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The past decade has witnessed a growth in the use of knowledge graph
technologies for advanced data search, data integration, and query-answering
applications. The leading example of a public, general-purpose open
knowledge network (aka knowledge graph) is Wikidata, which has
demonstrated remarkable advances in quality and coverage over this time.
Proprietary knowledge graphs drive some of the leading applications of the
day including, for example, Google Search, Alexa, Siri, and Cortana. Open
Knowledge Networks are exciting: they promise the power of structured
database-like queries with the potential for the wide coverage that is today
only provided by the Web. With the current state of the art, building, using,
and scaling large knowledge networks can still be frustratingly slow. This
article describes a National Science Foundation Convergence Accelerator
project to build a set of Knowledge Network Programming Infrastructure
systems to address this issue.

Keywords: knowledge network, knowledge graph, infrastructure, extraction,
synthesis

The growth of the Wikidata open knowledge network is one of the remarkable
stories of the past decade of computing. The Wikidata OKN (Vrandečić and
Krötzsch 2014), which supplies structured components of Wikipedia and is also
used to power voice agents and structured search applications, grew from roughly
53M factual statements in 2014 to more than 1.1B in 2020 (Zeng, Sabek, and
Cafarella 2021). Other knowledge graph examples include DBpedia (Auer et al.
2007), the Google Knowledge Graph (Singhal 2012),
UniProt (TheUniProtConsortium 2018), MusicBrainz (MusicBrainz 2019),
GeoNames (GeoNames 2019), and many others (Suchanek, Kasneci, and Weikum
2007)(Etzioni et al. 2004) (Bizer 2009).

Unfortunately, with the current state of technology, complex and large
knowledge network structures can be tedious to construct, refine, and use.

Our Knowledge Network Infrastructure NSF Convergence Accelerator project
aims to address this situation by providing data-oriented software infrastructure
for efficient and effective management of OKNs during their construction, on-going
refinement, and use, as described below. The project is a collaboration among
researchers at MIT, the University of Michigan, the Allen Institute for Artificial
Intelligence, the University of California at Berkeley, and the University of
Washington.

OKN Construction --- An important source of OKN data is human-readable
documents. We have constructed an OKN called CORD-19, which comprises
information on the coronavirus, and was first released in March of 2020, shortly
after the virus became widely known. While extracting information from text has
been a long-standing research area, we demonstrate new techniques that make two
traditional information extraction approaches, viz., document processing and
author disambiguation, dramatically faster.

OKN Refinement: While large sections of OKNs could be derived from large-scale
ML processes, it is also important to facilitate narrow, immediate, use case-driven
refinements from users with little extraction-related training. We discuss a novel
program-synthesis method that allows non-programmers to rapidly build novel
data ingestors.

OKN Use: OKN use is perhaps the broadest of these challenges. Many use cases (in
using them for data science processes, or data governance rules, or just informed
data consumption) are slow and tedious because the OKN creation procedure is
opaque. We propose a new software architecture for building OKNs that
simultaneously builds an annotated and shareable model of the construction
procedure, enabling users to more quickly put OKNs to good use.

The following three sections describe project activities and advancements in the
above three areas: OKN Construction, OKN Refinement, and OKN Use.
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OKN Construction: CORD-19
Our project has developed functionality to assist in the rapid construction of OKNs.
We will describe the work in the context of the well-known CORD-19 dataset. In
March of 2020, the Allen Institute for AI, in collaboration with The White House
Office of Science and Technology Policy and others1, released the CORD-19 dataset,
a knowledge graph of publications and preprints on COVID-19 and related topics
(Wang et al. 2020). Notably, its initial release was just a few months after the
COVID-19 virus became known. CORD-19 and its infrastructure components,
known as Semantic Scholar, have yielded a range of lessons for our project on how
to improve the speed at which such knowledge graph structures can be
constructed. We first provide an overview of the CORD-19 dataset, followed by
brief descriptions of two functions/tools that we have developed to speed the
construction of OKNs: layout-aware document processing and ”low-labor” author
disambiguation.

Overview of the CORD-19 Dataset
The CORD-19 dataset includes papers from over 3,200 journals from both free,
online sources and commercial publishers. It contains bibliographic data such as
titles, authors, venues, and citations. It also includes full text content for more than
a third of its papers. The dataset started with 28,000 papers in its first release, and
has steadily grown to contain over 750,000. The resource is now updated weekly,
moving from daily updates during its peak. The dataset has proved to be
successful, with over 3.5 million views and the most upvotes of any data set in the
history of the Kaggle platform, where it was hosted. CORD-19 has also been used
to power the popular TREC-COVID shared task (Roberts et al. 2020) and a variety
of new public visualization and search tools. A final exciting outcome of CORD-19
has been the wide variety of different derived products of the dataset created by
independent groups from across the Web.2 These derived data items include links
to other knowledge graphs, named entity tags, and so on.

