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Abstract
Jointly analyzing transcriptomic data and the existing biological networks can
yield more robust and informative feature selection results, as well as better
understanding of the biological mechanisms. Selecting and classifying node
features over genome-scale networks has become increasingly important in
genomic biology and genomic medicine. Existing methods have some critical
drawbacks. The first is they do not allow flexible modeling of different sub-
types of selected nodes. The second is they ignore nodes with missing values,
very likely to increase bias in estimation. To address these limitations, we pro-
pose a general modeling framework for Bayesian node classification (BNC) with
missing values. A new prior model is developed for the class indicators incor-
porating the network structure. For posterior computation, we resort to the
Swendsen-Wang algorithm for efficiently updating class indicators. BNC can
naturally handle missing values in the Bayesian modeling framework, which
improves the node classification accuracy and reduces the bias in estimating
gene effects. We demonstrate the advantages of our methods via extensive sim-
ulation studies and the analysis of the cutaneous melanoma dataset from The
Cancer Genome Atlas.
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1 INTRODUCTION

Feature selection is a fundamental problem in high-dimensional data analysis. Existing biological networks, including
biological pathways and molecular interactions, have been found to be helpful for depicting the biological relation-
ship between the features. In the field of transcriptomics, each node in the biological network corresponds to a feature
measured in the high-dimensional data. Researchers are interested in classifying the network node features in different
categories according to their biological characteristics and behavior in the transcriptomics data. We refer to this procedure
as node classification on the network.

Node classification is different from the traditional differential expression framework which calculates false discovery
rates, that is, posterior probabilities of differential expression using parametric or nonparametric density estimations,
without considering biological relations between features.1,2

For the classification of network nodes into “selected” and “unselected” categories, some filtering algorithms were
developed in the machine learning and bioinformatics fields, without much consideration of statistical inference.3-6 In the
statistics field, the main approach for network-based feature selection is built under the parametric/regression framework,
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such as References 7-19, where model structures are developed to capture the dependency of genes by using various
penalties that smooth the regression coefficients of the features over the network, or applying different priors utilizing
the structure of the network.

Bayesian hierarchical models have been developed to cluster genes in complex high-dimensional data.20-22 We have
previously developed the Bayesian network feature finder (BANFF),23 a Bayesian nonparametric method for selection of
network nodes.24 Unlike the regression-based methods, BANFF allows any type of association between features and out-
come variables, or even testing behavior of the features without an outcome variable. It achieves this goal by conducting
the analysis in two steps. First, a test statistic is generated for each node in a univariate analysis, which can be supervised
if an outcome variable is involved in the analysis. Second, unsupervised node classification is conducted using a Bayesian
nonparametric approach that takes into account both the dependency structure on the network and the test statistic of
each node.

While BANFF is suitable for analyzing data where the association of nodes with an outcome variable is considered, it
can also handle some situations that existing regression-based approaches cannot. Some examples include: (1) there is no
outcome variable, and some intrinsic properties of the nodes are summarized into a test statistic;24 (2) the study design
is complex and case-control type regression methods are not suitable, such as those involving longitudinal or functional
measurements. However, BANFF still has some major limitations. First, it assumes the test statistics of the null distri-
bution follow a symmetric distribution; while in many applications the null distribution of test statistics appear to be
asymmetric. Second, it lumps up-regulated and down-regulated genes into a single group and assumes they behave sym-
metrically. Third, it does not handle missing values in a systematic modeling approach, thus it may lose power to detect
signals while increasing the false positive rates. Fourth, the posterior computation algorithm may suffer slow convergence
in some applications.

In this work, we address these issues by developing a more flexible framework for Bayesian node classification (BNC).
BNC allows an asymmetric null distribution, as well as different levels of deviation from the null, for example, differ-
ent degree of deviation for down-regulated and up-regulated genes. Different from BANFF, BNC adopts more efficient
posterior computation algorithm, the Swendsen-Wang algorithm, and it can naturally handle missing values.

