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Abstract
Let 𝑆 be an oriented surface of genus g and 𝑛 punc-
tures. The periods of any meromorphic differential on
𝑆, with respect to a choice of complex structure, deter-
mine a representation 𝜒 ∶ Γg ,𝑛 → ℂ where Γg ,𝑛 is the
first homology group of 𝑆. We characterise the represen-
tations that thus arise, that is, lie in the image of the
period map Per ∶ Ωg ,𝑛 → Hom(Γg ,𝑛, ℂ). This gener-
alises a classical result ofHaupt in the holomorphic case.
Moreover, we determine the image of this period map
when restricted to any stratum of meromorphic differ-
entials, having prescribed orders of zeros and poles. Our
proofs are geometric, as they aim to construct a trans-
lation structure on 𝑆 with the prescribed holonomy 𝜒.
Along the way, we describe a connection with the Hur-
witz problem concerning the existence of branched cov-
ers with prescribed branching data.
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1 INTRODUCTION

Let 𝑆g ,𝑛 be the connected and oriented surface of genus g and with 𝑛 punctures, and letg ,𝑛 be
the moduli space of punctured Riemann surfaces homeomorphic to 𝑆g ,𝑛. For 𝑋 ∈ g ,𝑛, define
Ω(𝑋) to be the space of holomorphic (abelian) differentials on 𝑋 with at most finite-order poles
at the punctures, that we refer to as meromorphic differentials on 𝑋. For Γg ,𝑛 ∶= 𝐻1(𝑆g ,𝑛; ℤ), the
period character (or character for simplicity) of such an abelian differential 𝜔 is the homomor-
phism

𝜒 ∶ Γg ,𝑛 → ℂ defined as 𝛾 ⟼ ∫𝛾
𝜔. (1.1)

LetΩg ,𝑛 be the space of pairs (𝑋, 𝜔)where𝑋 ∈ g ,𝑛 and𝜔 ∈ Ω(𝑋). In this paper, the period
map is the association

Per ∶ Ωg ,𝑛 → Hom(Γg ,𝑛, ℂ) (1.2)

mapping an abelian differential 𝜔 to its character. We shall start with the problem of determining
the image of the period map.

1.1 Translation structures on punctured surfaces with prescribed
holonomy

Our first main result can be stated as follows.

Theorem A. Let 𝑛 ⩾ 1 and let 𝑆g ,𝑛 be a surface of genus g and 𝑛 punctures. Then the period map
Per in (1.2) is surjective, that is, every representation 𝜒 ∈ Hom(Γg ,𝑛, ℂ) appears as the character of a
meromorphic differential 𝜔 ∈ Ω(𝑋) for some 𝑋 ∈ g ,𝑛.

For closed surfaces, i.e. 𝑛 = 0, the image of the period map has originally been determined by
Haupt in [15] and subsequently rediscovered by Kapovich in [16] by using Ratner theory. It turns
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out that there are precisely two obstructions for a representation 𝜒 ∶ Γg → ℂ to be the character
of an abelian differential, which we shall refer to as Haupt’s conditions. For a symplectic basis
{𝛼1, 𝛽1, … , 𝛼g , 𝛽g } of Γg , we define the volume of 𝜒 as the quantity

vol(𝜒) =
g∑

𝑖=1

Im
(
𝜒(𝛼𝑖)𝜒(𝛽𝑖)

)
. (1.3)

The first requirement is that the volume of 𝜒 is required to be positive with respect to some sym-
plectic basis of Γg . Indeed, one can show that this equals the area of the surface 𝑆 endowed with
the translation structure induced by 𝜔. The second obstruction applies when g ⩾ 2, in the case
when the image of 𝜒 ∶ Γg → ℂ is a lattice Λ in ℂ, since one can show then that the surface 𝑆
arises from a branched cover of the flat torus ℂ∕Λ. We then have vol(𝜒) is an integer multiple of
Area(ℂ∕Λ). Thus, we can state the Haupt’s theorem for closed surfaces as follows.

Haupt’s Theorem (Complex-analytic statement). If g ⩾ 2, then the image of Per ∶ Ωg →
Hom(Γg , ℂ) consists of those representations 𝜒 ∈ Hom(Γg , ℂ) such that

∙ vol(𝜒) =
∑g

𝑖=1
Im(𝜒(𝛼𝑖)𝜒(𝛽𝑖)) > 0,

∙ if 𝜒(Γ) = Λ is a lattice in ℂ, then vol(𝜒) ⩾ 2Area(ℂ∕Λ).

Remark 1.1. In the case that g = 1 a representation 𝜒 ∶ Γ1 ⟶ ℂ appears as the character of some
holomorphic abelian differential if and only if its image is a lattice in ℂ isomorphic to ℤ2 and
vol(𝜒) > 0. In this case, the equality vol(𝜒) = Area(ℂ∕Λ) automatically holds.

The pair (𝑋, 𝜔) above determines a translation structure on the underlying topological surface,
that we already alluded to above. This comprises an atlas of charts to ℂ that differ by translations
on their overlaps (cf. Subsection 2.1). Conversely, any translation structure determines such a pair:
the atlas equips the surface with a complex structure, and the differential 𝑑𝑧 on ℂ descends to an
abelian differential 𝜔 on the resulting Riemann surface. From this point of view, Haupt’s theorem
provides necessary and sufficient conditions for a representation 𝜒 to be the holonomy of some
translation structure on a closed surface.

Haupt’s Theorem (Geometric statement).A character 𝜒 ∈ Hom(Γg , ℂ) appears as the holonomy
of a translation structure on 𝑆g if and only if it satisfies the Haupt’s conditions.

In the case of a punctured surface 𝑋, a meromorphic differential with poles at the punc-
tures defines a translation surface with infinite area. These are not new in the theory and they
have already been studied by Boissy in his paper [6] where he calls them translation surfaces
with poles. His definition is slightly different from our Definition 2.1 since he requires a pole at
every puncture (see [6, Convention 2.1]). In this work, we shall make use of both the notions
(see Definition 2.3).
The holonomy representation alone is not sufficient to determine such a translation structure

uniquely. Indeed, even for a puncture 𝑃 with trivial holonomy around it, the flat geometry in a
neighbourhood of 𝑃 depends on the prescribed order of the pole (see Subsection 2.2). However,
this gives us more freedom in our construction of translation structure with prescribed holonomy
𝜒. The geometric version of Theorem A can be reformulated as follows.
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TheoremA.2. Let 𝑆g ,𝑛 be a punctured surface,𝑛 ⩾ 1. Then any representation𝜒 ∈ Hom(Γg ,𝑛, ℂ) is
the holonomy of some translation structure on 𝑆g ,𝑛. In particular, 𝜒 is the holonomy of a translation
surface with poles.

We shall adopt this geometric point of view for proving our Theorem A. Our strategy consists
of first proving our Theorem A.2 for surfaces of type (1,1) and (0, 𝑛), see Propositions 5.7 and 6.1,
respectively. Subsequently, we shall make use of our understanding of these two particular cases
for deriving the main theorem in full generality. Recall that a topological surface of type (g , 𝑛)
splits as the connected sum of the closed surface 𝑆g and the 𝑛-punctured sphere 𝑆0,𝑛. As a conse-
quence, any given representation 𝜒 ∶ Γg ,𝑛 ⟶ ℂ induces two representations

𝜒g ∶ Γg ,0 ⟶ ℂ and 𝜒𝑛 ∶ Γ0,𝑛 ⟶ ℂ . (1.4)

This follows because the target is abelian and any simple closed separating curve has trivial holon-
omy. If the surface 𝑆g ,𝑛 is not of type (1,1) or (0, 𝑛), we make the use of such a splitting and two
different scenarios appear depending on whether 𝜒g satisfies or not the Haupt’s conditions. In
Section 7, we provide an algorithm, in either case, to construct a translation structure with the
prescribed holonomy. See the preamble of Part I for a brief outline of this geometrising process.
The translation surfacewe obtain thiswaymight correspond to an abelian differential that extends
holomorphically over some punctures. However, we explain in Subsection 7.3 how to turn this to
a metrically complete translation surface, that is, to a translation surface with poles.

1.2 Translation structures on punctured surfaces with prescribed
zeros and poles

For a closed surface of genus g ⩾ 2, the space of abelian differentials Ωg forms a vector bun-
dle over the moduli space g and the fibre over each Riemann surface 𝑋 is Ω(𝑋), a complex
vector space of dimension g by Riemann–Roch. The total spaceΩg admits a natural stratifica-
tion given by the strata(𝑘1, … , 𝑘𝑛), enumerated by unordered partitions 𝑘1 + ⋯ + 𝑘𝑛 = 2g − 2,
where(𝑘1, … , 𝑘𝑛) is the set of abelian differentials having exactly 𝑛 zeros of order 𝑘1, … , 𝑘𝑛. For
results on the connectedness of such strata, see [17].

Remark 1.2. The fact that the sumof orders of zeros of an abelian differential on aRiemann surface
of genus g equals to 2g − 2, can be seen as the formula of Gauss–Bonnet for the singular Euclidean
metric induced by𝜔 over𝑋. Here, recall that a zero of order 𝑘 is of the form 𝑧𝑘𝑑𝑧, and corresponds
to a singular (or branch) point of the associated translation structure with magnitude 2(𝑘 + 1)𝜋.

For any partition 𝜅 of 2g − 2, the stratum (𝜅) is a complex orbifold of dimension 2g + 𝑠 − 1,
where 𝑠 = |𝜅| is the length of the partition and hence the number of singular points. Local coordi-
nates in a neighbourhood of a generic point are provided by the periods of the relative homology
group 𝐻1(𝑆, Σ; ℤ) where Σ = {𝑃1, … , 𝑃𝑠} is the set of singular points. Although fibres of the abso-
lute period map (called isoperiodic foliations) have been intensively studied in the last years (see,
for instance, [7, 14, 19, 20, 24], and references therein), the image of Per|(𝜅) has been determined
only recently by independent efforts of Bainbridge–Johnson–Judge–Park in [4] and Le Fils in [18].
Their main result, that we now state, can be seen a refinement of the Haupt’s theorem.
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Theorem (Bainbridge–Johnson–Judge–Park, Le Fils). Let 𝜅 = (𝑛1, … , 𝑛𝑠) be a partition of 2g − 2.
A character 𝜒 ∈ Hom(Γg , ℂ) appears in the image of the mapping Per|(𝜅) if and only if

∙ vol(𝜒) > 0,
∙ if 𝜒(Γ) = Λ is a lattice in ℂ, then vol(𝜒) ⩾ (max{𝑛1, … , 𝑛𝑠} + 1 )Area(ℂ∕Λ).

In the case of meromorphic abelian differentials, we shall introduce the following stratification
ofΩg ,𝑛. Let 𝜅 = (𝑑1, … , 𝑑𝑘) and 𝜈 = (𝑝1, … , 𝑝𝑛) be two tuples of positive integers satisfying the
degree condition

𝑘∑
𝑖=1

𝑑𝑖 −
𝑛∑

𝑗=1

𝑝𝑗 = 2g − 2. (1.5)

We shall denote by (𝜅; 𝜈) = (𝑑1, … , 𝑑𝑘; 𝑝1, … , 𝑝𝑛) the space of meromorphic abelian differ-
entials with zeros of degrees 𝑑1, … , 𝑑𝑘 and poles of degrees 𝑝1, … , 𝑝𝑛. This is a complex orbifold
of dimension 2g + 𝑠 − 2 where 𝑠 = |𝜅| + |𝜈| (see [3, 6]). Determining the image of Per|(𝜅;𝜈), the
period map restricted to such a stratum, turns out a more challenging and subtle problem, and is
the goal of the second part of the paper. For recent related work concerning the residual map on
such strata, see [10].
The first case we shall consider is that of trivial holonomy, that is, when the period character

is the trivial representation. In this case our second result, handled by Propositions 8.2 and 9.1,
provides a complete answer.

Theorem B (Trivial holonomy). Let g ⩾ 0, and let 𝜈 = (𝑝1, … , 𝑝𝑛) and 𝜅 = (𝑑1, … , 𝑑𝑘) be positive
integer tuples satisfying (1.5). There exists a meromorphic differential in the stratum(𝜅; 𝜈) having
trivial holonomy, if and only if

(i) 𝑝𝑖 > 1 for each 1 ⩽ 𝑖 ⩽ 𝑛,
(ii) 𝑑𝑗 ⩽

∑𝑛
𝑖=1 𝑝𝑖 − 𝑛 − 1 for each 1 ⩽ 𝑗 ⩽ 𝑘, and

(iii) g > 0, 𝑘 > 1 whenever 𝑛 > 1.

Note that the holonomy around a pole of order 1 (also called a simple pole) is propor-
tional to the residue (see Subsection 2.2); thus for trivial holonomy the poles must have
order at least two, which is requirement (i) above. Moreover, for a translation structure with
trivial holonomy, the developing map descends to a holomorphic function 𝑆g ,𝑛 ⟶ ℂ which
extends to a branched covering 𝑆g ⟶ ℂℙ1 by mapping all the punctures (corresponding to
the poles) to the point ∞ ∈ ℂℙ1. The necessity of the rest of the requirements above are
imposed by this branched covering. For instance, a meromorphic differential with trivial char-
acter has a single zero if and only if (𝑋, 𝜔) = (ℂ, 𝑧𝑑 𝑑𝑧) (see Proposition 8.1). The proof of
Theorem B proceeds with first considering the case of the punctured sphere. In this special
case, we consider the family  = {(ℂ, 𝑧𝑝𝑖−2 𝑑𝑧)} of translation surfaces and the basic idea is
to glue them in an inductive process using the slit construction (cf. Subsection 3.1) followed
by splitting a zero (cf. Subsection 3.3). In the case of positive genus surfaces, we first con-
struct a translation structure on a punctured sphere for an associated tuple 𝜅′, and add g
handles; our argument is specific to the trivial representation, though, and does not apply
otherwise.
For non-trivial representations, our main result is Theorem 11.1, stated here as follows.
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Theorem C. Let 𝜒 ∈ Hom(Γg ,𝑛, ℂ) be a non-trivial representation and let 𝜅 = (𝑝1, 𝑝2, … , 𝑝𝑛) and
𝜈 = (𝑑1, 𝑑2, … 𝑑𝑘) be two tuples of positive integers satisfying (1.5), such that𝑝𝑖 ⩾ 2whenever𝜒𝑛(𝛾𝑖) =
0, and one of the following properties hold.

(i) The 𝜒𝑛 determined by 𝜒 (see (1.4)) is trivial.
(ii) At least one of 𝑝1, 𝑝2, …𝑝𝑛 is different from 1.
(iii) Im(𝜒𝑛) is not contained in the ℚ-span of some 𝑐 ∈ ℂ.
(iv) Im(𝜒) is not contained in the ℚ-span of some 𝑐 ∈ ℂ.

Then𝜒 appears as the holonomy of a translation structure with poles on 𝑆g ,𝑛 induced by ameromor-
phic differential in(𝜅; 𝜈).

This provides sufficient conditions for the realisability of a large class of non-trivial representa-
tions 𝜒. Define a representation 𝜒 ∈ Hom(Γg ,𝑛, ℂ) to be rational if it is non-trivial and its image is
contained in theℚ-span of some complex number 𝑐 ∈ ℂ∗. Then the only case not covered by The-
orem C is that of rational representations where all the poles are required to be simple. This shall
be handled by Theorem D that we shall discuss soon. Once again, in the proof of Theorem C, the
case of punctured spheres is the first step: in Section 10 we prove it in this case, according to the
items (ii)–(iv). Note that when g = 0, 𝜒 = 𝜒𝑛 and item (𝑖) is subsumed by Theorem B. In general,
the cases corresponding to the items (𝑖) and (𝑖𝑖) are easier, since the geometry around a pole of
order at least two comprises Euclidean plane(s) glued together and therefore there is enough room
to ‘add handles’ of the desired holonomy, by surgeries introduced in Subsection 3.1. The items (𝑖𝑖𝑖)
and (𝑖𝑣) in the case when g > 0 and all the poles are simple, are the most difficult to treat, since
the handles then need to ‘fit’ inside the corresponding cylindrical ends. For this, we find a suitable
symplectic basis of Γg < Γg ,𝑛; this motivates our lemma in Subsection 11.1. Note that it suffices for
our problem to find such a suitable basis of Γg ,𝑛; a change of basis is effected by an element of
the mapping class group of the surface 𝑆g ,𝑛, so by pulling back the translation structure we obtain
one with the desired holonomy (cf. the discussion at the beginning of Subsection 11.1).
In the remaining case of rational representations and all simple poles, we can first reduce to the

case of an integral representation, that is, we can assumewithout loss of generality that Im(𝜒) = ℤ.
We can also assume that the holonomy around each puncture is non-trivial; a puncture is said to
be positive if the holonomy around it is translation by a positive integer, and negative otherwise.
Our result for this final case provides a succinct necessary and sufficient criterion for realising
such a representation.

Theorem D (Integral holonomy). Suppose 𝜒 ∶ Γg ,𝑛 → ℤ is a non-trivial surjective representation.
Let the holonomies around the positive punctures be given by the integer tuple 𝜆 ∈ ℤ𝑘

+ and the
holonomies around the negative punctures be given by −𝜇 where 𝜇 ∈ ℤ𝑙

+. Then there exists a trans-
lation structure on 𝑆g ,𝑛 with holonomy 𝜒, with simple poles at the punctures and a set of 𝑟 zeros with
prescribed orders (𝑑1, 𝑑2, … , 𝑑𝑟) that satisfies the degree condition

𝑟∑
𝑖=1

𝑑𝑖 = 2g − 2 + 𝑛 (1.6)

if and only if

𝑘∑
𝑖=1

𝜆𝑖 =
𝑙∑

𝑗=1

𝜇𝑗 > max{𝑑1, 𝑑2, … , 𝑑𝑟}. (1.7)
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Our proof of TheoremD uses the recent work of Gendron and Tahar [11], who proved the above
theorem for the case when g = 0.
As a corollary of Theorems B, C and D, in Appendix A we prove a refinement of Theorem A

where one prescribes, in addition, the orders of the poles at the punctures. For surfaces with at
least 3 punctures, this can be stated as follows.

Corollary E. Let 𝑆g ,𝑛 be a surface of genus g and 𝑛 ⩾ 3 punctures. Let 𝑝1, 𝑝2, …𝑝𝑛 be positive inte-
gers assigned to each puncture, and let  = {𝑖 | 𝑝𝑖 = 1}. Then a representation 𝜒 ∶ Γg ,𝑛 → ℂ is the
character of a meromorphic differential 𝜔 on some𝑋 ∈ g ,𝑛 with a pole of order 𝑝𝑖 at the 𝑖th punc-
ture for 1 ⩽ 𝑖 ⩽ 𝑛, if and only if the prescribed holonomy around any simple pole is non-trivial, that
is, 𝜒(𝛾𝑖) ≠ 0 for any 𝑖 ∈ , where 𝛾𝑖 denotes a loop around the 𝑖th puncture.

Amore complete statement that also handles the cases 𝑛 = 1 and 2 is provided in Appendix A.

1.3 Connection with the Hurwitz existence problem

The integral holonomy case is related to the long-standing problem known as Hurwitz Existence
Problem, that we have repeatedly run into during the course of this work. Let us give a brief
overview of such a problem; the reader can consult [22] for a summary of known progress. Let
𝑓 ∶ 𝑆 ⟶ Σ be a branched cover of degree deg(𝑓) = 𝑑 ⩾ 2. Let 𝑛 be the number of branch points
(or branch values) in Σ. There are 𝑛 partitions of 𝑑 given by sets of integers 𝐵𝑖 = {𝑑𝑖𝑗}1⩽𝑗⩽𝑚𝑖

for
1 ⩽ 𝑖 ⩽ 𝑛 that record the local degrees of 𝑓 at the preimages of the 𝑛 branch points. Let us call
the collection  = {𝐵1, … , 𝐵𝑛}. Note that

∑
𝐵𝑖

𝑑𝑖𝑗 = 𝑑 for any 1 ⩽ 𝑖 ⩽ 𝑛. In addition, for each
𝑖 there exists some 𝑗 such that 𝑑𝑖𝑗 ≠ 1, since by definition, one of the points in the preimage of
any branch point is ramified. Let 𝑛 = 𝑚1 + ⋯ + 𝑚𝑛. Then the Riemann–Hurwitz theorem states
that

𝜒(𝑆) − 𝑛 = 𝑑 ⋅ (𝜒(Σ) − 𝑛). (1.8)

The branched covering𝑓 yields a tuple(𝑓) = (𝑆, Σ, 𝑑, 𝑛,)whichwe call its branch datum. Con-
versely, two topological surfaces 𝑆 and Σ, a positive integer 𝑑 ⩾ 2 and 𝑛 partitions = {𝐵1, … , 𝐵𝑛}
of 𝑑 yield an abstract branch datum, namely a string  = (𝑆, Σ, 𝑑, 𝑛,) as above if Equation (1.8)
holds. An abstract branch datum  is said to be realisable if there exists a branched covering
𝑓 ∶ 𝑆 ⟶ Σ such that = (𝑓). The long-standing Hurwitz problem asks which abstract datum
is realisable.

Question. When does there exist a branched covering 𝑓 ∶ 𝑆 ⟶ Σ such that = (𝑓)?

In the previous subsection, we have already seen a glimpse of the relationship between our
problem and the Hurwitz Existence Problem. Indeed, for a translation surface with trivial holon-
omy, the developing map yields a branched covering 𝑓 ∶ 𝑆g ⟶ ℂℙ1 ≅ 𝕊2 which in turn yields
a realisable branch datum (𝑓) by construction. On the other hand, any branched covering
map 𝑓 ∶ 𝑆g ⟶ 𝕊2 restricts to a mapping 𝑓 ∶ 𝑆g ,𝑘 ⟶ ℂ, where 𝑘 = |𝑓−1(∞)|, and the standard
Euclidean structure (ℂ, 𝑑𝑧) pulls back via 𝑓 to a translation structure on 𝑆g ,𝑘 with poles at the
punctures and trivial holonomy.



TRANSLATION SURFACES AND PERIODS OF MEROMORPHIC DIFFERENTIALS 485

TheoremB then implies that certain special classes of abstract branch datum is realisable, prov-
ing certain cases of the Hurwitz Existence Problem.

Corollary F (Corollary 9.6). Let  = (𝑆g , 𝕊
2, 𝑑, 𝑛,) be an abstract branch datum where  =

{𝐵1, 𝐵2, …𝐵𝑛} such that

∙ (1.8) holds, that is, 𝑛 = 2 − 2g + 𝑑 ⋅ (𝑛 − 2), and
∙ 𝐵𝑖 ∋ 𝑑𝑖𝑗 = 1 whenever 𝑖 ≠ 1 and 𝑗 ≠ 1.

Then is realisable.

The question of realising a non-trivial integral representation𝜒 as the holonomy of some trans-
lation structure with all simple poles can also be shown to be equivalent to the problem of deter-
mining whether certain abstract branch data are realisable or not.

PropositionG. Suppose𝜒 ∶ Γg ,𝑛 → ℤ is a non-trivial surjective representation. Let the holonomies
around the positive punctures be given by the integer tuple 𝜆 ∈ ℤ𝑘

+ and the holonomies around the
negative punctures be given by −𝜇 where 𝜇 ∈ ℤ𝑙

+. Then the following are equivalent.

(1) There is a translation structure on 𝑆g ,𝑛 with holonomy 𝜒, with simple poles at the punctures and
a set of 𝑟 zeros with prescribed orders (𝑑1, 𝑑2, … , 𝑑𝑟) that satisfies the degree condition (1.6).

(2) There exists realisable branching data (𝑆g , 𝕊
2, 𝑑,𝑚,) for some 𝑚 ⩾ 1 where 𝑑 =

∑𝑘
𝑖=1 𝜆𝑖 and is a collection of𝑚 partitions of 𝑑 satisfying the following:

∙ 𝜆 is part of the collection unless 𝜆 = (1, 1, … , 1),
∙ 𝜇 is part of the collection unless 𝜇 = (1, 1, … , 1), and
∙ in all other partitions, the only integers that are different from 1 are exactly {𝑑1 + 1,… , 𝑑𝑟 + 1}.

In Section 12, this statement is a consequence of Proposition 12.4 and its Corollary 12.12. The
proof starts with the observation that a translation surface with simple poles at the punctures
and integral holonomy, is always the pullback of the translation structure on the Euclidean cylin-
der (ℂ∕ℤ, 𝑧−1𝑑𝑧) by some holomorphicmap, that extends to a branched covering 𝑆g ⟶ 𝕊2. Note
that the collection  of the branch datum naturally attached to this latter map contains two spe-
cial partitions 𝜆 and 𝜇 comprising the local degrees around the points that map to the 2 punctures
at either end of the cylinder.
The following corollary is then immediate from Theorem D and Proposition G, and can be

thought of as solving special cases of the Hurwitz existence problem.

Corollary H. Given integer tuples 𝜆 ∈ ℤ𝑘
+, 𝜇 ∈ ℤ𝑙

+ such that 𝑑 =
∑𝑘

𝑖=1 𝜆𝑖 =
∑𝑙

𝑗=1 𝜇𝑗 and posi-
tive integers {𝑑1, 𝑑2, … , 𝑑𝑟} satisfying 𝑑 > max{𝑑1, 𝑑2, … , 𝑑𝑟}, there exists realisable branching data
(𝑆g , 𝕊

2, 𝑑,𝑚,) where  is some collection of 𝑚 partitions of 𝑑 satisfying the properties listed in
Proposition G(2).

1.4 Additional remarks and further questions

Away from the zeros and poles, a translation structure is a special case of a (complex) affine struc-
ture on a surface, which comprises an atlas of charts to ℂ that differ by affine maps (of the form
𝑧 ↦ 𝑎𝑧 + 𝑏) on their overlaps. This in turn is a special case of a (complex) projective structure,
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comprising charts to ℂℙ1 differing byMöbius transformations. Note that if one includes the zeros
and poles, a translation structure can in fact be considered as a branched affine or projective struc-
ture, since the developing map around a pole or a zero of the corresponding abelian differential
is of the form 𝑧 ↦ 𝑧𝑑, and the puncture can thus be filled in as a branch point for the charts.
In [9], Gallo–Kapovich–Marden characterised the holonomy representations of marked pro-

jective structures on a closed surface of genus g ⩾ 2. In particular, they showed that any non-
elementary representation of the fundamental group of the surface to PSL(2, ℂ) appears as the
holonomy of some projective structure on a closed surface, if one allows one branch point of
degree two. The holonomy representations of branched affine structures have been studied in
[12]; note that such a representation has image in the affine group Aff(ℂ) and is necessarily ele-
mentary. However, that paper is not concerned about the number and order of branch points.
Thus, it remains to address the following question and determine analogues of the results of this
paper.

Question 1.3. When is a representation 𝜌 ∶ 𝜋1𝑆 → Aff(ℂ) the holonomy of a branched affine
structure, when the number and order of branch points are prescribed?

It turns out that for any such branched structure, the Schwarzian derivative of the developing
map has a pole of order 2 at each branch point, and thus can also be thought of as ameromorphic
projective structure, whose holonomy representations have been recently studied in [8, 13].
This paper also does not address the problem of understanding a ‘holonomy fibre’ beyond

whether it is empty or not. In particular, one can ask the following question.

Question 1.4. For a fixed character𝜒 ∶ Γg ,𝑛 → ℂ, what is the structure of the set of meromorphic
differentials in Ωg ,𝑛 that have periods given by 𝜒? For example, is it connected?

Formarked projective structures on a closed surface, any holonomy fibre, if non-empty, is nec-
essarily discrete, and has been studied in [1, 2]. In the case of translation structures on a closed
surface, these fibres could have positive dimension, and define the isoperiodic foliations men-
tioned earlier in this introduction. It would be interesting to study their analogues for translation
structures on punctured surfaces.
Finally, our work seems to have common ground with that of Gendron-Tahar in [11]; indeed,

we use a result from their work in Subsection 12.3. For surfaces of positive genera, the work is con-
cerned with the residuemap recording the residue of the pole at each puncture, and not the entire
period map. On the other hand, they are interested in the image of each connected component of
a strata, and one can ask the same question for the period map.

1.5 Organisation of the paper

We begin with an introductory part comprising Section 2 where we define translation struc-
tures on punctured surfaces and their geometry, and Section 3 where we define some topological
surgeries used throughout the present work. Part I is entirely devoted to prove Theorem A via
its geometric reformulation (Theorem A.2). More precisely, after some general comments about
geometrising representations in Section 4, we shall prove Theorem A.2 for the punctured torus
and 𝑛-punctured spheres in Sections 5 and 6, respectively. We finally prove Theorem A.2 in full
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generality in Section 7. Part II, the second part of this paper is devoted to prove the other main
results. More precisely, in Sections 8 and 9 we shall provide a proof of Theorem B, and in Sec-
tions 10 and 11 we prove Theorem C, for 𝑛-punctured spheres and positive genus surfaces, respec-
tively, for both theorems. Corollary F is proved at the end of Section 11. Finally, in Section 12 we
shall prove TheoremD, and discuss the connectionwith branched covers, leading to PropositionG
and its Corollary H. In Section 10, we make use of a technical lemma whose proof is deferred to
Appendix B. In Appendix A, we prove a refinement of Theorem A that implies Corollary E.

2 GEOMETRY OF TRANSLATION SURFACES

2.1 Translation surfaces and other definitions

In this section, we provide the definitions of the main objects involved. Let us start by recalling
what a translation structure is on a surface, and its geometric and complex-analytic definitions.

Definition 2.1 (Translation structures on punctured surfaces). A translation structure on a sur-
face 𝑆g ,𝑛 is the datum of a complex structure on 𝑆g ,𝑛, which results in a Riemann surface 𝑋,
together with a holomorphic (abelian) differential 𝜔 on 𝑋. Any such holomorphic differential
𝜔 defines a flat metric with isolated singularities corresponding to zeros of 𝜔. In a neighbourhood
of a point 𝑃 which is not a zero for 𝜔, a local coordinate is defined as

𝑧(𝑄) = ∫
𝑄

𝑃
𝜔

in which 𝜔 = 𝑑𝑧, and the coordinates of two overlapping neighbourhoods differ by a translation
𝑧 ↦ 𝑧 + 𝑐 some 𝑐 ∈ ℂ, namely a translation. Around a zero of order 𝑘 ⩾ 1, say 𝑃, the differential
𝜔 locally can be written as 𝜔 = 𝑧𝑘𝑑𝑧 with respect to some coordinate 𝑧 and so the surface around
𝑃 is locally a simple branched 𝑘 + 1 covering over 𝔼2. Therefore, a translation structure can be
geometrically seen as a branched (ℂ, 𝔼2)-structure, that is, the datum of a maximal atlas where
the local charts in the Euclidean plane 𝔼2 have the form 𝑧 ⟼ 𝑧𝑘, 𝑘 ⩾ 1, and transitions maps are
restrictions of translations in ℂ. Throughout, a surface equipped with a translation structure will
be called a translation surface.

By the analytic continuation property, any local chart of a translation surface extends to a local
immersion dev ∶ 𝑆g ,𝑛 ⟶ 𝔼2, called developingmap, where 𝑆g ,𝑛 is the universal cover of 𝑆g ,𝑛. The
developing map is equivariant with respect to a representation 𝜒 ∶ Γg ,𝑛 ⟶ ℂ called the holon-
omy of the translation structure. (Recall that Γg ,𝑛 = 𝐻1(𝑆g ,𝑛; ℤ) is the first homology group of the
surface.) The following lemma establishes the twofold nature of a representation.

Lemma 2.2 (Twofold nature of a representation). A representation 𝜒 ∶ 𝐻1(𝑆g ,𝑛; ℤ) ⟶ ℂ is the
period of some abelian differential𝜔 ∈ Ω(𝑋)with respect to some complex structure𝑋 on 𝑆g ,𝑛 if and
only if it is the holonomy of the translation structure on 𝑆g ,𝑛 determined by 𝜔.

Let 𝑋 be a complex structure on 𝑆g ,𝑛 and let 𝜔 ∈ Ω(𝑋) be a meromorphic differential as intro-
duced in Section 1. Note that some punctures are allowed to be removable singularities for 𝜔. We
introduce the following more stringent definition where the punctures are required to be poles.
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Definition 2.3 (Translation surfaces with poles). Let 𝜔 be a meromorphic differential on a com-
pact Riemann𝑋. We define a translation surface with poles to be the translation structure induced
by 𝜔 on 𝑋 = 𝑋 ⧵ Σ, where Σ is the set of poles of 𝜔.

2.2 Local geometry around a puncture

Let (𝑋, 𝜔) be a translation structure on a punctured surface 𝑆g ,𝑛. In this section, we provide a
geometric description of the local geometry around a puncture. Given any local coordinate, say
(𝑈, 𝑧), around a puncture 𝑃 the abelian differential 𝜔 can be written as 𝜔 = 𝑓(𝑧)𝑑𝑧 and we con-
sider the Laurent series expansion of the function 𝑓(𝑧) (see (7.4)). We discuss the possible cases
separately.

(1) In this case, the Laurent series has no negative terms, the puncture is a removable singular-
ity for 𝜔 and the function 𝑓 extends holomorphically on it. We may further distinguish two
possible sub-cases.
(1.1) The leading coefficient 𝑎0 ≠ 0. In this case, the point 𝑃 is not a zero for the abelian

differential 𝜔 and, therefore, any local chart 𝑈 ⧵ {𝑃} ⟶ 𝔼2 extends to a local homeo-
morphism 𝑈 ⟶ 𝔼2. The geometry around the puncture is not complete.

(1.2) The leading coefficient 𝑎0 = 0. The point 𝑃 is a zero of order 𝑘 for 𝜔, where 𝑘 ∈ ℤ+ is
smallest index such that 𝑎𝑘 ≠ 0. In this case, any local chart 𝑈 ⧵ {𝑃} ⟶ 𝔼2 extends to
a simple branched 𝑘 + 1 covering 𝑈 ⟶ 𝔼2. The geometry around the puncture is not
complete.

In both cases, the puncture can be filled by gluing a judicious neighbourhood of the vertex of
a 2𝜋(𝑘 + 1) Euclidean cone — note that 𝑘 corresponds to the index of the least coefficient 𝑎𝑖

in the Laurent series different to zero. More precisely, such a neighbourhood can be taken as
the image of the local extended chart 𝑈 ⟶ 𝔼2.

