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Abstract

The past decade has witnessed a growth in the use of knowledge graph tech-
nologies for advanced data search, data integration, and query-answering appli-
cations. The leading example of a public, general-purpose open knowledge net-
work (aka knowledge graph) is Wikidata, which has demonstrated remarkable
advances in quality and coverage over this time. Proprietary knowledge graphs
drive some of the leading applications of the day including, for example, Google
Search, Alexa, Siri, and Cortana. Open Knowledge Networks are exciting: they
promise the power of structured database-like queries with the potential for the
wide coverage that is today only provided by the Web. With the current state of
the art, building, using, and scaling large knowledge networks can still be frus-
tratingly slow. This article describes a National Science Foundation Convergence
Accelerator project to build a set of Knowledge Network Programming Infras-
tructure systems to address this issue.

include DBpedia (Auer et al. 2007), the Google Knowl-
edge Graph (Singhal 2012), UniProt (TheUniProtCon-

The growth of the Wikidata open knowledge network
is one of the remarkable stories of the past decade of
computing. The Wikidata OKN (Vrandeci¢ and Krotzsch
2014), which supplies structured components of Wikipedia
and is also used to power voice agents and structured
search applications, grew from roughly 53M factual state-
ments in 2014 to more than 1.1B in 2020 (Zeng, Sabek,
and Cafarella 2021). Other knowledge graph examples

sortium 2018), MusicBrainz (MusicBrainz 2019), GeoN-
ames (GeoNames 2019), and many others (Suchanek, Kas-
neci, and Weikum 2007; Etzioni et al. 2004; Bizer 2009).

Unfortunately, with the current state of technology,
complex and large knowledge network structures can be
tedious to construct, refine, and use.

Our Knowledge Network Infrastructure NSF Conver-
gence Accelerator project aims to address this situation
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by providing data-oriented software infrastructure for
efficient and effective management of OKNs during their
construction, on-going refinement, and use, as described
below. The project is a collaboration among researchers
at MIT, the University of Michigan, the Allen Institute
for Artificial Intelligence, the University of California at
Berkeley, and the University of Washington.

OKN construction: An important source of OKN
data is human-readable documents. We have constructed
an OKN called CORD-19, which comprises information
on the coronavirus, and was first released in March of
2020, shortly after the virus became widely known. While
extracting information from text has been a long-standing
research area, we demonstrate new techniques that make
two traditional information extraction approaches, viz.,
document processing and author disambiguation, dramat-
ically faster.

OKN refinement: While large sections of OKNs could
be derived from large-scale ML processes, it is also impor-
tant to facilitate narrow, immediate, use case-driven refine-
ments from users with little extraction-related training. We
discuss a novel program-synthesis method that allows non-
programmers to rapidly build novel data ingestors.

OKN use: OKN use is perhaps the broadest of these
challenges. Many use cases (in using them for data sci-
ence processes, or data governance rules, or just informed
data consumption) are slow and tedious because the OKN
creation procedure is opaque. We propose a new software
architecture for building OKNs that simultaneously builds
an annotated and shareable model of the construction
procedure, enabling users to more quickly put OKNs to
good use.

The following three sections describe project activities
and advancements in the above three areas: OKN construc-
tion, OKN refinement, and OKN use.

OKN CONSTRUCTION: CORD-19

Our project has developed functionality to assist in the
rapid construction of OKNs. We will describe the work in
the context of the well-known CORD-19 dataset. In March
of 2020, the Allen Institute for AI, in collaboration with
The White House Office of Science and Technology Pol-
icy and others,! released the CORD-19 dataset, a knowl-
edge graph of publications and preprints on COVID-19
and related topics (Wang et al. 2020). Notably, its initial
release was just a few months after the COVID-19 virus
became known. CORD-19 and its infrastructure compo-
nents, known as Semantic Scholar, have yielded a range
of lessons for our project on how to improve the speed
at which such knowledge graph structures can be con-
structed. We first provide an overview of the CORD-

19 dataset, followed by brief descriptions of two func-
tions/tools that we have developed to speed the construc-
tion of OKNSs: layout-aware document processing and “low-
labor” author disambiguation.