CORD-19’s rapid development allowed us to identify and address several
concrete artificial intelligence tasks that are key but also traditionally very slow, as
described below.

SciCo: Concept Coreference and Hierarchy
Consider a computer science researcher hoping to answer the question ”which
authors have written the most papers about pre-trained language models and text
classification?” Beyond a bibliographic OKN of authors and papers as in CORD-19,
to answer this kind of question a system would need knowledge drawn from the
scientific content of the papers---saying which ones contain mentions of a
”pre-trained language model” and a ”text classification” task. Automatically
acquiring this knowledge is challenging for multiple reasons. First, the system
must determine which scientific entities (e.g. “RoBERTa”) fall into which categories
(“pre-trained language model”), and no comprehensive ontology exists for these
evolving concepts. Further, dismabiguation is required, since different papers may
refer to the same concept using different names, and likewise the same name may
be used to refer to distinct concepts.

To begin to address this challenge we created SciCo, a data set for identifying
cross-document coreference between methods and tasks in the computer science
domain (e.g., that “named entity typing” and “named entity classification” are the
same task), along with hierarchical relationships between those concepts (e.g., that
a mention of ”document classification” entails ”text classification”) (Cattan et al.
2021). SciCo covers an instance of the recently popular task of cross-document
coreference, except instead of focusing on coreference of events featuring concrete
entities (e.g., people, locations) from the news domain (Cybulska and Vossen 2014),
SciCo tackles abstract scientific concepts and hierarchical entailment relationships
in addition to coreference. These characteristics allow SciCo to form a step toward
answering the complex example query in the previous paragraph. Building on
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(Cattan et al. 2020), we constructed a new annotation interface for our task,
developed candidate selectors to bootstrap mentions for annotators to label, and
trained expert annotators on the task. (The annotation interface will eventually be
integrated into KNPS.) The resulting data set is three times larger than the
comparable ECB+ data set for coreference on the news domain (Cybulska and
Vossen 2014). Baseline algorithms score well below the level of annotator
agreement on the hierarchical task, leaving substantial room for improvement, but
we find that methods that consider both the hierarchical task and the coreference
task jointly outperform disjoint baselines. In future work we hope to develop new
joint approaches and also measure whether SciCo can improve question answering
or faceted search in practice.

Layout-Aware Document Processing
Documents in important technical domains like science and law (as described in
the paper by Amaral et al on the SCALES project in this special issue) often come in
PDF format. We observed that information extraction from these documents can
benefit from using the layout of the text, which often signal the semantics of terms.
For example, key fields like a paper’s title and authors are offset from the main text,
documents use tabular formats to signal relational data, and so on. Despite the
importance of this signal, most existing NLP processing pipelines and tools have
only considered raw text without considering document layouts.

However, recovering and exploiting document layout information for the
CORD-19 dataset turned out to be a stumbling block to rapid OKN construction.
First, the intensely visual qualities of layout information made collecting human
annotations for training data a slow and burdensome process. Second, there were
few existing transfer learning resources, akin to the various precomputed
embeddings available for raw text.

We have addressed these layout-centric pinch points in the OKN construction
process in two ways. First, we created PAWLS (PDF Annotation with Labels and
Structure), a new annotation tool designed for PDF documents (Neumann, Shen,
and Skjonsberg 2021). PAWLS supports labeling span-based textual regions, free
form visual bounding boxes, and easy authoring of n-ary relations among different
visual elements (see Figure 1). We are currently using PAWLS to label a large, new
challenge set for extraction of bibliographic knowledge from scientific documents.

Figure 1: The PAWLS Interface for Labeling Regions of PDF Documents.

Second, we created LayoutParser, an open-source library for applying and
customizing deep learning models for layout-aware tasks such as layout detection
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and character recognition (Shen et al. 2021). LayoutParser also includes a platform
for sharing pre-trained models and document digitization pipelines. We also
developed an associated set of techniques for cost-effectively tailoring existing
pretrained models like BERT or RoBERTa to scientific document layout without the
need for the expensive additional layout-aware pretraining required by recent
models. Our techniques rely on the simple idea that scientific layout typically
involves visually-distinct groups of tokens (lines or blocks) that share the same
semantic category (title, author, etc). One simple technique simply encodes these
groups using indicator tokens in the model’s textual input, and we show how this
technique is able to match the performance of the recent LayoutLM model (Xu et al.
2020) but with more than an order of magnitude lower training cost (Shen et al.
2021).