Missing data is an important issue in the network-based gene expression analysis. Here by missingness we refer to the
lack of observation on certain nodes across all samples, which is a common situation in gene expression data.25 laid the
foundation of missing mechanisms and provided ideas on how to handle missingness. However, most of the approaches
do not handle the missing of entire rows in the data well. In our motivating dataset, among the genes with at least one
connection, around 6% are not measured, and another 14% are observed but of a low and unreliable expression level
for statistical testing. We treat them as nodes with missing observations in the network. As a result, the occurrence of
missingness makes our problem even more challenging. Ignoring such nodes and their edges, as all existing methods do,
causes severe loss of network structure and biases the results. Thus handling missing nodes in the network is of great
importance to our problem, due to the fact that missing nodes are possible to be either down-regulated or up-regulated
genes, and/or serve to communicate information via their edges with observed genes (Figure 1).

F I G U R E 1 The impact of missing gene nodes in the network. (A) The missing gene is itself an up-regulated gene, it would be excluded
if missing genes are removed from data analysis; (B) the missing gene serves as a “bridge” for information exchange. If it is simply removed,
the light red node located on the left side would not be able to be recalled as up-regulated gene
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Our proposed BNC is a nonparametric Bayesian method without imposing any parametric assumptions on the
distributions of the test statistics for each class. Instead, we use the Dirichlet process mixture (DPM) model. DPM is widely
used and extensively studied from the literature (see Reference 26 for an overview of DPM). To specify the prior for the
network node specific class indicators, BNC adopts a weighted Potts prior, which generalized the Ising prior from two
categories to multi-categories that can satisfy the three-class feature classification problem. Our proposed BNC can be
seen as an extension of the local false discovery rate control rule proposed by Efron et al27 to adopt the extra information
of the network and classify network nodes. We developed an R package BNC (https://github.com/kangjian2016/BNC) to
implement the proposed method.

The remainder of the manuscript is organized as follows. In Section 2, we describe the proposed model and the prior
specifications. In Section 3, we present the posterior computation algorithms. In Section 4, we compare the performance of
the proposed method with the traditional methods via extensive simulation studies. In Section 5, we analyze the cutaneous
melanoma dataset and discuss biologically meaningful results.

2 BAYESIAN NODE CLASSIFICATION

2.1 The model

Consider a network consisting of n nodes. At each node i(i = 1,… ,n), we obtain a node-specific test statistic, denoted
ri. Let C = {cij} be the adjacency matrix characterizing the gene network configuration, where cij = 1 if genes i and j are
biologically connected and cij = 0 otherwise. In gene expression differentiation analysis, each node represents a gene,
and ri is obtained for testing gene behaviors. There are three common gene behaviors: “down-regulated,” “up-regulated,”
and “not differentiated expressed,” to which we refer as the “null genes.” Let zi ∈ {−1, 1, 0} indicate the latent class for
node i and values −1, 1, and 0 represent “down-regulated,” “up-regulated,” and “null” genes, respectively. We consider a
Bayesian nonparametric model:

[ri|(𝜇i, 𝜎
2
i )] ∼ N(𝜇i, 𝜎

2
i ), (1)

[(𝜇i, 𝜎
2
i )|zi] ∼ G−1I(zi = −1) + G0I(zi = 0) + G1I(zi = 1), (2)

Gk ∼ (G0k, 𝜏k), (3)

where Gk(k = −1, 0, 1) is a random probability measure defined on R × [0,∞) following the Dirichlet process with base
measure G0k and precision parameter 𝜏k. The domain of G0k is the same as Gk. We choose the conjugate priors, that is,
(𝜇, 𝜎2) ∼ G0k is equivalent to 𝜇|𝜎2 ∼ N(𝜇0k, 𝜎

2𝜙0k) and 𝜎2 ∼ IG(a0k, b0k).
To incorporate this topology structure, we assign a weighted Potts prior to z = (z1,… , zn), denoted by

wPotts(𝝅,𝝆,w,C), where 𝝅 = (𝜋−1, 𝜋0, 𝜋1) with 𝜋k > 0, 𝝆 = (𝜌−1, 𝜌0, 𝜌1) with 𝜌k ≥ 0 and w = (w1,… ,wn) with wi ≥ 0.
Then the probability mass function is proportional to

exp

[ n∑
i=1

(𝜔̃i log(𝜋zi) + 𝜌zi

∑
i≠j
𝜔jcijI[zi = zj])

]
. (4)

The parameter 𝝅 contains prior knowledge about the distribution of the class indicator z. We assume that 𝜋1 + 𝜋−1 <

