 10–100 times larger than the static signal from the VLFE. For this reason, we230

first detrended the records based on the data seen between the origin time and the first231

surface-wave arrivals; we then applied a causal, lowpass filter [Agnew and Hodgkinson,232

2007] to the detrended records to preserve the time-independence of these signals, for233

comparison with the timing of the VLFEs. Static offsets are computed from these filtered,234

detrended strain records (g), and are then transformed to tensor strain values (E) using the235

coupling equation:236

E = Cg (1)
As described above g is a matrix of strain timeseries from the instrument’s 4 strain gauges:237

238

g = [g1, g2, g3, g4]
′ (2)

The matrix C is a 3×4 matrix of calibration coefficients determined by tidal analyses [e.g.,239

Hodgkinson et al., 2013]; it transforms g into tensor strain components and is different for240

each station. The resulting matrix E contains the areal strain and two engineering shear241

strains in an east-north (e-n) coordinate reference system, where extensional strains are242

positive:243

E = [Eee + Enn, Eee − Enn, 2Een]
′ (3)

For instance, the value Eee represents uniaxial, extension in the east direction. Thus, the244

rms extension is found through the quadrature sum of the components of 0.5E , or ERMS =245 √
(E2

ee + E2
nn + E2

en)/3, and similarly the shear components of 0.5E give the maximum246

shear strain: τmax =
√
(Eee − Enn)2/4 + E2

en. The calibration matrices (C) used for these247

strainmeters are from Roeloffs [2010] and Hodgkinson et al. [2013] as detailed in Ta-248

ble S3.249

3 Results250

In Cascadia, we detect three new seismic sources that are likely VLFEs (Figure 2).251

These sources generated coherent, transcontinental wavefields, and were detected by our252

surface wave detector [de Groot-Hedlin and Hedlin, 2015; Fan et al., 2018]. With the mea-253

sured centroid times and surface-wave propagation directions, we identify three seismic254

sources offshore Cascadia, E1–E3 (Figure 2). The VLFEs coincide with surface wave ar-255

rivals of the 3 August 2009 Mw 6.9 Canal de Ballenas earthquake. The 2009 Mw 6.9256

Canal de Ballenas earthquake was a strike-slip event in the north-central region of the257

Gulf of California, Mexico [Castro et al., 2011]. The earthquake ruptured a segment of258

an en echelon transform fault system with a shallow hypocenter close to the seafloor [Cas-259

tro et al., 2011; Plattner et al., 2015]. The Canal de Ballenas earthquake generated strong260

Rayleigh waves, and the observed dynamic strains at NOTA stations were between 2.1 and261

15.3 (mean 7.3) times larger than those of most Mw 6.9 teleseisms, according to the rela-262

tionships of Agnew and Wyatt [2014].263

The best resolved event (E3) occurred at 18:13:10 UTC, ∼764 seconds after the264

Canal de Ballenas earthquake origin time; its epicenter is near the entrance of the Strait265

of Juan de Fuca, ∼2360 km away from earthquake epicenter (Figure 1). Its coherent wave-266

forms can be clearly identified from the aligned traces (Figure 3). All of the VLFE events267
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(E1–E3) occurred immediately after the passing seismic waves from the Canal de Bal-268

lenas earthquake, and were most likely dynamically triggered by the earthquake. We could269

not analyze seismic data from stations in the near-field confidently because of the near-270

instantaneous triggering responses: the long lasting coda waves of the Canal de Ballenas271

earthquake masked signals of E1–E3 at stations in the Pacific Northwest (Figures 3,S1).272

However, none of the events (E1–E3) produced visible, high-frequency body-wave phases273

(Figure S1), nor are they listed in standard catalogs, relinquishing the possibility that in-274

stead they are regular earthquakes. Therefore, being in the vicinity of the Cascadia slow275

earthquakes, our newly located sources are most likely VLFEs.276

We verify this hypothesis by modeling the E3 focal-mechanism (Figure 4). The277

waveforms associated with E3 are well-separated from the surface waves of the Canal278

de Ballenas earthquake in the far-field, permitting such an analysis; the other two VLFEs279

are too difficult to model due to the poor signal-to-noise ratios of the records (Figure 3).280