Low-Labor Author Disambiguation
Author disambiguation has been a long-standing problem in text understanding
systems where the system is given a set of author mentions, including author
names and the papers they are attached to, and the task is to cluster these into sets
of mentions that represent the same real-world person.

This is a critical, difficult task faced by every bibliographic database. Even
state-of-the-art systems may not achieve high quality results (Zhang et al. 2018). A
number of algorithms have been proposed (Ferreira, Gonçalves, and Laender 2012).
Unfortunately, comparing these algorithms is difficult because they have tended to
be evaluated on disparate datasets using different features. As a result, simply
choosing an appropriate author disambiguation strategy for a novel OKN is itself a
time-consuming and exhausting task.

We addressed this challenge by introducing S2AND (Subramanian et al. 2021), a
unified benchmark dataset for author disambiguation. S2AND coheres eight
different datasets from the literature into a unified resource and a single feature set.
Our analysis reveals that the previous data sets tend to cover idiosyncratic portions
of the literature, which means that training on the combination of data in S2AND
tends to provide stronger disambiguation performance when tested on held-out
datasets. As a result, a reference implementation that we provide, when trained on
S2AND, is able to achieve a 50% error reduction over the production author
disambiguation algorithm used within Semantic Scholar. This has accelerated OKN
construction in two ways: by reducing the work needed to evaluate a given
algorithm, and by simply improving the baseline method, thereby reducing the
salience of a previously-difficult design decision.

While S2AND’s features like author affiliations, co-authors, and paper
embeddings (Cohan et al. 2020) can power reasonable performance using our
reference implementation, there is still ample room for improvement, and we hope
that the availability of S2AND spurs the development of new methods.

OKN Refinement
In our view, refining an OKN is a distinct task in the OKN lifecycle. For a
knowledge network to be open and capable of supporting a range of concrete
user-facing applications, it must be possible to refine the OKN to suit the purpose.
It should not be necessary to run an entirely new data extraction pipeline from
scratch, or generate a mass of new training data for relatively small refinements. It
may also be necessary to fix inconsistencies, or other ”bugs”, in the structure as
part of the refinement stage. Our project aims to provide the necessary toolchains
to efficiently support these tasks.

In particular, we focus on the problem of incremental data refinement of an OKN
in the context of specific application use cases. An ingestor/incremental
curation/refinement program may be burdensome for even a data expert to write,
but possibly entirely beyond the reach of most non-technical people who may
nonetheless be domain experts or expert app designers. One of our innovations is a
lightweight web data ingestion synthesizer that lets non-programmers use data
they find in web pages to quickly and incrementally refine an OKN.
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The rapid OKN refinement system is designed around three design principles.
First, it should allow users to quickly augment the OKN with web-derived datasets.
We envision users turning to lightweight ingestion in the midst of OKN-focused
work. For example, when developing a financial application, a user realizes 2020’s
exchange rate data for a particular currency pair has not been added to the OKN;
they find the data on, say FRED, an online economic data repository, and import it
into the OKN.

Second, it should be accessible to non-programmers. The system is lightweight in
the sense that it provides a quick and low-effort method to add new datasets,
requiring minimal training of ML models.

Third, the refinement programs should be customizable for future use to make
this new extended OKN sustainable over the long haul.

In our approach, we treat the lightweight data refinement problem as two core
challenges: (1) web data extraction and (2) OKN-to-dataset integration. On the web
data extraction side, we take advantage of our team’s prior work in
programming-by-demonstration (PBD) tools (Chasins, Mueller, and Bodı́k 2018)
(Barman et al. 2016). Users write web data collection scripts by demonstrating how
to collect a sample of the data. For example, to demonstrate how to collect a year of
exchange rate information, the user interacts with the webpage to highlight the first
day of exchange rate information. On the OKN-to-dataset integration side, we take
advantage of the incomplete data already available in the OKN. For example, if the
tool notices that 70% of entities in a role are of a certain type, say, ‘‘mountains,”
then the tool can suggest filtering matches to include only mountain-labeled
entities, or adding the mountain property to entities that lack it.