𝜋0 implying that signals are sparse. Similar to the Ising model, parameter 𝜌k controls the global strength of the neighbor-
hood similarity. When 𝜌k = 0, zi is independent with zj for j in the neighborhood of i. However, when 𝜌k > 0, zi has a larger
probability to take the value of k when zj = k for j in the neighborhood of i. Across the whole gene network, the larger the
𝜌k is, the stronger the tendency of genes to share the same memberships with neighbors. Weight wi can be elicited from
the prior biological knowledge. A larger weight wi implies a stronger prior belief of the similarity between gene i and its
neighbors locally. The neighbor weight w̃i =

∑n
j=1cijwj∕

∑n
i=1cij represents the average of weights from neighbors for gene i.

2.2 Missing data problem and model representation

Our goal is to make inference on the latent class zi from the observed network node-specific test statistics. However, as the
test statistics are not always fully observed in real data analysis, we introduce a missing data indicator si for gene i, si = 1 if
ri is missing, si = 0 if ri is observed. The missing test statistics introduce great challenges in classifying the features, thus,

https://github.com/kangjian2016/BNC
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we utilize gene network information to help in classifying gene nodes. For gene i, the objective is to make inference about
zi when its test statistics ri, missing indicator si and gene network information are provided. We assume the distribution of
missing test statistics is the same with the distribution of the test statistics been observed. To be specific, given gene i in the
class of k, that is, zi = k, we further introduce a cluster index gi of gene i, gi represents the cluster index indicating which
component in the mixture model that ri is associated with. In particular, ri given gi is assumed to be normally distributed
with mean 𝜇̃gi

and variance 𝜎̃2
gi

, denoted by N(𝜇̃gi
, 𝜎̃2

gi
). We write 𝜽̃g = (𝜇̃gi

, 𝜎̃2
gi
) and assume they are independently drawn

from a base measure called G0k. The 𝜽̃ denotes all the 𝜽̃gs for simplicity. Given zi = k, gi follows a discrete distribution with
parameter ak,qk, which means gi can take values in ak = (ak

1, a
k
2,… , ak

Lk
) with probability qk = (qk

1, q
k
2,… , qk

Lk
), denoted as

Discrete(ak,qk). In fact, the actual values of gi given zi = k can be arbitrary as long as they can be differentiated from each
other, thus, we assume ak = (1, 2,… ,Lk) without loss of generality. The probability qk follows a Dirichlet distribution
with parameters (𝜏k∕Lk, 𝜏k∕Lk,… , 𝜏k∕Lk). Note that the total number of components Lk for all k = −1, 0, 1 are unknown,
this extended DPM model is nonparametric in nature. In summary, we have the following Bayesian hierarchical
model:

ri|gi, si = 0, 𝜽̃ ∼ N(𝜇̃gi
, 𝜎̃2

gi
),

gi|zi = k,qk ∼ Discrete(ak,qk),

𝜽̃g ∼ G0k for g ∈ ak,

qk ∼ Dirichlet(𝜏k1Lk∕Lk),
z ∼ wPotts(𝝅,𝝆,w,C) (5)

where test statistics {ri ∶ si = 0} and the network configuration C are observed data. The latent class z is of our primary
interest for Bayesian inference.

2.3 Methods for handling missing data

When the test statistics r are partially observed, the nodes with missing r values can still serve to pass information between
their neighboring nodes. More importantly, some nodes with missing r values can still belong to the significant classes,
and their neighboring nodes with observed r values can provide evidence. In order to infer the class labels of nodes with
missing r values, we conduct inference on the missing r values of such nodes. The test statistics r can be partitioned
into two parts r = (rmis, robs) with rmis = {ri ∶ si = 1} and robs = {ri ∶ si = 0}. Similarly, we can also partition the cluster
indices into the observed component and the missing component as g = (gmis, gobs). The element-wise representation of
the missing component of the test statistics is rmis = (rmis,1,… , rmis,m) and the cluster indices are gmis = (gmis,1,… , gmis,m)
where m is the number of missing nodes in the network.