Therefore, we focus our discussions on event E3 in this study and only report the detec-281

tions of E1 and E2 (Figure 2). The preferred solution suggests that E3 lasted less than282

20 s (a point source) and has a mechanism with a strike of 125◦, dip of 1◦, and rake of283

-117◦ at a depth of 15 km (Figure 5).284

The focal-mechanism and depth solution suffers from uncertainties because it is285

based on a catalog, and the teleseismic surface waves used for the analysis were filtered286

in a narrow period-band (Figure 4). Since the likely depth range for E3 is 15–25 km (Fig-287

ure 6), it is difficult to determine how the source depth deviates from the plate interface288

geometry [Hayes et al., 2018]. However, it is worth noting that the E3 depth range is shal-289

lower than the ETS rupture depth of 30–50 km [Bartlow et al., 2011]. After resolving the290

focal-mechanism and the event depth, we use the amplitude ratios between the synthetic291

waveforms and the observations to estimate the VLFE moment magnitude. The E3 event292

had a moment magnitude (Mw) of 5.7 (0.5 × 1018 N ·M, Figure 4), which is much larger293

than those of other VLFEs (M2.1–4.1) in the region [Hutchison and Ghosh, 2016; Ide,294

2016].295

At multiple stations near E3 we observe static strain offsets after the E3 occurrence296

(Figure 6). A table of observed offsets can be found in the Supplement. We ruled out the297

possibility that these are spurious strains [e.g., Barbour et al., 2015] by confirming the298

absence of static offsets at distant stations in the region with similar dynamic strain ampli-299

tudes (Figure 8). We also note that the observed static strains are not apparent until soon300

after the seismically-determined origin time of E3 (Figure 6). With the source parame-301

ters, we model the static strains due to E3 with an edge dislocation in an elastic halfspace302

[Okada, 1985], and compare the model-predictions with observations at nearby strainmeter303

stations of the NOTA network (Figure 6 and 7). With the exception of station B003, the304

overall spatial pattern of the observed static strains from the other nine stations is con-305

sistent with the synthetic strains. This confirms the event E3 and its source model, sug-306

gesting that these strain data represent the first set of direct observations of static crustal307

deformation associated with a VLFE.308

4 Discussions309

4.1 Resolutions and Uncertainties310

The detected VLFEs in Cascadia are unlikely to be data artifacts. Their radiated311

surface waves, particularly from E3, span most of the United States (Figure 2) and the312

direct geodetic observations conclusively confirm E3 and that the event occurred near the313

seismically determined location (Figure 6). Further, E3 can be directly identified from314

aligned waveforms, furthering confirming its location (Figure 3).315

In addition to triggered seismic events, heterogeneous subsurface structure can cause316

a secondary coherence surface wavefield by reflecting or converting the incoming waves317
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[Obara and Matsumura, 2010; Maeda et al., 2014; Buehler et al., 2018; Yu et al., 2017,318

2021]. Here we considered the possibility that the detected VLFEs are actually scattered319

energy from the Canal de Ballenas event seismic waves rather than a unique local source.320

For example, the observations could have been from S-wave to surface-wave conversions321

that have been observed from the US west coast [Buehler et al., 2018; Yu et al., 2021].322

However, we found that this hypothesis violates the observations in a number of ways.323

First, if the VLFEs are S-to-Rayleigh wave or P-to-Rayleigh wave scatterers, these seis-324

mic sources would occur upon the body wave arrivals. However, the observations show325

that the detected seismic sources occurred after the surface waves (Figure 3). Second, pre-326

vious surface-wave reflections from a single scatter would last longer than 200 s [Obara327

and Matsumura, 2010], which contracts to what we observe for the surface waves of E3328

in Figure 3 (duration of E3 is less than 20 s). Lastly, if the detected triggered sources are329

scatterers, structural heterogeneities (scatterers) would cause the same scattering for earth-330

quakes from the same region, and the seismic sources detected by ALEUMA would be331

located at the same location and the measured propagation directions would be identical332

after large triggering earthquakes from the same region [Obara and Matsumura, 2010].333

However, this is inconsistent with our observations (Figure 9). We observe no triggered334

seismic sources in Cascadia after the 2010 Mw 7.2 El Mayor-Cucapah earthquake, 2012335