(2) Suppose the function 𝑓 has a pole of order 1 at 𝑃. The neighbourhood of 𝑃 is then an infinite
cylinder of order 1. Possibly after a suitable change of coordinates, the pole in local coordinate
is given by 𝜔 = 1

𝑧
𝑑𝑧. Writing 𝑧 = 𝑒𝜁 , the abelian differential with respect to 𝜁 is given by 𝜔 =

𝑑𝜁 and 𝜁 describes an infinite cylinder on which the geometry is metrically complete. The
contour integral along a curve enclosing 𝑃, and no other punctures, yields the residue of 𝑓
at 𝑃 which is a non-zero complex number. We may note that, the residue is proportional to
the holonomy of the curve enclosing 𝑃. Indeed given a curve 𝛾 enclosing the pole, the residue
theorem implies that

𝛾 ⟼ ∫𝛾
𝜔 = 2𝜋𝑖 Res(𝑓, 𝑃).

(3) We finally consider the flat geometry around poles of order at least two. Once again, we need
to distinguish two sub-cases depending on whether the residue of the pole is null or not.
(3.1) Let us consider first the case of 𝑃 is a pole of order 𝑘 + 2 ⩾ 2 and null residue. Let 𝑈 be

an open neighbourhood of 𝑃 and choose a local coordinate such that 𝜔 = 𝑑𝑧
𝑧𝑘+2 around

the puncture. Note that 𝑈 is biholomorphic to the punctured disc 𝔻∗. By applying the
change of coordinate 𝜁 = 1

𝑧
, the differential 𝜔 has a zero of order 𝑘 and the local chart

(𝑈, 𝜁) ⟶ 𝔼2 is 𝑘 + 1−fold covering over the puncture disc. Equivalently, the coordi-
nate neighbourhood (𝑈, 𝜁) is biholomorphic to a neighbourhood of the vertex of the
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Euclidean cone of angle 2(𝑘 + 1)𝜋 to which the conical singularity has been removed.
We cannot the deduce the geometry around the pole from thismodel because the change
of coordinate 𝜁 = 1

𝑧
is not a translation and so the geometry has been altered. However

it gives a glimpse of what the geometry should be. The mapping 𝑧 ↦ 1
𝑧
is an inversion

and hence the geometry around a pole is that of an Euclidean cone of angle 2(𝑘 + 1)𝜋
to which a compact neighbourhood of the conical singularity has been removed.

(3.2) We finally consider the case of 𝑃 is a pole of order 𝑘 + 2 ⩾ 2 and non-zero residue 𝑅.
Before going to describe the geometry around the pole𝑃, we begin by introducing the fol-
lowingmodel of translation surface. Let (ℂ, 𝑑𝑤) be the complex plane equippedwith the
holomorphic 1-form 𝑑𝑤. The exponential mapping𝑤 ⟼ exp (𝑘+1

𝑅
𝑤) yields an infinite-

sheet covering onto a cylinder 𝐶. By setting 𝜁 = exp (𝑘+1
𝑅

𝑤), we obtain

𝑑𝑤 =
𝑅

(𝑘 + 1) 𝜁
𝑑𝜁. (2.1)

The cylinder𝐶 is topologically a twice-punctured sphere endowedwith a complex struc-
ture and an abelian differential that makes it a translation surface with two simple poles
and no singularities because 𝑑𝑤 has no zeros. The geometry around both poles is the
one described above.
Let𝑄 be any point in 𝐶 and consider a straight line, say 𝑙, starting from𝑄 towards one

of the ends of the cylinder. Such a line develops along an infinite ray, say 𝑟, on the com-
plex plane starting from a fixed developed image of𝑄. Cutting 𝐶 along 𝑙 and then gluing
a copy of ℂ ⧵ 𝑟 by using the developing map, we obtain a surface still homeomorphic to
a cylinder but equipped with a new translation structure (𝐶, 𝜂). Let us consider 𝐶 as a
2-punctured sphere 𝕊2 ⧵ {𝑃1, 𝑃2}. In a neighbourhood of the uncut end the geometry
remained unchanged and the puncture, say 𝑃1, is a simple pole with residue

𝑅
𝑘+1

for 𝜂.
The other end, instead, is no longer cylindrical as the geometry is changed because we
have glued a whole copy of 𝔼2! Such a surgery has also introduced a singular point of
angle 4𝜋, that means that 𝜂 has a zero of order 1. As the number of zeros (counted with
multiplicity) minus the number of poles (counted with multiplicity) has to be qual to
−2, we immediately deduce that 𝑃2 is a pole of order −2 for 𝜂 and the residue theorem
for Riemann surfaces implies that the residue around 𝑃2 is not zero and equal to

𝑅
𝑘+1

.
Let 𝑉 be a neighbourhood of 𝑃2, by choosing a judicious coordinate 𝑧 around 𝑃2, the
form 𝜂 can be written as

𝜂 =

(
1
𝑧2

+
𝑅

(𝑘 + 1)𝑧

)
𝑑𝑧. (2.2)

To determine the geometry around a pole of order greater than one with non-zero
residue, let 𝑈 be an open neighbourhood of 𝑃 and choose a local coordinate such that,
possibly after rescaling and rotations, 𝜔 is given by(

𝑘 + 1

𝑧𝑘+2
+

𝑅
𝑧

)
𝑑𝑧 (2.3)

around the puncture. The form 𝜔 is the pullback of the form 𝜂 by the mapping 𝑧 ⟼
𝑧𝑘+1. Therefore, the geometry around 𝑃 is that one of a cylinder with holonomy 𝑅 to
which 𝑘 copies of the Euclidean plane 𝔼2 have been glued.
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F IGURE 1 Sequential slit construction

We can note that, in both cases, the flat geometry around poles of order greater than one is
metrically complete.

One consequence of the discussion in this section can be summarised as follows.

Lemma 2.4. Let 𝑋 be a punctured Riemann surface and let 𝜔 ∈ Ω(𝑋) be a meromorphic abelian
differential. The geometry around a puncture 𝑃 is metrically complete if and only if𝜔 does not extend
holomorphically over any puncture.

3 SURGERIES ON TRANSLATION SURFACES

We introduce in this section some surgeries we shall use in the sequel, which consists of cutting
translation surfaces along several geodesic segments and gluing them back along those segments
in order to get new translation structures. Different gluingswill provide different translation struc-
tures.

3.1 Slit constructions

We describe a procedure to glue two or more translation surfaces together. Consider 𝑛 translation
surfaces (𝑋1, 𝜔1), … , (𝑋𝑛, 𝜔𝑛) and oriented geodesic line segments 𝑙𝑖 ⊂ (𝑋𝑖, 𝜔𝑖)with each 𝑙𝑖 having
the same developed image 𝑐 ∈ ℂ ⧵ {0}. View the segments as vectors and label the base of these
vectors as 𝑃𝑖 and the tip as 𝑄𝑖 . Making slits in the surfaces along these segments, we obtain two
sides for each slit. We label the left side 𝑙+

𝑖
and the right side 𝑙−

𝑖
as in Figure 1. Identifying 𝑙−

𝑖
with

𝑙+
𝑖+1
, with indices being considered modulo 𝑛, we obtain a translation surface (𝑋, 𝜔). The genus

of this latter is the sum of the genera of all the (𝑋𝑖, 𝜔𝑖). We shall also use a modification of this
procedure where we havemultiple slits 𝑙1, … , 𝑙𝑛 on a single surface (𝑋0, 𝜔0). In this case, the effect
of the slit construction is to add 𝑛 − 1handles, so that the genus of the resulting surface, say (𝑋, 𝜔),
is 𝑛 − 1 higher than the genus of (𝑋0, 𝜔0). In the surface (𝑋, 𝜔), all points 𝑃𝑖 get identified to the
same point 𝑃, and all points 𝑄𝑖 get identified to the same point 𝑄. If none of the 𝑃𝑖 are singular
points in the respective translation surfaces (𝑋𝑖, 𝜔𝑖), then the point 𝑃 is a singular point in the
translation surface (𝑋, 𝜔) with angle 2𝑛𝜋. More generally, if the points 𝑃𝑖 are (possibly) singular
points with angle 2𝜋 𝑚𝑖 in the singular flat metric of (𝑋𝑖, 𝜔𝑖), then the point 𝑃 is a singular point
with magnitude 2𝜋(𝑚1 + ⋯ + 𝑚𝑛). In the same fashion we can determine the singularity at the
point 𝑄.
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F IGURE 2 Slit construction with one handle

Remark 3.1. Each slit 𝑃𝑖 𝑄𝑖 turns into a saddle connection joining 𝑃 and𝑄 in the resulting surface,
so we have 𝑛 saddle connections between 𝑃 and𝑄 arising as a result of this process. If the angle at
𝑃 is 2𝜋 (𝑑 + 1) we can locally find 𝑑 + 1 rays starting from 𝑃 that have the same developed image
as one of the 𝑛 saddle connections joining 𝑃 and𝑄. Out of these 𝑑 + 1 rays, 𝑛 rays give us a saddle
connection to 𝑄.

Remark 3.2. The slit construction just described also applies when one, possibly both, of the
extremal points is a puncture, namely a pole for the abelian differential. In this case, the segment 𝑙
may develop on an infinite ray on the complex plane. Suppose (𝑋1, 𝜔1) and (𝑋2, 𝜔2) are two trans-
lation surfaces, eachwith at least one pole. Let 𝑙𝑖 ⊂ 𝑋𝑖 for 𝑖 = 1, 2 be an embedded straight-line ray
that starts from a point 𝑃𝑖 and ends in a pole. Furthermore, assume that 𝑙1 and 𝑙2 develop onto infi-
nite rays on ℂ that are parallel. Similarly to the above, we can define a translation surface (𝑋, 𝜔)
as follows: slit each ray 𝑙𝑖 and denote the resulting sides by 𝑙+

𝑖
and 𝑙−

𝑖
; then identify 𝑙+1 with 𝑙−2 and

𝑙−1 and 𝑙+2 by a translation. The starting points of the rays, being identified, define a branch point
on (𝑋, 𝜔) with magnitude that is the sum of the corresponding angles on (𝑋1, 𝜔1) and (𝑋2, 𝜔2),
and the other endpoints (at infinity) are identified to a higher order pole with order given by the
sum of the individual orders.

3.2 Sequential slit construction with handle construction

The sequential slit construction just described extends to a sequential slit construction with han-
dle construction by introducing one or more handle in the construction process. We shall see
later on in Section 5 procedures for adding a handle with prescribed holonomy, that is, with a
basis of Γ1,1 with prescribed periods. Here, we pick one set of parallel oriented sides of the par-
allelogram (which could possibly be degenerate). We label the side that has the surface on its
left (before identification) as 𝑙+ and the other side as 𝑙−. We then identify 𝑙−𝑛 with 𝑙+ and 𝑙−

with 𝑙+0 in the sequential slit construction with the other identifications of 𝑙−
𝑖
and 𝑙+

𝑖
remain-

ing the same. The other pair of parallel sides of the parallelogram are then identified (Figures 2
and 3).

3.3 Splitting a zero

The surgery we are going to introduce is a procedure of splitting a zero of an abelian differential.
In the context of branched projective structures, such a surgery is commonly known as move-
ment of branched points and it has been originally introduced by Tan in [23, Chapter 6] for show-
ing the existence of a complex one-dimensional continuous family of deformations of a given
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F IGURE 3 Slit construction with handles. The closure of the exterior of any parallelogram in ℂ is still a
parallelogram in the Riemann sphere ℂℙ1. Such a parallelogram is admissible in our construction

F IGURE 4 An 𝑅 neighbourhood of a zero of order 4

structure. For translation surfaces, the same kind of surgery has been subsequently introduced by
Kontsevich–Zorich as breaking a zero, see [17, Section 4.2]. We shall adopt this latter point of view.
Whatmakes this surgery important for us is its fundamental property of preserving the topology of
the underlying surface even if the overall geometry is changed. In particular, the new translation
surface we obtain once the surgery is performed has the same holonomy of the original one.
Splitting a zero is a procedure that takes place at the 𝑅-neighbourhood of some zero of order

𝑑 of the differential on which it looks like the pullback of the form 𝑑𝑧 via a branched covering.
The differential is then modified by a surgery inside this neighbourhood. Once this surgery is
performed we obtain a new translation structure with two zeros of order 𝑑1 and 𝑑2 in place of
the zero of order 𝑑, with 𝑑1 + 𝑑2 = 𝑑. Furthermore, the translation structure remains unchanged
outside the 𝑅-neighbourhood of the zero of order 𝑑 that we have considered earlier. We first view
the 𝑅-neighbourhood of a zero of order 𝑑 as 𝑑 + 1 upper half discs and 𝑑 + 1 lower half discs,
each one of radius 𝑅, having the diameters identified in a specified way. We label the left half of
the diameter of the 𝑖th upper half disc as 𝑢𝑙𝑖 and the right half as 𝑢𝑟𝑖 . For lower half discs, the
corresponding labels are 𝑙𝑙𝑖 and 𝑙𝑟𝑖 . We now identify 𝑢𝑙𝑖 with 𝑙𝑙𝑖 and 𝑙𝑟𝑖 with 𝑢𝑟𝑖+1 with the indices
being considered modulo 𝑑 + 1. An illustration of the labelling and identification for a zero of
order 4 is given in Figure 4. All the centres of the half discs are identified and this point is the zero
that we are looking at.
Now, to split this zero into zeros of order 𝑑1 and 𝑑2, we modify the labelling on the upper half

disc indexed by 0, the lower half disc indexed by 𝑑1, and all upper and lower half discs with index
more than 𝑑1 accordingly. The modified labelling is shown in Figure 5 for the case of splitting the
zero of order 4 into two zeros of order 2.
We now identify 𝑢𝑙𝑖 with 𝑙𝑙𝑖 and 𝑙𝑟𝑖 with 𝑢𝑟𝑖+1 as beforewith the added identification of 𝑢𝑚with

𝑙𝑚. This identification gives two singular points𝐴 and 𝐵,𝐴 is a zero of the differential of order 𝑑1
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F IGURE 5 Modified labellings to split a zero of order 4 into two zeros of order 2

and 𝐵 is a zero of order 𝑑2. We also get a geodesic line segment joining𝐴 and 𝐵. Given 𝑐 ∈ ℂ ⧵ {0}
with length less than 2𝑅, we can perform the surgery in such a way that the line segment joining
𝐴 and 𝐵 is 𝑐. However, we shall work with only 𝑐 which have length less than 𝑅. It is also clear
that the modification of the translation structure is only local. This procedure can be repeated
multiple times to obtain zeros of orders 𝑑1, … , 𝑑𝑛 from a single zero of order 𝑑1 + ⋯ + 𝑑𝑛. One
way to do this would be to first split the zero into two zeros of order 𝑑1 and 𝑑2 + ⋯ + 𝑑𝑛, and then
split the latter to get a zero of order 𝑑2 and so on. This is the procedure that we will use. We may
further observe some additional features of the construction that we shall use later. In Figure 5,
there are two geodesic line segments 𝐴𝐵1 and 𝐴𝐵2 that have the same developed image as the
segment 𝐴𝐵. The same goes for 𝐵, there are two geodesic line segments 𝐵𝐴1 and 𝐵𝐴2 that have
the same developed image as 𝐵𝐴. In general, when we split a zero of order 𝑑1 + 𝑑2 into zeros of
order 𝑑1 and 𝑑2, we obtain 𝑑1 geodesic line segments from the zero of order 𝑑1 and 𝑑2 geodesic line
segments from the zero of order 𝑑2 that have the same developed image as the saddle connection
between the two zeros.
We shall strongly rely on this procedure of splitting a zero in Part II of this paper.

PART I: TRANSLATION STRUCTURESWITH PRESCRIBED
HOLONOMY

In the first part of the paper, we shall realise any representation 𝜒 ∶ Γg ,𝑛 ⟶ ℂ as the holonomy
of some translation structure on 𝑆g ,𝑛, that is, we shall prove Theorem A.2. The crucial point here
is that we shall not care about to prescribe any data of 𝜔, namely the orders of zeros and orders of
poles; we shall consider this more delicate problem in the second part of the paper.
We briefly describe the geometrising process we use to prove Theorem A.2 and which will be

fully developed later in Section 7. As mentioned in the introduction, the given representation
𝜒 ∶ Γg ,𝑛 → ℂ yields two further representations 𝜒g and 𝜒𝑛. By Proposition 6.1, the latter repre-
sentation always appears as the holonomy of a translation structure on 𝑆0,𝑛, so we can focus the
attention on𝜒g . If the representation satisfies Haupt’s conditions, then it appears as the holonomy
of some translation structure on 𝑆g by a direct application of the Haupt’s theorem. The translation
structures on 𝑆g and 𝑆0,𝑛 can then be glued together along a geodesic slit and the resulting surface,
homeomorphic to 𝑆g ,𝑛, carries a translation structure having 𝜒 as the holonomy. In the case 𝜒g

does not satisfy Haupt’s conditions, there are two cases: it either has positive volume but its image
is a latticeΛ in ℂ, or its volume is non-positive. In the first case, we shall glue the Euclidean torus
ℂ∕Λ with the translation structure on 𝑆0,𝑛 having holonomy 𝜒𝑛. The resulting surface, homeo-
morphic to 𝑆1,𝑛, carries a translation structure and any branch point can be used for attaching the
remaining g − 1 handles in the way we described in Subsection 5.1.
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The most interesting cases are given by representations with non-positive volume. Let
{𝛼1, 𝛽1, … , 𝛼g , 𝛽g } be a symplectic basis of Γg , we can reorder the pairs {𝛼𝑖, 𝛽𝑖} such that the first
𝑘 handles have negative volume, the following ℎ handles have null-volume and the (possibly)
remaining g = g − (𝑘 + ℎ) handles have positive volume. The reader can note that, whenever 𝜒g

has non-positive volume, then 𝑘 + ℎ ⩾ 1. We shall apply Proposition 5.7 to any representation⟨𝛼𝑖, 𝛽𝑖⟩ ↪ Γg → ℂ, for any 𝑖 = 1, … , 𝑘 + ℎ, in order to have 𝑘 + ℎ handles each one equipped with
a translation structure having one (possibly two) zeros and one pole of order 2. All these struc-
tures, properly glued together define a translation structure on a surface of type 𝑆𝑘+ℎ,1. To this
latter surface, we finally glue in a translation structure on 𝑆0,𝑛 with holonomy 𝜒𝑛 and the remain-
ing g handles with positive volume. The final surface, homeomorphic to 𝑆g ,𝑛 carries a translation
structure having holonomy 𝜒.

4 SOME PRELIMINARIES

Let 𝛾 be a simple closed separating curve in 𝑆g ,𝑛 that bounds a subsurface homeomorphic to 𝑆g ,1.
There is a natural embedding 𝑆g ,1 ↪ 𝑆g ,𝑛 and hence an injective homomorphism 𝚤 ∶ Γg ,1 → Γg ,𝑛.
Themapping 𝚤 post-composedwith any given representation𝜒 ∶ Γg ,𝑛 → ℂ yields a representation
𝜒g ∶ Γg ,1 → ℂ. Since any representation satisfies the property of mapping simple closed separat-
ing curves to the identity element in ℂ, the equation 𝜒g (𝛾) = 0 holds and 𝜒g boils down to a
representation 𝜒g ∶ Γg → ℂ, where Γg = 𝐻1(𝑆g ; ℤ). We will see later the role that this latter rep-
resentation will play in our proof of Theorem A. We focus on some considerations. As noticed
in the introduction, given a closed surface 𝑆g and a representation 𝜒g ∶ Γg → ℂ, there are two
topological obstructions for 𝜒g to be the character of an abelian differential. The first obstruction
is given by the volume of 𝜒g defined as the quantity

vol(𝜒g ) =
g∑

𝑖=1

Im
(
𝜒(𝛼𝑖)𝜒(𝛽𝑖)

)
, (4.1)

where {𝛼1, 𝛽1, … , 𝛼g , 𝛽g } is any standard symplectic basis of Γg . The second obstruction applies
only to surfaces of genus at least 2. If we assume the image of 𝜒g ∶ Γg → ℂ to be a lattice Λ in ℂ,
thenwe need to require that vol(𝜒g ) ⩾ 2Area(ℂ∕Λ). This is equivalent to require that themapping
𝑓 ∶ 𝑆g → ℂ∕Λ, induced by the homomorphism 𝑓∗ ∶ 𝐻1(𝑆g ; ℤ) → 𝐻1(ℂ∕Λ;ℤ), has degree at least
two. In [7, Proposition 2.7], Calsamiglia–Deroin–Francaviglia provided the following characteri-
sation.

Proposition 4.1. Assume 𝜒g ∶ Γg → ℂ is a homomorphism such that vol(𝜒g ) > 0 and 𝜒(Γg ) = Λ
is a lattice in ℂ. The mapping 𝑓 ∶ 𝑆g → ℂ∕Λ factors by a collapse of g − 1 handles if and only if
vol(𝜒g ) = Area(ℂ∕Λ) if and only if the second obstruction fails to be satisfied.

Suppose a character 𝜒 ∶ Γg ,𝑛 → ℂ induces a representation 𝜒g such that vol(𝜒g ) > 0, it is an
easy matter to verify that 𝜒 arises as the holonomy of a translation structure on 𝑆g ,𝑛 (see Lem-
mas 7.3, 7.4 and 7.5). However, we shall also deal with representations such that vol(𝜒g ) ⩽ 0 and
to which Haupt’s theorem does not apply. Any such a representation falls in one of the following
categories:

(1) vol(𝜒g ) = 0 and Im(𝜒(𝛼𝑖)𝜒(𝛽𝑖)) = 0 for every 𝑖 = 1, … , g ;
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(2) vol(𝜒g ) = 0 and there exists 0 < ℎ < g such that vol(𝜒ℎ) > 0 and vol(𝜒g−ℎ) = −vol(𝜒ℎ);
(3) vol(𝜒g ) < 0 and Im(𝜒(𝛼𝑖)𝜒(𝛽𝑖)) < 0 for every 𝑖 = 1, … , g ; and finally
(4) vol(𝜒g ) < 0 and there exists 0 < ℎ < g such that vol(𝜒ℎ) ⩾ 0 and vol(𝜒g−ℎ) < −vol(𝜒ℎ).

In Part II, we shall consider the Sp(2g , ℤ)−action on Γg ,𝑛 for finding a base such that all the
handles have non-zero volume. In this part, however, we prefer to do not rely on such an action
and exploit completely the flexibility of these structures.

5 HOW TO GEOMETRISE HANDLES

To prove Theorem A for punctured surfaces, we have to deal with representations 𝜒 such that
vol(𝜒g ) ⩽ 0. For this purpose, we need to know how to manage handles with non-positive vol-
ume. Let 𝜒 ∶ ⟨𝛼, 𝛽⟩ ≅ 𝔽2 → ℂ be a representation with volume vol(𝜒). Let us start considering
representation with null volume.

5.1 Handle with zero volume

We begin by noticing that the condition Im(𝜒(𝛼)𝜒(𝛽)) = 0 implies exactly one case of the follow-
ing trichotomy:

(i) 𝜒(𝛼) and 𝜒(𝛽) are both zero,
(ii) 𝜒(𝛼) or 𝜒(𝛽) is zero (but not both),
(iii) 𝜒(𝛼) and 𝜒(𝛽) are (real) collinear: They translate along the same line in ℂ but possibly in

opposite directions.

We now introduce three different constructions for handles with zero volume and prescribed
holonomy according to the cases listed above. Note that the second case can be subsumed in the
third one by applying a suitable change of basis.

5.1.1 Construction 1: Trivial handles

Let (𝑋, 𝜔) be any translation surface. Assume 𝜔 has at least one zero, say 𝑃, on the underlying
surface 𝑆g ,𝑛. As the magnitude of 𝑃 is 2ℎ𝜋, for some ℎ ⩾ 2, we can find two geodesic paths 𝜏1, 𝜏2 ∶
[0, 1] ⟶ 𝑆 such that

(1) 𝜏1(0) = 𝜏2(0) = 𝑃,
(2) 𝜏1 and 𝜏2 do not share any points other than 𝑃,
(3) they are injectively developed and overlap once developed; in particular they have the same

length with respect the singular Euclidean metric.

The segments 𝜏1, 𝜏2 are called geodesic twin paths. These segments can be taken sufficiently short,
so that the both lie in some simply connected chart containing the singular point 𝑃. Let 𝑄𝑖 be
extremal point of 𝜏𝑖 different from 𝑃. Define 𝛿𝑖 as a proper sub-arc of 𝜏𝑖 starting from 𝑄𝑖 of some
length 𝑙. For 𝑖 = 1, 2, cut along 𝛿𝑖 to get a surface with a piecewise geodesic boundary 𝛿1

𝑖
∪ 𝛿2

𝑖
and

two corner angles. Then glue 𝛿𝑖
1 with 𝛿𝑖

2, as shown in Figure 6, producing an additional handle
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F IGURE 6 Creating an handle with trivial holonomy

and two additional singular points both ofmagnitude 4𝜋with trivial holonomy. In the very special
case that (𝑋, 𝜔) = (ℂ, 𝑧 𝑑𝑧), we obtain the following result.

Lemma 5.1. Let 𝜒 ∶ ℤ2 ⟶ ℂ be the trivial representation. Then 𝜒 appears as the holonomy of a
translation structure on a punctured torus.

5.1.2 Construction 2: Elementary handles

Based on the purposes of the present work, we shall introduce a way for building up handles with
elementary holonomy on the Euclidean plane 𝔼2. There are two possible cases according to the
items (2) and (3) in the list above.
Let 𝑙1 and 𝑙2 be two geodesic segments in the complex plane such that: they have the same length

and are parallel, that is, there is a complex number 𝑎 ∈ ℂ∗ such that 𝑙2 = 𝑙1 + 𝑎. Slit 𝔼2 along these
lines. The segment 𝑙1 splits in two segmentswith the same end points: 𝑙+1 on the right and 𝑙−1 on the
left, where left and right are taken with respect to some fixed orientation. In the same fashion, the
segment 𝑙2 splits two segments, 𝑙+2 on the right and 𝑙−2 on the left. Identify the segments 𝑙+1 with
𝑙−2 and the segments 𝑙−1 with 𝑙+2 by using the translation defined by 𝑎. Topologically, we obtain
a torus with one point removed, geometrically we obtain a translation surface (𝑋, 𝜔) with two
singularities of order 1 on 𝑆1,1 and elementary holonomy. In particular, we can easily find a basis
{𝛼, 𝛽} such that 𝛼 has holonomy 𝑎 ∈ ℂwhereas 𝛽 has trivial holonomy. Let us briefly explain how
to find such a basis.We can simply define 𝛽 to be a simple closed curve enclosing the line 𝑙1, but not
𝑙2. The curve 𝛽 remains simple and closed on the surfacewe obtain once the identification above is
done, but it is no longer contractible and has trivial holonomy. Let us move on defining the curve
𝛼. Let 𝜁 be one of the extremal point of 𝑙1 and consider the geodesic segment joining 𝜁 with 𝜁 + 𝑎.
Once the slits above are identified via the translation 𝑧 ↦ 𝑧 + 𝑎, this segment closes up to a simple
closed curve 𝛼 with holonomy 𝑎 as desired. We note that, this surgery takes place in a bounded
region of the Euclidean plane. Let us make this point a bit more precise. Let 𝜁 ∈ 𝔼2 be one of the
extremal points of 𝑙1. Then there exists𝑀 ∈ ℝ such that 𝐵𝑀(𝜁) contains both the segments 𝑙1 and
𝑙2. Perform the surgery, and let 𝜁 ∈ (𝑋, 𝜔) be the point we obtain bymatching 𝜁 to 𝜁 + 𝑎. The open

region 𝑋 ⧵ 𝐵𝑀(𝜁) is isometric to the unbounded region 𝔼2 ⧵ 𝐵𝑀(𝜁) and the mapping realising the
isometry is the developing map for (𝑋, 𝜔). Equivalently, given a neighbourhood 𝑈 ⊂ 𝑋 of the
puncture disjoint from 𝐵𝑀(𝜁), there is compact set 𝐾 ⊂ 𝔼2, homeomorphic to a closed disc, and
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a mapping 𝑓 ∶ 𝑈 ⟶ 𝔼2 ⧵ 𝐾 such that 𝑓 is an isometry. This means that, although the topology
is changed and hence the global geometry, this latter is remained unchanged outside a bounded
region on which the surgery took place. The following lemma holds.

Lemma 5.2. Let 𝜒 ∶ ℤ2 ⟶ ℂ be a representation such that 𝜒(𝛼) = 𝑎 ∈ ℂ∗ and 𝜒(𝛽) = 0. Then 𝜒
is elementary and arises as the holonomy of a translation structure on a punctured torus.

Let 𝑎, 𝑏 ∈ ℂ two complex number such that 𝑏 = 𝜆𝑎 with 𝜆 ∈ ℝ∗, that is they determine the
same direction. Let 𝑙 ∈ 𝔼2 be a segment oriented along this direction of length |𝑎| + |𝑏| and let 𝑃1

and 𝑃2 be the extremal points of 𝑙. By slitting 𝑙, as we have done above, we obtain two segments
𝑙+ and 𝑙− both having 𝑃1, 𝑃2 as extremal points. Let 𝑄1 be the point on 𝑙+ at distance |𝑎| from
𝑃1 and let 𝑄2 be the point on 𝑙− at distance |𝑏| from 𝑃1. Identify the segments 𝑃1 𝑄1 and 𝑄2 𝑃2

by using the translation 𝑧 ↦ 𝑧 + 𝑏. Similarly, identify the segments 𝑃1 𝑄2 and 𝑄1 𝑃2 by using the
translation 𝑧 ↦ 𝑧 + 𝑎. The resulting surface is a toruswith one point removed and geometrically a
translation surface with elementary holonomy. In particular, there is a basis {𝛼, 𝛽} such that 𝛼 has
holonomy 𝑎 ∈ ℂ whereas 𝛽 has holonomy 𝑏. Once again, this surgery takes place in a bounded
region of the Euclidean plane in the sense described above. The following lemma holds.

Lemma 5.3. Let 𝜒 ∶ ℤ2 ⟶ ℂ be a representation such that 𝜒(𝛼) = 𝑎 ∈ ℂ∗ and 𝜒(𝛽) = 𝜆𝑎 with
𝜆 ∈ ℝ∗. Then 𝜒 is elementary and arises as the holonomy of a translation structure on a punc-
tured torus.

5.2 Handles with negative volume

In this section, we show how to deal handles with negative volume. Let 𝜒 ∶ ℤ2 ≅ ⟨𝛼, 𝛽⟩ → ℂ

be a representation such that vol(𝜒) < 0 — note that this implies 𝜒(𝛼), 𝜒(𝛽) ∈ ℂ∗. The vectors
𝜒(𝛼) and 𝜒(𝛽) determine a non-degenerate parallelogram  on the complex plane; that is a
fundamental parallelogram for the action of the discrete group 𝜒(ℤ2). Let  denote the closure of
the exterior of  in ℂℙ1. Topologically, the region  is a parallelogram. Identifying the opposite
sides of  according to the holonomy 𝜒 we obtain a torus endowed with a translation structure
with one branch point of magnitude 6𝜋 and one pole of two and having holonomy 𝜒. In par-
ticular, this structure has negative volume (Figure 7). While we need  to be non degenerate to
have negative volume, the construction goes through even when  is degenerate, and this is the
construction used in Lemma 5.3. The following lemma is the consequence of this discussion.

Lemma5.4. Let𝜒 ∶ ℤ2 → ℂ be a representation such that vol(𝜒) < 0. Then𝜒 appears as the period
of a meromorphic differential on the torus with one pole of order 2. Equivalently, 𝜒 appears as the
holonomy of a translation structure on the once-punctured toruswith a single branch point of order 2.

5.3 Handles with positive volume

This latter case is very well-known. Let 𝜒 ∶ ℤ2 ≅ ⟨𝛼, 𝛽⟩ → ℂ be a representation such that
vol(𝜒) > 0. As above, 𝜒(𝛼), 𝜒(𝛽) ∈ ℂ∗. The vectors 𝜒(𝛼) and 𝜒(𝛽) determine a non-degenerate
parallelogram  on the complex plane; that is a fundamental parallelogram for the action of the
discrete group 𝜒(ℤ2). Identifying the opposite sides of  according to the holonomy 𝜒 we obtain
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F IGURE 7 Handle with negative volume. This can be seen as a complex structure on the torus and abelian
differential with one zero of order 2 and one pole of order 2

F IGURE 8 Handle with positive volume. The slit in ℂℙ1 is made across 𝜒(𝛽) and the two opposite sides of
the parallelogram along 𝜒(𝛽) are identified to the two sides of the slit in the usual way. This results in a complex
structure on the torus and abelian differential with one zero of order 2 and one pole of order 2

a torus endowed with a translation structure and no branch points. By deleting any point of this
latter structure we obtain a translation structure on the 1-puncture torus having holonomy 𝜒. The
following lemma holds.

Lemma5.5. Let𝜒 ∶ ℤ2 → ℂ be a representation such that vol(𝜒) > 0. Then𝜒 appears as the holon-
omy of a translation structure on a torus. Equivalently, 𝜒 appears as the period of a holomorphic
abelian differential𝜔 on the once-punctured torus and the puncture is a removable singularity for𝜔.

If we identify one pair of opposite sides of  with the sides of a slit made in ℂ as shown in
Figure 8, we obtain the following lemma.

Lemma5.6. Let𝜒 ∶ ℤ2 → ℂ be a representation such that vol(𝜒) > 0. Then𝜒 appears as the period
character of ameromorphic differential on the torus with one pole of order 2. Equivalently,𝜒 appears
as the holonomy of a translation structure on the once-punctured torus with one single branch point
of order 2.
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The series of Lemmas 5.1, 5.2, 5.3, 5.4 and 5.5 all together imply the following proposition, that
is our main Theorem A in the particular case of the once-punctured torus.

Proposition 5.7. Any representation 𝜒 ∶ ℤ2 → ℂ appears as the holonomy of a translation struc-
ture on the once-punctured torus. Equivalently, 𝜒 appears as the period character of an abelian dif-
ferential on 𝑆1,1.

We are now masters of punctured torii, however, we are not yet masters of punctured spheres.
Let us move onto geometrise them.

6 HOW TO GEOMETRISE PUNCTURED SPHERES

In this section, we are going to prove Theorem A for punctured surfaces having genus g = 0.

Proposition 6.1. Any character 𝜒𝑛 ∶ Γ0,𝑛 ⟶ ℂ arises as the holonomy of some translation struc-
ture on 𝑆0,𝑛.