Bringing disparate datasets into an integrated knowledge network supports
novel dataset integration tools for ad hoc and and long term data integration. For ad
hoc integration, access to many plausibly linkable datasets allows a synthesizer to
suggest integration programs based on overlaps in the data and other tests of
semantic similarity. In the longer term, building up a repository of integration
programs and the data they link lets us build a training set for improving future
variants of the synthesizer and directly reuse difficult but important integration
snippets. The end result is to make it possible for non-coders to integrate the data
they need from across many disparate sources without the tedious manual effort
required today. This longer-term approach has a synergistic relationship with the
software architecture we describe in the section below.

Facilitating OKN Use
As mentioned earlier, and in other articles in this special issue, large-scale
knowledge networks like Wikidata are in use in some large consumer-style
workloads like voice assistants and structured web search. However, other OKNs,
such as CORD-19 and other domain-specific datasets discussed in this issue,
suggest more technical data science-style use cases.

These data science activities need to be accompanied by high-quality data
governance and better-informed data consumption by applications and users.

The Need for a Shared Data Processing Model

A core value proposition of OKNs is the ability to integrate data contributions from
a range of sources. However, the heterogeneous and cross-institutional nature of
this undertaking also raises hard challenges for downstream use cases. For
example, in the case of CORD-19, the data scientists outside the CORD-19 team
who create derived data products may not know when an upstream paper
extraction is modified. Concerning governance, the CORD-19 publishers cannot
enforce rules about the dataset’s use, such as requiring downstream users to place
derived data products in the public domain. Finally, a data consumer who sees a
potential problem in a visualization derived from CORD-19 will not have an easy
time determining if there was a mapping bug, an extraction error, or simply a
problem in the original published academic paper.
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In all of these cases, users require a shared model of the data production process
itself. Data scientists need to have a cross-institutional provenance chain that links
upstream paper modifications to their downstream data science results.
Governance systems need to connect the policies of data publishers with the
actions of data users who might be far away in both time and organizationally.
Informed data consumption entails answering meaningful questions about how
the data was created.

Today, creating this shared model is incredibly time-consuming and difficult. A
version of it exists implicitly in close-knit teams with substantial amounts of shared
knowledge. Some systems, like relational databases, effectively maintain their own
understandable data models, but they are tool-specific. Existing data catalog
systems do allow for systematic deposit of metadata, but they rarely stretch across
institutions, and the cost of explicit manual curation is quite high.

Across tools, teams, and organizations, there is today no collaborative software
system that allows data works to affordably create this shared model. Instead, they
have no choice but to create it via ”data archaeology”: emails, phone calls, shared
design documents, and other manual one-off efforts. The lack of an explicit
cross-institutional model of data processes in most cases makes the usage side of
OKNs perhaps the slowest of all of our three thrusts.

Any shared model of data production processes will need to balance fidelity
against the need to be comprehensible to everyone. Like OKNs or any database,
this model will be imperfect. However, we argue that a broad-but-flawed consensus
picture of the world of data processes would dramatically accelerate the tasks
we’ve described.

Somewhat ironically, the socially-driven Wikidata-style OKN production
process is probably the best (although not the only) method we have for this kind
of cross-institutional data creation. We describe a system we call the Knowledge
Network Programming System, or KNPS, that attempts to use OKN-style methods
to construct a shared picture of the data production process, and thereby accelerate
all of the above use- oriented OKN tasks.

KNPS Basics
Just as the Wikidata OKN models general-interest objects, and as MusicBrainz
models the world of recorded music, KNPS aims to build a model of data
production processes: files, databases, functions, schemas, images, pipelines, users,
and so on. Edges in this graph represent relationships between objects: perhaps a
User created a File, or a Database ran-filter to create a second Database. Fact triples
can be added into the system by both social and automated means. For example, a
user might explicitly upload a File; also, a filesystem crawler might automatically
upload a File description. As with current OKNs, the system does not impose sharp
limits on what kinds of nodes or properties can be admitted; rather, it aims to build
a fact set that is as correct and complete as possible.

KNPS differs from typical OKNs in one critical way: users and automated
processes can execute Function objects in the graph. Doing so will create new
objects that are themselves stored in the graph. Current entity types include CSVs,
images, JSON files, PDFs, functions, and relational schemas. Like a traditional
OKN, adding new types is straightforward.