Mw 7.0 Baja California earthquake, or the 2019 Mw 7.0 Ridgecrest earthquake. These ob-336

servations falsify the scattering hypothesis and confirm the observed VLFEs, particularly337

E3.338

While there is good spatial agreement between the observed and modeled static339

strains (Figure 6a) and no apparent influence from peak dynamic strain (Figure 6b), we340

note that there are significant uncertainties in the strainmeter calibration coefficients in this341

region owing to non-linear distortions from ocean loading, which make it notoriously dif-342

ficult to accurately model tidal strains, which are needed for calibration [see Hodgkinson343

et al., 2013; Kamigaichi et al., 2021]. We attribute the relatively small strains at B003 to344

this effect, but also to variations in focal mechanism parameters, which have a strong in-345

fluence on the spatial pattern of coseismic strain in the near-to-intermediate field, layered346

structure notwithstanding. Indeed, some stations located between lobes of significant de-347

formation (e.g., Figure 6a) where small changes in strike or dip would have the strongest348

effect. Unfortunately, there are too few strainmeters near E3 to perform an independent349

source inversion; but, the current set of static strain observations can conclusively confirm350

the E3 occurrence and its relatively large moment magnitude. Instead, to independently351

test the location of E3, we forward modeled the same focal mechanism at every point on352

the Slab2 subduction zone interface [Hayes et al., 2018] and calculated the source likeli-353

hood from the strain data misfit. Owing to station coverage there is a relatively broad zone354

of plausible source location, but this zone encompasses the seismically-derived location355

for E3 and the most likely location based on strain observations alone is within tens of km356

of the seismic location (Figure 7b).357

We also compared the timing of the surface waves and VLFE detections with long-358

term strain records in Cascadia and the detected tremor events from the World Tremor359

Database (WTD)[Idehara et al., 2014] in Figure 8. These data cannot definitively rule out360

deformation signals related to slow slip occurring prior to 2009/8/3, but they do show that361

if slow slip related to the 2009 ETS event initiated before these arrivals, the strain sig-362

nals are undetectable relative to the non-tectonic noise seen at these stations. Further, the363

tremor rate increases roughly 10 hours after the triggered VLFE events, as the ETS event364

is apparently developing; this is juxtaposed by a multi-day quiescence and a lack of slip-365

related signals in GNSS data prior to the passing seismic waves (Figure 8c).366

4.2 Triggering and Interaction367

Slow earthquakes interact and trigger each other frequently [Obara and Kato, 2016].368

For example, slow slip events can drive tremor, causing ETS events in Cascadia [Rogers369
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and Dragert, 2003; Bartlow et al., 2011], and VLFEs have been triggered by long-term370

SSEs offshore Japan [Hirose et al., 2010; Araki et al., 2017; Katakami et al., 2020]. The371

close spatiotemporal correlation between the observed VLFEs and the 2009 ETS event in372

Cascadia suggests that they are likely physically related [Rubinstein et al., 2009]. One pos-373

sibility is that these large-magnitude VLFEs, caused by the passing seismic waves, may374

have initiated slow slip event which eventually developed into the 2009 Cascadia ETS375

event. Presently, we cannot confirm this cascading process, as neither GNSS stations or376

borehole strainmeters in Cascadia detected slow slips before the 2009 ETS event above377

background noise levels (Figure 8). Intriguingly, those same geodetic data show no ev-378

idence of ETS-related deformation prior to the passing seismic waves, especially in the379

GNSS displacement records where the ETS-related deformation is most apparent [Bartlow380

et al., 2011] (Figure 8). Despite the ambiguity in the timing of the 2009 ETS event rela-381

tive to the VLFEs, our observations suggest that intricate, complex slip interactions may382

occur more frequently at Cascadia than previously documented.383

Slow earthquakes can be susceptible to triggering due to small external stress per-384

turbations [Obara and Kato, 2016; Katakami et al., 2020; Araki et al., 2017], which is385

best illustrated by the sensitivity of tremor occurrence to Earth tides and passing seis-386

mic waves [Rubinstein et al., 2008, 2009; Hawthorne and Rubin, 2010; Chao et al., 2013;387