Overview of the CORD-19 dataset

The CORD-19 dataset includes papers from over 3200
journals from both free, online sources and commercial
publishers. It contains bibliographic data such as titles,
authors, venues, and citations. It also includes full-text
content for more than a third of its papers. The dataset
started with 28,000 papers in its first release, and has
steadily grown to contain over 750,000. The resource is
now updated weekly, moving from daily updates during
its peak. The dataset has proved to be successful, with over
3.5 million views and the most upvotes of any data set in
the history of the Kaggle platform, where it was hosted.
CORD-19 has also been used to power the popular TREC-
COVID shared task (Roberts et al. 2020) and a variety of
new public visualization and search tools. A final exciting
outcome of CORD-19 has been the wide variety of differ-
ent derived products of the dataset created by independent
groups from across the Web.!! These derived data items
include links to other knowledge graphs, named entity
tags, and so on.

CORD-19’s rapid development allowed us to identify and
address several concrete artificial intelligence tasks that
are key but also traditionally very slow, as described below.

SciCo: Concept coreference and hierarchy

Consider a computer science researcher hoping to answer
the question “which authors have written the most papers
about pretrained language models and text classification?”
Beyond a bibliographic OKN of authors and papers as in
CORD-19, to answer this kind of question, a system would
need knowledge drawn from the scientific content of the
papers—saying which ones contain mentions of a “pre-
trained language model” and a “text classification” task.
Automatically acquiring this knowledge is challenging for
multiple reasons. First, the system must determine which
scientific entities (e.g., “RoBERTa”) fall into which cate-
gories (“pretrained language model”), and no comprehen-
sive ontology exists for these evolving concepts. Further,
dismabiguation is required, since different papers may
refer to the same concept using different names, and like-
wise the same name may be used to refer to distinct con-
cepts.

To begin to address this challenge, we created SciCo,
a data set for identifying cross-document coreference
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between methods and tasks in the computer science
domain (e.g., that “named entity typing” and “named
entity classification” are the same task), along with hier-
archical relationships between those concepts (e.g., that
a mention of “document classification” entails “text clas-
sification”) (Cattan et al. 2021). SciCo covers an instance
of the recently popular task of cross-document coreference,
except instead of focusing on coreference of events fea-
turing concrete entities (e.g., people, locations) from the
news domain (Cybulska and Vossen 2014), SciCo tack-
les abstract scientific concepts and hierarchical entailment
relationships in addition to coreference. These character-
istics allow SciCo to form a step toward answering the
complex example query in the previous paragraph. Build-
ing on Cattan et al. (2020), we constructed a new annota-
tion interface for our task, developed candidate selectors
to bootstrap mentions for annotators to label, and trained
expert annotators on the task. (The annotation interface
will eventually be integrated into KNPS.) The resulting
data set is three times larger than the comparable ECB+
data set for coreference on the news domain (Cybulska
and Vossen 2014). Baseline algorithms score well below the
level of annotator agreement on the hierarchical task, leav-
ing substantial room for improvement, but we find that
methods that consider both the hierarchical task and the
coreference task jointly outperform disjoint baselines. In
future work, we hope to develop new joint approaches and
also measure whether SciCo can improve question answer-
ing or faceted search in practice.

Layout-aware document processing

Documents in important technical domains like science
and law (as described in the paper by Amaral et al. on
the SCALES project in this special issue) often come in
PDF format. We observed that information extraction from
these documents can benefit from using the layout of the
text, which often signal the semantics of terms. For exam-
ple, key fields like a paper’s title and authors are offset from
the main text, documents use tabular formats to signal
relational data, and so on. Despite the importance of this
signal, most existing NLP processing pipelines and tools
have only considered raw text without considering docu-
ment layouts.

However, recovering and exploiting document layout
information for the CORD-19 dataset turned out to be
a stumbling block to rapid OKN construction. First, the
intensely visual qualities of layout information made col-
lecting human annotations for training data a slow and
burdensome process. Second, there were few existing
transfer learning resources, akin to the various precom-
puted embeddings available for raw text.

We have addressed these layout-centric pinch points in
the OKN construction process in two ways. First, we cre-
ated PAWLS (PDF Annotation with Labels and Structure),
a new annotation tool designed for PDF documents (Neu-
mann, Shen, and Skjonsberg 2021). PAWLS supports label-
ing span-based textual regions, free form visual bounding
boxes, and easy authoring of n-ary relations among differ-
ent visual elements (see Figure 1). We are currently using
PAWLS to label a large, new challenge set for extraction of
bibliographic knowledge from scientific documents.