Under the fully Bayesian inference framework, the missing values are one type of latent variables in the
model. We can make posterior inference on the joint distribution of rmis and all the other latent quantities in
the model. From the model representation (5), test statistics are conditionally independent given their cluster
indices and density specifications, which means the conditional distribution for rmis given robs, g, z, 𝜽̃ only depends
on gmis, 𝜽̃:

P(rmis|robs, gobs, gmis, zobs, zmis, 𝜽̃) = P(rmis|gmis, 𝜽̃) = Πm
i=1P(rmis,i|gmis,i, 𝜽̃)

This further implies that in the posterior computation algorithm (see Section 3) when there are missing gene nodes in
the network, we only need to introduce one more step to impute the missing test statistics rmis,i, i = 1,… ,m within each
iteration. Assume the superscript represents the results from the previous iteration tth, for the (t + 1)th iteration, we only
need to draw a imputed value for r(t+1)

mis,i from N(𝜇(t)
gmis,i

, 𝜎2(t)
gmis,i

).
We also propose a fast imputation approach by approximating the fully Bayesian inference based on the assumption

that neighboring genes are more likely to share the same functionalities. We can integrate out all the latent quantities in
the model and impute rmis,i using robs based on the conditional expectation:

E(rmis,i|robs) = ∫ rmis,iP(rmis,i|robs)drmis,i
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where

P(rmis,i|robs) = ∫ ∫ P(rmis,i|zmis,i, 𝜽̃)P(zmis,i,𝜽|robs)d̃zmis,id𝜽̃.

Suppose we have N samples of (zmis,i, 𝜽̃) from the posterior distribution given robs, denoted as (z(1)mis,i,𝜽
(1)),… , (̃z(N)

mis,i,𝜽
(N)),

then P(rmis,i|robs) can be approximated by N−1∑N
n=1P(rmis,i|z(n)mis,i,𝜽

(n)).
As indicated by model (4), when𝝆 > 0, zmis,i has a larger probability to take the value of k when zj = k for j in the neigh-

borhood of i. From our experience, we can approximate P(rmis,i|robs) by a discrete distribution P(rmis,i = rj|robs) = 1∕|nbr(i)|
for j ∈ nbr(i), where nbr(i) represents the neighborhood of i with rj observed. Then E(rmis,i|robs) can be approximated by∑

j∈nbr(i) rj∕|nbr(i)| which is exactly the average of neighboring observed test statistics. We refer to this approach as the
nearest-neighbor imputation method.

3 POSTERIOR COMPUTATION

The posterior computation algorithm has three major steps in each iteration: (1) Impute missing test statistics rmis (if
any) either by conditional sampling (fully Bayesian inference) or by the nearest-neighbor imputation method; (2) Update
class indicators z by the Swendsen-Wang algorithm, and (3) Update 𝜽̃ by refitting a DPM to estimate densities for each
regulation type. Others including Lk, gk are omitted temporarily for simplicity. For updating the hyperparameters in the
Potts model for z, we adopt the method of Double Metropolis-Hastings (DMH) sampler proposed by Liang.28

3.1 Swendsen-Wang algorithm

It has been widely used in the Potts model. It works by introducing another set of auxiliary variables denoted as W =
{Wij, i ∼ j}. Wij is defined only when gene pairs i and j are connected. Given zi, zj, Wij is uniformly distributed between
0 and exp(𝜌zi𝜔jcijI[zi = zj]). Then the full conditional distribution for z given W can be simplified as proportional to
P(r|z, 𝜽̃) exp

[∑n
i=1𝜔̃i log(𝜋zi)

]
.

The posterior sampling scheme has two steps: the network partitioning step (sample W given z) and the network
relabeling step (sample z given W). The objective for network partitioning is to cut the network into smaller connected
subnetworks so that the genes located within the same subnetwork share the same class indicators. Then in the network
relabeling step, the class indicators of all the genes located within the same subnetwork can be flipped simultaneously.
Comparing to the Gibbs sampler when it updates the genes each one at a time, the Swendsen-Wang algorithm advantages
itself by a more efficient group level updating scheme and a better convergence.