Houston, 2015; Miyazawa, 2019]. For example, remote triggering of VLFEs by surface388

waves from a moderate to large, distant earthquake has been reported in the Nankai sub-389

duction zone [Miyazawa, 2019]. Passing seismic waves also triggered aseismic slip events390

on the San Andreas fault that led to migrating tremor [Shelly et al., 2011]. Such dynam-391

ically triggered cascading slip events may be similar to what we observe in this study.392

With direct measurements of dynamic strain, we estimate the dynamic stresses associated393

with the passing seismic waves. Assuming a shear modulus of 30 GPa, the dynamic, elas-394

tic stress perturbation from the Canal de Ballenas earthquake was likely 20–30 kPa at E3.395

The true triggering stresses at E3 could vary within a few percent depending on the depth396

dependence of surface waves, fault geometry, fault frictional properties, and dynamic pore397

pressure effects.398

The observed triggering process suggests that the E3 patch in the fault gap was399

at a critical state prior to the surface wave arrivals. Alternatively, the fault could have400

been very weak, such that the dynamic stress changes from the Canal de Ballenas earth-401

quake were sufficient to trigger an unstable dynamic rupture; in that case, triggered VLFEs402

would be a commonly-observed phenomenon despite of rare reports for such cases [Miyazawa,403

2019]. Nonetheless, in this study, the observed VLFEs show that in between the seismo-404

genic zone and the ETS zone, the megathrust fault gap is capable of hosting M5.7 seismic405

events that are sensitive to transient stress perturbations.406

4.3 Physical Conditions in Between the Seismogenic and Tremor Zones407

Event E3 occurred at depths shallower than other slow earthquakes in the Casca-408

dia subduction zone [Gomberg et al., 2010; Brudzinski and Allen, 2007]. Interestingly,409

neither tremor nor slow slip signals were detected in the region during these triggered410

VLFEs [Wech and Creager, 2008; Bartlow et al., 2011]; this behavior differs from typ-411

ical VLFEs in this region that are often coincident with tremor and slow slip [Hutchi-412

son and Ghosh, 2016; Ide, 2016]. The relatively shallow depth of E3 corresponds to the413

deepest part of the locked zone – a gap in between the seismogenic zone and the ETS414

zone [Hyndman and Wang, 1995; Wang et al., 2003; Priest et al., 2010; Schmalzle et al.,415

2014; Bruhat and Segall, 2016]. In northern Cascadia, slow slip events have penetrated416

upward into this gap zone during previous ETS events, but tremor has been scarce there [Wang417

et al., 2008; Wech et al., 2009; Hall et al., 2018]. Further, sporadic weak slips are observed418

in this gap zone across all of Cascadia [Bartlow, 2020; Nuyen and Schmidt, 2021].419
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Given the magnitude and location of E3, our observed VLFEs may relate to these420

aseismic slips, and in combination, their slip contributions may be analogous to the longer-421

term SSEs in Nankai [Hirose et al., 2010; Kobayashi, 2014]. However, the occurrence of422

E3 also suggests that this gap region is not creeping steadily or slipping aseismically [Holtkamp423

and Brudzinski, 2010; Hyndman, 2013; Schmalzle et al., 2014]. Instead, the gap zone is424

likely partially locked and rupture can propagate sufficiently fast there: estimates of the425

downdip rupture limit of large megathrust earthquakes may need to be extended [Ramos426

and Huang, 2019]. The observation also indicates that the fault’s strength may increase in427

the gap zone, compared to the ETS zone, suggesting that loading stresses from the ETS428

events fail to generate seismic failures during conventional Cascadia ETS events, possi-429

bly due to the size of the locked fault patch [Hall et al., 2018]. Conceptually, the gap zone430

may be comprised of large strong fault patches that can generate VLFEs [Chestler and431

Creager, 2017], surrounded by a ductile matrix that could slip aseismically as previous432

ETS events have shown [Wang et al., 2008; Hall et al., 2018]. Such cases may explain433

our observed VLFEs with a lack of tremor activity in the gap zone, presumably related to434

the nonstationary shear stress rates inferred from decadally-averaged crustal deformation435

rates [Bruhat and Segall, 2016]. Our observations warn that future megathrust earthquakes436

could penetrate beyond the locking depth (∼20 km) at some parts of the subduction zone437

and generate intense ground shaking along the densely populated margin [Melgar et al.,438