Second, we created LayoutParser, an open-source library
for applying and customizing deep learning models for
layout-aware tasks such as layout detection and character
recognition (Shen et al. 2021). LayoutParser also includes
a platform for sharing pretrained models and document
digitization pipelines. We also developed an associated
set of techniques for cost-effectively tailoring existing pre-
trained models like BERT or RoBERTa to scientific docu-
ment layout without the need for the expensive additional
layout-aware pretraining required by recent models. Our
techniques rely on the simple idea that scientific layout
typically involves visually distinct groups of tokens (lines
or blocks) that share the same semantic category (title,
author, etc.). One simple technique simply encodes these
groups using indicator tokens in the model’s textual input,
and we show how this technique is able to match the per-
formance of the recent LayoutLM model (Xu et al. 2020)
but with more than an order of magnitude lower training
cost (Shen et al. 2021).

Low-labor author disambiguation

Author disambiguation has been a long-standing problem
in text understanding systems where the system is given
a set of author mentions, including author names and
the papers they are attached to, and the task is to cluster
these into sets of mentions that represent the same real-
world person.

This is a critical, difficult task faced by every biblio-
graphic database. Even state-of-the-art systems may not
achieve high-quality results (Zhang et al. 2018). A num-
ber of algorithms have been proposed (Ferreira, Gongalves,
and Laender 2012). Unfortunately, comparing these algo-
rithms is difficult because they have tended to be evalu-
ated on disparate datasets using different features. As a
result, simply choosing an appropriate author disambigua-
tion strategy for a novel OKN is itself a time-consuming
and exhausting task.

We addressed this challenge by introducing
S2AND (Subramanian et al. 2021), a unified bench-
mark dataset for author disambiguation. S2AND coheres
eight different datasets from the literature into a unified
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FIGURE 1

resource and a single feature set. Our analysis reveals
that the previous data sets tend to cover idiosyncratic por-
tions of the literature, which means that training on the
combination of data in S2AND tends to provide stronger
disambiguation performance when tested on held-out
datasets. As a result, a reference implementation that we
provide, when trained on S2AND, is able to achieve a 50%
error reduction over the production author disambigua-
tion algorithm used within Semantic Scholar. This has
accelerated OKN construction in two ways: by reducing
the work needed to evaluate a given algorithm, and by
simply improving the baseline method, thereby reducing
the salience of a previously difficult design decision.

While S2AND’s features like author affiliations, co-
authors, and paper embeddings (Cohan et al. 2020) can
power reasonable performance using our reference imple-
mentation, there is still ample room for improvement, and
we hope that the availability of S2AND spurs the develop-
ment of new methods.

OKN REFINEMENT

In our view, refining an OKN is a distinct task in the OKN
lifecycle. For a knowledge network to be open and capable
of supporting a range of concrete user-facing applications,
it must be possible to refine the OKN to suit the purpose.
It should not be necessary to run an entirely new data

The PDF Annotation with Labels and Structure (PAWLS) interface for labeling regions of PDF documents

extraction pipeline from scratch, or generate a mass of
new training data for relatively small refinements. It may
also be necessary to fix inconsistencies, or other “bugs,” in
the structure as part of the refinement stage. Our project
aims to provide the necessary toolchains to efficiently
support these tasks.

In particular, we focus on the problem of incremen-
tal data refinement of an OKN in the context of spe-
cific application use cases. An ingestor/incremental cura-
tion/refinement program may be burdensome for even
a data expert to write, but possibly entirely beyond the
reach of most nontechnical people who may nonethe-
less be domain experts or expert app designers. One of
our innovations is a lightweight web data ingestion syn-
thesizer that lets nonprogrammers use data they find
in web pages to quickly and incrementally refine an
OKN.

The rapid OKN refinement system is designed around
three design principles. First, it should allow users to
quickly augment the OKN with web-derived datasets. We
envision users turning to lightweight ingestion in the midst
of OKN-focused work. For example, when developing a
financial application, a user realizes 2020’s exchange rate
data for a particular currency pair has not been added to
the OKN; they find the data on, say FRED, an online eco-
nomic data repository, and import it into the OKN.

Second, it should be accessible to nonprogrammers. The
system is lightweight in the sense that it provides a quick
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and low-effort method to add new datasets, requiring min-
imal training of ML models.

Third, the refinement programs should be customizable
for future use to make this new extended OKN sustainable
over the long haul.