Walkthrough
We can now present a short narrative describing how KNPS works today:

Step 1. User Andrew from Northwestern has created an entry that describes a
database about the US court system in 2016. The webpage that describes this entry
is shown on the left of Figure 2. The upper-left corner of the page shows metadata
that is stored for any KNPS object: its unique identifier, the creator, creator’s
institution, creation date, title, and so on. In this case, the user has uploaded the
database’s entire contents, but doing so is not required (and in some cases may not
be possible). There is no conceptual limit to the number of objects that can be
created; if successful, the system should be able to handle on the order of hundreds
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of billions. The middle of the page shows the raw data content: the names of cases,
whether they are criminal or civil, their duration, and so on.

Figure 2: At left, a KNPS database that describes federal court cases. At right, an
analytical result derived from the judicial database, represented forever under a
different unique KNPS identifier

Step 2. User Jiayun from Michigan has created a new entry, seen in the right-hand
image in Figure 2. This is an analytical result derived from the database on the left.
It shows the average duration of cases in federal districts in New York state. As
above, it has a unique identifier that is intended to last forever. Creating this data
object involved running a SQL query against object X27; because this query was
run by KNPS, it was easy to automatically add the relevant provenance-style graph
properties linking X27 and X36. This aggregate query is interesting, but is a bit dry.

Step 3. User Mike from MIT has created the visualization --- KNPS object X39 ---
seen in Figure 3. It is a choropleth visualization of the result from object X36. This
view of the object shows both the image and its provenance. This provenance
graph was computed by following incoming provenance-related edges in the
KNPS knowledge graph. Every node represents an object in the KNPS graph; the
edges are a subset of the available graph properties.

Even this simple visualization required a range of inputs to build:
• At the upper-left, the ”Case Duration for New York Courts by District” node is

object X36.
• At the upper-right, ”US Judicial Districts by County” is a dataset that maps from

the names of judicial districts to county names. This was combined with the
above object via the ”Join CSV” stored function (itself a KNPS node). KNPS ran
this function inside a hosted Singularity container.

• The ”FIPS Codes for US Counties” node represents a dataset that maps from
county labels to the numerical FIPS identification system. This was combined
with the above intermediate result with the ”Add FIPS” stored function (again,
another KNPS node).

• Near the lower-right, ”GeoJSON US Country FIPS data” maps from numerical
FIPS identifiers to geographic polygons. When combined with the preceding
data via the ”Choropleth Map” function, it yielded object X39.
Constructing this map required four datasets (the original judicial data, plus

three on the way to the visualization) and involved at least three people from three
different institutions. Of course, this could have been performed by standard tools
available today, with files shared via email attachments. But since it was done via
KNPS, a data scientist can examine the upstream provenance to see how the
visualization was generated. A governance system can ensure that all of the
visualization’s inputs were datasets the organization is legally entitled to use. An
informed data consumer can verify that the results reflect queries on high-quality
datasets. In the future, the system could even color-code upstream inputs
according to how widely-used they are, in an effort to approximate reputation and
trustworthiness.

In contrast, in a traditional workflow, any metadata would have stopped at each
institutional boundary. This would have forced all of users back into the standard,
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Figure 3: Visualization of the analytical result, with captured provenance

slow data archaeology process so common today. The shared data process model is
what makes effective cross-institutional work fast.

We have tested the system on a range of workflows, including an end-to-end
implementation of the CORD-19 pipeline.

Practical Deployment and ”System Extraction”

Our narrative above shows a set of collaborating users who intentionally upload
data and code to the system. For users willing (and able) to do so, KNPS will be a
powerful tool for creating the shared model we think is needed for the full range of
use applications. However, we realize that due to a number of reasons (data
privacy, transfer challenges, and so on), many users cannot be expected to perform
the uploads needed to take advantage of KNPS’s strict provenance features. This
will be disappointing: the system’s value lies in its universality.

As a result, KNPS also allows for automated data upload and curation. For
example, client software can automatically scan laptops, databases, or Amazon S3
buckets. A single node in KNPS can be potentially discovered by observing
changes on a concrete local filesystem. A sharing event between two users can be
potentially discovered by observing one user’s bytes appear identically in another
user’s Downloads directory. Provenance events can be potentially recovered by
watching local process lists or logs.

This automatic approach will likely yield a more complete, but lower-quality,
version of the shared data processing model. It also promises a strange and novel
kind of information extraction research: deriving a complete, correct model of the
planet’s history of data operations while observing only the partial and imperfect
signals available via standard system instrumentation. We think this is an exciting
new area for extraction research with a clear path to making OKN activity better.

Conclusions

Open knowledge networks have the potential to power many interesting and
impactful applications by integrating data and information about real-world
entities from a large and diverse variety of source. Harnessing the power of such a
structure require infrastructure for OKN Construction, Refinement, and Use.
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