2016; Frankel et al., 2018; Wirth et al., 2018; Ramos and Huang, 2019].439

4.4 Breakdown of the Slow Earthquake Scaling Relationship?440

It has been suggested that slow earthquakes, including VLFEs, follow an apparent441

moment-duration scaling relationship where the moment rate of these events is likely con-442

stant and the final seismic moment is proportional to the characteristic duration [Ide et al.,443

2007]. This would be different from the scaling of regular earthquakes, for which mo-444

ment scales linearly with the cube of the characteristic duration [Houston, 2001]. Further,445

slow earthquakes are thought to rupture faster than the plate movement rate, but their rup-446

ture speeds cannot accelerate to those of typical earthquakes [Gao et al., 2012; Bletery447

et al., 2017]. If those empirical scaling relationships hold true, we would expect a M5.7448

VLFE or slow earthquake to last from 6 days to a month [Ide et al., 2007]. Consequen-449

tially, the rupture speed of such an event would be too slow to generate seismic signals450

that can be observed in the far field [Gao et al., 2012]. Here, seismic and geodetic ob-451

servations directly refute such slow earthquake scaling relationships: waveform modeling452

shows that E3 was likely a transient event, which duration is much less than the predicted453

duration from the slow earthquake scaling relationship (Figure 4) but is in closer agree-454

ment with the scaling of regular earthquakes [Houston, 2001] and static strains developed455

within the duration timescale (Figure 6). Still, event E3 is not a typical earthquake as no456

high-frequency seismic radiation was observed at seismic stations in the Pacific North-457

west (Figure S1). Our reported VLFEs seem to be distinct from other Cascadia VLFEs or458

slow earthquakes in Nankai [Ghosh et al., 2015; Hutchison and Ghosh, 2016; Obara and459

Kato, 2016; Ide et al., 2007]. Our findings raise new questions about the physical nature460

of the gap zone: is there a new class of slip events that represents a bridge between future461

megathrust earthquakes and ETS events in Cascadia?462

5 Conclusions463

Ever since the discovery of the ETS events, the nature of the fault area in between464

the ETS and seismogenic zones in Cascadia has been argued about. By analyzing con-465

tinuous data from seismic stations across the United States, we identify and locate 3 pre-466

viously unknown VLFEs that are close to the slip area of the 2009 Cascadia ETS event467

and occurred three days before the initiation of ETS tremor activity. Particularly, we dis-468

cover one VLFE located in the critical gap zone with a moment magnitude of 5.7; this is469

the largest VLFE that has ever been identified across all subduction zones. Further, this470
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is the first time that a VLFE is recorded geodetically, with an array of strainmeters show-471

ing clear deformation signals associated with the event. Our findings suggest that the gap472

zone is capable of hosting large, fast slip events, indicating possible down-dip extension473

of future megathrust earthquakes in Cascadia. Our observed VLFEs also show that the474

Cascadia megathrust is weak and is sensitive to transient stress perturbations. Lastly, the475

identified VLFEs challenge the current understanding of slow earthquake physics, with476