Remark 6.2. Proposition 6.1 trivially holds when 𝑛 ⩽ 2. The representation space of Γ0,1 ≅ {1} con-
sists of the trivial representation only which arises as the holonomy of (ℂ, 𝑑𝑧). The representation
space of Γ0,2 is isomorphic toℂ: Any non-trivial representation𝜒(1) = 𝑤 ∈ ℂ∗ arises as the holon-
omy of the translation structure on ℂ∕⟨𝑧 → 𝑧 + 𝑤⟩ induced by 𝑑𝑧, whereas 𝜒(1) = 0 appears as
the holonomy of (ℂ ⧵ {0}, 𝑑𝑧).

We assume there are 𝑛 ⩾ 3 punctures, say {𝑃1, … , 𝑃𝑛}. Let 𝛾𝑗 be a simple closed curve enclos-
ing 𝑃𝑗 and no other punctures. The curves 𝛾1, … , 𝛾𝑛 satisfy the condition 𝛾1 ⋯ 𝛾𝑛−1𝛾

−1
𝑛 = 1. Let

𝜒 ∶ Γ0,𝑛 ⟶ ℂ be a representation and let 𝜒(𝛾𝑗) = 𝑧𝑗 . The trivial representation appears as the
holonomy of the translation structure on ℂ ⧵ {𝑃1, … , 𝑃𝑛−1} ≅ ℂℙ1 ⧵ {𝑃1, … , 𝑃𝑛−1,∞} induced by
𝑑𝑧. Therefore, we may assume 𝜒 to be different from the trivial representation. We also assume
𝜒(𝛾𝑗) = 𝑧𝑗 ≠ 0 for all 𝑖 = 1, … , 𝑛. Indeed, in the case some of the punctures have trivial holonomy,
say 𝑛 − 𝑘, we may regard 𝜒 as the a representation Γ0,𝑘 → ℂ and therefore it is sufficient to deter-
mine a translation structure on the 𝑘-punctured sphere having the desired holonomy on which
we eventually remove 𝑛 − 𝑘 points. Therefore, we may assume 𝑧𝑗 ≠ 0 for all the 𝑗 without loss
of generality.

Proof of Proposition 6.1. Let 𝜒 ∶ Γ0,𝑛 ⟶ ℂ be a representation such that 𝜒(𝛾𝑖) ≠ 0 for every 𝑖 =

1, … , 𝑛. By using polar coordinates, the 𝑧𝑗 are of the form 𝑟𝑗𝑒
𝑖𝜃𝑗 , where (𝑟𝑗, 𝜃𝑗) ≠ (0, 0). Up to

rename all the generators, we may assume that functions 𝑒𝑖𝜃𝑗 are cyclically ordered on the unit
circle 𝕊1 ⊂ ℂ. Let 𝜁1 be any point in 𝔼2 ≅ ℂ and consider the polygonal chain

𝜁1 ↦ 𝜒(𝛾1) + 𝜁1 = 𝜁2 ↦ 𝜒(𝛾2) + 𝜁2 = 𝜁3 ↦ ⋯ ↦ 𝜒(𝛾𝑛−1) + 𝜁𝑛−1 = 𝜁𝑛 ↦ 𝜒(𝛾𝑛) + 𝜁𝑛 = 𝜁1.
(6.1)

Since the 𝑒𝑖𝜃𝑗 are cyclically ordered and 𝜒(𝛾1) + ⋯ + 𝜒(𝛾𝑛) = 0, such a polygon bounds a pos-
sibly degenerate convex 𝑛-polygon  on the complex plane and the sum of the inner angles is
(𝑛 − 2)𝜋.
Let us begin with assuming the polygon is non-degenerate. Then it is embedded in the com-

plex plane. For each side 𝑒𝑗 of  consider the infinite half strip 𝑗 having base 𝑒𝑗 and such that
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F IGURE 9 A non-degenerate 7-polygon with the corresponding half strips

𝑗 ∩  = 𝑒𝑗 . Note that each half strip 𝑗 is bounded by 𝑒𝑗 and two infinite rays 𝑟+
𝑗
and 𝑟−

𝑗
. If two

sides 𝑒𝑗 and 𝑒𝑗+1 are aligned, the rays 𝑟+𝑗 and 𝑟−
𝑗+1

may overlap.We define the translation structure
(𝑋, 𝜔) as the quotient of  ∪

⋃
𝑗 𝑗 obtained by

(1) identifying all the vertices of  , and
(2) the identification of 𝑟+

𝑗
with 𝑟−

𝑗
for each 𝑗 = 1,… , 𝑛.

The resulting surface is homeomorphic to 𝑆0,𝑛 (Figure 9). From the construction, the holon-
omy around the 𝑖th puncture is 𝜒(𝛾𝑖), as desired. Moreover, this translation surface has exactly
one branch point of magnitude (2𝑛 − 2)𝜋. Let us finally consider the degenerate case. In this
case there exist 0 < 𝑘 − 1 < 𝑛 and 𝜃 ∈ 𝕊1 such that 𝜃𝑖 = 𝜃 for 1 ⩽ 𝑖 ⩽ 𝑘 − 1 and 𝜃𝑖 = −𝜃 for
𝑘 ⩽ 𝑖 ⩽ 𝑛. The polygon above degenerates to a segment in the complex plane joining 𝜁1 with
𝜒(𝛾𝑘−1 ⋯ 𝛾1)𝜁1 = 𝜁𝑘. Let 𝜁′

𝑘+1
be another point in the complex plane, different from 𝜁𝑘 and define

𝜁′
𝑖+1

= 𝜒(𝛾𝑖−1 ⋯ 𝛾𝑘)𝜁
′
𝑘+1

for 𝑘 + 1 ⩽ 𝑖 ⩽ 𝑛 + 1. Since 𝜁𝑘 ≠ 𝜁′
𝑘+1

, the four points 𝜁1, 𝜁𝑘, 𝜁′
𝑘+1

, 𝜁′
𝑛+2

bounds an embedded parallelogram  in the complex plane. Note that the segment 𝜁𝑘 𝜁′
𝑘+1

=

𝜒(𝛾𝑘−1 ⋯ 𝛾1)𝜁1 𝜁′
𝑛+2. Divide the segment 𝜁1 𝜁𝑘 in sub-segments determined by the collection of

points {𝜁𝑖 | 1 ⩽ 𝑖 ⩽ 𝑘}. In the same fashion, divide the segment 𝜁′
𝑛+2 𝜁′

𝑘+1
in sub-segments deter-

mined by the collection of points {𝜁′
𝑖
| 𝑘 + 1 ⩽ 𝑖 ⩽ 𝑛 + 2} (Figure 10).
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F IGURE 10 In the degenerate case we consider  as a parallelogram. By choosing 𝜁𝑘+1 properly 𝑃 can be
taken a rectangle

We now proceed as above. For each side 𝑒𝑗 of 𝜁1 𝜁𝑘 consider the infinite half strip 𝑗 having
base 𝑒𝑗 and such that 𝑗 ∩  = 𝑒𝑗 . Note that each half strip 𝑗 is bounded by 𝑒𝑗 and two infinite
rays 𝑟+

𝑗
and 𝑟−

𝑗
. Since the sides are aligned, the rays 𝑟+

𝑗
and 𝑟−

𝑗+1
overlap for each 1 ⩽ 𝑗 ⩽ 𝑘. In

the same fashion, for each side 𝑒𝑘+𝑗 of 𝜁′
𝑛+2 𝜁𝑘+1 consider the infinite half strip 𝑘+𝑗 having base

𝑒𝑘+𝑗 and such that 𝑘+𝑗 ∩  = 𝑒𝑘+𝑗 . We define the translation structure (𝑋, 𝜔) as the quotient of
 ∪

⋃
𝑗 𝑗 obtained by

(1) identifying all the points 𝜁𝑖 , where 𝑖 = 1, … , 𝑘,
(2) identifying all the points 𝜁′

𝑖
, where 𝑖 = 𝑘 + 1,… , 𝑛 + 2,

(3) the identification of 𝑟+
𝑗
with 𝑟−

𝑗
for each 𝑗 = 1,… , 𝑛.

The reader may note that (𝑋, 𝜔) contains an open embedded annulus obtained from the identi-
fication 𝜁1 𝜁′

𝑛+2 with 𝜁𝑘 𝜁′
𝑘+1

by the mapping 𝜒(𝛾𝑘−1 ⋯ 𝛾1), see the picture above. The resulting
surface is homeomorphic to 𝑆0,𝑛. From the construction, the holonomy around the 𝑖th puncture
is 𝜒(𝛾𝑖), as desired. Moreover, this translation surface has exactly two branch points of magnitude
2(𝑘 − 1)𝜋 and 2(𝑛 − 𝑘)𝜋. □

Now that we are masters of handles and punctured spheres, we can move on proving our main
Theorem A.

7 GEOMETRISING OPEN SURFACES

In this section, we shall prove that each representation 𝜒 ∶ Γg ,𝑛 ⟶ ℂ arises as the holonomy
representation of some translation structure on 𝑆g ,𝑛 and indeed our Theorem A as a conse-
quence of Lemma 2.2. In the previous section, we have seen that any representation 𝜒 ∶ Γg ,𝑛 → ℂ

determines a representation 𝜒g ∶ Γg ,0 → ℂ. Since a punctured surface of finite type (g , 𝑛) splits
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as the connected sum of the closed surface of genus g with the 𝑛-punctured sphere, that is
𝑆g ,𝑛 = 𝑆g ,0 ♯ 𝑆0,𝑛, each given representation 𝜒 also yields a representation 𝜒𝑛 ∶ Γ0,𝑛 ⟶ ℂ. It is
easy to check that 𝜒 is completely determined by the pair (𝜒g , 𝜒𝑛). We introduce the following
definition.

Definition 7.1. Let 𝜒 ∶ Γg ,𝑛 → ℂ be a representation, where g ⩾ 1. Then 𝜒 is said to be of trivial
volume-type if vol(𝜒g ) = 0, otherwise it is said to be of non-trivial volume-type representation. In
the same fashion, the representation 𝜒 is said to be of trivial ends-type if 𝜒𝑛 is the trivial represen-
tation, otherwise, it is said to be of non-trivial ends-type.

In what follows we shall treat the representation separately according to their properties. More
precisely, we shall treat the representation according to the following partition of the representa-
tion space.

Hom(Γg ,𝑛, ℂ) =

⎧⎪⎪⎨⎪⎪⎩

𝜒 ∶ Γg ,𝑛 → ℂ

positive volume
vol(𝜒g ) > 0

(Subsection 7.1)

⎫⎪⎪⎬⎪⎪⎭
∪

⎧⎪⎪⎨⎪⎪⎩

𝜒 ∶ Γg ,𝑛 → ℂ

non-positive volume
vol(𝜒g ) ⩽ 0

(Subsection 7.2)

⎫⎪⎪⎬⎪⎪⎭
(7.1)

Before proceeding, recall that {𝛼1, 𝛽1, … , 𝛼g , 𝛽g , 𝛾1, … , 𝛾𝑛} is a symplectic basis for Γg ,𝑛 =
𝐻1(𝑆g ,𝑛; ℤ).

Remark 7.2. The case of once punctured surfaces is special in the sense that every representa-
tion is of trivial ends-type. Indeed, if 𝛾 is the curve around the puncture in 𝑆g ,1, then 𝜒(𝛾) = 0
necessarily.

7.1 Representations with positive volume

In this section, we shall prove Theorem A for all the representations in the following set of the
representation space: {

𝜒 ∶ Γg ,𝑛 → ℂ

positive volume type

}
. (7.2)

Let 𝜒 ∶ Γg ,𝑛 ⟶ ℂ be a positive volume type, then three possible cases may appear according
to the table below.

𝜒 with vol(𝜒g ) > 0 →

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜒g satisfies the second Haupt condition

⎧⎪⎪⎨⎪⎪⎩

𝜒𝑛 is trivial
See Lemma 7.3.

𝜒𝑛 is not trivial
See Lemma 7.4.

𝜒g does not satisfy the second Haupt condition. See Lemma 7.5.
(7.3)
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Lemma 7.3. Let 𝜒 ∶ Γg ,𝑛 ⟶ ℂ be a representation of positive volume type and trivial ends-type
such that 𝜒g satisfies the Haupt’s conditions. Then 𝜒 appears as the holonomy of some translation
structure on 𝑆g ,𝑛.

Proof. Let {𝛼1, 𝛽1, … , 𝛼g , 𝛽g , 𝛾1, … , 𝛾𝑛} be a standard set of generators for Γg ,𝑛 as usual. As 𝜒 is
assumed to be of trivial ends-type, the following holds 𝜒(𝛾𝑖) = 0 for any 𝜒. As a consequence,
there is an identification between the spaces Hom(Γg ,𝑛, ℂ) and Hom(Γg , ℂ). In other words, every
representation 𝜒 can be seen as an element of both spaces. Since 𝜒g satisfies the Haupt’s condi-
tions, it arises as the holonomy of a translation structure on 𝑆g ,0 and hence as the holonomy of a
translation structure on 𝑆g ,𝑛 = 𝑆g ⧵ {𝑃1, … , 𝑃𝑛}. □

Lemma 7.4. Let 𝜒 ∶ Γg ,𝑛 ⟶ ℂ be a representation of positive volume type and non-trivial ends-
type such that such that𝜒g satisfies the Haupt’s conditions. Then𝜒 appears as the holonomy of some
translation structure on 𝑆g ,𝑛.

Proof. The representation 𝜒 determines the pair (𝜒g , 𝜒𝑛). The representation 𝜒g appears as the
holonomy of a translation structure on 𝑆g ,0 because it satisfies both Haupt’s conditions. The rep-
resentation 𝜒𝑛, instead, appears as the holonomy of a translation structure on an 𝑛-punctured
sphere according to Proposition 6.1. These structures can be glued together and the resulting sur-
face, homeomorphic to 𝑆g ,𝑛, carries a translation structure with the desired holonomy. □

Let 𝜒 ∶ Γg ,𝑛 ⟶ ℂ be a positive volume type representation and assume 𝜒g does not satisfy the
second Haupt’s condition. We recall that the second Haupt’s condition applies only to a special
class of representations, namely those whose image is a lattice in ℂ. The subset of representa-
tions for which the second Haupt’s condition fails to be satisfied are completely characterised by
Proposition 4.1.

Lemma 7.5. Let 𝜒 ∶ Γg ,𝑛 ⟶ ℂ be a representation such that

(1) vol(𝜒g ) > 0,
(2) Im(𝜒g ) = Λ is a lattice in ℂ,
(3) vol(𝜒g ) = Area(ℂ∕Λ).

Then 𝜒 appears as the holonomy of a translation structure on 𝑆g ,𝑛.

Proof. Let 𝑓 ∶ 𝑆g → ℂ∕Λ be the mapping induced by 𝑓∗ ∶ Γg → 𝐻1(ℂ∕Λ,ℤ), whereΛ = Im(𝜒g ).
Since𝜒g does not satisfy the secondHaupt’s condition,𝑓 has degree one and factors through a col-
lapse of g − 1 handle by [7, Proposition 2.7]. Hence, 𝜒g determines two further representations:
a non-trivial 𝜒1 ∶ Γ1 → ℂ which appears as the holonomy of a flat torus and the trivial repre-
sentation 𝜒g−1 ∶ Γg−1 → {0} < ℂ. Let us now consider the representation 𝜒𝑛 ∶ Γ0,𝑛 → ℂ. Propo-
sition 6.1 applies and thence 𝜒𝑛 arises as the holonomy of a translation structure on 𝑆0,𝑛 where
all the punctures have the prescribed holonomy. This latter structure can be glued with the flat
torus determined by 𝜒1,𝑜 and the resulting surface, homeomorphic to 𝑆1,𝑛, carries a translation
structure. Such a structure has at least one singularity, say 𝑃, and we can use it for attaching g − 1
handles with trivial holonomy. Indeed, pick two embedded and geodesic twin paths starting from
𝑃. Divide each path in 2g − 2 sub-segments with the same length and labelled from 1 to 2g − 2 in
ascending order. By cutting the segments labelled by even integers and then gluing those with the
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same label, we obtain g − 1 handles with trivial holonomy. The final surface, homeomorphic to
𝑆g ,𝑛, carries a translation structure with the desired holonomy. □

7.2 Representations with non-positive volume

In this section, we focus on representations of non-positive volume. Let 𝜒 ∶ Γg ,𝑛 ⟶ ℂ be a rep-
resentation such that vol(𝜒g ) ⩽ 0 and let {𝛼1, 𝛽1, … , 𝛼g , 𝛽g , 𝛾1, … , 𝛾𝑛} be a basis of Γg ,𝑛. As the
volume of 𝜒g is assumed to be non-positive, the representation 𝜒 falls in one the four cases listed
above. Let us define 𝑘 be the number of handles with negative volume and let ℎ be the number of
handles with zero volume. Set g = g − (𝑘 + ℎ). Note that 0 ⩽ 𝑘, ℎ ⩽ g and, as the volume is non-
positive, the sum 𝑘 + ℎ ⩾ 1. In particular, 𝑘 = 0 if and only if ℎ = g . Indeed, if ℎ < g and 𝑘 = 0
then 𝜒 would have positive volume. We already know the representation 𝜒 splits in two repre-
sentations, 𝜒g and 𝜒𝑛. In turns, the representation 𝜒g determines other three representations 𝜒𝑘,
𝜒ℎ and 𝜒g . We shall now describe a way for constructing translation surfaces with non-positive
volume 𝑆g ,𝑛 by proceeding in steps by finding a translation structure for each of these represen-
tations which will be subsequently glued together. In particular, we describe a precise order of
gluing.

Remark 7.6. Recall that the space Hom(Γ∙,1, ℂ) naturally identifies with Hom(Γ∙, ℂ) because the
holonomy of any curve 𝛾 enclosing the puncture has necessarily trivial holonomy. Inwhat follows,
we make the use of the representation 𝜒𝑘 to define some translation structure on 𝑆𝑘,1 having as
the holonomy 𝜒𝑘,1, the representation naturally associated to 𝜒𝑘. In the same fashion, we use the
representation 𝜒ℎ to define a translation structure on 𝑆ℎ,1.

7.2.1 Step 1: Geometrising 𝜒𝑘

Assume there are 𝑘 > 0 handles with negative volume. Up to rename all the handles, we may
assume without loss of generality that Im(𝜒(𝛼𝑖)𝜒(𝛽𝑖)) < 0 for every 𝑖 = 1, … , 𝑘. For this case, we
can simply extend the argumentation used to prove Lemma 5.4. Let𝑃1 be any point in the complex
plane. The four points 𝑃1, 𝜒(𝛼1)𝑃1, 𝜒(𝛽1)𝑃1, 𝜒(𝛼1𝛽1)𝑃1 bound a non-degenerate parallelogram1, that is a fundamental domain for the action of ⟨𝜒(𝛼1), 𝜒(𝛽1)⟩. Remove the interior of 1. We
can find a vertex of1, say 𝑃2, such that the points 𝑃2, 𝜒(𝛼2)𝑃2, 𝜒(𝛽2)𝑃2, 𝜒(𝛼2𝛽2)𝑃2 bound a non-
degenerate parallelogram 2. Remove the interior of 2. We proceed in the same fashion: For any
𝑖 = 2, … , 𝑘 there is a vertex 𝑃𝑖 of the parallelogram 𝑖−1 such that 𝑃𝑖, 𝜒(𝛼𝑖)𝑃𝑖, 𝜒(𝛽𝑖)𝑃𝑖, 𝜒(𝛼𝑖𝛽𝑖)𝑃𝑖

determine a non-degenerate parallelogram 𝑖 . Remove the interior of 𝑖 . We get a chain of paral-
lelograms each one with the interior removed. Identifying the sides according to 𝜒𝑘 we obtain a
surface homeomorphic to 𝑆𝑘,1 endowed with a translation structure (𝑋, 𝜔)with one branch point
of magnitude (4𝑘 + 2)𝜋, one pole of order 2 and having holonomy 𝜒𝑘,1. The representations 𝜒𝑘

and 𝜒𝑘,1 are identified in the sense of Remark 7.6. Note that if 𝑘 = g and 𝑛 = 1, we do not need
to proceed any further. Since each parallelogram is compact, their union lies in a bounded com-
pact region, say 𝐾𝑜, of 𝔼2 whose complement is homeomorphic to a disc in the Riemann sphere.
Therefore, there exists an open set𝑈𝑜 and an isometrymapping𝑓𝑜 ∶ 𝑈𝑜 ⟶ 𝔼2 ⧵ 𝐾𝑜.We shall use
this mapping for gluing (𝑋, 𝜔) to the translation structures arising from the other representations
(Figure 11).
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F IGURE 11 Chain of three parallelograms in the complex plane representing the situation when 𝑘 = 3

7.2.2 Step 2: Geometrising 𝜒ℎ

Assume there are ℎ > 0 handles with zero volume and consider the representation 𝜒ℎ. We begin
with by assuming 𝜒ℎ to be different from the trivial representation; we shall treat this case sepa-
rately later. There are 1 ⩽ 𝑙 ⩽ ℎ pairs {𝛼𝑖, 𝛽𝑖} such that at least one between 𝜒(𝛼𝑖) or 𝜒(𝛽𝑖) is not
zero. We assume these pairs are labelled by {1, … , 𝑙} without loss of generality. For any 𝑖 = 1, … , 𝑙,
the inclusion mapping 𝚥𝑖 ∶ ⟨𝛼𝑖, 𝛽𝑖⟩ ⟶ 𝐻1(𝑆g ,𝑛; ℤ) yields a representation ⟨𝛼𝑖, 𝛽𝑖⟩ ⟶ ℂ by post-
composition with the representation 𝜒. Lemmas 5.2 and 5.3 apply and so each one of these repre-
sentations arises as the holonomy of a translation structure (𝑋𝑖, 𝜔𝑖) on a punctured torus. Let𝑈𝑖 be
an open neighbourhood of the puncture on the translation structure (𝑋𝑖, 𝜔𝑖). For any 𝑖 = 1, … , 𝑙,
there is a compact set 𝐾𝑖 ⊂ 𝔼2, homeomorphic to a disc, and an isometry 𝑓𝑖 ∶ 𝑈𝑖 ⟶ 𝔼2 ⧵ 𝐾𝑖 .
Since 𝑙 is finite and the set 𝐾𝑖 is compact for any 𝑖, there exists a compact region 𝐾, homeomor-
phic to a disc, containing all the functions 𝐾𝑖 just defined. Let 𝑉 = 𝔼2 ⧵ 𝐾. The preimage of 𝑉 via
the mapping 𝑓𝑖 is an open neighbourhood, say 𝑉𝑖 , of the puncture on (𝑋𝑖, 𝜔𝑖) isometric to 𝑉 and
properly contained in 𝑈𝑖 . All the functions 𝑉𝑖 are isometric and they can be identified. Let 𝑃 be
any point in 𝑉 ⊂ 𝔼2 and let 𝑟 be an infinite ray starting from 𝑃 entirely contained in 𝑉. The map-
pings 𝑓𝑖 , where 𝑖 = 1, … , 𝑙, can be used to define an infinite ray 𝑟𝑖 starting from 𝑃𝑖 = 𝑓−1

𝑖
(𝑃) ∈ 𝑉𝑖

for every 𝑖 = 1, … , 𝑙. Slit all the structures (𝑋𝑖, 𝜔𝑖) along these rays and re-glue them accordingly
by matching the side 𝑟+

𝑖
with 𝑟−

𝑖+1mod 𝑙
. The surface we obtain from this surgery is homeomor-

phic to 𝑆𝑙,1 and equipped with a translation structure (𝑊, 𝜂). Once identified, the points 𝑃𝑖 form a
singular point of magnitude 2𝜋(𝑙 + 1) and hence the differential 𝜂 has a zero of order 𝑙. We further
note that the infinity∞ appears as a pole with trivial holonomy. If ℎ = 𝑙, we are done, otherwise
we have to glue the remaining ℎ − 𝑙 handles with trivial holonomy. Since (𝑊, 𝜂) has at least one
singular point, we can use it for attaching the handles with trivial holonomy in the way we have
explained in Subsection 5.1.1. The final surface, homeomorphic to 𝑆ℎ,1, is equipped with a trans-
lation structure with the desire holonomy 𝜒ℎ,1. The representations 𝜒ℎ and 𝜒ℎ,1 are identified in
the sense of Remark 7.6. We define this latter structure, with a small abuse of notation, as (𝑊, 𝜂).
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In the case 𝜒ℎ is the trivial representation, we need to proceed in a slightly different way. Let
(𝑋1, 𝜔1) and (𝑋2, 𝜔2) be two copies of (ℂ, 𝑑𝑧). Slit both along an infinite ray 𝑟 starting from some
point 𝑃, and then re-glue by matching the side 𝑟+1 with 𝑟−2 and the side 𝑟−1 with 𝑟+2 . The resulting
surface is topologically a plane equipped with a translation structure with one branch point of
magnitude 4𝜋 at 𝑃 and one pole of order 3, namely (ℂ, 𝑧𝑑𝑧). We then use the branch point for
attachingℎ handleswith trivial holonomyas explained in Subsection 5.1.1. Again, the final surface,
homeomorphic to 𝑆ℎ,1, is equippedwith a translation structure (𝑊, 𝜂) having the desire holonomy
𝜒ℎ.

7.2.3 Step 3: The first gluing

We now glue the structures obtained in the previous steps. If one of 𝑘 or ℎ is zero, this step can be
skipped. Recall, however, that they cannot be both zero. The structure (𝑊, 𝜂) we have obtained
in the previous step, in both cases, has a finite collection  of infinite rays pointing toward the
puncture and that develop on 𝑟 ⊂ 𝔼2. Let (𝑋, 𝜔) be the final structure obtained in Step 1 (Subsec-
tion 7.2.1). The mapping 𝑓𝑜 can be used to define an infinite ray 𝑟𝑜 on (𝑋, 𝜔) pointing toward the
puncture. If 𝑟 does not intersect the collection of parallelograms 1, … ,𝑘, then we can simply
define 𝑟𝑜 ⊂ (𝑋, 𝜔) as the preimage of 𝑟. In particular, by slitting (𝑋, 𝜔) along 𝑟𝑜 and slitting (𝑊, 𝜂)
along anyone of the rays in the collection , these structure can be glue to define a translation
structure on a surface homeomorphic to 𝑆𝑘+ℎ,1. The holonomy of the resulting structure depends
only on 𝜒𝑘 and 𝜒ℎ.
Suppose 𝑟 intersects the collection of parallelograms 1, … ,𝑘 . Let 𝐾′ be a compact region

homeomorphic to a disc and containing both 𝐾𝑜 and 𝐾, the compact regions defined in the pre-
vious sections. Then define the open set 𝑉′ as 𝔼2 ⧵ 𝐾′. As 𝐾 ⊆ 𝐾′, then 𝑉′ ⊂ 𝑉. Since the ray 𝑟
leaves any compact set, there is an infinite ray 𝑟′ ⊂ 𝑟 ∩ 𝑉′. Since𝐾𝑜 ⊂ 𝐾′, the ray 𝑟′ does no longer
intersect the parallelograms1, … ,𝑘 and the preimage via themapping 𝑓𝑜 defines an infinite ray
𝑟𝑜 on (𝑋, 𝜔). Similarly, the preimage of 𝑟′ via any mapping 𝑓𝑖 , defines an infinite sub-ray 𝑟′

𝑖
⊂ 𝑟𝑖 .

Now the structures (𝑋, 𝜔) and (𝑊, 𝜂) can be glued by slitting these rays. As above, the resulting
surface is homeomorphic to 𝑆𝑘+ℎ,1 and carries a translation structures having holonomy uniquely
determined by 𝜒𝑘 and 𝜒ℎ. In both cases, we shall denote the final structures as (𝑌, 𝜉).

7.2.4 Step 4: Gluing the 𝑛-punctured sphere

Let us now consider the representation 𝜒𝑛 ∶ Γ0,𝑛 ⟶ ℂ determined by 𝜒. If 𝑛 = 1, the represen-
tation is trivial and there is nothing interesting to say. Therefore, assume 𝑛 ⩾ 2. Proposition 6.1
and Remark 6.2 state that 𝜒𝑛 arises as the holonomy of a translation structure on the 𝑛-punctured
sphere. This latter structure can be glued to (𝑌, 𝜉) in the following way.
If 𝜒𝑛 is trivial, it appears as the holonomy of the punctured plane ℂ ⧵ {𝑃1, … , 𝑃𝑛−1} ≅ ℂℙ1 ⧵

{𝑃1, … , 𝑃𝑛−1,∞} equipped with the translation structure induced by the differential 𝑑𝑧. Let 𝚥 ∶
ℂ ⟶ 𝔼2 be the usual identification. Once again, consider the open set𝑉 ⊂ 𝔼2 already introduced
in Subsection 7.2.2. Recall that it contains the geodesic ray 𝑟 based at 𝑃. There is no loss of gen-
erality in assuming that 𝚥({𝑃1, … , 𝑃𝑛−1}) ⊂ 𝔼2 ⧵ 𝑉. The preimage of the ray 𝑟 via the mapping 𝚥 is
a geodesic line, say 𝑟⋆. Slit ℂℙ1 ⧵ {𝑃1, … , 𝑃𝑛−1,∞} along the ray 𝑟⋆. Consider the translation sur-
face (𝑌, 𝜉) just defined in Subsection 7.2.3 and slit it along any infinite ray of the collection .
Then glue the translation surfaces (ℂℙ1 ⧵ {𝑃1, … , 𝑃𝑛−1,∞}, 𝑑𝑧) and (𝑌, 𝜉) as usual by using a slit
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construction. The resulting surface is homeomorphic to 𝑆𝑘+ℎ,𝑛 and equipped with a translation
structure (𝑍, 𝜏).
Suppose 𝜒𝑛 is not trivial. Proposition 6.1 states that it appears as the holonomy of a transla-

tion structure on 𝑆0,𝑛 with at least one cylindrical ends. Let𝑈𝑜 be a neighbourhood of a puncture
with non-trivial holonomy and let 𝑄 ∈ 𝑈𝑜 be any point. Let 𝜌 be an infinite geodesic ray from 𝑄
pointing towards the puncture. The developed image of 𝜌 is a geodesic ray 𝜌 ⊂ 𝔼2 leaving from the
developed image of 𝑄. Let 𝑃 ∈ 𝑉 ⊂ 𝔼2 be the point introduced in the second step (see Subsection
7.2.2). Let 𝑟⋆ be a geodesic ray starting from 𝑃 such that: 𝑟⋆ is disjoint from 𝜌 and, it is entirely
contained in 𝑉 ⊂ 𝔼2. We think (𝔼2, 𝑟⋆) as a plane with a marked infinite ray. Slit 𝑈𝑜 along 𝜌. In
the same fashion, slit the marked plane (𝔼2, 𝑟⋆) along 𝜌. Then reglue (𝔼2, 𝑟⋆) and 𝑈𝑜 along the
slits as usual. We obtain a surface still homeomorphic to 𝑆0,𝑛 but equipped with a new transla-
tion structure, say (𝑍′, 𝜏′). Geometrically, this new translation structure contains a whole copy of
the marked plane (𝔼2, 𝑟⋆) which we use for gluing (𝑌, 𝜉), the translation structure obtained in
the previous step (see Subsection 7.2.3). Let 𝑓𝑖 ∶ 𝑈𝑖 ⟶ 𝔼2 ⧵ 𝐾𝑖 be anyone of the isometries intro-
duced in Subsection 7.2.2 and let 𝑟⋆ be the preimage of 𝑟⋆ via 𝑓𝑖 . Since 𝑉 ⊂ 𝔼2 ⧵ 𝐾𝑖 for any 𝑖, the
𝑟⋆ is a infinite ray in (𝑋𝑖, 𝜔𝑖) and therefore an infinite ray pointing towards the (unique) puncture
in (𝑌, 𝜉). Slit (𝑌, 𝜉) along 𝑟⋆ and slit (𝑍′, 𝜏′) along 𝑟⋆. Then re-glue as usual. The resulting surface
is homeomorphic to 𝑆𝑘+ℎ,𝑛 and equipped with a singular Euclidean stucture (𝑍, 𝜏). In both of the
cases, the Euclidean structure (𝑍, 𝜏) has holonomy depending only on 𝜒𝑘, 𝜒ℎ and 𝜒𝑛.

7.2.5 Step 5: Gluing positive handles

In this final step,we shall glue the remaining g handles, if any,with positive volume. The represen-
tation𝜒g has positive volume, Haupt’s theorem applies, and therefore appears as the holonomy of
a translation structure on 𝑆g . This latter structure can be glued to (𝑍, 𝜏), the structure obtained in
Subsection 7.2.4. The resulting surface is homeomorphic to 𝑆g ,𝑛 and carries a singular translation
structure with holonomy 𝜒 as desired.

7.3 Making translation surfaces metrically complete

The translation surfaces we have constructed in the previous section may very well be not met-
rically complete. As we have noticed in Subsection 2.2, this is due to the presence of removable
singularities. Let us now described a way to make these structures metrically complete. Let (𝑋, 𝜔)
be a translation structure on a punctured surface 𝑆g ,𝑛. Assume this structure is notmetrically com-
plete. As a consequence of Lemma 2.4, there is a puncture 𝑃 of𝑋 such that in any local coordinate
𝑧, the abelian differential 𝜔 can be written in the form

𝜔 = 𝑓(𝑧)𝑑𝑧, where 𝑓(𝑧) =
∞∑
𝑖=𝑛

𝑎𝑖(𝑧 − 𝑧𝑜)
𝑖 for some 𝑛 ⩾ 0. (7.4)

We basically distinguish two cases according to cases 1.1 and 1.2 in Subsection 2.2.

(1) The coefficient 𝑎0 ≠ 0. Then any local chart 𝜑 ∶ 𝑈 ⧵ {𝑃} ⟶ 𝔼2 extends to a local homeo-
morphism 𝑈 ⟶ 𝔼2. Let 𝜀 > 0 be a real number small enough that 𝐵𝜀(𝑃) ⊂ 𝑈. Let 𝐷𝜀 =
𝜑(𝐵𝜀(𝑃)) ⊂ 𝔼2 ≅ ℂ. Let 𝑙 be a geodesic segment in 𝐵𝜀(𝑃) and let 𝑙 the image of 𝑙 via 𝜑. Slit
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(𝑋, 𝜔) along 𝑙 and slit (ℂ, 𝑑𝑧) along 𝑙. Then reglue by matching 𝑙+ with 𝑙− and 𝑙− with 𝑙+. The
final surface is homeomorphic to 𝑆g ,𝑛. The puncture 𝑃 now appears as a pole of order 2 and
the geometry around it is metrically complete.