3.2 DPM density updating

Conditional on the class indicators, we update gi and 𝜽̃i given g1,… , gi−1, 𝜽̃1,… , 𝜽̃i−1. Utilizing algorithm 8 in Reference
29, we first summarize the frequency for each of the total l unique g values ever appeared in set (g1,… , gi−1), denoted
as (1, 2,… , l) with cluster parameters (𝜽̃1,… , 𝜽̃l). It is ni,g =

∑i−1
j=1I[gj = g], g = 1, 2,… , l. Then the prior probability of gi

equals to any of the ever-appeared cluster index g is given by ni,g∕(i − 1 + 𝜏k), g ∈ (1, 2,… , l), if the sampled gi equals to
any appeared cluster index g, then we set 𝜽̃i = 𝜽̃g; on the other hand, the prior probability of gi being a new index is given
by 𝜏k∕(i − 1 + 𝜏k), g ∉ (1, 2,… , l), if the sampled gi is a new index, then we sample a new set of parameter 𝜽̃g from base
measure G0k. Given the cluster index g, ri follows a normal distribution with parameter 𝜽̃g. In every iteration, we maintain
the order of Gk(k = −1, 0, 1) by swapping the labels if necessary.

3.3 Choice of initial values

In order to speed up the convergence in Markov chain Monte Carlo, we specify the initial values for G0k, (k = −1, 0, 1),
z, g, 𝜽̃, and L based on the DPM density fitting of the test statistics r without the network information, we develop the
Kullback-Leibler-divergence-based hierarchical ordered density clustering algorithm (KL-HODC). In the beginning, we
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T A B L E 1 Simulation settings

Down-regulated class Null class Up-regulated class

Gaussian N(−0.6, 0.2) N(0, 0.2) N(0.6, 0.2)

Gamma Gamma (shape=2, scale=0.5) N(0, 0.4) Gamma (shape=2, scale=0.3)

Truncated within (−∞, 2], shifted −1.9 Truncated within (−∞, 1.8], shifted +1.7

Log-normal log N(0, 1) N(0, 0.4) log N(0, 1)+2.2

Truncated within (−∞, 2], shifted −1.9 Truncated within (−∞, 2.3], shifted +2.2

order all the small cluster density parameters 𝜽̃g, 𝜽̃g = (𝜇g, 𝜎
2
g ) based on their mean value 𝜇g locations. Each time, we pick

several clusters to form a proposed null. We calculate the KL distance between this proposed null and a prior null which
is pre-determined by biological knowledge. The combination of the clusters with the smallest KL distance is selected and
added as the initial value for the null densities.

Once all the clusters are assigned to three classes, z, g, 𝜽̃,L can be determined as well. When the biology knowledge
is not available for the prior null, it can be estimated by a truncated bi-Gaussian distribution using the central part of the
test statistics such as statistics within 15% and 75% quantiles.

KL-HODC is a hierarchical density clustering algorithm that substantially improves the existing algorithm HODC.24

The KL-HODC incorporates the biological knowledge as a prior null density and it is able to handle the multi-class
feature classification problem, while HODC can only be used for selecting features, not further differentiating their
subtypes.

4 SIMULATION STUDIES

We conduct extensive simulation studies to evaluate the performance of the proposed methods for the complete data case
and the missing data case.

4.1 Settings

The network used in the simulation studies is a subnetwork of the real biological network used in real data analysis
downloaded from the High-quality INTeractomes (HINT) database.30 It is formed by a total of 776 nodes with a median
degree of 3, a mean degree of 5.2 and a maximum degree of 30. The underlying true gene regulation types are assigned
based on the merged communities by the fast greedy modularity optimization algorithm.31 We assign the genes located
in the largest community as the null class and then we randomly assign the down-regulated or the up-regulated class to
the other two. For the null genes, their test statistics are independently drawn from a normal distribution, and for the
up-regulated or the down-regulated genes, their test statistics are independently drawn from one of the following three
distributions: a normal, a gamma, or a lognormal (see Figure 2 for an illustration of one simulated dataset; see Table 1
for the designs of the simulation settings). The missing locations are randomly selected among the genes with network
degrees less than 6, which is the 66% quantile of the degrees of the nodes in the network. We simulate 20% missingness
since it is the missing rate in the real dataset.