characteristics that deviate away from the empirical scaling relations of slow earthquakes.477
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Figure 1. The 2009 M6.9 Canal de Ballenas earthquake, the 2009 Cascadia episodic tremor and slip (ETS)
event, and three dynamically triggered very low frequency earthquakes (VLFEs, E1–E3). Inset: broadband
near-field stations in the Pacific Northwest.
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Figure 2. The very low frequency earthquakes and the triggering 2009 M6.9 earthquake (a). The legends
are similar to those of Figure 1. The Rayleigh wave arrival times and propagation directions are shown as
the colored dots and arrows. The thin gray lines show the great circle paths from the source to the subarrays.
The four events share the same colorbar. These three VLFEs were detected by 84 (b), 57 (c), and 187 (d)
subarrays, respectively.
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Figure 3. Record sections that are aligned with the epicenter of the VLFE E3 in Figure 2d. The records
are self-normalized and bandpass-filtered to show signals in the 20–50 s period band. The yellow lines show
a 3 km/s reference move-out velocity, windowing the VLFE waveforms. (a), waveform records. (b), polarity
plot.
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Figure 4. Determining the focal-mechanism of VLFE E3. The VLFE focal mechanisms are shown in the
top panel with their event index listed at their upper left corner [Ide, 2016]. The optimal focal-mechanism is
denoted as the red beachball. (a), total cross-correlation coefficients of the 112 candidate focal-mechanisms.
The total cross-correlation coefficient for a focal-mechanism is the sum of the average cross-correlation coef-
ficients of all the analyzed stations. (b), VLFE depth of E3 event showing total cross-correlation coefficients
for the optimal focal-mechanism at depth from 5 to 50 km (c), VLFE duration of E3 showing total cross-
correlation coefficients for the optimal focal-mechanism with duration from 0.9 to 257.1 seconds. We assume
a Gaussian function shape with the duration as 6 times the standard deviation.(d) scaling factor of the VLFE
moment. The testing moment is 2×1018 N ·M. With the scaling factor, the VLFE moment is 0.5×1018 N ·M,
equivalent to a moment magnitude of 5.7.
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Figure 5. Seismic observations of E3 showing the average cross-correlation coefficients of the synthetic
and observed waveforms of the VLFE E3. The average cross-correlation coefficient of a station is obtained
by geometrically averaging coefficients of the three-component records. Insets: example three-component
waveforms of the mainshock and the VLFE, overlain with synthetic waveforms of the VLFE. The two stations
are at the eastward and the southward directions of the VLFE, respectively. The yellow shaded regions show
records amplified by ten times.
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Figure 6. Static strains associated with triggered VLFE detection E3. (a) Contours of modeled static de-
formation from the best fitting focal mechanism for E3, in parts-per-billion (ppb), including root-mean-square
(RMS) strain, areal strain (Eee + Enn), engineering shear strains Eee - Enn and 2Een. (b) Observations of
static strains in high-frequency (1 Hz) strain records from B003, B004, B014, B007, B001, and B013. For
each strainmeter channel, we show the lowpass filtered record, obtained with a causal filter with a 18 s corner
period (56 mHz), overlain on the original record. Vertical lines show the origin times of the VLFE detections
E1–E3: static strains are not apparent until after E3. Self-normalized RMS strain records are shown at the top:
E3 occurs around the time of maximum 1 Hz RMS strain, after the peak in low-frequency RMS strain.
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Figure 8. Lack of evidence for geodetic deformation in Cascadia prior to seismic arrivals from the 2009/8/3
Canal de Ballenas event seen in borehole strainmeter and GNSS data from 2009/7/12 to 2009/9/1. (a) Map
of the NOTA BSM network and selected GNSS stations, VLFE detections from this study (E1–E3), and
tremor detections from the World Tremor Database (WTD) [Idehara et al., 2014]. The filled polygon is the
region of significant slow slip inferred primarily from these GNSS stations [Bartlow et al., 2011]. (b) Shear
and areal strains from NOTA strainmeters, specifically the locations with filled circles in (a). Strains have
been corrected for atmospheric pressure and tidal loading (tidal corrections shown in grey), detrended, and
lowpass filtered with a causal filter at 2.5 days. Shown below these timeseries is the WTD catalog (see a); the
first event on 2009/8/3 occurred at 21:24:14 UTC, approximately 10 hours after events E1–E3. (c) Detrended
timeseries of PBO daily position solutions in NAM14 reference frame, at stations shown in (a). Noise levels
notwithstanding, the initiation of the 2009 ETS slow slip event appears to coincide with the Canal de Ballenas
seismic arrivals; slip is modeled to begin after 8/3 and is clearly developed by the 7th [Bartlow et al., 2011].
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Figure 9. Detected seismic sources on 4 April 2010 (a), 12 April 2012 (d), and 6 July 2019 (g) and seismic
records of the 2010 Mw 7.2 El Mayor-Cucapah earthquake (b–c), the 2012 Mw 7.0 Baja California earth-
quake (e–f), and the 2019 Mw 7.0 Ridgecrest earthquake (h–i). The record sections are one-hour record
sections that are aligned with the earthquake epicenters (b, e, h) and the epicenter of the VLFE E3 (c, f, i).
The legends are similar to those of Figure 3. Both the 2010 Mw 7.2 El Mayor-Cucapah earthquake and the
2012 Mw 7.0 Baja California earthquake triggered submarine landslides (a, d) in the Gulf of Mexico [Fan
et al., 2020].
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