(2) The coefficient 𝑎0 = 0. The point 𝑃 is a zero of order 𝑘 for 𝜔, where 𝑘 ∈ ℤ+ is smallest index
such that 𝑎𝑘 ≠ 0. Any local chart𝑈 ⧵ {𝑃} ⟶ 𝔼2 extends to a simple branched 𝑘 + 1 covering
𝑈 ⟶ 𝔼2. Let 𝜀 > 0 be a real number small enough that 𝐵𝜀(𝑃) ⊂ 𝑈. The open ball 𝐵𝜀(𝑃) is
isometric to the 𝜀−neighbourhood 𝐷𝜀 of the vertex of the Euclidean cone of angle 2𝜋(𝑘 + 1).
Let g be the mapping realising the isometry. As a translation surface, this singular Euclidean
cone is determined by the pair (ℂ, 𝑧𝑘𝑑𝑧). Let 𝑙 be a geodesic segment in 𝐵𝜀(𝑃) and let 𝑙 the
image of 𝑙 via g . Slit (𝑋, 𝜔) along 𝑙 and slit (ℂ, 𝑧𝑘𝑑𝑧) along 𝑙. Then glue by matching 𝑙+ with
𝑙− and 𝑙− with 𝑙+. The final surface is homeomorphic to 𝑆g ,𝑛. The puncture 𝑃 now appears as
a pole of order 𝑘 + 2 and the geometry around it is metrically complete.

A recursive argument produce a translation surface with poles which is metrically complete.
This concludes the proof of Theorem A.2 and thus of Theorem A.

PART II: TRANSLATION STRUCTURES IN A PRESCRIBED STRATUM

The spaceΩg ,𝑛 is naturally stratified by sub-spaces(𝑑1, … , 𝑑𝑚; 𝑝1, … , 𝑝𝑛) of those translation
surfaces which have𝑚 zeros of order exactly 𝑑1, … , 𝑑𝑚 and 𝑛 poles of order exactly 𝑝1, … , 𝑝𝑛. We
may note that these integers are subject to the well-known relation (1.5)

𝑚∑
𝑖=1

𝑑𝑖 −
𝑛∑

𝑗=1

𝑝𝑗 = 2g − 2.

In this part, we shall consider the more delicate problem of determining the image of the period
map when restricted to any strata (𝑑1, … , 𝑑𝑚, 𝑝1, … , 𝑝𝑛) ⊂ Ωg ,𝑛, and prove the rest of the
results stated in the introduction. Note that since we shall only consider translation structures
with poles, our surfaces will automatically be metrically complete.

8 TRIVIAL HOLONOMY I: PUNCTURED SPHERES

We begin by deriving necessary conditions for the number and orders of zeros for a meromorphic
differential in Ωg ,𝑛 with trivial holonomy. Then, in this section, we shall prove Theorem B for
the case when g = 0 (see Proposition 8.2).

8.1 Necessary conditions

Let (𝑋, 𝜔) be a translation surface with trivial holonomy on 𝑆g ,𝑛 and consider the developing map
dev ∶ 𝑆g ,𝑛 ⟶ ℂ for (𝑋, 𝜔). Since the holonomy is assumed to be trivial, such amapping descends
to a well-defined map dev ∶ 𝑆g ,𝑛 → ℂ. By fixing an arbitrary point, say 𝑄𝑜, on 𝑆g ,𝑛, this map can
be written explicitly as

𝑃 ↦ ∫
𝑃

𝑄𝑜

𝜔. (8.1)
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By viewing ℂ ⊂ ℂℙ1, where ℂℙ1 is the Riemann sphere, we can extend dev holomorphically
over the punctures bymapping the punctures to∞ ∈ ℂℙ1, thus giving us a holomorphic branched
covering 𝑆g ⟶ ℂℙ1 of the sphere which we again denote by dev. At points of 𝑆g where 𝜔 has a
pole of order 𝑘, the multiplicity of the map dev is 𝑘 − 1. Thus,∞ is a singular value of dev except
when all poles of 𝜔 have order 2. Note that all poles have to be of order greater than 1 since the
residue at each pole has to be zero for the holonomy to be trivial.
If {𝑝1, … , 𝑝𝑛} are the order of the poles, the degree of themapping dev can be computed in terms

of 𝑝1, … , 𝑝𝑛; that is,

deg
(

dev
)

=
𝑛∑

𝑖=1

(𝑝𝑖 − 1) = 𝑑. (8.2)

We now assume the differential 𝜔 to have a single zero. Its order has to be

2g − 2 +
𝑛∑

𝑖=1

𝑝𝑖

as a consequence of Equation (1.5). Since 𝜔 has a single zero by assumption, the mapping dev has
only one singular value other than (possibly) ∞. Let {𝑟1, … , 𝑟𝑚} be the partition of 𝑑 = deg( dev )
determined by the multiplicities of the preimages of this singular value. Since 𝜔 has a single zero,
exactly one of these functions 𝑟𝑗 is greater than 1 and all the others are exactly 1. Assuming 𝑟1 > 1,
the order of the zero at this point is therefore 𝑟1 − 1. This implies that

𝑚∑
𝑗=1

(𝑟𝑗 − 1) =
𝑚∑

𝑗=1

𝑟𝑗 − 𝑚 = 2g − 2 +
𝑛∑

𝑖=1

𝑝𝑖. (8.3)

On the other hand, the family {𝑟1, … , 𝑟𝑚} is a partition of 𝑑 and therefore

𝑚∑
𝑗=1

𝑟𝑗 =
𝑛∑

𝑖=1

(𝑝𝑖 − 1) =
𝑛∑

𝑖=1

𝑝𝑖 − 𝑛. (8.4)

By replacing this latter in Equation (8.3), we obtain

𝑛∑
𝑖=1

𝑝𝑖 − 𝑛 − 𝑚 = 2g − 2 +
𝑛∑

𝑖=1

𝑝𝑖, (8.5)

𝑛 + 𝑚 = 2 − 2g . (8.6)

Since 𝑛 and 𝑚 are at least one, Equation (8.6) holds only when g = 0, and in this case we have
𝑛 = 𝑚 = 1 and g = 0. Thus,𝜔 is a holomorphic differential on thewhole complex plane. The point
∞ appears as a pole of order 𝑝 at the puncture, and a single zero of order 𝑝 − 2. With respect to
the global coordinate 𝑧 the abelian differential 𝜔 can be written as 𝑧(𝑝−2)𝑑𝑧 on ℂ. We have thus
proved the following proposition.

Proposition 8.1. Let (𝑋, 𝜔) be a translation surface with trivial holonomy on 𝑆g ,𝑛. Then 𝜔 has a
single zero if and only if g = 0 and 𝑛 = 1.
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We now allow 𝜔 to have multiple zeros, and obtain an upper bound for the order of the zeros of
𝜔. If we assume themapping dev to have 𝑘 singular values other than (possibly)∞, we get 𝑘 parti-
tions of deg( dev ), say {𝑟11, … , 𝑟1𝑛1

}, … , {𝑟𝑘1 , … , 𝑟𝑘𝑛𝑘
}, given by the preimages of these 𝑘 branch values.

The zeros of 𝜔 are precisely those points where 𝑟𝑖
𝑗
> 1, and the order of the zero at such points

is 𝑟𝑖
𝑗
− 1. We can note that each one of the functions 𝑟𝑖

𝑗
cannot exceed deg( dev ) and therefore

deduce that the order of each zero of 𝜔 is at most equal to

𝑛∑
𝑖=1

𝑝𝑖 − 𝑛 − 1

by using Equation (8.4). We shall prove that these necessary conditions turn out to be also suffi-
cient. The rest of this section is devoted to prove the following proposition, which is a re-statement
of Theorem B for punctured spheres.

Proposition 8.2. Given 𝑛 integers {𝑝1, … , 𝑝𝑛}with each 𝑝𝑖 ⩾ 2 and 𝑘 positive integers {𝑑1, … , 𝑑𝑘} in
non-increasing order, and a non-negative integer g satisfying the following conditions:

(1) 𝑘 > 1 whenever 𝑛 > 1,
(2) 𝑑𝑗 ⩽

∑𝑛
𝑖=1 𝑝𝑖 − 𝑛 − 1 for 1 ⩽ 𝑗 ⩽ 𝑘, and

(3)
∑𝑘

𝑗=1 𝑑𝑗 =
∑𝑛

𝑖=1 𝑝𝑖 − 2,

there exists a holomorphic abelian differential on 𝑆0,𝑛 which extends to a meromorphic differen-
tial with poles of orders 𝑝1, 𝑝2, … , 𝑝𝑛 at the 𝑛 punctures, zeros of orders 𝑑1, 𝑑2, … , 𝑑𝑘 and has triv-
ial holonomy.

In what follows, we shall henceforth refer to condition (2) as the order condition, and condition
(3) as the degree condition.

8.2 Idea of the proof and motivating example

Our strategy would be to repeatedly use the sequential slit construction as described in Subsec-
tion 3.1 and split the zeros that arise as described in Subsection 3.3 to control the order of the zeros.
Consider the 𝑛 translation surfaces (𝑋𝑖, 𝜔𝑖) for 1 ⩽ 𝑖 ⩽ 𝑛, where𝑋𝑖 = ℂ and the differential 𝜔𝑖 has
a pole of order 𝑝𝑖 ⩾ 2 at the infinity. We shall consider some (possibly all) of these translation
surfaces and we glue them, by performing a slit construction, to define a sequence of translation
surfaces (𝑌𝑗, 𝜂𝑗). Here, each (𝑌𝑗, 𝜂𝑗) is a sphere with a meromorphic differential, having poles
of order 𝑝1, … , 𝑝𝑡 for some 1 ⩽ 𝑡 ⩽ 𝑛 and zeros of order 𝑑1, … , 𝑑𝑠−1, 𝑑𝑠 for some 1 ⩽ 𝑠 ⩽ 𝑘 where
𝑑𝑠 ⩾ 𝑑𝑠 and 𝑑𝑠 ⩽ 𝑑𝑠 + 𝑑𝑠+1 + ⋯ + 𝑑𝑘. Since the degree of any meromorphic differential on the
sphere is −2, we have

𝑠∑
𝑙=1

𝑑𝑙 + (𝑑𝑠 − 𝑑𝑠) =
𝑡∑

𝑖=1

𝑝𝑖 − 2. (8.7)

The sequence (𝑌𝑗, 𝜂𝑗) is constructed such that, as 𝑗 increases, 𝑠 and 𝑡 increase and the final differ-
ential has 𝑡 = 𝑛. We then do a final splitting of zeros to get the required differential. At each step,
to go from (𝑌𝑗, 𝜂𝑗) to (𝑌𝑗+1, 𝜂𝑗+1), we often need to consider an intermediate translation surface
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F IGURE 1 2 Construction of (𝑌1, 𝜂1) for the motivating example. In the leftmost surface, 𝑃1 is the singular
point. In the rightmost surface, 𝑄3 is the singular point. In (𝑊, 𝜏), 𝑃2 is a zero of order 1 and 𝑄2 is a zero of order 2

F IGURE 13 Construction of (𝑌2, 𝜂2) for the motivating example. On the left, we have (𝑍1, 𝜂1) where 𝑃 is the
zero of order 4 and 𝑄 and 𝑅 are the zeros of order 2 and 3 obtained from splitting the zero of order 5 in (𝑌1, 𝜂1). In
the surface on the right, the right end of the slit, 𝑅1 is the zero of order 1 in (ℂ, 𝑧𝑝4−2𝑑𝑧)

(𝑍𝑗, 𝜉𝑗) obtained by splitting a zero in (𝑌𝑗, 𝜂𝑗). To this, we glue some of the remaining transla-
tion surfaces (𝑋𝑖, 𝜔𝑖) to get (𝑌𝑗+1, 𝜂𝑗+1) and the process continues till all the functions (𝑋𝑖, 𝜔𝑖) are
exhausted. Let us give an example for motivating our strategy.

Example 8.3. Let 𝑛 = 4, 𝑝1 = 𝑝3 = 𝑝4 = 3 and 𝑝2 = 5. Let 𝑘 = 5, and 𝑑1 = 4, 𝑑2 = 𝑑3 = 3 and
𝑑4 = 𝑑5 = 1. We see that these data satisfy the conditions of Proposition 8.2. To start with, we con-
struct (𝑌1, 𝜂1) using a sequential slit construction involving (ℂ, 𝑧𝑝1−2𝑑𝑧), (𝑊, 𝜏) and (ℂ, 𝑧𝑝3−2𝑑𝑧)
where (𝑊, 𝜏) is the surface obtained by splitting the zero of order 3 in (ℂ, 𝑧𝑝2−2𝑑𝑧) into two zeros
of order 1 and 2. This is shown in Figure 12. The resulting (𝑌1, 𝜂1) has poles of order 3, 3 and 5 and
two zeros of order 4 and 5, respectively. We then split the zero of order 5 into two zeros of order 2
and 3 and call the resulting surface (𝑍1, 𝜉1). In (𝑍1, 𝜉1), wemake a slit across the two zeros of order
2 and 3 and glue it to (ℂ, 𝑧𝑝4−2𝑑𝑧) as shown in Figure 13 to get (𝑌2, 𝜂2) that has poles of order 3, 5,
3 and 3 and zeros of order 4, 3 and 5. Finally, we split the zero of order 5 into three zeros of order
3, 1 and 1 and complete the construction.

The proof that follows is simply a generalisation of this procedure for arbitrary functions 𝑝𝑖 and
𝑑𝑗 subject to the conditions above.
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8.3 Proof of Proposition 8.2

According to our strategy, we divide the proof into steps, each one corresponding to a subsection.

8.3.1 Construction of (𝑌1, 𝜂1)

Let𝑚 be the smallest positive integer such that

𝑚∑
𝑖=1

(𝑝𝑖 − 1) ⩾ 𝑑1 + 1. (8.8)

Note the existence of such an 𝑚 is guaranteed by the condition (2) of Proposition 8.2. If 𝑚 =
1, then define (𝑌1, 𝜂1) as (ℂ, 𝑧𝑝1−2𝑑𝑧). The differential 𝜂1 extends to a meromorphic differen-
tial on the Riemann sphere with one zero of order 𝑑1 = 𝑝1 − 2 ⩾ 𝑑1 and one pole of order 𝑝1.
Clearly,

𝑑1 = 𝑝1 − 2 ⩽

𝑘∑
𝑗=1

𝑑𝑗. (8.9)

Thus, (𝑌1, 𝜂1) is indeed of the desired form (as described in the strategy above). In the case𝑚 > 1,
we define 𝑝𝑚 to be the integer for which the following equality holds:

𝑚−1∑
𝑖=1

(𝑝𝑖 − 1) + (𝑝𝑚 − 1) = 𝑑1 + 1. (8.10)

Note that the minimality of 𝑚, and the inequality (8.8) implies that 2 ⩽ 𝑝𝑚 ⩽ 𝑝𝑚. When 𝑚 >
1 the construction of (𝑌1, 𝜂1) depends on the number 𝑚 + 𝑝𝑚 − 𝑝𝑚. We shall distinguish two
cases.

Case 1: 𝑚 + 𝑝𝑚 − 𝑝𝑚 ⩾ 𝑑2 + 1. This is the easiest case to deal with. For every 𝑖 = 1, … ,𝑚 − 1,
we consider the translation surfaces (𝑋𝑖, 𝜔𝑖) as (ℂ, 𝑧𝑝𝑖−2𝑑𝑧). Consider the translation surface
(𝑋𝑚, 𝜔𝑚) = (ℂ, 𝑧𝑝𝑚−2𝑑𝑧). Note that the differential 𝜔𝑚 has a zero of order 𝑝𝑚 − 2. Let (𝑊, 𝜏) the
translation surface obtained from (𝑋𝑚, 𝜔𝑚) by splitting the zero into two zeros of orders 𝑝𝑚 − 2
and 𝑝𝑚 − 𝑝𝑚 at points 𝐴 and 𝐵, respectively. When 𝑝𝑚 = 2, or 𝑝𝑚 = 𝑝𝑚 there is no splitting
involved and we have one zero and one marked point as 𝐴 and 𝐵 (or vice versa). For the sequen-
tial slit construction, we have to specify a geodesic line segment 𝑙𝑖 in each surface (𝑋𝑖, 𝜔𝑖), such
that all of them have the same developed image 𝑐 ∈ ℂ − {0}. We take 𝑙𝑚 to be the saddle connec-
tion joining 𝐴 to 𝐵. In the notation of Subsection 3.1, 𝑃𝑚 = 𝐴 and 𝑄𝑚 = 𝐵. Thus, 𝑃𝑚 is a singular
point with angle 2𝜋(𝑝𝑚 − 1) and 𝑄𝑚 is a singular point with angle 2𝜋(𝑝𝑚 − 𝑝𝑚 + 1). Here, a sin-
gular point with angle 2𝜋 is just a regular point. For 1 ⩽ 𝑖 ⩽ 𝑚 − 1, we take 𝑙𝑖 to be a geodesic
line segment starting from the zero in (𝑋𝑖, 𝜔𝑖) to some point on the surface such that the line seg-
ment has the same developed image in ℂ as 𝑙𝑚. Thus, for 1 ⩽ 𝑖 ⩽ 𝑚 − 1, 𝑃𝑖 is a singular point with
angle 2𝜋(𝑝𝑖 − 1) and 𝑄𝑖 is a regular point. We glue all the surfaces (𝑋𝑖, 𝜔𝑖), for 𝑖 = 1, … ,𝑚 − 1, to
(𝑊, 𝜏) by slit construction along the segments 𝑙𝑖 , just defined. We label the resulting surface as
(𝑌1, 𝜂1) and we show this is of the required form. The point 𝑃, which is the point obtained from
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the identification of all the 𝑃𝑖 , is a singular point with magnitude

2𝜋

(
𝑚−1∑
𝑖=1

(𝑝𝑖 − 1) + (𝑝𝑚 − 1)

)
= 2𝜋(𝑑1 + 1). (8.11)

Therefore, the differential 𝜂1 has a zero of order 𝑑1 at the point 𝑃. The point𝑄 is also singular and
has magnitude equal to 2𝜋(𝑑 + 1) = 2𝜋(𝑚 + 𝑝𝑚 − 𝑝𝑚) ⩾ 2𝜋(𝑑2 + 1), where the equality defines
𝑑. In particular, 𝜂1 has a zero of order 𝑑 ⩾ 𝑑2 at 𝑄. We can finally deduce (𝑌1, 𝜂1) is of the desired
form because

𝑑1 + 𝑑 =
𝑚∑
𝑖=1

𝑝𝑖 − 2 ⩽

𝑘∑
𝑗=1

𝑑𝑗 implies 𝑑 ⩽

𝑘∑
𝑗=2

𝑑𝑗.

Case 2: 𝑚 + 𝑝𝑚 − 𝑝𝑚 < 𝑑2 + 1. In this case, if we were to carry out the construction as in Case
1, then we would have obtained a differential with two zeros of order 𝑑1 and 𝑑, respectively, with
𝑑 < 𝑑2 and poles of order, respectively 𝑝1, … , 𝑝𝑚. This is not of the form desired of (𝑌1, 𝜂1). So,
we describe a construction that will involve more surfaces (𝑋𝑚+1, 𝜔𝑚+1), … , (𝑋𝑚′ , 𝜔𝑚′). Let𝑚′ be
the smallest integer such that the following inequality holds:

𝑚 + 𝑝𝑚 − 𝑝𝑚 +
𝑚′∑

𝑖=𝑚+1

𝑝𝑖 ⩾ 𝑑2 + 1. (8.12)

Clearly, 𝑚′ ⩾ 𝑚 + 1 since 𝑚 + 𝑝𝑚 − 𝑝𝑚 < 𝑑2 + 1. Using Equation (8.10), we see that inequality
(8.12) is the same as

𝑚−1∑
𝑖=1

(𝑝𝑖 − 1) + (𝑝𝑚 − 1) + 𝑚 + 𝑝𝑚 − 𝑝𝑚 +
𝑚′∑

𝑖=𝑚+1

𝑝𝑖 ⩾ 𝑑1 + 1 + 𝑑2 + 1 or,

𝑚′∑
𝑖=1

𝑝𝑖 ⩾ 𝑑1 + 𝑑2 + 2. (8.13)

In this form, it is easy to see that such an 𝑚′ exists because of the degree condition of the main
theorem. We claim that 𝑚′ ⩽ 𝑑2 + 1. To see this, we first examine the case when 𝑚′ = 𝑚 + 1. In
this case,𝑚 + 𝑝𝑚 − 𝑝𝑚 < 𝑑2 + 1 implies𝑚′ = 𝑚 + 1 ⩽ 𝑑2 + 1. When𝑚′ > 𝑚 + 1, we have

𝑚 + (𝑚′ − 1 − 𝑚) < 𝑚 + 𝑝𝑚 − 𝑝𝑚 +
𝑚′−1∑
𝑖=𝑚+1

𝑝𝑖 < 𝑑2 + 1. (8.14)

Here, the second inequality comes from the minimality of 𝑚′ and the first inequality is a conse-
quence of the fact that each𝑝𝑖 > 1 since that implies

∑𝑚′−1
𝑖=𝑚+1 𝑝𝑖 > 𝑚′ − 𝑚. Equation (8.14) implies

𝑚′ < 𝑑2 + 2, or, 𝑚′ ⩽ 𝑑2 + 1. Since 𝑑2 ⩽ 𝑑1, we also have 𝑚′ ⩽ 𝑑1 + 1. We now define 𝑚′′ ⩾ 1 to
be the smallest integer such that

𝑚′ +
𝑚′′∑
𝑖=1

(𝑝𝑖 − 2) ⩾ 𝑑1 + 1. (8.15)
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In general, such an𝑚′′ ⩽ 𝑚′ exists because

𝑚′ +
𝑚′∑
𝑖=1

(𝑝𝑖 − 2) =
𝑚′∑
𝑖=1

𝑝𝑖 − 𝑚′ ⩾ 𝑑1 + 𝑑2 + 2 − 𝑚′ ⩾ 𝑑1 + 1,

where the inequality in the middle follows from (8.13) and the last inequality follows because
𝑚′ ⩽ 𝑑2 + 1. As before, we define 𝑝′

𝑚′′ as the integer for which the following equality holds:

𝑚′ +
𝑚′′∑
𝑖=1

(𝑝𝑖 − 2) + (𝑝′
𝑚′′ − 𝑝𝑚′′ ) = 𝑑1 + 1. (8.16)

We note that𝑝𝑚′′ ⩾ 𝑝′
𝑚′′ ⩾ 2, where the first inequality comes from (8.15), and the second inequal-

ity comes from the minimality of𝑚′′. In particular, 𝑝′
𝑚′′ = 2 only when𝑚′′ = 1 and𝑚′ = 𝑑1 + 1.

We are now in the right position to specify the surfaces (𝑋1, 𝜔1), … , (𝑋𝑚′ , 𝜔𝑚′) which we shall
glue via sequential slit construction to get (𝑌1, 𝜂1). For 𝑖 ≠ 𝑚′′, we take (𝑋𝑖, 𝜔𝑖) to be (ℂ, 𝑧𝑝𝑖−2𝑑𝑧)
as above. In this second case, (𝑊, 𝜏) will be the translation surface obtained by splitting the zero
of order 𝑝𝑚′′ − 2 in (𝑋𝑚′′ , 𝜔𝑚′′ ) into two zeros of orders 𝑝′

𝑚′′ − 2 and 𝑝𝑚 − 𝑝′
𝑚′′ at points 𝐴 and 𝐵

respectively. When 𝑝′
𝑚′′ = 2, or 𝑝′

𝑚′′ = 𝑝𝑚′′ , as before, there is no splitting involved and we have
one zero and one marked point as 𝐴 and 𝐵 (or vice versa).
Recall that for the sequential slit construction, we have to specify a geodesic line segment 𝑙𝑖

for each translation surface (𝑋𝑖, 𝜔𝑖). We take 𝑙𝑚′′ to be the saddle connection joining 𝐴 to 𝐵. By
using the notation of Subsection 3.1, we denote 𝑃𝑚′′ = 𝐴 and 𝑄𝑚′′ = 𝐵. Thus, 𝑃𝑚′′ is a singular
point with angle 2𝜋(𝑝′

𝑚′′ − 1) and 𝑄𝑚′′ is a singular point with angle 2𝜋(𝑝𝑚′′ − 𝑝′
𝑚′′ + 1). For

1 ⩽ 𝑖 ⩽ 𝑚′′ − 1, we take 𝑙𝑖 to be a geodesic line segment starting from the zero to some other point
on the surface such that the line segment has the same developed image in ℂ as 𝑙𝑚′′ . Thus, for 1 ⩽

𝑖 ⩽ 𝑚′′ − 1, 𝑃𝑖 is a singular point with magnitude 2𝜋(𝑝𝑖 − 1) and 𝑄𝑖 is a regular point. For 𝑚′′ +
1 ⩽ 𝑖 ⩽ 𝑚′, 𝑙𝑖 is chosen such that 𝑃𝑖 is a regular point and 𝑄𝑖 is a singular point with magnitude
2𝜋(𝑝𝑖 − 1). This means that 𝑃, which is obtained from the identification of all the 𝑃𝑖 , is a singular
point with magnitude

𝑚′′−1∑
𝑖=1

2𝜋(𝑝𝑖 − 1) + 2𝜋(𝑝′
𝑚′′ − 1) +

𝑚′∑
𝑖=𝑚′′+1

2𝜋 = 2𝜋
⎛⎜⎜⎝𝑚′ +

𝑚′′∑
𝑖=1

(𝑝𝑖 − 2) + (𝑝′
𝑚′′ − 𝑝𝑚′′ )

⎞⎟⎟⎠ = 2𝜋(𝑑1 + 1).

(8.17)

In the same fashion, the point 𝑄, obtained from the identification of all the 𝑄𝑖 , is a singular point
with magnitude

𝑚′′−1∑
𝑖=1

2𝜋 + 2𝜋(𝑝𝑚′′ − 𝑝′
𝑚′′ + 1) +

𝑚′∑
𝑖=𝑚′′+1

2𝜋(𝑝𝑖 − 1) =∶ 2𝜋(𝑑 + 1). (8.18)

Equations (8.17) and (8.18) together yield

𝑑1 + 1 + 𝑑 + 1 =
𝑚′∑
𝑖=1

𝑝𝑖 ⩾ 𝑑1 + 𝑑2 + 2. (8.19)
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This means that the resulting abelian differential has a zero of order 𝑑 ⩾ 𝑑2 at 𝑄. We also
have

𝑑1 + 1 + 𝑑 + 1 =
𝑚′∑
𝑖=1

𝑝𝑖 ⩽

𝑘∑
𝑗=1

𝑑𝑗 + 2, (8.20)

which implies that 𝑑 ⩽ 𝑑2 + ⋯ + 𝑑𝑘. Thus, we can label this translation surface as (𝑌1, 𝜂1).

8.3.2 Getting (𝑍𝑗, 𝜉𝑗) from (𝑌𝑗, 𝜂𝑗) and (𝑌𝑗+1, 𝜂𝑗+1) from (𝑍𝑗, 𝜉𝑗)

This is an intermediate step that we shall undertake only when 𝑡 < 𝑛 in the surface (𝑌𝑗, 𝜂𝑗).
Recall that 𝑡 ⩽ 𝑛 is the number of poles on (𝑌𝑗, 𝜂𝑗). If 𝑡 = 𝑛, then we directly move to the next
step.
When (𝑌𝑗, 𝜂𝑗) has less than 𝑛 poles, suppose it has 𝑠 zeros of orders 𝑑1, … , 𝑑𝑠−1, 𝑑𝑠, where 𝑠 < 𝑘

and 𝑑𝑠 < 𝑑𝑠 + ⋯ + 𝑑𝑘. Let define 𝑟 to be the largest integer in 𝑠 ⩽ 𝑟 ⩽ 𝑘 − 1 such that 𝑑𝑠 ⩾ 𝑑𝑠 +
⋯ + 𝑑𝑟. Clearly, the following inequality holds 𝑑𝑠 < 𝑑𝑠 + ⋯ + 𝑑𝑟+1. Let us now define 𝑡′ to be the
smallest index in {1, … , 𝑛 − 𝑡} for which

𝑑𝑠 +
𝑡+𝑡′∑

𝑖=𝑡+1

𝑝𝑖 ⩾

𝑟+1∑
𝑗=𝑠

𝑑𝑗 (8.21)

⟺
𝑠−1∑
𝑗=1

𝑑𝑗 + 𝑑𝑠 +
𝑡+𝑡′∑

𝑖=𝑡+1

𝑝𝑖 ⩾

𝑟+1∑
𝑗=1

𝑑𝑗 (8.22)

⟺
𝑡+𝑡′∑
𝑖=1

𝑝𝑖 − 2 ⩾

𝑟+1∑
𝑗=1

𝑑𝑗, (8.23)

where the last implication uses (8.7). In the last form, it is easy to see that such a 𝑡′ has to exist
by the degree condition. Since each 𝑝𝑖 > 1, we have that in (8.21) the term

∑𝑡+𝑡′

𝑖=𝑡+1 𝑝𝑖 > 𝑡′, and it
easily follows that 𝑡′ ⩽ 𝑑𝑟+1. Since functions 𝑑𝑖 are non-increasing, we also have 𝑡′ ⩽ 𝑑𝑟.
We now have all that is necessary for constructing (𝑍𝑗, 𝜉𝑗) from (𝑌𝑗, 𝜂𝑗), namely, split the zero

of order 𝑑𝑠 in (𝑌𝑗, 𝜂𝑗) into zeros of order 𝑑𝑠, … , 𝑑𝑟−1, 𝑑𝑟 − 𝑡′ and 𝑑𝑠 − (𝑑𝑠 + ⋯ + 𝑑𝑟 − 𝑡′), and call
the resulting surface (𝑍𝑗, 𝜉𝑗).

Remark 8.4. When 𝑑𝑟 = 𝑡′ we interpret the ‘zero of order 𝑑𝑟 − 𝑡′’ as a marked regular point on
the surface.

We now do a sequential slit construction involving (𝑍𝑗, 𝜉𝑗) and (𝑋𝑡+1, 𝜔𝑡+1), … , (𝑋𝑡+𝑡′ , 𝜔𝑡+𝑡′ ),
where we take (𝑋𝑖, 𝜔𝑖) = (ℂ, 𝑧𝑝𝑖−2𝑑𝑧). The slit in (𝑍𝑗, 𝜉𝑗) is along the saddle connection joining
the zero of order 𝑑𝑟 − 𝑡′ and the zero of order 𝑑𝑠 − (𝑑𝑠 + ⋯ + 𝑑𝑟 − 𝑡′). We label the former point
𝑃0 and the latter point𝑄0. In the surfaces (𝑋𝑖, 𝜔𝑖), the slit is made along the geodesic line segment
joining the zero of order 𝑝𝑖 − 2, labelled 𝑄𝑖 and some marked point 𝑃𝑖 , such that the slit has the
same developed image as the slit in (𝑍𝑗, 𝜉𝑗). The resulting singularity 𝑃 is a zero of order 𝑑𝑟. The
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angle at 𝑄 has magnitude

2𝜋
⎛⎜⎜⎝𝑑𝑠 −

𝑟∑
𝑗=𝑠

𝑑𝑗 + 𝑡′ + 1 +
𝑡+𝑡′∑

𝑖=𝑡+1

(𝑝𝑖 − 1)
⎞⎟⎟⎠ = 2𝜋

⎛⎜⎜⎝1 + 𝑑𝑠 +
𝑡+𝑡′∑

𝑖=𝑡+1

𝑝𝑖 −
𝑟∑

𝑗=𝑠

𝑑𝑗

⎞⎟⎟⎠ ⩾ 2𝜋(1 + 𝑑𝑟+1), (8.24)

where the last inequality comes from (8.21). We now have the surface (𝑌𝑗+1, 𝜂𝑗+1) with poles of
order 𝑝1, … , 𝑝𝑡+𝑡′ and zeros of order 𝑑1, … , 𝑑𝑟, 𝑑𝑟+1. We iterate this step until we obtain a surface
with 𝑛 poles, in which case, we move on to the next step.

8.3.3 Final step

Suppose we reach this step with (𝑌1, 𝜂1). This happens when (𝑌1, 𝜂1) has 𝑛 poles 𝑝1, … , 𝑝𝑛. Then

𝑑1 + 𝑑2 =
𝑛∑

𝑖=1

𝑝𝑖 − 2 which means that 𝑑2 =
𝑘∑

𝑗=2

𝑑𝑗.

Wecan then split this zero of order𝑑2 into zeros of order𝑑2, … , 𝑑𝑘 using the procedure described in
Subsection 3.3. The resulting surface is the surface thatwehad set out to construct.More generally,
if (𝑌𝑗, 𝜂𝑗) has 𝑛 poles 𝑝1, … , 𝑝𝑛, then we have

𝑠∑
𝑙=1

𝑑𝑙 + (𝑑𝑠 − 𝑑𝑠) =
𝑛∑

𝑖=1

𝑝𝑖 − 2.

This tells us that 𝑑𝑠 = 𝑑𝑠 + ⋯ + 𝑑𝑘. In this case, we split the zero of order 𝑑𝑠 into zeros of order
𝑑𝑠, … , 𝑑𝑘 and this completes the construction.