In our approach, we treat the lightweight data refine-
ment problem as two core challenges: (1) web data extrac-
tion and (2) OKN-to-dataset integration. On the web data
extraction side, we take advantage of our team’s prior work
in programming-by-demonstration (PBD) tools (Chasins,
Mueller, and Bodik 2018; Barman et al. 2016). Users write
web data collection scripts by demonstrating how to col-
lect a sample of the data. For example, to demonstrate how
to collect a year of exchange rate information, the user
interacts with the webpage to highlight the first day of
exchange rate information. On the OKN-to-dataset inte-
gration side, we take advantage of the incomplete data
already available in the OKN. For example, if the tool
notices that 70% of entities in a role are of a certain
type, say, “mountains,” then the tool can suggest filter-
ing matches to include only mountain-labeled entities,
or adding the mountain property to entities that lack
it.

Bringing disparate datasets into an integrated knowl-
edge network supports novel dataset integration tools for
ad hoc and long-term data integration. For ad hoc integra-
tion, access to many plausibly linkable datasets allows a
synthesizer to suggest integration programs based on over-
laps in the data and other tests of semantic similarity. In
the longer term, building up a repository of integration
programs and the data they link lets us build a training
set for improving future variants of the synthesizer and
directly reuse difficult but important integration snippets.
The end result is to make it possible for non-coders to
integrate the data they need from across many disparate
sources without the tedious manual effort required today.
This longer-term approach has a synergistic relationship
with the software architecture we describe in the section
below.

FACILITATING OKN USE

As mentioned earlier, and in other articles in this spe-
cial issue, large-scale knowledge networks like Wikidata
are in use in some large consumer-style workloads like
voice assistants and structured web search. However,
other OKNs, such as CORD-19 and other domain-specific
datasets discussed in this issue, suggest more technical
data science-style use cases.

These data science activities need to be accompanied
by high-quality data governance and better-informed data
consumption by applications and users.

The need for a shared data processing
model

A core value proposition of OKNss is the ability to integrate
data contributions from a range of sources. However, the
heterogeneous and cross-institutional nature of this under-
taking also raises hard challenges for downstream use
cases. For example, in the case of CORD-19, the data sci-
entists outside the CORD-19 team who create derived data
products may not know when an upstream paper extrac-
tion is modified. Concerning governance, the CORD-19
publishers cannot enforce rules about the dataset’s use,
such as requiring downstream users to place derived
data products in the public domain. Finally, a data con-
sumer who sees a potential problem in a visualization
derived from CORD-19 will not have an easy time deter-
mining if there was a mapping bug, an extraction error,
or simply a problem in the original published academic
paper.

In all of these cases, users require a shared model of
the data production process itself. Data scientists need
to have a cross-institutional provenance chain that links
upstream paper modifications to their downstream data
science results. Governance systems need to connect the
policies of data publishers with the actions of data users
who might be far away in both time and organizationally.
Informed data consumption entails answering meaningful
questions about how the data were created.

Today, creating this shared model is incredibly time-
consuming and difficult. A version of it exists implicitly
in close-knit teams with substantial amounts of shared
knowledge. Some systems, like relational databases, effec-
tively maintain their own understandable data models,
but they are tool-specific. Existing data catalog systems do
allow for systematic deposit of metadata, but they rarely
stretch across institutions, and the cost of explicit manual
curation is quite high.

Across tools, teams, and organizations, there is no col-
laborative software system today that allows data works
to affordably create this shared model. Instead, they have
no choice but to create it via “data archaeology”: emails,
phone calls, shared design documents, and other manual
one-off efforts. The lack of an explicit cross-institutional
model of data processes in most cases makes the usage
side of OKNs perhaps the slowest of all of our three
thrusts.

Any shared model of data production processes will
need to balance fidelity against the need to be com-
prehensible to everyone. Like OKNs or any database,
this model will be imperfect. However, we argue that a
broad-but-flawed consensus picture of the world of data
processes would dramatically accelerate the tasks we’ve
described.
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Somewhat ironically, the socially driven Wikidata-style
OKN production process is probably the best (although
not the only) method we have for this kind of cross-
institutional data creation. We describe a system we call
the Knowledge Network Programming System, or KNPS,
that attempts to use OKN-style methods to construct a
shared picture of the data production process, and thereby
accelerate all of the above use-oriented OKN tasks.