8.3.4 About the positioning of the zeros

For the purposes of this section, the locations of the zeros (in the sense of their image under the
developingmap) does notmatter. However, they become important in Section 9 and Corollary 9.6.
Let 𝑑1, … 𝑑𝑘 be the zeros of a differential as obtained in this section. We desire that, for every
1 < 𝑖 < 𝑘, the distance between the zero of order 𝑑𝑖 and 𝑑𝑗 , for 𝑗 > 𝑖 be non-zero, and smaller
than the distance between the zero of order 𝑑𝑖 and 𝑑𝑖−1. This also ensures that no two zeros have
the same developed image. In addition, if the developed image of the 𝑛𝑡ℎ zero is assumed to be
𝑧𝑛 ∈ ℂ, we can ensure that |𝑧𝑛| > |𝑧𝑛−1|.
It is sufficient to enforce that the distance between the zeros of order 𝑑𝑗 and 𝑑𝑗+1 should be

smaller than a third of the distance between the distance between the zeros of order 𝑑𝑗−1 and 𝑑𝑗 .
This is easy to do when splitting the zero of order. 𝑑2 in (𝑌1, 𝜂1) to obtain (𝑍1, 𝜉1). If the saddle
connection between the two zeros (the line segment 𝑃𝑄) has length 𝐿, then the points in (𝑌1, 𝜂1)
at a distance of less than 2𝐿

3
from 𝑄 give us a neighbourhood of 𝑄 of the form required in Sub-

section 3.3. We can then ensure that the first split of the zero at 𝑄 gives us two zeros separated
by less than 𝐿

3
. Since we have freedom to choose both the length and the direction of the sad-

dle connection separating these two zeros, we can even make sure that this saddle connection
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F IGURE 14 Specifying the location of the zeros. Here, the zero at 𝑄 is split into two zeros at 𝑄1 and 𝑄2. The
zero at 𝑄2 is split further and the resulting zeros are in the neighbourhood shown

is along a direction different from 𝑃𝑄. For the next split, we look at a 2𝐿
9
neighbourhood of

the zero, and so on. An illustrative example is given in Figure 14. Such splitting automatically
ensures that a slit made for the construction of (𝑌2, 𝜂2) has length of the form

𝐿
3𝑚 . We see that

points at a distance less than 2𝐿
3𝑚+1 from the last zero of (𝑌2, 𝜂2) still give us a neighbourhood of

the form specified in Subsection 3.3, and we can continue splitting zeros separated by lengths
𝐿

3𝑚+1 ,
𝐿

3𝑚+2 , ….

9 TRIVIAL HOLONOMY II: POSITIVE GENUS SURFACES

This section is devoted to prove Theorem B for surfaces of positive genus, which is handled by the
following statement.

Proposition 9.1. Given 𝑛 integers {𝑝1, … , 𝑝𝑛} with each 𝑝𝑖 ⩾ 2 and 𝑘 ⩾ 2 positive integers
{𝑑1, … , 𝑑𝑘} in non-increasing order, and a non-negative integer g satisfying the following condi-
tions:

(1) 𝑑𝑗 ⩽
∑𝑛

𝑖=1 𝑝𝑖 − 𝑛 − 1 for 1 ⩽ 𝑗 ⩽ 𝑘, and
(2)

∑𝑘
𝑗=1 𝑑𝑗 =

∑𝑛
𝑖=1 𝑝𝑖 + 2g − 2,

there exists ameromorphic abelian differential on 𝑆g ,𝑛 with poles of order𝑝1, 𝑝2, … , 𝑝𝑛 at the𝑛 punc-
tures, zeros of orders 𝑑1, 𝑑2, … , 𝑑𝑘 , and trivial holonomy.

Note that 𝑘 ⩾ 2 is an essential assumption because of Proposition 8.1. We shall continue to call
the two conditions (1) and (2) in the statement of the Proposition, as the order condition and degree
condition, respectively.
The strategy of the proof is to first perform a series of g reductions (described below) on the set

{𝑑1, … , 𝑑𝑘} to obtain another non-increasing sequence {𝑑1, … , 𝑑𝑙−2, 𝑑
′
𝑙−1

, 𝑑′
𝑙
} where 2 ⩽ 𝑙 ⩽ 𝑘 that

satisfies the conditions of Proposition 8.2 of the g = 0 case in the previous section. We therefore
obtain a meromorphic differential on the sphere with zeros of orders {𝑑1, … , 𝑑′

𝑙−1
, 𝑑′

𝑙
} and poles
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of orders {𝑝1, … , 𝑝𝑛}; denote this translation structure by (𝑊0, 𝜏0). We then add g handles, one
by one, to obtain a sequence of translation surfaces (𝑊𝑖, 𝜏𝑖) for 1 ⩽ 𝑖 ⩽ g . At each step, the set of
orders of the zeros changes by undoing each reduction step, and the final (𝑊g , 𝜏g ) is our desired
translation surface.

9.1 Reduction procedure and a motivating example

Before we describe a motivating example for the strategy we just outlined, we explain the reduc-
tion procedure mentioned in the strategy above. Each step of this process consists of applying one
of the following moves which we are going to describe.
Given a set of positive integers {𝑒1, … , 𝑒𝑙} indexed in non-increasing order with 𝑙 ⩾ 2,

∙ if the last two integers are both greater than 1, we reduce it to {𝑒1, … , 𝑒𝑙−2, 𝑒𝑙−1 − 1, 𝑒𝑙 − 1},
∙ if the last integer is 1, we reduce it to {𝑒1, … , 𝑒𝑙−2, 𝑒𝑙−1 − 1}. This is the same as the previous case
with 𝑒𝑙 − 1 not being included because it is 0,

∙ if the last two integers are 1, we reduce it to {𝑒1, … , 𝑒𝑙−2}.

We note that each reduction step only makes the last two integers of the resulting sequence
different, smaller in particular, from the original sequence, if at all. This explains the form
{𝑑1, … , 𝑑𝑙−2, 𝑑

′
𝑙−1

, 𝑑′
𝑙
}. Each step of the process also maintains the non-increasing order of the

integers.
Moreover, each reduction decreases the sum of the set of integers by 2 and, after performing g

reductions, we can find a set of integers {𝑑1, … , 𝑑𝑙−2, 𝑑
′
𝑙−1

, 𝑑′
𝑙
} that satisfies the degree condition

for the sphere (g = 0).
Before proceeding, we verify that g reductions can be performed. Indeed, there are two possible

obstructions to apply the reduction process g times, which we eliminate.

(i) We could end up with the empty set after ℎ < g reductions. However, if this happens, then it
would mean that

𝑘∑
𝑗=1

𝑑𝑗 = 2ℎ

and this contradicts condition 2 of Proposition 9.1.
(ii) We could end up with {𝑒}, for some 𝑒 ⩾ 1, after ℎ < g reductions. However, if this happens,

we would have

𝑒 + 2ℎ =
𝑘∑

𝑗=1

𝑑𝑗 =
𝑛∑

𝑖=1

𝑝𝑖 + 2g − 2.

Using the order condition, we then obtain

𝑛∑
𝑖=1

𝑝𝑖 + 2(g − ℎ) − 2 ⩽

𝑛∑
𝑖=1

𝑝𝑖 − 𝑛 − 1,

or 0 < 2(g − ℎ) ⩽ −𝑛 + 1 ⩽ 0, which gives us the desired contradiction.
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Thus, applying the reduction process g times on the set {𝑑1, … , 𝑑𝑘} is always possible. Finally, we
need to check that the set of integers {𝑑1, … , 𝑑′

𝑙−1
, 𝑑′

𝑙
} satisfies the conditions in Proposition 9.1 for

g = 0. The order condition is automatically satisfied and the degree condition holds by design.
Suppose 𝑙 = 2 with 𝑑′

𝑙
= 0. We then have

𝑑′
1 + 2g =

𝑘∑
𝑗=1

𝑑𝑗 =
𝑛∑

𝑖=1

𝑝𝑖 + 2g − 2, or 𝑑′
1 =

𝑛∑
𝑖=1

𝑝𝑖 − 2.

But the order condition implies

𝑑′
1 ⩽

𝑛∑
𝑖=1

𝑝𝑖 − 𝑛 − 1,

which means 𝑛 ⩽ 1. Thus, condition 1 of the Proposition holds as well and we have a translation
surface (𝑊0, 𝜏0) as required. Let {𝑑1, … , 𝑑𝑙−2, 𝑑

′
𝑙−1

, 𝑑′
𝑙
} denote the set obtained after performing g

reductions on {𝑑1, … , 𝑑𝑘}.
At this point, it is useful to consider an example as done in the previous section.

Example 9.2. Let g = 3, 𝑝1 = 4, 𝑝2 = 5, 𝑑1 = 5, 𝑑2 = 4, 𝑑3 = 3, 𝑑4 = 1. Then, the reduction pro-
ceeds as follows:

{5, 4, 3, 1} → {5, 4, 2} → {5, 3, 1} → {5, 2}. (9.1)

Following Proposition 8.2, we obtain (𝑊0, 𝜏0)with poles of order 4 and 5 and zeros of order 5 and
2 at points (say) 𝑄 and 𝑅, respectively. Let 𝑅′

1 be a point different from 𝑅 such that 𝑄𝑅 and 𝑄𝑅′
1

have the same developed image. Such a point exists because we have 6 rays emanating from𝑄 that
have the same developed image as the ray from 𝑄 in the direction of 𝑅 and at most 2 such rays
can have the point 𝑅 at a distance |𝑄𝑅| from 𝑄. We now choose points 𝑆′

1 and 𝑆 sufficiently near
𝑅′

1 and 𝑅, respectively, (ensuring that the requirements of 8.3.4 hold) such that 𝑅𝑆 and 𝑅′
1𝑆

′
1 have

the same developed image. Making slits along 𝑅𝑆 and 𝑅′
1𝑆

′
1 as shown in Figure 15 and identifying

appropriately adds a handle to (𝑊0, 𝜏0) and gives us (𝑊1, 𝜏1)with zeros of order 5, 3 and 1 at points
𝑄, 𝑅 and 𝑆, respectively.
Now let 𝑅′

2 be a point different from 𝑅 and 𝑅′
1 (which are now identified) such that𝑄𝑅 and𝑄𝑅′

2
have the same developed image. Such a point lies in one of the remaining 4 grey rays in Figure 15.
Picking 𝑆′

2 similarly and proceeding as before gives us (𝑊2, 𝜏2) of genus 2 with zeros of order 5,
4 and 2 at points𝑄, 𝑅 and 𝑆, respectively. For the next step, we look at 𝑆′

3 different from 𝑆 (and the
points identified with 𝑆) near 𝑅 such that 𝑅𝑆 and 𝑅𝑆′

3 have the same developed image. As before,
the orders of the zeros at 𝑅 and 𝑆 tell us that such an 𝑆′

3 exists. Considering points 𝑇 and 𝑇′
3 near 𝑆

and 𝑆′
3, respectively, and proceeding as before gives us the final translation surface (𝑊3, 𝜏3) with

poles of order 4 and 5 and zeros of order 5, 4, 3 and 1.

The rest of the proof is a generalisation of the procedure carried out in Example 9.2.

9.2 Proof of Proposition 9.1

As in the previous section, our proof is divided into steps, each corresponding to a subsection.
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F IGURE 15 Construction of (𝑊1, 𝜏1) in example 9.2. The grey rays 𝑟𝑖 have the same developed image as 𝑄𝑅

and the slits 𝑅𝑆 and 𝑅′
1𝑆

′
1 have the same developed image

9.2.1 Finding suitable points for handle construction

In this section, we single out suitable points in (𝑊𝑖, 𝜏𝑖) that we shall use for performing a handle
construction and obtain a new translation surface (𝑊𝑖+1, 𝜏𝑖+1). The existence of such points will
be expressed in terms of two properties we are going to introduce below. We assume that the
orders of the zeros of (𝑊𝑖, 𝜏𝑖) are {… , 𝑎, 𝑏, 𝑐} and denote the last three zeros of (𝑊𝑖, 𝜏𝑖) by 𝑃, 𝑄 and
𝑅 respectively. In case of (𝑊0, 𝜏0), the point 𝑃 denotes the zero of order 𝑑𝑙−2, the point 𝑄 denotes
the zero of order 𝑑′

𝑙−1
and finally 𝑅 denotes the zero of order 𝑑′

𝑙
. The point 𝑃 need not always exist,

if there are only two zeros in (𝑊𝑖, 𝜏𝑖), we only look at 𝑄 and 𝑅.

Properties 9.3. Let us consider the following properties.

(1) When 𝑏 − 𝑐 > 0, there exist 𝑏 − 𝑐many regular points 𝑅′
1, … , 𝑅′

(𝑏−𝑐)
different from 𝑅 such that

𝑄𝑅′
𝑖
is a geodesic line segment having the same developed image as 𝑄𝑅.

(2) When 𝑎 − 𝑏 > 0, there exist 𝑎 − 𝑏 many regular points 𝑄1,… , 𝑄(𝑎−𝑏) different from 𝑄 such
that 𝑃𝑄𝑖 is a geodesic line segment with the same developed image as 𝑃𝑄, and near each 𝑄𝑖

there exists a point 𝑅𝑖 such that 𝑄𝑖𝑅𝑖 is a geodesic line segment with same developed image
as 𝑄𝑅.

In the sequel, we shall refer to these properties simply as properties 1 and 2. We shall proceed
as follows. We begin with by showing that the properties just mentioned above hold for (𝑊0, 𝜏0).
We then move on to describe how to attach a handle when the properties hold. Finally, we show
that whenever Properties 9.3 hold for (𝑊𝑖, 𝜏𝑖), then they also hold for (𝑊𝑖+1, 𝜏𝑖+1).
It is sufficient to show the existence of functions 𝑅′

𝑖
,𝑄𝑖 and 𝑅𝑖 that have the required developing

image. The fact that these points are regular follows from the positioning of the zeros enforced
in Subsection 8.3.4. Moreover, except for the point 𝑃 or 𝑄, no other point in the geodesic line
segments in the subsequent arguments shall be singular points.
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F IGURE 16 In this case the points 𝑃 and 𝑄, each of order 2, are obtained after splitting a zero of order 4, the
points 𝑄𝑖 are as shown above

9.2.2 Properties 9.3 hold for (𝑊0, 𝜏0)

This follows from the following lemma.

Lemma 9.4. Property (1) of 9.3 holds for (𝑊0, 𝜏0).

Proof. It suffices to show that whenever 𝑑′
𝑙−1

− 𝑑′
𝑙
> 0, there exist 𝑑′

𝑙−1
− 𝑑′

𝑙
many points

𝑅′
1, … , 𝑅′

(𝑑′
𝑙−1

−𝑑′
𝑙
)
different from 𝑅 such that 𝑄𝑅′

𝑖
is a geodesic segment with the same developed

image as the geodesic segment𝑄𝑅. To see this, we look at the 𝑑′
𝑙−1

+ 1many rays emanating from
𝑄 in the direction of𝑄𝑅. At most 𝑑′

𝑙
+ 1many of these rays can have the point 𝑅 at a distance |𝑄𝑅|

from 𝑄. We then choose the points 𝑅′
𝑖
at a distance of |𝑄𝑅| from 𝑄 in the remaining 𝑑′

𝑙−1
− 𝑑′

𝑙
rays. □

Lemma 9.5. Property (2) of 9.3 holds for (𝑊0, 𝜏0).

Proof. We need to show that when 𝑑𝑙−2 − 𝑑′
𝑙−1

> 0, there exist 𝑑𝑙−2 − 𝑑′
𝑙−1

many points
𝑄1,… , 𝑄(𝑑𝑙−2−𝑑′

𝑙−1
) such that 𝑃 𝑄𝑖 is a geodesic line segment with the same developed image as

𝑃 𝑄, and near each 𝑄𝑖 there exists a point 𝑅𝑖 such that 𝑄𝑖 𝑅𝑖 has the same developed image as
𝑄𝑅. As before we can find the points 𝑄𝑖 on the 𝑑′

𝑙−2
− 𝑑′

𝑙−1
rays emanating from 𝑃 along 𝑃𝑄 that

do not lead to 𝑄. Since we have positioned zeros according to the conditions mentioned in Sub-
section 8.3.4, the functions 𝑄𝑖 are regular points that have neighbourhoods isomorphic to discs of
radius bigger than |𝑄𝑅|. In these neighbourhoods, we find the points𝑅𝑖 . For example, when 𝑃 and
𝑄 each having order 2 are obtained after splitting a zero of order 4, the points 𝑄𝑖 are as given in
Figure 16. Here, 𝑅 is located inside the grey neighbourhood, and we obtain 𝑅𝑖 in the other shaded
neighbourhoods of 𝑄𝑖 . □

9.2.3 Adding the first handle

We wish to add a handle to the surface (𝑊0, 𝜏0), and get (𝑊1, 𝜏1) such that the zeros of the dif-
ferential 𝜏1 are the ones that we had just before the last reduction step. For instance, if the set of
orders {𝑑1, … , 𝑑′

𝑙−1
, 𝑑′

𝑙
}was obtained from {𝑑1, … , 𝑑′

𝑙−1
, 𝑑′

𝑙
, 1, 1}, then we want the differential 𝜏1 to

have zeros of orders {𝑑1, … , 𝑑′
𝑙−1

, 𝑑′
𝑙
, 1, 1} with the orders of the poles remaining unchanged. We

look at this process case by case.
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Case 1: {𝑑1, … , 𝑑′
𝑙−1

, 𝑑′
𝑙
} is empty. This can happen only when the following condition holds:

𝑘∑
𝑗=1

𝑑𝑗 = 2g .

This, along with the degree condition implies that 𝑛 = 1 and 𝑝1 = 2. But then, the order con-
dition would imply that 𝑑𝑗 = 0 for all 𝑗. This leads to a contradiction and so we conclude that
{𝑑1, … , 𝑑′

𝑙−1
, 𝑑′

𝑙
} can never be empty.

Case 2: 𝑑′
𝑙
= 0 in {𝑑1, … , 𝑑′

𝑙−1
, 𝑑′

𝑙
} and 𝑙 = 2. We can note that {𝑑′

1} can only be obtained after a
reduction from {𝑑′

1 + 1, 1} or {𝑑1, 1, 1}, and in the latter case, 𝑑′
1 = 𝑑1. We first rule out the former

case. Recall that Proposition 8.1 states that when (𝑊0, 𝜏0) has only one zero then there is only one
pole of order 𝑝1 and 𝑑′

1 = 𝑝1 − 2. On the other hand, the order condition implies that 𝑑′
1 + 1 ⩽

𝑝1 − 1 − 1 and this leads to a contradiction. Thus, 𝜏0 has to be the meromorphic differential on
the sphere with a single zero of order 𝑑1 = 𝑝1 − 2 and a single pole of order 𝑝1 is the one given by
𝑧(𝑝1−2)𝑑𝑧 onℂ = ℂℙ1∖{∞}.We use the singular point for attaching a handlewith trivial holonomy
by using the construction introduced in Subsection 5.1.1. Once the handle is attached, we obtain a
structure such that the resulting differential has two additional zeros near the zero of order 𝑑1. We
nowhave ameromorphic differential on the toruswith three zeros of orders {𝑑1, 1, 1}, respectively,
and a single pole of order 𝑝1. It is easy to check that the positions of the new zeros can be made
to satisfy the requirements of Subsection 8.3.4.
Case 3: 𝑑′

𝑙
≠ 0 in {𝑑1, … , 𝑑′

𝑙−1
, 𝑑′

𝑙
} and 𝑙 ⩾ 2. When 𝑑′

𝑙
≠ 0 we shall consider in turn different

sub-cases.

(1) If {𝑑1, … , 𝑑′
𝑙−1

, 𝑑′
𝑙
} is obtained by reduction from {𝑑1, … , 𝑑′

𝑙−1
, 𝑑′

𝑙
, 1, 1}, we shall employ the con-

struction as described in the previous case.
(2) If {𝑑1, … , 𝑑′

𝑙−1
, 𝑑′

𝑙
} is obtained by reduction from {𝑑1, … , 𝑑′

𝑙−1
, 𝑑′

𝑙
+ 1, 1}, 𝑑′

𝑙−1
> 𝑑′

𝑙
. We pick a

point 𝑅′
1 as in Subsection 9.2.1. Let 𝑆

′
1 and 𝑆 be points near 𝑅′

1 and 𝑅, respectively, such that
𝑅′

1𝑆
′
1 and𝑅𝑆 have the same developed image.Wemake slits across𝑅′

1𝑆
′
1 and𝑅𝑆 and glue them

to get the handle. Once again, we check that the choice of 𝑆 and 𝑆′
1 can be made to satisfy the

requirements of Subsection 8.3.4.
(3) If {𝑑1, … , 𝑑′

𝑙−1
, 𝑑′

𝑙
} is obtained by reduction from {𝑑1, … , 𝑑′

𝑙−1
+ 1, 𝑑′

𝑙
+ 1} and 𝑙 > 2, that means

that 𝑑𝑙−2 > 𝑑′
𝑙−1
, we pick a points 𝑄1 and 𝑅1 as in Subsection 9.2.1. We make slits across 𝑄1𝑅1

and 𝑄𝑅 and glue them to get the handle.
(4) If {𝑑′

1, 𝑑
′
2} is obtained by reduction from {𝑑′

1 + 1, 𝑑′
2 + 1}, then it means that 𝑑1 ⩾ 𝑑′

1 + 1 and
𝑑2 ⩾ 𝑑′

2 + 1. Using the order condition, we obtain

𝑑′
1 ⩽

𝑛∑
𝑖=1

𝑝𝑖 − 𝑛 − 2,

which in turn implies 𝑑′
2 ⩾ 𝑛. Reversing the indices, we also have 𝑑′

1 ⩾ 𝑛. This tells us that,
in the slits 𝑃𝑖𝑄𝑖 in the construction (𝑊0, 𝜏0) in Section 8 (see, for example, Figure 12), there is
at least one singular point among the functions 𝑃𝑖 and at least one singular point among
the functions 𝑄𝑖 (If we have regular points at both the ends of the slits, then a slit con-
struction involving 𝑛 slits produces zeros of order 𝑛 − 1 at the identified ends of the slits).
If 𝑃𝑖1

is a singular point, we can find 𝑄𝑖1
such that 𝑃𝑖1

𝑄𝑖1
and 𝑃𝑖1

𝑄𝑖1
have the same devel-

oped image. Similarly, if 𝑄𝑖2
is a singular point, we can find 𝑃𝑖2

such that 𝑄𝑖2
𝑃𝑖2

and 𝑄𝑖2
𝑃𝑖2
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F IGURE 17 Illustration for (4) of Case 3. All the rays in grey have the same developed image

have the same developed image. A picture of this situation can be seen in Figure 17. If no
slits were made for the construction of (𝑊0, 𝜏0), then the two zeros of this structure were
obtained by splitting, in which case the geodesic line segments described in Subsection 3.3
with the same developed image as the saddle connection joining the zeros gives the required
𝑄𝑖1

and 𝑃𝑖2
. In the sequential slit construction involved in obtaining (𝑊0, 𝜏0), the points 𝑃𝑖1

gets identified to the point 𝑃 and the points 𝑄𝑖2
gets identified to the point 𝑄. We make

slits across 𝑃𝑄𝑖1
and 𝑄𝑃𝑖2

and glue them appropriately. Since both slits are made on the
same surface, gluing them has the effect of adding a handle. Also since both ends of the
slits are identified to an existing zero, this does not introduce any additional zeros. Instead,
the effect of slit construction is to increase the orders of the zeros at the ends of the slits
by 1.

9.2.4 Adding subsequent handles

To get (𝑊2, 𝜏2) from (𝑊1, 𝜏1), we need to add a handle to (𝑊1, 𝜏1) such that the zeros of the result-
ing differential are the zeros obtained by undoing the reduction step that gave us the zeros of
(𝑊1, 𝜏1). We shall use the same idea to get (𝑊𝑖+1, 𝜏𝑖+1) from (𝑊𝑖, 𝜏𝑖) for any 2 ⩽ 𝑖 ⩽ g . We first get
to a point where (𝑊𝑖+1, 𝜏𝑖+1) has at least three zeros. We then show that obtaining (𝑊𝑖+1, 𝜏𝑖+1)
from (𝑊𝑖, 𝜏𝑖) is possible when (𝑊𝑖, 𝜏𝑖) satisfies two properties mentioned in Subsection 9.2.1.
Finally, we show that if (𝑊𝑖, 𝜏𝑖) satisfies two properties mentioned in Subsection 9.2.1, then so
does (𝑊𝑖+1, 𝜏𝑖+1). This will enable us to get to (𝑊g , 𝜏g ) from (𝑊1, 𝜏1). This is required only when
g ⩾ 2, for g = 1 the previous section suffices. We distinguish two cases according to the number
of zeros of (𝑊𝑖+1, 𝜏𝑖+1).
Case A:When (𝑊𝑖+1, 𝜏𝑖+1) has exactly two zeros.We first note that (𝑊1, 𝜏1) has at least two

zeros and that (𝑊𝑖+1, 𝜏𝑖+1) can have exactly two zeros only when (𝑊𝑖, 𝜏𝑖) has exactly two zeros.
This means the structure (𝑊0, 𝜏0) we begin with has exactly two zeros of orders {𝑑′

1, 𝑑
′
2} which



524 CHENAKKOD et al.

necessarily satisfies the relation

𝑑′
1 + 𝑑′

2 =
𝑛∑

𝑖=1

𝑝𝑖 − 2.

Letℎ be the integer satisfying 1 ⩽ ℎ ⩽ g such that (𝑊𝑖, 𝜏𝑖)has zeros of orders {𝑑′
1 + 𝑖, 𝑑′

2 + 𝑖} for 1 ⩽

𝑖 ⩽ ℎ, and (𝑊ℎ+1, 𝜏ℎ+1) (if any) has zeros of orders {𝑑′
1 + ℎ, 𝑑′

2 + ℎ + 1, 1} or {𝑑′
1 + ℎ, 𝑑′

2 + ℎ, 1, 1}.
Thus, once (𝑊ℎ, 𝜏ℎ) is constructed and we have shown that it satisfies the two properties men-
tioned in Subsection 9.2.1, we can move to the next section. Since we want (𝑊ℎ, 𝜏ℎ) to have zeros
of orders {𝑑′

1 + ℎ, 𝑑′
2 + ℎ}, it means that 𝑑′

1 + ℎ ⩽ 𝑑1. The order condition then tells us that

𝑑′
1 + ℎ ⩽

𝑛∑
𝑖=1

𝑝𝑖 − 𝑛 − 1,

and since

𝑑′
1 + 𝑑′

2 =
𝑛∑

𝑖=1

𝑝𝑖 − 2,

we have 𝑑′
2 ⩾ 𝑛 − 1 + ℎ. Switching the indices, we derive the same lower bound for 𝑑′

1. Follow-
ing the notation of Subsection 8.2, we have seen that, in the construction of (𝑊0, 𝜏0), the 𝑛 slits
𝑃𝑖 𝑄𝑖 end up giving us 𝑛 saddle connections between the two zeros 𝑃 and 𝑄 of (𝑊0, 𝜏0). Since the
order of the zero at 𝑃 is greater than or equal to 𝑛 − 1 + ℎ, we have at least ℎ geodesic segments
{𝑃 𝑄𝑗}1⩽𝑗⩽ℎ that have the same developed image as 𝑃 𝑄. Similarly, we have at least ℎ geodesic seg-
ments {𝑃𝑗 𝑄}1⩽𝑗⩽ℎ, that have the same developed image as 𝑃 𝑄. Such {𝑃𝑄𝑗}1⩽𝑗⩽ℎ and {𝑃𝑗 𝑄}1⩽𝑗⩽ℎ

can be found even when the zeros of (𝑊0, 𝜏0) are obtained by splitting a zero instead of sequential
slit construction. In this case, 𝑛 = 1 and since we have zeros of order 𝑑′

1, 𝑑
′
2 ⩾ ℎ obtained be split-

ting a zero of order𝑑′
1 + 𝑑′

2, the geodesic line segments described in Subsection 3.3 are the required
{𝑃𝑄𝑗}1⩽𝑗⩽ℎ and {𝑃𝑗 𝑄}1⩽𝑗⩽ℎ. For each 1 ⩽ 𝑗 ⩽ ℎ, wemake slits across 𝑃 𝑄𝑗 and 𝑃𝑗 𝑄 and glue them.
This has the effect of adding ℎ handles. For each handle, one of the ends is 𝑃 and the other is 𝑄,
and each handle increases the degree of the zero at each end by 1. This gives us the required
(𝑊ℎ, 𝜏ℎ) with zeros of orders {𝑑′

1 + ℎ, 𝑑′
2 + ℎ}. The second property of Subsection 9.2.1 is trivially

true for (𝑊ℎ, 𝜏ℎ) since it has only two zeros. To check the first property,wenote that𝑑′
2 ⩾ 𝑛 − 1 + ℎ

implies 𝑑′
1 ⩾ 𝑛 − 1 + ℎ + (𝑑′

1 − 𝑑′
2). Thus, in addition to the 𝑄𝑗 of the previous paragraph, we can

find 𝑑′
1 − 𝑑′

2 many points, that we denote by 𝑄′′
𝑗
(for 1 ⩽ 𝑗 ⩽ 𝑑′

1 − 𝑑′
2) such that 𝑃𝑄′′

𝑗
has the same

developed image as 𝑃 𝑄. This shows that the first property is satisfied.
Case B: When (𝑊𝑖+1, 𝜏𝑖+1) has more than two zeros. We assume that the orders of the

zeros of (𝑊𝑖, 𝜏𝑖) are {… , 𝛼, 𝛽, 𝛾} and that (𝑊𝑖, 𝜏𝑖) satisfies the two properties mentioned in Sub-
section 9.2.1. Following the notation of Subsection 9.2.1, we denote the last three zeros of (𝑊𝑖, 𝜏𝑖)
by 𝑃,𝑄 and 𝑅 respectively. Recall that the points 𝑅′

𝑖
,𝑄𝑖 , and 𝑅𝑖 satisfy properties 1 and 2 of Subsec-

tion 9.2.1. If we want (𝑊𝑖+1, 𝜏𝑖+1) to have zeros of orders {… , 𝛼, 𝛽 + 1, 𝛾 + 1}, it can only happen
when 𝛼 > 𝛽 > 0. Making slits across𝑄1 𝑅1 and𝑄𝑅 and gluing, we obtain (𝑊𝑖+1, 𝜏𝑖+1). If we want
(𝑊𝑖+1, 𝜏𝑖+1) to have zeros of orders {… , 𝛼, 𝛽, 𝛾 + 1, 1}, it can only happen when 𝛽 > 𝛾. In this case,
we consider the point 𝑅′

1, and let 𝑆
′
1 and 𝑆 be points near 𝑅′

1 and 𝑅, respectively, such that 𝑅′
1𝑆

′
1

and 𝑅𝑆 have the same developed image. We make slits across 𝑅′
1𝑆

′
1 and 𝑅𝑆 and glue them to get

the handle. Finally, if we want (𝑊𝑖+1, 𝜏𝑖+1) to have zeros of orders {… , 𝛼, 𝛽, 𝛾, 1, 1}, we use the
singular point of order 𝛾 for attaching a handle with trivial holonomy by using the construction
introduced in Subsection 5.1.1.
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9.2.5 Verifying the two properties for (𝑊𝑖+1, 𝜏𝑖+1)

In this section, we show that if (𝑊𝑖, 𝜏𝑖) satisfies the two properties mentioned in Subsec-
tion 9.2.1, then they also hold for the structure (𝑊𝑖+1, 𝜏𝑖+1), obtained in the way described pre-
viously. As before, we assume that the orders of the zeros of (𝑊𝑖, 𝜏𝑖) are {… , 𝛼, 𝛽, 𝛾}. While
constructing (𝑊𝑖+1, 𝜏𝑖+1)which has zeros of orders {… , 𝛾, 1, 1}, the first property is vacuously true
for (𝑊𝑖+1, 𝜏𝑖+1) since the second to last zero does not have higher order than the last zero. For
the second property, we note that the two arcs 𝛿1 and 𝛿2 as in Subsection 5.1 were chosen out of
𝛾 + 1many choices of arcs that have the same developed image. This means that even after han-
dle construction, we can find arcs 𝛿3, … , 𝛿𝛾+1 that have the same developed image as 𝛿1 and 𝛿2.
The ends of the additional functions 𝛿𝑖 serve as the choice of functions 𝑄𝑖 and 𝑅𝑖 to satisfy the
second property.
Next, we look at the case when (𝑊𝑖+1, 𝜏𝑖+1) has zeros of orders {… , 𝛽, 𝛾 + 1, 1}. Since 𝑅 is a

zero of order 𝛾, there are 𝛾 many points 𝑆′
𝑖
such that 𝑅 𝑆′

𝑖
has the same developed image as 𝑅 𝑆.

Thus, the first property holds for (𝑊𝑖+1, 𝜏𝑖+1). To check the second property, we note that there
are 𝛽 − 𝛾 many 𝑅′

𝑖
for which 𝑄𝑅′

𝑖
and 𝑄𝑅 have the same developed image. Since 𝑅′

1 is used for
the handle construction, we have 𝛽 − 𝛾 − 1 many 𝑅′

𝑖
after the handle is constructed. For each of

these 𝛽 − 𝛾 − 1 many 𝑅′
𝑖
we have 𝑆′

𝑖
such that 𝑅′

𝑖
𝑆′
𝑖
has the same developed image as 𝑅′

1 𝑆′
1. This

means that the second property holds for (𝑊𝑖+1, 𝜏𝑖+1).
The case when (𝑊𝑖+1, 𝜏𝑖+1) has zeros of orders {… , 𝛼, 𝛽 + 1, 𝛾 + 1} only occurs when

(𝑊𝑖+1, 𝜏𝑖+1) has at least three zeros since we have separately dealt with the case where 𝑊𝑖+1 has
exactly two zeros. Here, 𝛼 > 𝛽 and we have 𝛼 − 𝛽 many 𝑄𝑖 and 𝑅𝑖 satisfying the second prop-
erty. For the handle construction, one pair of 𝑄𝑖 and 𝑅𝑖 is utilised, say, 𝑄1 and 𝑅′

1. The rest of the
points show us that the second property is satisfied for (𝑊𝑖+1, 𝜏𝑖+1). The 𝛽 − 𝛾 many points 𝑅′

𝑖
satisfying the first property for (𝑊𝑖, 𝜏𝑖) are not affected by this handle construction, and give us
(𝛽 + 1) − (𝛾 + 1)many points satisfying the first property for (𝑊𝑖+1, 𝜏𝑖+1).
This completes the inductive step and the proof of Proposition 9.1; we obtain a sequence

of translation surfaces (𝑊𝑖, 𝜏𝑖) for 1 ⩽ 𝑖 ⩽ g as described in the strategy of the proof at the
beginning of the section, and (𝑊g , 𝜏g ) is the desired translation surface. Together with Propo-
sition 8.2 (that handles the g = 0 case), this completes the proof of Theorem B as stated in the
introduction.