KNPS basics

Just as the Wikidata OKN models general-interest objects,
and as MusicBrainz models the world of recorded music,
KNPS aims to build a model of data production processes:
files, databases, functions, schemas, images, pipelines,
users, and so on. Edges in this graph represent relation-
ships between objects: perhaps a User created a File, or a
Database ran-filter to create a second Database. Fact triples
can be added into the system by both social and automated
means. For example, a user might explicitly upload a File;
also, a filesystem crawler might automatically upload a File
description. As with current OKNs, the system does not
impose sharp limits on what kinds of nodes or properties
can be admitted; rather, it aims to build a fact set that is as
correct and complete as possible.

KNPS differs from typical OKNs in one critical way:
users and automated processes can execute Function
objects in the graph. Doing so will create new objects that
are themselves stored in the graph. Current entity types
include CSVs, images, JSON files, PDFs, functions, and
relational schemas. Like a traditional OKN, adding new
types is straightforward.

Walkthrough

We can now present a short narrative describing how
KNPS works today:

Step 1. User Andrew from Northwestern has created an
entry that describes a database about the US court system
in 2016. The webpage that describes this entry is shown on
the left of Figure 2. The upper-left corner of the page shows
metadata that is stored for any KNPS object: its unique
identifier, the creator, creator’s institution, creation date,
title, and so on. In this case, the user has uploaded the
database’s entire contents, but doing so is not required (and
in some cases may not be possible). There is no conceptual
limit to the number of objects that can be created; if suc-
cessful, the system should be able to handle on the order of
hundreds of billions. The middle of the page shows the raw
data content: the names of cases, whether they are crimi-
nal or civil, their duration, and so on.

Step 2. User Jiayun from Michigan has created a new
entry, seen in the right-hand image in Figure 2. This is an
analytical result derived from the database on the left. It
shows the average duration of cases in federal districts in
New York state. As above, it has a unique identifier that is
intended to last forever. Creating this data object involved
running a SQL query against object X27; because this query
was run by KNPS, it was easy to automatically add the rel-
evant provenance-style graph properties linking X27 and
X36. This aggregate query is interesting, but is a bit dry.

Step 3. User Mike from MIT has created the
visualization—KNPS object X39—seen in Figure 3. It
is a choropleth visualization of the result from object
X36. This view of the object shows both the image and
its provenance. This provenance graph was computed
by following incoming provenance-related edges in the
KNPS knowledge graph. Every node represents an object
in the KNPS graph; the edges are a subset of the available
graph properties.

Even this simple visualization required a range of inputs
to build: At the upper-left, the “Case Duration for New
York Courts by District” node is object X36. At the upper-
right, “US Judicial Districts by County” is a dataset that
maps from the names of judicial districts to county names.
This was combined with the above object via the “Join
CSV” stored function (itself a KNPS node). KNPS ran this
function inside a hosted Singularity container. The “FIPS
Codes for US Counties” node represents a dataset that
maps from county labels to the numerical FIPS identifica-
tion system. This was combined with the above interme-
diate result with the “Add FIPS” stored function (again,
another KNPS node). Near the lower-right, “GeoJSON US
Country FIPS data” maps from numerical FIPS identifiers
to geographic polygons. When combined with the preced-
ing data via the “Choropleth Map” function, it yielded
object X39.

Constructing this map required four datasets (the origi-
nal judicial data, plus three on the way to the visualization)
and involved at least three people from three different
institutions. Of course, this could have been performed
by standard tools available today, with files shared via
email attachments. But since it was done via KNPS, a
data scientist can examine the upstream provenance to
see how the visualization was generated; a governance
system can ensure that all of the visualization’s inputs
were datasets the organization is legally entitled to use; an
informed data consumer can verify that the results reflect
queries on high-quality datasets. A governance system can
ensure that all of the visualization’s inputs were datasets
the organization is legally entitled to use. An informed
data consumer can verify that the results reflect queries
on high-quality datasets. In the future, the system could
even color-code upstream inputs according to how widely