9.3 Further consequences of Theorem B

The techniques developed in the previous subsections can be used to prove a special case of the
Hurwitz Existence Problem. For the reader’s convenience, we briefly recall our notation. Let 𝑆
and Σ be two surfaces, let 𝑑 ⩾ 2 be a positive integer and consider a collection  of 𝑛 partitions
of 𝑑 denoted as 𝐵1, … , 𝐵𝑛 where 𝐵𝑖 = {𝑑𝑖𝑗}1⩽𝑗⩽𝑚𝑖

. The string  = (𝑆, Σ, 𝑑, 𝑛,) yields an abstract
branch datum whenever the equation

𝜒(𝑆) − 𝑛 = 𝑑 ⋅ (𝜒(Σ) − 𝑛) (9.2)

holds, where𝑛 is the sumof the lengths of the partitions𝐵𝑖. Recall that an abstract branch datum is
realisable if there exists a branched covering 𝑓 ∶ 𝑆 ⟶ Σ that realises. The following statement
holds.
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Corollary 9.6. Let = (𝑆g , 𝕊
2, 𝑑, 𝑛,) be an abstract branch datum such that

∙ 𝑛 = 2 − 2g + 𝑑 ⋅ (𝑛 − 2), which is nothing but Equation (9.2);
∙ 𝐵𝑖 ∋ 𝑑𝑖𝑗 = 1 whenever 𝑖 ≠ 1 and 𝑗 ≠ 1.

Then is realisable.

Proof. Webeginnoticing that since𝑛 > 0, when𝑛 = 1, wemust have g = 0,𝑑 = 1 and𝑛 = 1. Thus,
this case is degenerate and henceforth we assume 𝑛 ⩾ 2. Second, we note that if 𝑑𝑖𝑗 = 1 for all 𝑖
and 𝑗, then we must have 𝑑 = 1 and g = 0, which means the identity map gives us the result. We
may assume that for each 𝑖 there exists some 𝑗 for which 𝑑𝑖𝑗 ≠ 1. To see this, we reduce the given
datum (𝑆g , 𝕊

2, 𝑑, 𝑛,) to (𝑆g , 𝕊
2, 𝑑,𝑚,′) for𝑚 < 𝑛 by removing those 𝑖 for which 𝑑𝑖𝑗 = 1 for all

1 ⩽ 𝑗 ⩽ 𝑚𝑖 . If the branch datum (𝑆g , 𝕊
2, 𝑑,𝑚,′) is realisable, then (𝑆g , 𝕊

2, 𝑑, 𝑛,) is also realis-
able by adding the trivial branching data of some 𝑛 − 𝑚 regular points. From the branch datum
(𝑆g , 𝕊

2, 𝑑, 𝑛,), we define the following datum that shall satisfy the hypotheses of Theorem B:

∙ for 1 ⩽ 𝑗 ⩽ 𝑚1, define 𝑝𝑗 = 𝑑1𝑗 + 1,
∙ for 2 ⩽ 𝑖 ⩽ 𝑛, define 𝑑𝑖−1 = 𝑑𝑖1 − 1.

Note that since we are looking only at non-trivial partitions, and 𝑑𝑖𝑗 = 1when 𝑖 ⩾ 2, 𝑗 ≠ 1, 𝑑𝑖1 > 1
and so 𝑑𝑖1 − 1 > 0. We now verify that 𝑝1, … , 𝑝𝑚1

and 𝑑1, … , 𝑑𝑛−1 satisfy the requirements in the
hypotheses of Theorem B.

∙ First, since
∑𝑛−1

𝑖=1 𝑑𝑖 = (𝑛 − 1)𝑑 − (𝑛 − 𝑚1). Substituting 𝑛 = 2 − 2g + 𝑑 ⋅ (𝑛 − 2), we have

𝑛−1∑
𝑖=1

𝑑𝑖 = 𝑑 + 𝑚1 + 2g − 2 =
𝑚1∑
𝑗=1

𝑝𝑗 + 2g − 2

and the degree condition is satisfied.
∙ The requirement (i) that 𝑝𝑖 ⩾ 2 is clear from the definition.
∙ The requirement (ii) follows from the facts

∑𝑚1
𝑗=1

𝑝𝑗 − 𝑚1 − 1 = 𝑑 − 1 and 𝑑𝑖𝑗 ⩽ 𝑑.
∙ Finally, whenever g = 0 and 𝑛 = 2, we have𝑚1 = 𝑚2 = 1. This means that as soon as𝑚1 > 1,
we must have 𝑛 > 2, namely (𝑛 − 1) > 1, which is requirement (iii).

We now use Theorem B to obtain a meromorphic differential with trivial holonomy and con-
sider the extended developingmap of the corresponding translation structure. The branching data
at ∞ give us the partition 𝐵1. All other branch values are images of zeros of the differential and
the images of all the zeros are branch values. Going through the details of the construction of such
a differential with trivial holonomy in the preceding sections, we note that the developed images
of the zeros are all different (cf. Subsection 8.3.4). Thus, the branching data at all branch values
other than infinity are of the desired form 𝐵𝑖 for 𝑖 ⩾ 2. □

For similar results that provide sufficient criteria for the realisability of branch data, the reader
can consult [5, 22], and the references therein.

10 SPHERESWITH NON-TRIVIAL HOLONOMY

Let 𝜒𝑛 ∶ Γ0,𝑛 → ℂ be any non-trivial representation. Note that 𝑛 ⩾ 2 necessarily. This section is
devoted to prove the following refinement of Proposition 6.1.
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Proposition 10.1. Let 𝜒𝑛 ∶ Γ0,𝑛 → ℂ be a non-trivial representation. Let {𝑝1, 𝑝2, … , 𝑝𝑛} and
{𝑑1, 𝑑2, … , 𝑑𝑘} positive integers satisfying the following properties.

∙ Either
(i) Im(𝜒𝑛) is not contained in the ℝ-span of some 𝑐 ∈ ℂ,
(ii) Im(𝜒𝑛) is not contained in the ℚ-span of some 𝑐 ∈ ℂ,
(iii) at least one of 𝑝1, 𝑝2, … , 𝑝𝑛 is different from 1,

∙ 𝑝𝑖 ⩾ 2 whenever 𝜒𝑛(𝛾𝑖) = 0,
∙

∑𝑘
𝑗=1 𝑑𝑗 =

∑𝑛
𝑖=1 𝑝𝑖 − 2.

Then 𝜒𝑛 appears as the holonomy of a translation structure on 𝑆0,𝑛 determined by a meromorphic
differential on ℂℙ1 with zeros of orders 𝑑1, 𝑑2, … , 𝑑𝑘 and a pole of order 𝑝𝑖 at the puncture enclosed
by 𝛾𝑖 , for each 1 ⩽ 𝑖 ⩽ 𝑛.

Remark 10.2. The remaining case of ‘rational representations’ when Im(𝜒𝑛) is contained in the
ℚ-span of some 𝑐 ∈ ℂ, and 𝑝1, 𝑝2, … , 𝑝𝑛 are all 1, is discussed in Section 12; Theorem D provides
necessary and sufficient conditions in that case.

We shall need the following technical lemma.

Lemma 10.3. Let 𝑠1, … , 𝑠𝑛 and 𝑡1, … , 𝑡𝑚 be positive real numbers such that

∙
∑𝑛

𝑖=1 𝑠𝑖 =
∑𝑚

𝑗=1 𝑡𝑗 ,
∙ there exists a pair of numbers in {𝑠1, … , 𝑠𝑛, 𝑡1, … , 𝑡𝑚} with irrational ratio.

Then, there exists a reordering of functions 𝑠𝑖 and 𝑡𝑗 such that

𝑘∑
𝑖=1

𝑠𝑖 =
𝑙∑

𝑗=1

𝑡𝑗 (10.1)

holds only for 𝑘 = 𝑛 and 𝑙 = 𝑚.

For the sake of the exposition we shall postpone the proof of this lemma to Appendix B.

Proof of Proposition 10.1. Let 𝐽 ∶= {1 ⩽ 𝑖 ⩽ 𝑛 ∶ 𝜒𝑛(𝛾𝑖) ≠ 0}, and let |𝐽| = 𝑚. Note that 𝐽 is non
empty because 𝜒𝑛 is assumed to be non-trivial. Wemay assume, by reordering, that {1, 2, … ,𝑚} ∈
𝐽 and {𝑚 + 1,𝑚 + 2,… , 𝑛} ∉ 𝐽. We shall proceed case by case according to the items (𝑖) and (𝑖𝑖) in
the list of Proposition 10.1.
Case 1.We first assume that Im(𝜒𝑛) is not contained in the ℝ-span of some 𝑐 ∈ ℂ and proceed

along the lines of the proof of Proposition 6.1. We consider 𝜒𝑛(𝛾𝑖) for 𝑖 ∈ 𝐽 and construct the
polygon as in the proof of 6.1. The condition on the image implies that the polygon obtained in
this way is not degenerate. Proceeding with the construction, we obtain a translation structure on
the 𝑚−punctured sphere where the corresponding meromorphic differential has poles of order
1 at the punctures and a single zero of order 𝑚 − 2. After gluing 𝑝𝑖 − 1 many copies of 𝔼2 along
𝑟+
𝑖

= 𝑟−
𝑖
as described in Subsection 2.2 , we obtain a surface with 𝑚 poles {𝑃1, … , 𝑃𝑚} such that

each of the 𝑃𝑖 has order 𝑝𝑖 and holonomy given by 𝜒𝑛(𝛾𝑖) for every 𝑖 ∈ 𝐽. The resulting surface,
call it (𝑌, 𝜂), has a single zero of appropriate order determined by the degree condition. We then
add poles of order 𝑝𝑖 ⩾ 2 for 𝑖 ∉ 𝐽 by performing sequential slits construction. To (𝑌, 𝜂), we glue
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F IGURE 18 An example to illustrate the steps involved in the construction of the translation structure
when Im(𝜒𝑛) is not contained in the ℝ-span of some 𝑐 ∈ ℂ. The figure depicts an example where |𝐽| = 7. With the
only exception of 𝑝4 = 3, 𝑝𝑗 = 1 for all 𝑗 ∈ 𝐽. In the top right, two copies of 𝔼2 are attached to the surface
determined by the polygons and the infinite half strips by the identifications 𝑟+

4 ∼ 𝑟1
−, 𝑟1

+ ∼ 𝑟2
−, 𝑟2

+ ∼ 𝑟−
4 . In the

bottom right, we have the surfaces 𝑋𝑖 as described with the zeros being located at 𝑃𝑖 and the identifications
𝑙−𝑖 ∼ 𝑙+𝑖+1 except for one pair which are identified with the pair of segments along 𝑒2 as shown. The sides of the
half strips are glued as done for proving Proposition 6.1 unless otherwise mentioned

surfaces (𝑋𝑖, 𝜔𝑖) which are determined by the meromorphic differential 𝑧𝑝𝑖−2𝑑𝑧 on the Riemann
sphere ℂℙ1. The slit in (𝑌, 𝜂) is made across one of the sides of the polygon and the slit in (𝑋𝑖, 𝜔𝑖)
is made such that the zero of the differential is at one of the ends of the slit. Figure 18 depicts
an example where |𝐽| = 7. The resulting surface, say (𝑍, 𝜉), has a single zero of order 𝑝1 + ⋯ +
𝑝𝑛 − 2. We finally split this zero locally to get zeros of order 𝑑1, 𝑑2, … , 𝑑𝑘 and this completes the
construction.
Case 2. We now consider the case when Im(𝜒𝑛) is contained in the ℝ-span of some 𝑐 ∈ ℂ,

but there does not exist any 𝑐 such that Im(𝜒𝑛) is contained in the ℚ-span of 𝑐. For conve-
nience, we assume that 𝑐 is real. In this case, the polygon as described earlier is degener-
ate. As in the proof of Proposition 6.1, we assume that {𝜒𝑛(𝛾1), … , 𝜒𝑛(𝛾𝑘−1)} are positive and
{𝜒𝑛(𝛾𝑘), … , 𝜒𝑛(𝛾𝑚)} are negative. Define 𝑠𝑖 ∶= 𝜒𝑛(𝛾𝑖), for 1 ⩽ 𝑖 ⩽ 𝑘 − 1 and 𝑡𝑗 ∶= −𝜒𝑛(𝛾𝑚−𝑗+1),
for 1 ⩽ 𝑗 ⩽ 𝑚 + 1 − 𝑘. Then, 𝑠1, … , 𝑠𝑘−1 and 𝑡1, … , 𝑡𝑚+1−𝑘 satisfy the hypothesis of Lemma 10.3
and we reorder the indices of 𝛾1, … , 𝛾𝑚 such that the conclusion of Lemma 10.3 is satis-
fied for 𝑠1, … , 𝑠𝑘−1 and 𝑡1, … , 𝑡𝑚+1−𝑘. Having reordered the indices of 𝛾1, … , 𝛾𝑚, let {𝜁𝑖}1⩽𝑖⩽𝑚

be as in the proof of Proposition 6.1 with 𝜁1 = 0 and consider the infinite strip {𝑧 ∈ ℂ | 0 <
ℜ(𝑧) < 𝜁𝑘}. In this infinite strip, we make half infinite vertical slits pointing upwards at the
points 𝜁2, … , 𝜁𝑘−1 and half infinite vertical slits pointing downwards at the points 𝜁𝑘+1, … , 𝜁𝑚

as in Figure 19. Gluing 𝑟+
𝑖
and 𝑟−

𝑖
gives us the surface (𝑍, 𝜉) in which we split the zero as

in Case 1 to complete the construction. A crucial requirement that ensures that (𝑍, 𝜉) is a
surface, is that 𝜁𝜆 ≠ 𝜁𝜇 for 𝜆 ≠ 𝜇, and this is ensured by the conclusion of Lemma 10.3 (cf.
Figure 36). This is easy to see when 1 ⩽ 𝜆, 𝜇 ⩽ 𝑘 or 𝑘 ⩽ 𝜆, 𝜇 ⩽ 𝑚. For the remaining cases,
we may assume without loss of generality that 1 ⩽ 𝜆 ⩽ 𝑘 and 𝑘 + 1 ⩽ 𝜇 ⩽ 𝑚. Then, 𝜁𝜆 = 𝜁𝜇
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F IGURE 19 When Im(𝜒𝑛) is not contained in the ℚ-span of some 𝑐 ∈ ℂ

implies

𝜆−1∑
𝑖=1

𝜒𝑛(𝛾𝑖) =
𝜇−1∑
𝑗=1

𝜒𝑛(𝛾𝑗) (10.2)

= −

(
𝑚∑

𝑗=𝜇

𝜒𝑛(𝛾𝑗)

)
(10.3)

=
𝑚+1−𝜇∑

𝑗=1

−𝜒𝑛(𝛾𝑚+1−𝑗), (10.4)

which is not possible by our choice of ordering.
Case 3.We now assume Im(𝜒𝑛) is contained in the ℝ-span of some 𝑐 ∈ ℂ and not all the func-

tions 𝑝𝑖 are 1. In this case, the polygon obtained previously turns out degenerate. We may again
assume that 𝜃 = 0, that is, the degenerate polygon is along the real axis. The construction now
splits into two sub-cases.
The first sub-case occurs when |𝐽| = 𝑚 ≠ 𝑛. We may note that the condition about the order

of all poles not being 1 is automatically satisfied. Consider the half strips 𝑗 , as already done in
the proof of Proposition 6.1 in Section 6, with base 𝑒𝑗 and the infinite rays 𝑟+

𝑗
and 𝑟−

𝑗
pointing

upwards for all 𝑗 = 1,… , 𝑛 and pointing downwards for 𝑘 + 1 ⩽ 𝑗 ⩽ 𝑛. Additionally, we consider
the surfaces (𝑋𝑖, 𝜔𝑖), where 𝑋𝑖 = ℂℙ1 and 𝜔𝑖 = 𝑧𝑝𝑖−2𝑑𝑧 for every 𝑖 ∉ 𝐽, with slits made on them
along 𝜁1 𝜁𝑘, where 𝜁𝑖 are as defined in Section 6. As done in Section 6, we label the two sides of the
slit 𝑙+

𝑖
and 𝑙−

𝑖
. For 1 ⩽ 𝑗 ⩽ 𝑘, we identify 𝑒𝑗 with adjacent sub-segments of 𝑙−𝑛 . For 𝑘 + 1 ⩽ 𝑗 ⩽ 𝑛,

we identify 𝑒𝑗 with adjacent sub-segments of 𝑙+𝑚+1. For the other slits, we identify 𝑙−
𝑖
with 𝑙+

𝑖+1
for 𝑚 + 1 ⩽ 𝑖 ⩽ 𝑛 − 1. 𝑟+

𝑗
and 𝑟−

𝑗
are identified as before. In Figure 20, we see an example where|𝐽| = 5, with 𝑘 = 3.We nowhave a differential with poles of order𝑝𝑖 for 𝑖 ∉ 𝐽. For 𝑖 ∈ 𝐽, we need to

glue𝑝𝑖 − 1many copies of𝔼2 along 𝑟+
𝑖

= 𝑟−
𝑖
by cutting along infinite rays as done in Subsection 2.2.

The differential now has all poles with orders and residues as required and a single zero. Splitting
this zero locally completes the construction.



530 CHENAKKOD et al.

F IGURE 20 An example to illustrate the construction of the translation structure when Im(𝜒𝑛) lies along
the real axis and |𝐽| ≠ 𝑛. The zero of the differential in 𝑋𝑖 is located at 𝑃𝑖

The second sub-case occurs when |𝐽| = 𝑛. Here, we take a copy of 𝔼2 and make a slit along the
segment 𝜁1 𝜁𝑘. We label the two sides of the slit 𝑙+ and 𝑙− and attach half strips as before. Now,
suppose 𝑚 is an index such that 𝑝𝑚 ⩾ 2. Then the rays 𝑟+𝑚 and 𝑟−𝑚 are both pointing upwards or
both pointing downwards. Assume that they point upwards. We consider a ray 𝑟̃ in the upward
direction starting from some point on 𝑙+ which is not identified with an end point of some 𝑒𝑗 .
Figure 21 shows a possible location for 𝑟̃ when |𝐽| = 𝑛 = 5 and at least one of 𝑝1, 𝑝2 and 𝑝3 is
different from 1. After making a slit along 𝑟̃, we obtain two rays 𝑟̃+ and 𝑟̃−. We identify 𝑟+𝑚 with
𝑟̃− and 𝑟−𝑚 with 𝑟̃+. For all other indices 𝑗 except 𝑚, we identify 𝑟+

𝑗
with 𝑟−

𝑗
. The bases 𝑒𝑗 are

identified with the edges of the slit in an appropriate manner as before. We can perform a similar
construction even when 𝑟+𝑚 and 𝑟−𝑚 point downwards.
At this stage, we have a meromorphic differential with a single zero and the desired holonomy

around the punctures. However, all poles but one have order 1. To increase the order at the poles,
we now glue sufficientlymany copies of𝔼2 along 𝑟+

𝑗
= 𝑟−

𝑗
(along 𝑟+𝑚 = 𝑟̃− when 𝑗 = 𝑚) and denote

the resulting surface by (𝑍, 𝜉). We split the single zero of (𝑍, 𝜉) to get zeros of required orders and
finish the construction. □

Remark 10.4. In fact, the above construction alsoworkswhen Im(𝜒𝑛) = ℤ, and the prescribed inte-
ger holonomies around the punctures satisfy the combinatorial condition (10.1), where 𝑠1, 𝑠2, … , 𝑠𝑛
are the holonomies around the positive punctures, and 𝑡1, 𝑡2, … , 𝑡𝑚 are the absolute values of the
holonomies around the negative punctures. However, this is subsumed by the necessary and suf-
ficient criterion provided by Theorem D for the case of integral holonomy.
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F IGURE 2 1 An example to illustrate the construction of the translation structure when Im(𝜒𝑛) lies along
the real axis and |𝐽| = 𝑛

11 POSITIVE GENUS SURFACESWITH NON-TRIVIAL HOLONOMY

We now extend ourmain TheoremA for surfaces of positive genus. In particular, we shall provide
conditions for a non-trivial representation𝜒 to appear as the holonomyof some translation surface
with prescribed zeros and poles.

Theorem 11.1. Given a representation 𝜒 ∈ Hom(Γg ,𝑛, ℂ) and positive integers (𝑝1, 𝑝2, … , 𝑝𝑛) and
(𝑑1, 𝑑2, … 𝑑𝑘) satisfying the following requirements:

(1) one of the following holds:
(i) the 𝜒𝑛 determined by 𝜒 is trivial,
(ii) at least one of 𝑝1, 𝑝2, …𝑝𝑛 is different from 1,
(iii) Im(𝜒𝑛) is not contained in the ℚ-span of some 𝑐 ∈ ℂ,
(iv) Im(𝜒) is not contained in the ℚ-span of some 𝑐 ∈ ℂ;

(2) 𝑝𝑖 ⩾ 2 whenever 𝜒𝑛(𝛾𝑖) = 0; and
(3)

∑𝑘
𝑗=1 𝑑𝑗 =

∑𝑛
𝑖=1 𝑝𝑖 + 2g − 2;

then 𝜒 appears as the holonomy of a translation structure on 𝑆g ,𝑛 induced by a meromorphic differ-
ential on 𝑆g ,𝑛 with zeros of orders 𝑑1, 𝑑2, … , 𝑑𝑘 and a pole of order 𝑝𝑖 at the puncture enclosed by the
curve 𝛾𝑖 .

Before we prove the theorem, we discuss an important tool used at various times in the proof.

11.1 Action of the mapping class group

Let Mod(𝑆g ,𝑛) denote the mapping class group of 𝑆g ,𝑛. For every mapping class 𝜑 ∈ Mod(𝑆g ,𝑛),
we have an induced automorphism 𝜑∗ of Γg ,𝑛. For a representation 𝜒 induced by a holomorphic
differential, 𝜒◦𝜑∗ is the representation induced by the pullback of the differential via 𝜑. Thus, to
prove the theorem for a given 𝜒, it is sufficient to construct a holomorphic differential on 𝑆g ,𝑛 for
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F IGURE 22 Choosing a handle generator whose image under 𝜒 is non-zero

which the induced representation is 𝜒◦𝜑∗ for some 𝜑 ∈ Mod(𝑆g ,𝑛). We use this idea to show that
the image of every handle generator under 𝜒 can be assumed to be non-zero if 𝜒g is non-trivial.
This assumption will be crucial in the construction that follows.

Lemma 11.2. Let 𝜒 ∈ Hom(Γg ,𝑛, ℂ) be a representation such that the corresponding 𝜒g is not
trivial. Then, there exists 𝜑 ∈ Mod(𝑆g ,𝑛) such that 𝜒◦𝜑∗(𝛼𝑖) and 𝜒◦𝜑∗(𝛽𝑖) are non-zero for all
1 ⩽ 𝑖 ⩽ g .

Proof. We may assume that 𝜒(𝛼1) ≠ 0. If 𝑖 is such that 𝜒(𝛼𝑖) = 𝜒(𝛽𝑖) = 0, consider 𝜑 such that
𝜑∗(𝛼𝑖) = 𝛼𝑖 + 𝛼1, 𝜑∗(𝛽1) = 𝛽1 − 𝛽𝑛 and 𝜑∗ acts identically on all other handle generators. The
existence of such 𝜑 comes from the surjectivity of the map fromMod(𝑆g ) to Sp(2g , ℤ). Then 𝜒◦𝜑∗

equals 𝜒 on all handle generators except 𝛼𝑖 and 𝜒◦𝜑∗(𝛼𝑖) = 𝜒◦𝜑∗(𝛼1) ≠ 0. Thus, by composition
of such maps, we now have 𝜑 for which 𝜒◦𝜑∗(𝛼𝑖) ≠ 0 for all 1 ⩽ 𝑖 ⩽ g . Composing 𝜑 with Dehn
twists 𝜙 for which 𝜙∗(𝛽𝑖) = 𝛽𝑖 + 𝛼𝑖 , and denoting the resultingmap by 𝜑, we also have𝜒◦𝜑∗(𝛽𝑖) ≠
0 for all 1 ⩽ 𝑖 ⩽ g . □

Furthermore, we can also assume that 𝜒g is non-trivial if 𝜒𝑛 is non-trivial.

Lemma11.3. Let𝜒 ∈ Hom(Γg ,𝑛, ℂ) be a representation such that the corresponding𝜒𝑛 is not trivial.
Then, there exists 𝜑 ∈ Mod(𝑆g ,𝑛) such that (𝜒◦𝜑∗)g is non-trivial.

Proof. Assume 𝜒(𝛼𝑖) = 𝜒(𝛽𝑖) = 0 for all 1 ⩽ 𝑖 ⩽ g . Let 𝛾𝑖 be a small loop around a puncture such
that 𝜒(𝛾𝑖) ≠ 0. Then, we can find some handle generator 𝛼𝑗 such that we have two curves 𝛼𝑗 and
𝛼̃𝑗 satisfying [𝛼𝑗] − [𝛼̃𝑗] = [𝛾𝑖] in Γg ,𝑛 as shown in Figure 22. This tells us that 𝜒(𝛼̃𝑗) ≠ 0. Thus,
we can take 𝜑 to be an element of Mod(𝑆g ,𝑛) which takes 𝛼𝑗 to 𝛼̃𝑗 and leaves the other handle
generators constant. □

We shall also require the use of the following lemma in later sections.
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Lemma 11.4. Let 𝜒 ∈ Hom(Γg ,𝑛, ℂ) be a representation such that the corresponding Im(𝜒) ⊂ ℝ.
Let

𝐽 =

{
1 ⩽ 𝑖 ⩽ g | 𝜒(𝛼𝑖), 𝜒(𝛽𝑖) > 0 and

𝜒(𝛼𝑖)

𝜒(𝛽𝑖)
∉ ℚ

}
.

Then, there exists𝜑 ∈ Mod(𝑆g ,𝑛) such that𝜒◦𝜑∗(𝛼𝑖) and𝜒◦𝜑∗(𝛽𝑖) are arbitrarily small for all 𝑖 ∈ 𝐽.

Proof. Fix some 𝑖 ∈ 𝐽 and assume 𝜒(𝛼𝑖) > 𝜒(𝛽𝑖). Define 𝛼𝑖,0 ∶= 𝛼𝑖 , 𝛽𝑖,0 ∶= 𝛽𝑖 . For 𝑘 ⩾ 1, 𝛼𝑖,𝑘 and
𝛽𝑖,𝑘 are defined recursively as 𝛼𝑖,𝑘 ∶= 𝛼𝑖,𝑘−1 − 𝑛𝑘𝛽𝑖,𝑘−1 and 𝛽𝑖,𝑘 ∶= 𝛽𝑖,𝑘−1 − 𝑚𝑘𝛼𝑖,𝑘 for 𝑛𝑘,𝑚𝑘 ∈
ℕ satisfying 0 < 𝜒(𝛼𝑖,𝑘−1 − 𝑛𝑘𝛽𝑖,𝑘−1) < 𝜒(𝛽𝑖,𝑘−1) and 0 < 𝜒(𝛽𝑖,𝑘−1 − 𝑚𝑘𝛼𝑖,𝑘) < 𝜒(𝛼𝑖,𝑘). This is the
Euclidean algorithm and since the ratio 𝜒(𝛼𝑖)

𝜒(𝛽𝑖)
is irrational, 𝜒(𝛼𝑖,𝑘) and 𝜒(𝛽𝑖,𝑘) become arbitrarily

small as 𝑘 becomes large. This holds even when 𝜒(𝛼𝑖) < 𝜒(𝛽𝑖), after appropriate modifications.
Now, by a composition of Dehn twists, we can obtain 𝜑𝑖 ∈ Mod(𝑆g ,𝑛) for which (𝜑𝑖)∗ takes 𝛼𝑖 to
𝛼𝑖,𝑘, 𝛽𝑖 to 𝛽𝑖,𝑘 and acts trivially on other handle generators. Then, the required𝜑 is the composition
of such 𝜑𝑖 for all 𝑖 ∈ 𝐽. □

11.2 Proof of theorem

As usual, we shall prove Theorem 11.1 case by case according to the items (i)–(iv) of requirement
(1). It is easy to prove the necessity of the other requirements.

11.2.1 When the 𝜒𝑛 determined by 𝜒 is trivial

Since Im(𝜒) is not trivial, there is a handle generator whose holonomy is not zero. By Lemma 11.2,
we can assume that the holonomy of all handle generators is non-zero. We then pick one pair of
handle generators.
Consider the translation surface (ℂ, 𝑧𝑝1−2𝑑𝑧). Note that each 𝑝𝑖 > 1 by requirement (2) in the

hypotheses of the theorem. By cutting out a slit or parallelogram, we can add a handle to this
surface such that the holonomy of the handle generators is the desired holonomy. Moreover, by
ensuring that one of the vertices of the slit of the parallelogram is at the zero of the differential
𝑧𝑝1−2𝑑𝑧, the resulting surface, say (𝑌, 𝜂), can be made to have only one singular point. We now
consider, for 2 ⩽ 𝑖 ⩽ 𝑛, the translation surfaces (𝑋𝑖, 𝜔𝑖) induced by the holomorphic differential
𝑧𝑝𝑖−2𝑑𝑧 on ℂ, i.e (𝑋𝑖, 𝜔𝑖) = (ℂ, 𝑧𝑝𝑖−2𝑑𝑧). We glue them via a sequential slit construction to (𝑌, 𝜂),
as described in Subsection 3.2, by taking care that when 𝑝𝑖 > 2, the slits are made in such a way
that one of the ends of the slit is the zero of the differential 𝑧𝑝𝑖−2𝑑𝑧. This gives us differential on a
genus 1 surface with a single zero and 𝑛 poles of orders 𝑝1, 𝑝2, … , 𝑝𝑛, all having zero residues. Call
the resulting surface (𝑍, 𝜉). When g = 1, we split the zero of (𝑍, 𝜉) into zeros of required orders
and obtain the desired surface.
When g > 1, we need to add other handles. Wemay note that there is an embedded copy of the

first quadrant of 𝔼2 in (𝑍, 𝜉) such that the origin in this embedded copy is the singular point of
(𝑍, 𝜉). Of the remaining g − 1 handles, assume that𝑚 ⩽ g − 1handles have non-negative volume,
which means 𝑚 slits that have to be made for adding these handles. Label the ends of these slits
𝑃𝑖 and 𝑄𝑖 , for 1 ⩽ 𝑖 ⩽ 𝑚, such that 𝑃𝑖𝑄𝑖 makes an angle 𝜃𝑖 ∈ [0, 𝜋) with the positive real axis. For
the remaining g − 1 − 𝑚 handles, we need to cut out g − 1 − 𝑚 many parallelograms from (𝑍, 𝜉)
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F IGURE 2 3 Attaching handles to an embedded copy of 𝔼2. The edges of the slit determined by 𝑃1𝑄1 are
identified as in Subsection 5.1.2. A parallelogram is attached to the slit determined by 𝑃2𝑄2 as shown. The third
handle is obtained by identifying the opposite edges of a parallelogram (having diagonal 𝑃3𝑄3) cut-out

and identify their edges. For such parallelograms, we identify two special points. For 𝑚 + 1 ⩽

𝑖 ⩽ g − 1, we let 𝑃𝑖 be the bottommost point on the parallelogram. When the parallelogram has a
horizontal side,we let𝑃𝑖 be the bottom-most and leftmost point.𝑄𝑖 is the point diagonally opposite
to 𝑃𝑖 . We then position the slits and parallelograms, so that 𝑃1 is at the singular point of (𝑍, 𝜉) and
𝑃𝑖 = 𝑄𝑖−1 for 𝑖 ⩾ 2. An example can be seen in Figure 23 where we add one handle of each of the
volume types. Thus, after constructing handles we obtain a surface with the required holonomy
where the differential has a single zero. We split the zero as required to obtain the desired surface.

11.2.2 At least one of 𝑝1, 𝑝2, …𝑝𝑛 is different from 1

This is the simplest case to deal with. Now we assume that 𝜒𝑛 is not trivial and that at least one of
𝑝1, 𝑝2, …𝑝𝑛 is different from 1. By Lemmas 11.3 and 11.2, we can also assume that 𝜒(𝛼𝑖) and 𝜒(𝛽𝑖)
are non-zero for all 1 ⩽ 𝑖 ⩽ g . Following Section 10, we can obtain a translation surface (𝑍, 𝜉)
determined by a differential on the 𝑛 punctured sphere with the required holonomy around the
poles (located at the 𝑛 punctures) and only a single zero. Then, we add handles to (𝑍, 𝜉) such that
the resulting differential on the punctured genus g surface still has a single zero. Now, since (𝑍, 𝜉)
is obtained via the construction in Section 10when not all poles have order 1, there is an embedded
copy of the first quadrant of 𝔼2 such that the origin in this embedded copy is the singular point of
(𝑍, 𝜉). We can now add handles just as in the previous case when 𝜒𝑛 was trivial. This is followed
by splitting the zero to complete the construction.

11.2.3 When 𝐼𝑚(𝜒𝑛) is not contained in the 𝑄-span of some 𝑐 ∈ 𝐶

In this case, we assume that 𝜒𝑛 is not trivial and all of the functions 𝑝𝑖 are one, but Im(𝜒𝑛) is not
contained in the ℚ-span of some 𝑐 ∈ ℂ. This means that either

∙ Im(𝜒𝑛) is not contained in the ℝ-span of some 𝑐 ∈ ℂ, or
∙ Im(𝜒𝑛) is contained in the ℝ-span of some 𝑐 ∈ ℂ, but there does not exist any 𝑐 ∈ ℂ such that

Im(𝜒𝑛) is contained in the ℚ-span of 𝑐 ∈ ℂ.

We consider these two sub-cases separately.
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F IGURE 24 Changing the fundamental domain for the infinite half cylinder

Case 1.We first deal with the case where Im(𝜒𝑛) is not contained in the ℝ-span of some 𝑐 ∈ ℂ.
In this case, we can proceed as in Section 10 and obtain a differential on the 𝑛 punctured sphere
with the required properties. Here, we do not have an embedded copy of the first quadrant to work
with, but we canmodify the handles so that the parallelogram cut-out or the slit required for them
‘fits’ inside one of the infinite half cylinders determined by the half strip 𝑗 . In what follows, we
describe this in more detail.
We first deal with the slits. Since we are working in the case where all the 𝜒𝑛(𝛾𝑖) are not

collinear, we see that for a given slit, there exists 𝑒𝑗 which is not collinear with the slit. Then,
by looking at a different fundamental domain for the infinite half cylinder formed by identifying
the sides of the half strip with base 𝑒𝑗 , we see that this slit can be cut out in the infinite half cylin-
der determined by 𝑒𝑗 , as shown in Figure 24. In case multiple slits have to be cut out in the same
cylinder, we place them adjacent to each other as before.
For the parallelograms, we show that after a sequence of Dehn twists as in Subsection 11.1,

we can ensure that the parallelogram to be cut out stays inside a particular fundamental domain
for the half strips. Given a non-degenerate parallelogram and some 𝑒𝑗 , we can assume, after a
Dehn twist if necessary, that neither side of the parallelogram is collinear with 𝑒𝑗 . Assuming for
simplicity that 𝑒𝑗 = 1, we require that the horizontal translates of the parallelogram by 1 unit are
disjoint. If the sides are labelled 𝑎 and 𝑏 as shown in Figure 25, initially the translates need not be
disjoint. However, if we consider parallelogramswith sides 𝑎 and 𝑏 + 𝑛𝑎, for an integer 𝑛, then the
parallelograms are disjoint when the point 𝐵 is to the right of the side 𝑏 based at 𝐴. Algebraically,
this condition can be stated as

Im
(
(𝑏 + 𝑛𝑎)(−𝑎 + 1 + 𝑏 + 𝑛𝑎)

)
< 0 (11.1)

that is, Im
(
−𝑏̄𝑎 + 𝑏̄ + 𝑛𝑎̄

)
< 0, (11.2)

which is true for 𝑛 sufficiently large. Thus, we can place the slits and the parallelogram cut-outs
adjacent to each other and add the g handles in such a way that the resulting differential has only
one zero. Splitting the zero completes the construction.
Case 2.The remaining case is that of when Im(𝜒𝑛) is contained in theℝ-span of some 𝑐 ∈ ℂ, but

there does not exist any 𝑐 ∈ ℂ such that Im(𝜒𝑛) is contained in theℚ-span of 𝑐 ∈ ℂ. We can obtain
the differential on the 𝑛 punctured sphere with the required properties by using Proposition 10.1,
and add all handles for which the handle holonomy is not along 𝑐. Thus, we need to only look at
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F IGURE 2 5 For sufficiently large 𝑛, horizontal translates of the parallelogram formed by 𝑎 and 𝑏 + 𝑛𝑎 by 1
unit are disjoint. In this example, 𝑛 = 1. The dotted line depicts a new fundamental domain for the infinite half
cylinder with base 𝑒𝑗 from which a parallelogram with sides 𝑎 and 𝑏 + 𝑛𝑎 can be cut out

F IGURE 26 Constructing handles with arbitrarily small real valued handle holonomy on the surface
obtained from Proposition 10.1

the image of handle generators 𝛼𝑖, 𝛽𝑖 such that 𝜒(𝛼𝑖) = 𝜆𝑖𝑐 and 𝜒(𝛽𝑖) = 𝜇𝑖𝑐 for real valued 𝜆𝑖 and
𝜇𝑖 whichmay be assumed to be positive afterDehn twists. Now, if

𝜆
𝜇
is irrational, by Lemma 11.4we

may assume 𝜆 and 𝜇 to be arbitrarily small. Otherwise, we know that there exists 𝑖 such that𝜒𝑛(𝛾𝑖)
is not a rational multiple of 𝜆𝑐. Considering the handle generator 𝛼𝑖 as in the proof of Lemma 11.3
in place of𝛼𝑖 now gives us irrational ratio andwe canmake the handle holonomy arbitrarily small.
This allows us to construct these handles using arbitrarily small slits made adjacent to each other
with one end of the sequence of slits being a zero of the differential as shown in Figure 26.
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F IGURE 27 Choosing  in the proof of Proposition 6.1, so that adding handles to  collapses the two zeros
into one zero

11.2.4 When 𝐼𝑚(𝜒) is not contained in the 𝑄-span of some 𝑐 ∈ 𝐶

We now come to the last case where we assume that 𝜒𝑛 is not trivial, all of the functions 𝑝𝑖 are
one, and Im(𝜒𝑛) is contained in theℚ-span of some 𝑐 ∈ ℂ but Im(𝜒) is not contained in theℚ-span
of 𝑐. This means that either

∙ Im(𝜒g ) is not contained in the ℝ-span of 𝑐, or
∙ Im(𝜒g ) is contained in the ℝ-span of 𝑐, but not in the ℚ- span of 𝑐.

We consider these two sub-cases separately.
Case 1.We first consider the case when Im(𝜒𝑛) lies in the ℚ-span, and therefore the ℝ-span of

some 𝑐 ∈ ℂ, but Im(𝜒g ) does not lie in the ℝ-span of 𝑐. We may assume that Im(𝜒𝑛) lies along ℝ.
Then, following the second construction in the proof of Proposition 6.1, we obtain a translation
structure on the 𝑚-punctures sphere that has the required 𝜒𝑛, but with two singular points. We
shall now attach g handles to this surface, and in the process obtain only one singular point.
Note that we have the flexibility to choose the vertical side of the parallelogram  in the previous
construction. If at least one of the g handles has positive volume, then we can attach one such
handle by choosing the vertical side of the parallelogram, so that the required slit is made along
the diagonal of the parallelogram as shown in the bottom half of Figure 27 for adding a handle of
positive volume. After this construction, the resulting translation structure has only one singular
point. Otherwise, we have at least one handle with negative volume. Here too, we can ensure, by
Dehn twists as in the previous section, that the horizontal translates of the parallelogram formed
by the handle holonomy by 𝜁1 𝜁𝑘 are disjoint. Then we can choose  , so that opposite vertices of
the parallelogram to be cut out to coincide with opposite vertices of  as shown in the top half of
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Figure 27. After adding this handle, the resulting structure has only one singular point. We can
now attach the remaining g − 1 handles in one of the half strips as done previously and complete
the construction.
Case 2. In what remains, we deal with the case when Im(𝜒𝑛) lies in the ℚ-span of some 𝑐 ∈ ℂ,

and Im(𝜒g ) lies in the ℝ-span of 𝑐, but not in the ℚ-span of 𝑐. This means that for all handle gen-
erators, we have 𝜒(𝛼𝑗) = 𝜆𝑗𝑐 and 𝜒(𝛽𝑗) = 𝜇𝑗𝑐 for non-rational values 𝜆𝑗 and 𝜇𝑗 . In what follows,
we can assume without loss of generality, that 𝑐 = 1 and make use of the following lemma.

Lemma 11.5. Let 𝜒 ∈ Hom(Γg ,𝑛, ℂ) be a representation such that Im(𝜒𝑛) ⊂ ℚ, but Im(𝜒) ⊄ ℚ.
Then, there exists𝜑 ∈ Mod(𝑆g ,𝑛) such that𝜒◦𝜑∗(𝛼𝑖) and𝜒◦𝜑∗(𝛽𝑖) are positive and the ratio

𝜒◦𝜑∗(𝛼𝑖)

𝜒◦𝜑∗(𝛽𝑖)

is irrational for all 1 ⩽ 𝑖 ⩽ g . Further, we may assume that 𝜒◦𝜑∗(𝛼𝑖) and 𝜒◦𝜑∗(𝛽𝑖) are arbitrar-
ily small.

Proof. Since Im(𝜒) ⊄ ℚ, we have at least one handle generator whose image under 𝜒 is irrational.
Without loss of generality, we assume that 𝜒(𝛼1) is irrational. First, we show the existence of
𝜑 ∈ Mod(𝑆g ,𝑛) such that 𝜒◦𝜑∗(𝛼𝑖) and 𝜒◦𝜑∗(𝛽𝑖) are not both rational. To see this, let 𝑗 ⩾ 2 be
such that 𝜒(𝛼𝑗) and 𝜒(𝛽𝑗) are both rational. Let 𝜑𝑗 ∈ Mod(𝑆g ,𝑛) be such that

(𝜑𝑗)∗(𝛼𝑗) = 𝛼𝑗 + 𝛼1, (11.3)

(𝜑𝑗)∗(𝛽1) = 𝛽1 − 𝛽𝑗, (11.4)

(𝜑𝑗)∗(𝛾) = 𝛾 for 𝛾 ≠ {𝛼𝑗, 𝛽1}. (11.5)

Then the required 𝜑 is the composition of 𝜑𝑗 for all 𝑗 such that 𝜒(𝛼𝑗) and 𝜒(𝛽𝑗) are both rational.
By including Dehn twists in this composition, we may also assume that 𝜒◦𝜑∗(𝛼𝑖), 𝜒◦𝜑∗(𝛽𝑖) > 0
for 1 ⩽ 𝑖 ⩽ g .
Note that 𝜑 need not satisfy the requirements of the lemma since the ratio 𝜒◦𝜑∗(𝛼𝑖)

𝜒◦𝜑∗(𝛽𝑖)
may be

rational for some 𝑖 when 𝜒◦𝜑∗(𝛼𝑖) and 𝜒◦𝜑∗(𝛽𝑖) are both irrational. Composing 𝜑 with the dif-
feomorphisms that take 𝛼𝑖 to 𝛼𝑖 for all such 𝑖 as in the proof of Lemma 11.3 gives 𝜑 which makes
the ratios 𝜒◦𝜑∗(𝛼𝑖)

𝜒◦𝜑∗(𝛽𝑖)
irrational. Since Lemma 11.4 preserves the irrationality of the ratios 𝜒◦𝜑∗(𝛼𝑖)

𝜒◦𝜑∗(𝛽𝑖)
, we

may assume that 𝜒◦𝜑∗(𝛼𝑖) and 𝜒◦𝜑∗(𝛽𝑖) are arbitrarily small. □

As a consequence of Lemma 11.5, we may assume that, for 1 ⩽ 𝑗 ⩽ g , 𝜆𝑗 and 𝜇𝑗 are arbitrarily

small and positive such that the ratio
𝜆𝑗

𝜇𝑗
is irrational. Now let 𝑛 be such that max(𝜁𝑘−1, 𝜁𝑘+1) <

𝜆1 + (𝑛 + 1)𝜇1 < 𝜁𝑘.
Next, we consider the infinite strip {𝑧 ∈ ℂ | 0 < ℜ(𝑧) < 𝜁𝑘} as in the proof of 10.1 andmake a slit

along the horizontal segment joining 𝜁1 and 𝜁1 + 𝜆1 + (𝑛 + 1)𝜇1. Marking the points 𝜁2, … , 𝜁𝑘−1

on the top segment of the slit and the points 𝜁𝑘+1, … , 𝜁𝑚 on the bottom segment as shown in
Figure 28, we define 𝑟+

𝑗
and 𝑟−

𝑗
as before. By making further horizontal slits to the right of the slit

already made, and identifying the edges of the slits appropriately, along with the identification
of 𝑟+

𝑗
with 𝑟−

𝑗
, we obtain a translation surface whose holonomy at the first handle differs from

the required holonomy by 𝑛 Dehn twists. Reversing these twists gives us the required translation
surface after splitting the single zero into zeros of required orders.
This concludes the proof of Theorem 11.1.
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F IGURE 28 Marking the points 𝜁2, … , 𝜁𝑘−1 on the top segment and the points 𝜁𝑘+1, … , 𝜁𝑚 on the bottom
segment of the horizontal slit made across 𝜁1 and 𝜁 ∶= 𝜁1 + 𝜆1 + (𝑛 + 1)𝜇1 for the construction of the first
handle. Further handles, which may be assumed to have arbitrarily small handle holonomy, are constructed to
the right of 𝜁

12 THE CASE OF RATIONAL HOLONOMY

The remaining case is when all the poles are of order 1, and Im(𝜒) is contained in the ℚ-span of
some 𝑐 ∈ ℂ∗. As before, we shall state that a representation 𝜒 ∶ Γg ,𝑛 → ℂ is realisable if there is
a translation structure on 𝑆g ,𝑛 with holonomy 𝜒. If we can prescribe, in addition, the zeros of the
corresponding abelian differential and their orders, we shall state 𝜒 is realisable in a prescribed
stratum. Note that since the holonomy around a puncture equals the residue of the simple pole of
the corresponding abelian differential, no puncture is an apparent singularity. This necessitates
the additional assumption that 𝜒(𝛾) ≠ 0 for any 𝛾 that is a loop around a puncture.

12.1 Some reductions

We start by noting that it suffices to consider the case when the holonomy is integral.

Lemma 12.1. Let 𝜒 ∶ Γg ,𝑛 → ℂ be a non-trivial representation, such that Im(𝜒) is contained in
the ℚ-span of some 𝑐 ∈ ℂ∗. Then there is a surjective representation 𝜒 ∶ Γg ,𝑛 → ℤ such that 𝜒 is
realisable in a prescribed stratum if and only if 𝜒 is realisable in the same stratum.

Proof. Let Γg ,𝑛 = 𝐻1(𝑆g ,𝑛; ℤ) be generated by the handle generators 𝛼1, 𝛽1, 𝛼2, 𝛽2, … , 𝛼g , 𝛽g and
loops around all except 1 puncture, namely 𝛾1, 𝛾2, … , 𝛾𝑛−1. From our assumption, the 𝜒-images
of these generators are of the form 𝑞𝑖 ⋅ 𝑐 where 𝑞𝑖 ∈ ℚ for 1 ⩽ 𝑖 ⩽ 2g + 𝑛 − 1. Let 𝑁 be the least
common multiple of the denominators of the rational numbers {𝑞𝑖}.
If 𝜒 is realisable in a given stratum, then scale the corresponding abelian differential by the

constant 𝑁∕𝑐. The resulting translation structure will then have integral holonomy 𝜒 ∶ Γg ,𝑛 →
ℤ, where 𝜒(𝛾) = (𝑁∕𝑐) ⋅ 𝜒(𝛾) for any 𝛾 ∈ Γg ,𝑛. Conversely, suppose 𝜒 ∶ Γg ,𝑛 → ℤ is defined by
sending the above generators of Γg ,𝑛 to 𝑁 ⋅ 𝑞𝑖 . If 𝜒 is realisable, then scaling the corresponding
abelian differential on 𝑆g ,𝑛 by 𝑐∕𝑁 results in a translation structure with holonomy 𝜒. Note that
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such scaling preserves the numbers of zeros and poles, and do not change their orders. Hence, if
one of the representations is realisable in a prescribed stratum, so is the other.
We can further assume that the representation 𝜒 surjects on to the integers ℤ: any non-trivial

proper subgroup ofℤ is of the form 𝑑ℤ for some integer 𝑑 ⩾ 2, a further scaling by 𝑑would suffice
to obtain a surjection. □

We shall also need the following reduction. As before, given a representation 𝜒 ∶ Γg ,𝑛 → ℤ we
can define the restrictions 𝜒g ∶ Γg → ℤ and 𝜒𝑛 ∶ Γ0,𝑛 → ℤ.

Lemma 12.2. Let 𝜒 ∶ Γg ,𝑛 → ℤ be a surjective representation. Then there exists a choice of handle
generators {𝛼𝑖, 𝛽𝑖}1⩽𝑖⩽g such that 𝜒g (𝜂) = 1 for any handle generator 𝜂.

Proof. Since the holonomy around some (in fact, each) puncture is non-trivial, we can assume,
by changing the handle generators if need be, that the 𝜒g−image around some handle generator
is non-trivial. It follows, as in Subsection 11.1, that the 𝜒g−image of each handle generator is non-
trivial.
Let 𝑡 = (𝑡1, 𝑡2, … , 𝑡2g+𝑛−1) ∈ ℤ2g+𝑛−1 be the integer tuple that are the𝜒−images of a generating

set (that is, the union of the handle generators and the loops around all punctures except one.)
Since these images generateℤ, this tuple is a primitive integer vector inℤ2g+𝑛−1, that is, the great-
est common divisor of their entries in 1. Consider the sub-tuple 𝑣 = (𝑡1, 𝑡2, … , 𝑡2g )

𝑇 ∈ ℤ2g that is
the image of the handle generators, and is thought of as a column vector.
Case 1: 𝑣 is a primitive integer vector. There is an element 𝐴 ∈ Sp(2g , ℤ) such that 𝐴 ⋅ 𝑣 =

(1, 1, … 1). This is because Sp(2g , ℤ) acts transitively on primitive integer vectors in ℤ2g (see, for
example, [21, Section 5.1]). Such a transformation 𝐴 is induced by a mapping class of 𝑆g ,𝑛 sup-
ported on the subsurface 𝑆g ,0 containing the handles; this induces a change of a generating basis
of Γg ,𝑛 yielding the desired set of handle generators.
Case 2: The entries of 𝑣 have greatest common divisor 𝑑. In this case there is an element

𝐴 ∈ Sp(2g , ℤ) such that𝐴 ⋅ 𝑣 = (𝑑, 𝑑, … 𝑑). Since 𝑡 is a primitive integer vector, there is a puncture
with holonomy 𝑑′ that is not divisible by 𝑑. We can change one of the handle generators by a
mapping class that adds a loop around that puncture; the resulting handle generator then has
holonomy 𝑑 + 𝑑′. The new holonomy-vector for the handles is now a primitive integer vector, so
we are reduced to Case 1. □

12.2 Branched covers

The main result of this subsection is to show that our problem of constructing a translation struc-
ture on 𝑆g ,𝑛 with prescribed integral holonomy 𝜒 and prescribed zeros and poles, is equivalent to
constructing a branched cover of 𝕊2 with prescribed branching data. The following terminology
will be useful.

Definition 12.3. For a representation𝜒 ∶ Γg ,𝑛 → ℤwe say that a puncture is positive if the holon-
omy around it is a translation by a positive integer, and is negative otherwise.

Proposition 12.4. Suppose𝜒 ∶ Γg ,𝑛 → ℤ is a non-trivial representation. Let the holonomies around
the positive punctures be given by the integer tuple 𝜆 ∈ ℤ𝑘

+ and the holonomies around the negative
punctures be given by −𝜇 where 𝜇 ∈ ℤ𝑙

+. Then the following are equivalent.
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(1) There is a translation structure on 𝑆g ,𝑛 with holonomy 𝜒, with simple poles at the punctures and
a set of 𝑟 zeros with prescribed orders (𝑑1, 𝑑2, … , 𝑑𝑟) that satisfies

𝑟∑
𝑖=1

𝑑𝑖 = 2g + 𝑛 − 2.

(2) There is a branched covering 𝑓 ∶ 𝑆g → 𝕊2 with two special branch values 𝑝+ and 𝑝− such that
∙ 𝑓−1(𝑝+) is a set of 𝑘 points with local degrees given by 𝜆,
∙ 𝑓−1(𝑝−) is a set of 𝑙 points with local degrees given by 𝜇, where 𝑘 + 𝑙 = 𝑛, and
∙ apart from these, there are exactly 𝑟 other branch points on 𝑆g with local degrees (𝑑1 +

1,… , 𝑑𝑟 + 1).

Proof. Note that by Lemma 12.2 we can assume, without loss of generality, that 𝜒(𝛾) = 1 for any
handle generator 𝛾 ∈ Γg ,𝑛.
We begin with (2)⇒ (1). Equip 𝕊2 ⧵ {𝑝−, 𝑝+} with a translation structure in which it is isomor-

phic to an infinite Euclidean cylinder of circumference 1, such that the holonomy around 𝑝− is−1
and 𝑝+ is+1 respectively. (Recall that the holonomy around a puncture is the holonomy around a
loop that is oriented anti-clockwise.) Note that the corresponding abelian differential has simple
poles at 𝑝±.
Pulling back via the branched covering 𝑓, we obtain a translation structure on 𝑆g ⧵ (𝑓−1(𝑝−) ∪

𝑓−1(𝑝+)). Note that the 𝑛 punctures correspond to simple poles of the corresponding abelian dif-
ferential, since they are lifts of the simple poles at 𝑝± on 𝕊2. The holonomy around any puncture
in 𝑓−1(𝑝+) would equal the local degree, that is, the corresponding entry of 𝜆, since

𝑓∗

(
𝑑𝑧
𝑧

)
= ord(𝑓) ⋅

𝑑𝑧
𝑧

(12.1)

in local coordinates. Similarly, the holonomy around any puncture in 𝑓−1(𝑝−) would equal the
corresponding entry of −𝜇. Thus, the translation structure we obtained on 𝑆g ,𝑛 has a holonomy
𝜒′ ∶ Γg ,𝑛 → ℤ such that the holonomies around the punctures agree with those of 𝜒. By a rescal-
ing, if necessary, we can assume that 𝜒′ is surjective. Now by Lemma 12.2, there exists a choice of
handle generators such that 𝜒′ = 𝜒, and we conclude the proof here.
For the reverse implication, namely (1)⇒ (2), consider the developing map 𝑓 ∶ 𝑆g ,𝑛 → ℂ of the

given translation structure on 𝑆g ,𝑛. This mapping is 𝜒-equivariant, namely 𝑓(𝛾 ⋅ 𝑥) = 𝜒(𝛾) ⋅ 𝑓(𝑥)

for any 𝑥 ∈ 𝑆g ,𝑛 and any 𝛾 ∈ Γg ,𝑛. Since 𝜒(𝛾) is some integer translation, the developing map
descends to a map

𝑓 ∶ 𝑆g ,𝑛 →  = ℂ∕⟨𝑧 ↦ 𝑧 + 1⟩. (12.2)

We can think of the target cylinder  as 𝕊2 with 2 punctures 𝑝+ and 𝑝−, corresponding to the
two ends. Recall that the developing map 𝑓 is an immersion except at any zero of the abelian
differential (corresponding to the given translation structure), where it has local degree equal to
one more than the order of the zero. Thus, the map 𝑓 has 𝑟 branch points with local degrees
(𝑑1 + 1, 𝑑2 + 1,… , 𝑑𝑟 + 1). It follows from the flat geometry of the abelian differential near simple
poles, that the map 𝑓 near any puncture maps to one of the two ends of the cylinder . In fact, the
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restriction of 𝑓 to any cylindrical end of the translation structure on 𝑆g ,𝑛 is a covering map to an
end of .
Hence, 𝑓 extends continuously to a branched covering of the closed surface 𝑓 ∶ 𝑆g → 𝕊2,

where any positive puncture (see Definition 12.3) is mapped to 𝑝+ and any negative puncture
is mapped to 𝑝−. Indeed, if 𝜔 is the abelian differential corresponding to the translation struc-
ture on 𝑆g ,𝑛, then its lift to the universal cover 𝜔 = 𝑓∗(𝑑𝑧); hence 𝜔 = 𝑓∗(𝜔𝑜) where 𝜔𝑜 = 𝑑𝑧∕𝑧
is a meromorphic abelian differential on  = ℂ∕⟨𝑧 ↦ 𝑧 + 1⟩ with simple poles at 𝑝− and 𝑝+ and
residues+1 and−1, respectively. The positive (respectively, negative) punctures are exactly those
poles where 𝜔 has positive (respectively, negative) residues. The local degree of 𝑓 at any point
in 𝑓−1(𝑝+) ∪ 𝑓−1(𝑝−) is exactly the ratio of residues of 𝜔 and 𝜔𝑜 at the point, and hence the
tuple of local degrees equals 𝜆 at the positive punctures and −𝜇 at the negative punctures. Thus,
𝑓 ∶ 𝑆g → 𝕊2 is our desired branched covering. □

Wealso note the following corollary, the converse ofwhichwill be proved in the next subsection.

Corollary 12.5. Let 𝜒 ∶ Γg ,𝑛 → ℤ be a surjective representation. Let the holonomies around the
positive punctures be given by the integer tuple 𝜆 ∈ ℤ𝑘

+ and the holonomies around the negative
punctures be given by −𝜇 where 𝜇 ∈ ℤ𝑙

+. Then if 𝜒 is realisable in the stratum where the punctures
are simple poles and the zeros have orders (𝑑1, 𝑑2, … , 𝑑𝑟) then 𝑑𝑖 ⩽ 𝑑 − 1 for each 1 ⩽ 𝑖 ⩽ 𝑟 where

𝑑 =
𝑘∑

𝑖=1
𝜆𝑖 =

𝑙∑
𝑖=1

𝜇𝑖 .

Proof. By Proposition 12.4, there is a branched cover 𝑓 ∶ 𝑆g → 𝕊2 of degree 𝑑whose branch points
include 𝑟 points with local degrees 𝑑𝑖 + 1 for 1 ⩽ 𝑖 ⩽ 𝑟. Since the local degree is at most the degree
of the map, it follows that 𝑑𝑖 ⩽ 𝑑 − 1 for each 𝑖. □

Remark 12.6. The above corollary implies that for fixed integer vectors 𝜆 and 𝜇, there is a finite
set of possible genera g for which there is a translation structure on 𝑆g ,𝑛 with integral holonomy
having the holonomies around the punctures given by 𝜆 and −𝜇. This is because

2g + 𝑛 − 2 =
𝑟∑

𝑖=1

𝑑𝑖 ⩽ (𝑑 − 1) ⋅ 𝑟 < (𝑑 − 1) ⋅ 𝑑, (12.3)

which provides an upper bound on g .

12.3 Proof of Theorem D

Ideas from the recent work in [11] also lead to the proof of the converse to Corollary 12.5 that we
describe in this section.
We shall use the following result for the case g = 0, that is, for punctured spheres, that

Gendron–Tahar proved.

Proposition 12.7 [11, Theorem 1.2(ii)]. Suppose 𝜒 ∶ Γ0,𝑛 → ℤ is a non-trivial surjective repre-
sentation. Let the holonomies around the positive punctures be given by the integer tuple 𝜆 ∈ ℤ𝑘

+
and the holonomies around the negative punctures be given by −𝜇 where 𝜇 ∈ ℤ𝑙

+. Then there is a
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translation structure on 𝑆0,𝑛 with holonomy 𝜒, with simple poles at the punctures and a set of 𝑟 zeros
with prescribed orders (𝑑1, 𝑑2, … , 𝑑𝑟) that satisfies the degree condition

∑𝑟
𝑖=1 𝑑𝑖 = 2g − 2 + 𝑛 if and

only if ∑
𝑖

𝜆𝑖 =
∑
𝑗

𝜇𝑗 > max{𝑑1, 𝑑2, … , 𝑑𝑟}. (12.4)

In the remainder of this section, we shall fix a representation 𝜒 ∶ Γg ,𝑛 → ℤ such that:

∙ 𝜒 is non-trivial, and surjective,
∙ the 𝜒-images of the loops around the positive punctures are given by the integer tuple 𝜆 ∈ ℤ𝑘

+
and the loops around the negative punctures be given by −𝜇 where 𝜇 ∈ ℤ𝑙

+, and
∙ 𝜒(𝛾) = 1 for each handle generator (see Lemma 12.2).

We shall start with the case when the prescribed stratum has a single zero; first, we need the
following definition.

Definition 12.8. An integer tuple 𝜈 = (𝜆1, 𝜆2, … , 𝜆𝑘, −𝜇1, −𝜇2, … ,−𝜇𝑙) where 𝜆𝑖 > 0 and 𝜇𝑗 > 0
for each 𝑖, 𝑗 is said to be g-combinatorially admissible for an integer g ⩾ 0 if∑

𝑖

𝜆𝑖 =
∑
𝑗

𝜇𝑗 > 2g − 2 + 𝑘 + 𝑙. (12.5)

Note that in the single-zero case, being g-combinatorially admissible is equivalent to satisfying
(12.4) since the order of the zero must equal 2g − 2 + 𝑛.
We will now prove the following.

Proposition 12.9 (Single-zero case). Let 𝜒 ∶ Γg ,𝑛 → ℤ be as in the beginning of the section. Then
there is a translation structure on 𝑆g ,𝑛 with holonomy 𝜒, with simple poles at the punctures and
a single zero of order 𝑑 (satisfying 𝑑 = 2g − 2 + 𝑛) if and only if

∑
𝑖 𝜆𝑖 =

∑
𝑗 𝜇𝑗 > 𝑑, that is, the

integer tuple 𝜈 = (𝜆1, 𝜆2, … , 𝜆𝑘, −𝜇1, −𝜇2, … ,−𝜇𝑙) that records the residues at the punctures is g-
combinatorially admissible.

Proof. The ‘only if’ part follows from Corollary 12.5: namely, consider the branched covering
𝑓 ∶ 𝑆g → 𝕊2 given by Proposition 12.4. The single zero of the differential corresponding to the
translation structure is a branch point for the map 𝑓 of order 𝑑 + 1 = 2g + 𝑛 − 1. Since the order
of this branch point cannot be more than the degree of 𝑓, we have∑

𝑖

𝜆𝑖 =
∑
𝑗

𝜇𝑗 ⩾ 2g + 𝑛 − 1 = 𝑑 + 1. (12.6)

Moving on to the other implication,wemay assume, by Lemma 12.2, that𝜒(𝜌) = 1 for each han-
dle generator 𝜌. We proceed as in Section 9, employing a reduction process consisting of g reduc-
tion steps to obtain a surjective representation 𝜒 ∶ Γ0,𝑚 → ℤ, for𝑚 ⩽ 𝑛 which shall be realised as
the holonomy of a translation structure on 𝑆0,𝑚 induced by a meromorphic differential with sim-
ple poles at the punctures, and a single zero. We then perform g constructions on this translation
surface, reversing the reduction steps, to obtain the final surface. To justify the reduction step, we
first prove the following.
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Claim. Let 𝜈 be a g−combinatorially admissible tuple with g ⩾ 1. Then one of the following must
hold:

(1) 𝜆𝑖 ⩾ 3 for some 𝑖 and 𝜇𝑗 ⩾ 2 for some 𝑗, or
(2) 𝜇𝑗 ⩾ 3 for some 𝑗 and 𝜆𝑖 ⩾ 2 for some 𝑖. □

Proof of claim. Since 𝜈 is g-combinatorially admissible tuple with g ⩾ 1, we have∑
𝑖

𝜆𝑖 =
∑
𝑗

𝜇𝑗 > 2g + 𝑛 − 2 ⩾ 𝑛. (12.7)

Assume, to the contrary, that 𝜆𝑖 ⩽ 2 for all 1 ⩽ 𝑖 ⩽ 𝑘 and 𝜇𝑗 ⩽ 2 for all 1 ⩽ 𝑗 ⩽ 𝑙. This gives us

2𝑛 <
∑
𝑖

𝜆𝑖 +
∑
𝑗

𝜇𝑗 ⩽ 2𝑘 + 2𝑙 = 2𝑛, (12.8)

which is a contradiction. Without loss of generality, we may now assume that 𝜆1 ⩾ 3. It is now
easy to see that a tuple 𝜈 cannot be g-combinatorially admissible if all the entries of the tuple 𝜇
are 1.

We can now state the reduction process. Given a g-combinatorially admissible tuple 𝜈, with g ⩾

1, we reduce it to (𝜆1, … , 𝜆𝑖 − 2, … , 𝜆𝑘, −𝜇1, … ,−𝜇𝑗 + 2,… ,−𝜇𝑙), with the indices 𝑖 and 𝑗 coming
from the claim above, and the understanding that the reduced tuple is an 𝑛 − 1 tuple if either of 𝜆𝑖

or𝜇𝑗 is 2. Since the reduction decreases both the sumof the positive periods and the absolute value
of the negative periods by 2, the reduced tuple (whether an 𝑛-tuple or an (𝑛 − 1)-tuple) is (g − 1)-
combinatorially admissible and thus, non-trivial. So, starting with a g-combinatorially admissible
tuple, it is possible to perform g reductions to end up with a 0-combinatorially admissible tuple.
We let 𝜈(𝑖) = (𝜆(𝑖)

1 , … , 𝜆(𝑖)
𝑘𝑖

, −𝜇(𝑖)
1 , … , −𝜇(𝑖)

𝑙𝑖
) denote the tuple obtained after the 𝑖th reduction step, for

each 1 ⩽ 𝑖 ⩽ g . Note that 𝑘𝑖 and 𝑙𝑖 are the number of positive and negative entries, respectively, of
𝜈(𝑖).
By Proposition 12.7, the tuple 𝜈(g) denotes the holonomy of a translation structure on 𝑆0,𝑛

induced by a meromorphic differential with simple poles at the punctures, and a single zero.
Following the notation of Section 9 we denote this translation surface by (𝑊0, 𝜏0) and proceed
to construct translation surfaces (𝑊𝑖, 𝜏𝑖), for 1 ⩽ 𝑖 ⩽ g , given by a meromorphic differential on
𝑆𝑖,(𝑘𝑖+𝑙𝑖)

with a single zero, simple poles at the punctures and holonomy at the punctures given by
the tuple 𝜈(g−𝑖). The holonomy around each handle generator in all surfaces (𝑊𝑖, 𝜏𝑖) shall be the
translation by 1. We first construct (𝑊1, 𝜏1), by considering three cases.
Case 1: 𝑘g = 𝑘g−1, 𝑙g = 𝑙g−1. Let 𝑖g and 𝑗g be the indices of the periods changed in the g 𝑡ℎ reduc-

tion step. From the construction of (𝑊0, 𝜏0) as in the proof of [11, Theorem 1.2(ii)], it follows that
there exists a vertical geodesic ray, say 𝑟𝑢𝑝 going upward starting from the zero of 𝜏0, towards the
puncture with holonomy 𝜆(g)

𝑖g
. Similarly, there is a vertical geodesic ray, say 𝑟𝑑𝑛 going downward

starting from the zero of 𝜏0 towards the puncture with holonomy −𝜇(g)
𝑗g
. We slit along these rays,

and glue an infinite cylinders of circumference 2 to (𝑊0, 𝜏0) using these two rays as shown in
Figure 29. We then construct a handle with holonomy 1 at each handle generator in the usual way
along the saddle connection of length 2 on the freshly glued cylinder.
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F IGURE 29 Construction of (𝑊1, 𝜏1) in Case 1. Slitting along 𝑟𝑢𝑝 gives 𝑟+
𝑢𝑝 and 𝑟−

𝑢𝑝 which are identified with
𝑠− and 𝑠+, respectively. Similarly, 𝑟+

𝑑𝑛
and 𝑟−

𝑑𝑛
are identified with 𝑡− and 𝑡+, respectively

F IGURE 30 Construction of (𝑊1, 𝜏1) in Case 2. In this case, 𝑟+
𝑢𝑝 and 𝑟−

𝑢𝑝 are identified with 𝑠− and 𝑠+,
respectively, but 𝑡− and 𝑡+ are identified with each other

Case 2: 𝑘g = 𝑘g−1, 𝑙g = 𝑙g−1 − 1. We let 𝑖g and 𝑗g be as in the previous case and look only at
the geodesic ray 𝑟+

g
. We glue an infinite cylinder of circumference 2 along the ray 𝑟+𝑢𝑝 as shown in

Figure 30. The handle is constructed in the same way as the previous case.
Case 3: 𝑘g = 𝑘g−1 − 1, 𝑙g = 𝑙g−1. Here, we do the same construction as in the previous case

except that we glue along 𝑟−
𝑑𝑛
.