AI MAGAZINE

KNPS Home DataObjects Functions Users SearchPage

http:/flocalhost:3000/dobi/X27

Created by user Andrew Paley northwestern.edu) on

2016 Court Cases - All Districts (X27)

15:20110.118711
This object has type /datatypes/csv

Current Version (v1): 2021-06-06T15:20:10.119268 - Downloaded from Scales

Overview  Dependencies  Versions  Related Objects  Suggestions  Delete

label full_label abbreviation case id case_type case_name

Southern District of .. United States Distri. .. Fla. 1-16-cv-20001-FAM...  civil Redilich v. Coral Gab.
Western District of .. United States Distri.. WD. Tex. 3-16-cr-00086-DBl...  criminal USA v. Ramos-Rivera
District of Maryland United States Distri D. Md. 1-16-cv-00003-GL. civil Butler v. USA - 2255
Northern District of United States Distri N.D. Ga. 1-16-cv-00001-MH civil Bynum v. Clayton C.
District of Kansas United States Distri D. Kan. 2-16-cv-02001-JWL..  civil Williams v. Frito-Lay.

FIGURE 2

2016-01-01

y/

Case Duration for New York Courts by District (X36)
http://localhost:3000/dobj/X36
Created by user Jiayun Zou (alicezou@umich.edu) on 2021-06-06T15:24:02.684787
This object has type /datatypes/csv

Current Version (v1): 2021-06-06T15:24:02.685367 - Mean of Case Durations for each NY court district

Overview = Dependencies  Versions  Related Objects  Suggestions  Delete

date_filed

2016-01-01

2016-01-01

2016-01-01

2016-01-01

abbreviation case_duration
S.DNY. 196.352990...
EDNY. 247.1327895...
N.D.NY. 241.5691056...
W.D.NY. 311.7576923...

At left, a Knowledge Network Programming System (KNPS) database that describes federal court cases. At right, an

analytical result derived from the judicial database, represented forever under a different unique KNPS identifier

KNPS Home Data Objects Functions Users Search Page

Map of Case Duration by District in New York (X39)

http://localhost:3000/dobj/X39
Created by user Michael Cafarella (michjc@csail.mit.edu) on 2021-06-06T15:28:51.097663
This object has type /datatypes/img

Current Version (v1): 2021-06-06T15:28:51.098263 - Mapped by county (same value for each county in district)

Overview Dependencies Versions Related Objects Suggestions Delete

ase Duration for New York Courts by District
g/ US. Judicial Districts by County

Case Duration for New York Courts by District with Counties

X FIPS Codes for US Counties
Case Duration for New York Courts by District with County-level FIPS
GeoJSON US County FIPS data

Map of Case Duration by District in New York

FIGURE 3

used they are, in an effort to approximate reputation and
trustworthiness.

In contrast, in a traditional workflow, any metadata
would have stopped at each institutional boundary. This
would have forced all of users back into the standard,
slow data archaeology process so common today. The
shared data process model is what makes effective cross-
institutional work fast.

We have tested the system on a range of workflows,
including an end-to-end implementation of the CORD-
19 pipeline.

Map of Case Duration by District in New York

http://localhost:3000/dobj/X39?v=43
Object X39 from Michael Cafarella (michjc@csail.mit.edu)

© CARTO

Visualization of the analytical result, with captured provenance

Practical deployment and “system
extraction”

Our narrative above shows a set of collaborating users
who intentionally upload data and code to the system. For
users willing (and able) to do so, KNPS will be a powerful
tool for creating the shared model we think is needed for
the full range of use applications. However, we realize
that due to a number of reasons (data privacy, transfer
challenges, and so on), many users cannot be expected to
perform the uploads needed to take advantage of KNPS’s
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strict provenance features. This will be disappointing: the
system’s value lies in its universality.

As aresult, KNPS also allows for automated data upload
and curation. For example, client software can automat-
ically scan laptops, databases, or Amazon S3 buckets. A
single node in KNPS can be potentially discovered by
observing changes on a concrete local filesystem. A shar-
ing event between two users can be potentially discovered
by observing one user’s bytes appear identically in another
user’s Downloads directory. Provenance events can be
potentially recovered by watching local process lists or
logs.

This automatic approach will likely yield a more com-
plete, but lower-quality, version of the shared data process-
ing model. It also promises a strange and novel kind of
information extraction research: deriving a complete, cor-
rect model of the planet’s history of data operations while
observing only the partial and imperfect signals available
via standard system instrumentation. We think this is an
exciting new area for extraction research with a clear path
to making OKN activity better.

CONCLUSIONS

Open knowledge networks have the potential to power
many interesting and impactful applications by integrating
data and information about real-world entities from a large
and diverse variety of source. Harnessing the power of such
a structure require infrastructure for OKN construction,
refinement, and use.
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