In all the three cases, the resulting translation surface (𝑊1, 𝜏1) is a surface of genus 1 with punc-
tures where the differential has simple poles, and has residues given by 𝜈(g−1), with the holon-
omy around each handle generator being the translation by 1. Note that in all three cases, we can
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still find geodesic rays going upward starting from the zero of 𝜏1 towards punctures with holon-
omy 𝜆(g−1)

𝑖g
and going downward starting from the zero of 𝜏1 towards punctures with holonomy

−𝜇(g−1)
𝑗g

. We can thus repeat this construction, and in the same manner as described above, we
obtain (𝑊𝑖, 𝜏𝑖) from (𝑊𝑖−1, 𝜏𝑖−1), for each 2 ⩽ g . The final surface (𝑊g , 𝜏g ) is our desired transla-
tion structure on 𝑆g ,𝑛. □

Using the previous proposition as the base case, we shall now prove the general case, where
the prescribed stratum has 𝑟 zeros, by induction on 𝑟. This can be thought of as generalizing [11,
Theorem 1.2(ii)] that had handled the g = 0 case.

Proposition 12.10 (Theorem D). Let 𝜒 ∶ Γg ,𝑛 → ℤ be as in the beginning of the section. Then there
is a translation structure on 𝑆g ,𝑛 with holonomy 𝜒, with simple poles at the punctures and a set of

𝑟 zeros with prescribed orders (𝑑1, 𝑑2, … , 𝑑𝑟) that satisfies the degree condition
𝑟∑

𝑖=1
𝑑𝑖 = 2g − 2 + 𝑛 if

and only if

𝑘∑
𝑖=1

𝜆𝑖 =
𝑙∑

𝑗=1

𝜇𝑗 > max{𝑑1, 𝑑2, … , 𝑑𝑟}, (12.9)

where recall that (𝜆1, 𝜆2, … , 𝜆𝑘) and (−𝜇1, −𝜇2, … ,−𝜇𝑙) are the residues at the positive and negative
punctures, respectively.

Proof. The proof will proceed by induction on 𝑟; as observed above, the base case when 𝑟 = 1 is
handled by Proposition 12.9. For the inductive step, let us assume that we have proved the propo-
sition for 𝑟 − 1 zeros. In what follows we shall divide the set of orders of zeros {𝑑1, 𝑑2, … , 𝑑𝑟} into
{𝑑1}, and the rest. Let 𝑑′

1 ∶=
∑𝑟

𝑖=2 𝑑𝑖 .
Assume without loss of generality that 𝑘 ⩾ 𝑙; also note that 𝑘 + 𝑙 = 𝑛. We can also deduce that

one of 𝑑1 or 𝑑′
1 must be strictly greater than 𝑙: this is because if both are at most 𝑙 ⩽ 𝑘 then (12.10)

cannot hold. In what follows, we shall assume that 𝑑′
1 ⩾ 𝑙; if 𝑑1 ⩾ 𝑙 then in what follows we can

interchange their roles and the proof works mutatis mutandis. We split our construction into
two cases.
Case 1: 𝑑′

1 ⩽ 2g − 2 + 𝑙 + 1. We shall first deal with the case when 𝑑′
1 and 𝑙 have the opposite

parity, that is, either one is even and the other odd, or vice versa. Note that this happens if and
only of 𝑑1 and 𝑘 have the opposite parity, since we have

𝑑1 + 𝑑′
1 = 2g − 2 + 𝑘 + 𝑙 (12.10)

from the degree condition. It is easy to derive (from our assumption on parity) that

𝑑′
1 = 2ℎ − 2 + 𝑙 + 1 (12.11)

for some integer 0 ⩽ ℎ ⩽ g , and consequently from (12.10) that

𝑑1 = 2(g − ℎ) − 2 + 𝑘 + 1. (12.12)
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F IGURE 3 1 The surfaces (𝑋1, 𝜔1) (left) and (𝑋2, 𝜔2) (right) as described in Case 1. The shaded parts are
truncated to glue (𝑋1, 𝜔1) and (𝑋2, 𝜔2)

From the base case of 𝑟 = 1 and (12.12), we know that there is a translation structure on 𝑆g−ℎ,𝑘+1

with 𝑘 + 1 simple poles, having residues 𝜆1, … , 𝜆𝑘, and −
∑

𝑖 𝜆𝑖 , and exactly one zero of order 𝑑1.
Here, we assume as usual that the holonomy around each handle generator (if g − ℎ > 0) is the
translation by 1. Note that the corresponding translation surface (𝑋1, 𝜔1) has a cylindrical end of
circumference

∑
𝑖 𝜆𝑖 that we can assume (since the corresponding residue is negative) develops

out to a half infinite strip in ℂ in the negative imaginary direction.
From our inductive hypothesis and (12.11), we also have a a translation structure on 𝑆ℎ,𝑙+1

with 𝑙 + 1 simple poles, having residues −𝜇1, … ,−𝜇𝑙, and
∑

𝑗 𝜇𝑗 , and (𝑟 − 1) zeros of orders
𝑑2, 𝑑3, … , 𝑑𝑟. As before, the holonomy around each handle generator (if ℎ > 0) is the translation
by 1. The corresponding translation surface (𝑋2, 𝜔2) now has a cylindrical end of circumference∑

𝑗 𝜇𝑗 that develops out to a half infinite strip in ℂ in the positive imaginary direction.
By our assumption (12.9), the circumferences of two cylindrical ends on (𝑋1, 𝜔1) on (𝑋2, 𝜔2)

that we mentioned match, and we can truncate the cylindrical ends and identify the resulting
boundary circles by an isometry to obtain a translation surface (𝑋, 𝜔) that is homeomorphic to
𝑆g ,𝑛. From our construction, (𝑋, 𝜔) is our desired translation surface with holonomy 𝜒 and has
precisely 𝑟 zeros of the prescribed orders 𝑑1, 𝑑2, … 𝑑𝑟 (Figure 31).
In the case, the pairs {𝑑′

1, 𝑙} and {𝑑1, 𝑘} have the same parity, then consider a new set of 𝑟 zeros
with orders {𝑑1 − 1, 𝑑2 − 1, 𝑑3, 𝑑4, … , 𝑑𝑟} where we have decreased the orders of 𝑑1 and 𝑑2 by 1.
In the set of prescribed residues, we decrease 𝜆𝑘 and 𝜇𝑙 by 1 to modify the residues at the posi-
tive punctures to {𝜆1, 𝜆2, … , 𝜆𝑘−1, 𝜆𝑘 − 1} and negative punctures to {−𝜇1, −𝜇2, … ,−𝜇𝑙−1, −𝜇𝑙 + 1}.
Note that if 𝜆𝑙 (respectively, 𝜇𝑙) was already equal to 1, the number of positive (respectively, neg-
ative) punctures reduces by one; the construction divides into some sub-cases depending on
whether this happens. Note that if 𝜆𝑖s are not all 1, then we can order them such that 𝜆𝑘 > 1,
and the same for the 𝜇𝑗s.
Sub-case (i): Both 𝜆𝑘 > 1 and 𝜇𝑙 > 1. These new data of residues (after 𝜆𝑘 and 𝜇𝑙 have been

decreased by 1) satisfy the parity assumption, and (12.9) is satisfied since both the left and right
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F IGURE 32 Illustrating sub-case (i): The surface on the left is (𝑋′, 𝜔′) and the surface on the right is 𝑌. 𝑟+
𝑢𝑝

is identified with 𝛾−
𝑢𝑝 , 𝑟

−
𝑢𝑝 is identified with 𝛾+

𝑢𝑝 , 𝑟
+
𝑑𝑛
is identified with 𝛾−

𝑑𝑛
, 𝑟−

𝑑𝑛
is identified with 𝛾+

𝑑𝑛
, 𝑠+ is identified

with 𝑡− and 𝑠− is identified with 𝑡+. The remaining rays are identified in the usual way

hand side of the inequality decreases by 1 by our modification. So the previous construction
holds and we obtain a translation surface (𝑋′, 𝜔′) homeomorphic to 𝑆g−1,𝑛 having holonomy
with the prescribed residues at the punctures (which are all simple poles) and zeros of orders
𝑑1 − 1, 𝑑2 − 1, 𝑑3, … , 𝑑𝑟. From our construction, the zeros of orders 𝑑1 − 1 and 𝑑2 − 1 occur on
the different intermediate translation surfaces with cylindrical ends that are ‘combined’; we can
also arrange so that they lie at the base of the cylinders corresponding to the poles having residues
𝜆𝑘 − 1 and −𝜇𝑙 + 1, respectively. Moreover, in the gluing step we can arrange, so that there is a
vertical ‘saddle connection’ between them on (𝑋′, 𝜔′). From this discussion, it follows that there is
an isometrically embedded infinite vertical line 𝛾′ on (𝑋′, 𝜔′) that contains the two zeros of orders
𝑑1 − 1 and 𝑑2 − 1 going out the cylindrical ends having circumferences 𝜆𝑘 − 1 and 𝜇𝑙 − 1, respec-
tively. Now, consider an infinite Euclidean cylinder (𝑌, 𝜂) of circumference 1, and an embedded
vertical line 𝛾 there. Cut (𝑋′, 𝜔′) along the two rays, say, 𝑟𝑢𝑝 and 𝑟𝑑𝑛, that form the complement of
the interior of the saddle connection 𝑠 in 𝛾′ and cut (𝑌, 𝜂) along two disjoint rays in 𝛾 at distance
equal to the length of the saddle connection 𝑠. Identify the resulting boundary lines by isometries
so that the resulting translation surface (𝑋, 𝜔) is homeomorphic to 𝑆g ,𝑛. The cylindrical ends of
(𝑋′, 𝜔′) and (𝑌, 𝜂) combine to produce two cylindrical ends in (𝑋, 𝜔) having circumference 𝜆𝑘 and
𝜇𝑙; in the identification the zeros of orders 𝑑1 − 1 and 𝑑2 − 1 get identified with two regular points
in (𝑌, 𝜂) to become zeros of orders 𝑑1 and 𝑑2, respectively. The residues of the rest of the poles, and
the holonomy of the handles, is unchanged.Moreover, the handle just added has trivial holonomy
for one of the handle generators and holonomy a translation by 1 for the other handle generator;
however we can easily change to both being a translation by 1 by applying a Dehn-twist, as in the
proof of Lemma 11.2. Thus, the surface (𝑋, 𝜔) is our desired translation surface with holonomy 𝜒
and zeros of orders 𝑑1, 𝑑2, … , 𝑑𝑟 (Figure 32).
Sub-case (ii): Both 𝜆𝑘 = 1 and 𝜇𝑙 = 1. This is when 𝜆𝑖 = 1 and 𝜇𝑗 = 1 for all 1 ⩽ 𝑖 ⩽ 𝑘 and

1 ⩽ 𝑗 ⩽ 𝑙: in this case the translation surface 𝑋′ constructed as above has 2 less punctures, and is
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F IGURE 33 Illustrating sub-case (ii): The surface on the left is (𝑋′, 𝜔′) and the surface on the right is (𝑌, 𝜂).
In this case, we only identify the segments — 𝑠+ is identified with 𝑡− and 𝑠− is identified with 𝑡+. The remaining
rays are identified in the usual way

homeomorphic to 𝑆g ,𝑛−2. As before, we can construct (𝑋′, 𝜔′) in such a way that there is a vertical
saddle connection 𝑠 between the two zeros of orders 𝑑1 − 1, and 𝑑2 − 1, respectively. The combina-
tion with the infinite Euclidean cylinder (𝑌, 𝜂) of circumference 1 will now be different: choose a
vertical arc 𝑠′ on (𝑌, 𝜂) of the same length as 𝑠, slit along 𝑠 and 𝑠′ and identify the resulting bound-
ary segments by isometries so that we obtain a translation surface (𝑋, 𝜔) homeomorphic to 𝑆g ,𝑛.
(Topologically,𝑋 is the connect-sum of𝑋′ and𝑌.) The two ends of (𝑌, 𝜂) add two cylindrical ends
to those already in (𝑋′, 𝜔′), and correspond to poles of residues 𝜆𝑘 = 1 and−𝜇𝑙 = −1 respectively;
as before, the orders of the zeros at the endpoints of 𝑠 increase by 1 each after the identification
with the two endpoints of 𝑠′. The surface (𝑋, 𝜔) is thus our desired translation surface (Figure 33).
Sub-case (iii): 𝜆𝑘 = 1 and 𝜇𝑙 > 1. In this case we only decrease the order of 𝑑1 by 1; the trans-

lation surface (𝑋′, 𝜔′) constructed as above is homeomorphic to 𝑆g ,𝑛−1, realises the new tuple of
residues and has zeros of orders 𝑑1 − 1, 𝑑2, … , 𝑑𝑟. Moreover, from our constructionwe can assume
that there is a vertical ray 𝛾′ going ‘downward’ from the zero of order 𝑑1 − 1 to the puncture cor-
responding to the pole of residue−𝜇𝑙 + 1. As before, let (𝑌, 𝜂) be an infinite Euclidean cylinder of
circumference 1, and now let 𝛾 be an infinite vertical ray in the ‘downward’ direction. Slit along 𝛾
and 𝛾′ and identify the resulting boundary rays such that the resulting translation surface (𝑋, 𝜔)
is homeomorphic to 𝑆g ,𝑛. The ‘downward’ end of (𝑌, 𝜂) merges with the cylindrical end of cir-
cumference 𝜇𝑙 − 1 to form a cylindrical end of (𝑋, 𝜔) of circumference 𝜇𝑙 that corresponds to the
pole of of residue−𝜇𝑙. The other end of (𝑌, 𝜂) is an additional cylindrical end of (𝑋, 𝜔) of circum-
ference 1; this corresponds to the pole of residue 𝜆𝑘 = 1. Moreover, in this combination of (𝑋′, 𝜔′)
and (𝑌, 𝜂) the zero of order 𝑑1 − 1 is identified with the endpoint of the vertical ray 𝛾 on (𝑌, 𝜂)
and its order thus increases by 1. The orders of the other zeros, and the holonomies of the handle
generators and loops around the other poles on (𝑋′, 𝜔′) remain unchanged. Thus, (𝑋, 𝜔) is our
desired translation surface (Figure 34).
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F IGURE 34 Illustrating sub-case (iii): The surface on the left is (𝑋′, 𝜔′) and the surface on the right is
(𝑌, 𝜂). In this case, we only identify the ‘downward’ rays - 𝑟+

𝑑𝑛
is identified with 𝛾−

𝑑𝑛
, 𝑟−

𝑑𝑛
is identified with 𝛾+

𝑑𝑛
. The

remaining rays are identified in the usual way

Remark 12.11. We can note that 𝜆𝑙 > 1 and all 𝜇𝑙 = 1 is not possible, from the assumption that
𝑘 ⩾ 𝑙 and

∑
𝑖 𝜆𝑖 =

∑
𝑗 𝜇𝑗 .

Case 2: 𝑑′
1 > 2g − 2 + 𝑙 + 1. In this case, we rewrite

𝑑′
1 = 2g − 2 + 𝑙 + 𝑡, (12.13)

where 1 < 𝑡 < 𝑘, and consequently

𝑑1 = 𝑘 − 𝑡. (12.14)

From our inductive hypothesis and (12.13), we have a translation structure on 𝑆g ,𝑙+𝑡 with 𝑙 + 𝑡

simple poles, having residues −𝜇1, … ,−𝜇𝑙, and 𝜆1, 𝜆2, … , 𝜆𝑡−1,
∑𝑘

𝑖=𝑡 𝜆𝑖 , and (𝑟 − 1) zeros of orders
𝑑2, 𝑑3, … , 𝑑𝑟. As before, the holonomy around each handle generator is the translation by 1. One of
the cylindrical ends of the corresponding translation surface (𝑋′

1, 𝜔
′
1) has circumference

∑𝑘
𝑖=𝑡 𝜆𝑖

and develops out to a half infinite strip in ℂ in the positive imaginary direction.
From the base case of 𝑟 = 1 and (12.14), we know that there is a translation structure on 𝑆0,𝑘−𝑡+2

with 𝑘 − 𝑡 + 2 simple poles, having residues 𝜆𝑡, … , 𝜆𝑘 and−
∑𝑘

𝑖=𝑡 𝜆𝑖 , and exactly one zero of order
𝑑1. (Note that the inequality in the hypothesis of Proposition 12.9 is satisfied since

∑𝑘
𝑖=𝑡 𝜆𝑖 ⩾ 𝑘 −

𝑡 + 1 which is greater than 𝑑1 because of (12.14).) The corresponding translation surface (𝑋′
2, 𝜔

′
2)

now has a cylindrical end of circumference
∑𝑘

𝑖=𝑡 𝜆𝑖 that develops out to a half infinite strip in ℂ

in the negative imaginary direction. We can now ‘combine’ the translation surfaces (𝑋′
1, 𝜔

′
1) and

(𝑋′
2, 𝜔

′
2) by truncating the cylindrical ends mentioned of matching circumferences on each, and

identifying the resulting boundaries to obtain a translation surface (𝑋, 𝜔) homeomorphic to 𝑆g ,𝑛

having holonomy 𝜒 and zeros of the prescribed orders 𝑑1, 𝑑2, … , 𝑑𝑟 (Figure 35). □
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F IGURE 35 The surfaces (𝑋′
1, 𝜔

′
1) (left) and (𝑋′

2, 𝜔
′
2) (right) as described in Case 2. The shaded parts are

truncated to glue (𝑋′
1, 𝜔

′
1) and (𝑋′

2, 𝜔
′
2)

The proposition just proved is a re-statement of Theorem D of the introduction.

12.4 Relation with the Hurwitz existence problem

We can use Proposition 12.4 to relate the problem of realising a given integral holonomy 𝜒 to solve
certain cases of Hurwitz Existence Problem, which we had described in the introduction.
A special case of this problem is when the target surface Σ = 𝕊2, and is to determine if there

is a branched covering 𝑓 ∶ 𝑆g → 𝕊2 with prescribed branching data. Recall that the prescribed
branching data comprise the desired degree deg(𝑓) = 𝑑 ⩾ 2, the number 𝑛 ⩾ 1 of branch values
on 𝕊2, and a collection = {𝐵1, 𝐵2, … , 𝐵𝑛}where each 𝐵𝑖 is an integer partition of 𝑑 (with at least
one integer greater than 1) that indicates the local degrees at the preimages of the 𝑖th branch value.
Moreover, the prescribed branching data satisfy the Riemann–Hurwitz formula (1.8). Recall that
such prescribed branching data are said to be realisable if there is a positive solution to theHurwitz
existence problem above.
The following corollary is immediate from Proposition 12.4.

Corollary 12.12. The following condition is equivalent to (1) and (2) of Proposition 12.4.

(3) There exist realisable branching data for a branched covering 𝑓 ∶ 𝑆g → 𝕊2 which is a collection
 of partitions of 𝑑 =

∑𝑘
𝑖=1 𝜆𝑖 satisfying the following:

∙ 𝜆 is part of the collection unless 𝜆 = (1, 1, … , 1),
∙ 𝜇 is part of the collection unless 𝜇 = (1, 1, … , 1), and
∙ in all other partitions, the only integers that are different from 1 are exactly {𝑑1 + 1,… , 𝑑𝑟 + 1}.

Corollary 12.12 and Theorem D then readily imply the statement of Corollary H from the intro-
duction. We remark that Corollary H is consistent with Corollary 9.6 (Corollary F of the introduc-
tion); an instance is given by the following example.
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Example 12.13. Let  = (𝕊2, 𝕊2, 3, 6,) be abstract branch datum where  comprises the three
partitions 𝜆 = (5, 1), 𝜇 = (3, 1, 1, 1) and (5,1). Then  is realisable by Corollary 9.6. The require-
ment (12.9) of Theorem D is satisfied since

∑
𝑖 𝜆𝑖 =

∑
𝑗 𝜇𝑗 = 6 > 4 = 𝑑1. This agrees with Corol-

lary H.

APPENDIX A: PERIODS OFMEROMORPHIC DIFFERENTIALSWITH PRESCRIBED
POLES

Throughout this appendix, as usual, let 𝑆g ,𝑛 be a 𝑛-punctured surface of genus g and let 𝜈 =
(𝑝1, 𝑝2 … , 𝑝𝑛) be a tuple of positive integers. Let(−; 𝜈) denotes the stratum of Ωg ,𝑛 of mero-
morphic abelian differentials with poles of degrees 𝑝1, 𝑝2 … , 𝑝𝑛. We consider here the problem
of determining the image of Per|(−;𝜈), that is the subset of Hom(Γg ,𝑛, ℂ) of those representations
that appear as the period of some meromorphic differential having a pole of order 𝑝𝑖 at the 𝑖th
puncture.

TheoremA.1. Let𝑆g ,𝑛 be a surface of genus g and𝑛 ⩾ 1punctures. Let 𝜈 = (𝑝1, 𝑝2, …𝑝𝑛) be positive
integers assigned to each puncture and let  = {𝑖 | 𝑝𝑖 = 1}. Finally, let 𝛾𝑖 denotes a loop around the
𝑖th puncture. The following holds.

∙ Suppose 𝑝𝑖 ⩾ 2 for every 𝑖 = 1, … , 𝑛 (that is  = ∅). Then Im(Per|(−;𝜈)) contains all non-trivial
representations. Moreover, the period mapping is surjective (that is it contains also the trivial rep-
resentation) if and only if 𝑛 ⩾ 2 or 𝑝 ⩾ 3 if 𝑛 = 1.

∙ If 1 < || < 𝑛, then Im(Per|(−;𝜈)) is the complement of
⋃

𝑖∈{𝜒 ∶ Γ → ℂ |𝜒(𝛾𝑖) = 0}.
∙ If || = 𝑛 > 1 then Im(Per|(−;𝜈)) is contained in the complement of

⋃𝑛
𝑖=1{𝜒 ∶ Γ → ℂ |𝜒(𝛾𝑖) = 0}.

More precisely:
◦ if 𝑛 ⩾ 3, then Im(Per|(−;𝜈)) is equal to the complement of

⋃𝑛
𝑖=1{𝜒 ∶ Γ → ℂ |𝜒(𝛾𝑖) = 0},

◦ if 𝑛 = 2 and g = 0 then Im(Per|(−;𝜈)) = Hom(Γ, ℂ∗),
◦ if 𝑛 = 2 and g ⩾ 1 then Im(Per|(−;𝜈)) is the complement of {𝜒 ∶ Γ → ℂ |𝜒2 − part is trivial } ∪

ℂ ⋅ {𝜒 integral |𝜒(𝛾) = 1} where 𝛾 is a curve enclosing 1 of the 2 punctures.

Note that when 𝑛 ⩾ 3, the statement above simply reduces to Corollary E. Let us move on
the proof.

Proof of Theorem A.1. Let 𝜈 = (𝑝1, 𝑝2, … , 𝑝𝑛) be a tuple of positive integers. Let us begin by notic-
ing that the space (−, 𝜈) admits a natural stratification by the strata (𝜇; 𝜈) enumerated by
unordered partitions 𝜇 of 2g − 2 + 𝑝1 + 𝑝2 + ⋯ + 𝑝𝑛. Thus, a representation 𝜒 appears as the
period of a meromorphic abelian differential with prescribed orders of the poles at punctures if
and only if it appears in the image of the period mapping as in (1.2) restricted to some stratum
(𝜇; 𝜈) ⊂ (−; 𝜈).
Suppose 𝑝𝑖 ⩾ 2 for every 𝑖 = 1, 2, … , 𝑛. Let 𝜒 ∶ Γg ,𝑛 ⟶ ℂ be a non-trivial representation and

consider any tuple 𝜇 = (𝑑1, 𝑑2, … , 𝑑𝑘) of positive integers such that Equation (1.5) holds, that is,

𝑘∑
𝑗=1

𝑑𝑗 −
𝑛∑

𝑖=1

𝑝𝑖 = 2g − 2.

If g = 0, then Proposition 10.1 applies and 𝜒 appears as the holonomy of some translation surface
with poles determined by a meromorphic differential on ℂℙ1 having zeros of orders 𝑑1, 𝑑2, … , 𝑑𝑘
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and poles of order 𝑝1, 𝑝2, … , 𝑝𝑛 at the punctures. In a similar fashion, if g ⩾ 1, then Theorem C
(or Theorem 11.1) applies and 𝜒 appears as the holonomy of some translation surface with poles
determined by ameromorphic differential on 𝑆g ,𝑛 having zeros of orders 𝑑1, 𝑑2, … , 𝑑𝑘 and poles of
order𝑝1, 𝑝2, … , 𝑝𝑛 at the punctures. In both cases,𝜒 is realised as the period of ameromorphic dif-
ferential in(−; 𝜈) as desired. Let us consider the trivial representation and pick 𝜇 = (1, 1, … , 1),
where 1 repeats 2g − 2 + 𝑝1 + 𝑝2 + ⋯ + 𝑝𝑛. If we assume 𝑛 ⩾ 2, then the inequality

1 ⩽ 𝑛 − 1 = 2𝑛 − (𝑛 + 1) ⩽

𝑛∑
𝑖=1

𝑝𝑖 − (𝑛 + 1)

always holds. All the conditions of Theorem B are satisfied and hence we can realise the trivial
representation as the holonomy of some translation surface with all simple zeros and poles of
orders 𝑝1, 𝑝2, … , 𝑝𝑛 as desired. If 𝑛 = 1, then 1 ⩽ 𝑝 − 𝑛 − 1 = 𝑝 − 2 if and only if 𝑝 ⩾ 3. Then we
can proceed in the same fashion.
Suppose 1 < || ⩽ 𝑛. In the first place we can note that the holonomy of the curve 𝛾𝑖 cannot

be trivial because the 𝑖th is prescribed as a simple pole for any 𝑖 ∈ . As a consequence every
representation in the space ⋃

𝑖∈
{𝜒 ∶ Γ → ℂ |𝜒(𝛾𝑖) = 0} (A.1)

can never be realised as the period of any meromorphic differential on 𝑆g ,𝑛. In particular,

Im
(
Per|(−;𝜈)

)
⊆ Hom

(
Γg ,𝑛, ℂ

)
⧵
⋃
𝑖∈

{𝜒 ∶ Γ → ℂ |𝜒(𝛾𝑖) = 0}. (A.2)

In the case 1 < || < 𝑛 then at least one of the puncture is prescribed as a pole of order at least two.
Let us consider 𝜇 = (1, 1, … , 1) and let 𝜒 be any representation in the complement of (A.1). Then
𝜒(𝛾𝑖) ≠ 0 for any 𝑖 ∈  and, in particular, 𝑝𝑖 ⩾ 2 whenever 𝜒(𝛾𝑖) = 0. Even in this case, we can
apply Proposition 10.1 if g = 0 or Theorem C if g ⩾ 1. In both cases, 𝜒 appears as the holonomy
of some translation surface with poles determined by a meromorphic differential on 𝑆g ,𝑛 having
simple zeros and poles of order 𝑝1, 𝑝2, … , 𝑝𝑛 as desired. As a consequence, Equation (A.2) turns
out an equality.
Let us finally suppose || = 𝑛. Whenever 𝜒 is a non-rational representation taken in the com-

plement of (A.1) it is straightforward to check that the discussion above appliesmutatis mutandis.
Therefore,

{𝜒 ∶ Γ → ℂ |𝜒 not rational} ⊆ Im
(
Per|(−;𝜈)

)
⊆ Hom

(
Γg ,𝑛, ℂ

)
⧵
⋃
𝑖∈

{𝜒 ∶ Γ → ℂ |𝜒(𝛾𝑖) = 0}.

(A.3)
Recall that a representation 𝜒 is said to be rational if it non-trivial and its image is contained in

the ℚ-span of some complex number 𝑐 ∈ ℂ∗. Up to rescaling by a proper factor, we can suppose
the representation to be integral, that is we can assume without loss of generality that Im(𝜒) = ℤ.
Recall also that a representation 𝜒 is realisable in a certain stratum if and only if the rescaled
representations are all realisable in the same stratum.
Our Theorem C does not directly apply to integral representations if the poles are all required

to be simple. In fact, the realisability is subject to the further necessary condition (1.7). This leads
to discuss integral representations as follows.
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F IGURE B . 1 Partitions of boxes determined the numbers 𝑠𝑖 and 𝑡𝑗

Suppose 𝑛 ⩾ 3 and let 𝜒 be an integral representation in the complement of (A.1). Let 𝜇 =
(1, 1, … , 1), where 1 repeats 2g − 2 + 𝑛 times. Then 𝜒 can be realised as the holonomy of some
translation structure with all simple zero and simple poles. In fact, if 𝑑1 = 𝑑2 = ⋯ = 𝑑𝑟 = 1, then
it is easy to check that the necessary and sufficient condition (1.7) is satisfied and so our Theo-
rem D applies. Even in the case, Equation (A.2) turns out an equality.
Let us consider the case 𝑛 = 2. A representation 𝜒 ∶ Γg ,2 ⟶ ℂ belongs to the complement of

(A.1) if and only if the 𝜒2-part of 𝜒 is non-trivial. If g = 0, then we can easily note that

Hom
(
Γ0,2, ℂ

)
⧵ {𝜒 ∶ Γ → ℂ |𝜒(𝛾) = 0} = Hom(ℤ, ℂ∗),

where 𝛾 is one of the two curves enclosing 1 puncture. Any representation Hom(ℤ, ℂ∗) is realised
as the holonomyof anEuclidean cylinder andhence as the period of ameromorphic abelian differ-
ential in the stratum(∅; 1, 1) by Remark 6.2, where(∅; 1, 1) denotes the stratum of Euclidean
structures on a cylinder without zeros (all points are regular!).
Suppose g ⩾ 1 and𝑛 = 2. Let𝜒 ∶ Γg ,2 ⟶ ℤ < ℂ be an integral representation such that𝜒(𝛾) =

𝜆 > 0, where 𝛾 is a curve enclosing 1 of the 2 punctures. In this case, the necessary condition
(1.7) simplifies to 𝜆 = 𝜒(𝛾) > max(𝑑1, 𝑑2, … , 𝑑𝑟). If 𝜆 = 1, it is an easy matter to check that (1.7)
never holds for every partition 𝜇 of 2g . As a consequence, the whole set ℂ ⋅ {𝜒 integral |𝜒(𝛾) = 1}
does not belong to the image of the period mapping when restricted to the stratum(−; 1, 1). On
the other hand, whenever 𝜆 ⩾ 2 the condition (1.7) always holds for the partition 𝜇 = (1, 1, … , 1)
and hence the integral representation can be realised as the holonomy of some translation
structure with simple zeros and simple poles at the punctures. Thus, the desired conclusion
holds. □

APPENDIX B: PROOF OF LEMMA 10.3

For convenience, we assume
∑𝑛

𝑖=1 𝑠𝑖 =
∑𝑚

𝑗=1 𝑡𝑗 = 1. We consider horizontal two strips of some
small width and length 1 and place separators in these strips, so that the resulting blocks have
lengths 𝑠𝑖 and 𝑡𝑗 in the respective strips as shown in Figure B.1. The setting can also be viewed as
two boxes of length 1 with blocks of length 𝑠𝑖 and 𝑡𝑗 placed in them. We shall denote the blocks of
length 𝑠𝑖 (respectively, 𝑡𝑗) as the 𝑠-series (respectively, 𝑡-series).
We need to show that there exists an ordering of functions 𝑠𝑖 and 𝑡𝑗 , so that no two separators

have the same 𝑥-coordinate. We do this by first describing an algorithm to place the blocks. With-
out loss of generality, we may assume that 𝑠1 is the smallest of the numbers {𝑠1, … , 𝑠𝑛, 𝑡1, … , 𝑡𝑚}.
We shall place the blocks of lengths {𝑠1, … , 𝑠𝑛, 𝑡1, … , 𝑡𝑚} in their respective boxes from left to right
and the order of placing the blocks will determine the order required by the lemma.

Step 1: Place the block of length 𝑠1 in its box.
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F IGURE B . 2 An example for when the algorithm fails. The values are 𝑠1 = 𝑠2 = 𝑠3 = 1

15
, 𝑠4 = 𝑠 = 1

5
,

𝑡1 = 1

10
, 𝑡2 = 7

50
𝑡3 =

√
3

15
𝑡4 = 3.4−

√
3

15
and 𝑡 = 2

15
. The point of failure is when all possible blocks to be placed after

𝑠4 and 𝑡4 end at the blue dashed lines

Step 2: If there is only one unplaced block of length 𝑡𝑗 , place the block. If there are no more
blocks to be placed in either of the series, end the algorithm. Else, place the smallest block among
the unplaced blocks of length 𝑡𝑗 such that, after placing, the right end of the block does not coin-
cide with any of the right ends of the placed blocks of length 𝑠𝑖 . If no such block exists, replace the
rightmost block in the 𝑠-series with the next smallest unplaced block and repeat Step 2.
Step 3: If the right end of the series of blocks of length 𝑡𝑗 that have already been placed is to the

right of the right end of the series of blocks of length 𝑠𝑖 that have already been placed, go to Step
4. Else, go to Step 2.
Step 4: If there is only one unplaced block of length 𝑠𝑖 , place it. If there are no more blocks

to be placed in either of the series, end the algorithm. Else, place the smallest block among the
unplaced blocks of length 𝑠𝑖 such that, after placing, the right end of the block does not coincide
with any of the right ends of the placed blocks of length 𝑡𝑗 . If no such block exists, replace the
rightmost block in the 𝑡-series with the next smallest unplaced block and repeat Step 4.
Step 5: If the right end of the series of blocks of length 𝑠𝑖 that have already been placed is to the

right of the right end of the series of blocks of length 𝑡𝑗 that have already been placed, go to Step
2. Else, go to Step 4.

When this algorithm runs to completion, we obtain the required ordering. The only possible
case where the algorithm does not run to completion is when all unplaced blocks in the 𝑠-series
have the same length and all unplaced blocks in the 𝑡-series have the same length. At the point
where the algorithm gets stuck, the arrangement looks as in Figure B.2. Since the distance from
the blue dashed line to the right end of the box is an integer multiple of both 𝑠 and 𝑡, 𝑠 and 𝑡 are
rational multiples of each other. Let 𝑠 = 𝑝𝜆 and 𝑡 = 𝑞𝜆. We fill in the remaining blocks without
concerning ourselves with the coinciding separators for the time being.
Now consider the rightmost separator in either of the series whose distance from the right side

of the box is an irrational multiple of 𝜆. Such a separator exists by our initial assumption and we
label it 𝑆.Moving the block immediately to the right of this 𝑆 to the end of its series, and translating
the remaining blocks towards left as shown in Figure B.3, achieves the required placement of the
blocks. This is because the distances of all the separators to the right of 𝑆 from the right end of
the box are originally rational multiples of 𝜆 and this movement moves one set of separators by
an irrational multiple of 𝜆.
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F IGURE B . 3 The shift in the case of our example
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