4.2 Evaluation criteria

For each simulation setting, we simulate 50 datasets in total, indexed by s = 1,… , 50. A classification rate of the genes
with true class indicator zi = a being classified as b for a, b = −1, 0, 1 is defined by

∑50
s=1I [̂z(s)i = b, zi = a]∕50, where ẑ(s)i is

the estimate of zi in the simulated dataset s. Denote TP-down, TP-up and TN the true positive rate averaged across all sim-
ulations for the down-regulated (a = b = −1), up-regulated (a = b = 1), and null genes (a = b = 0), respectively. Denote
FN-down and FN-up the averaged false negative rates for the down-regulated and up-regulated genes. Additionally,
FP-down and FP-up are the averaged false positive rates into the down-regulated and up-regulated classes, respectively.
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F I G U R E 2 An illustration of the distributions of test statistics under each simulation setting

And finally, FDR is the false discovery rate defined as the proportion of false discoveries among all the discoveries on
average.

4.3 Hyperprior specifications

For hyperprior settings in the Potts prior model (4), we set weights 𝜔j = 1, j = 1, 2,… ,n. Then w̃i = 1, i = 1, 2,… ,n. We
set 𝝆 = (1.001, 0.497, 0.998), 𝝅 = (0.15, 0.70, 0.15) as an output from DMH of a 10 000-iteration run with 5000 burn-ins.
The proposal used in DMH for (𝝅,𝝆) is an independent random walk proposal for 𝝅 and 𝝆: for each element of 𝝆, it is a
truncated Gaussian distribution with a mean of 0, a SD of 0.03, a lower-bound of 0, and a upper-bound of 1.5; for 𝝅, since
it must satisfy 𝜋2 = 1 − 𝜋1 − 𝜋3 and 𝜋1 + 𝜋3 < 0.5, thus we assume 𝜋1 and 𝜋3 follow the truncated Gaussian distribution
with a mean of 0, a SD of 0.03, a lower-bound of 0 and a upper-bound of 0.5. As for the hyperparameters for the DPM
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model fitting, For each regulation type k, we assume the base measure G0k = P(𝜇,Σ) is conjugate Normal-inverse-Gamma
(NIWG) distribution with parameters (𝜇0k, c0k, S0k, 𝜓0k) and the scale parameter c0k in the normal part of the base
measure follows a gamma distribution with parameters (a0k, b0k). In general, we denote the distribution G0k as
NIWG(𝜇0k, S0k, 𝜓0k, a0k, b0k). For this prior model, we first apply the normal mixture modeling for model-based clustering
method (Mclust by Fraley and Raftery32) where the parameter indicating the total number of groups is set to be 3. Then
we use the estimated mean and variance from each group k as 𝜇0k and S0k. And we set 𝜙0k = 3, a0k = 1, b0k = 100, 𝜏k = 3.

4.4 Simulation results for the complete observed case

We first consider the cases when all the test statistics are fully observed. For each of these simulation settings, we compare
our method (BNC) with the Bayesian nonparametric mixture model for selecting genes (BANFF) by Zhao et al.24 and
the false discovery rate controlling procedures for identifying differentially expressed genes (locfdr) by Efron.1 The locfdr
method does not consider the network structure and only uses the gene-level test statistics.

BANFF is a Bayesian nonparametric gene and gene-network selection method, it can also utilize the network infor-
mation but it is mainly for selecting the activated-state genes from the null genes. In order to modify BANFF for this
feature classification problem, we first classify genes into three groups by MCLUST—Gaussian finite mixture mod-
els fitted via EM algorithm.32 Then we flip the sign of the test statistics of the genes assigned to the down-regulated
class so that ideally those genes combined with the up-regulated class should be of the active state. Then the final-
ized class indicators are assigned based on the results from BANFF being flipped back. For the locfdr, it is a kernel
density-based non-parametric method for selecting differentially expressed genes without considering the network. To
be specific, we applied the central matching for estimating the null densities and then calculated the estimated local
false discovery rate for each gene. We adopt a commonly used cutoff of 0.2 so that the genes with the posterior prob-
ability of being in the null class below 0.2 will be identified as differentially expressed, and the null class otherwise.
Then the differentially expressed genes can be further classified by comparing the relative locations of their test statistics
with 0.

Table 2 indicates that for Gaussian simulations, under each regulation type, BNC performs better than the BANFF and
locfdr. BNC achieves classification accuracies as high as 0.87 for the down-regulated genes, 0.91 for the up-regulated genes,
and 0.97 for the null genes. At the same time, BNC achieves the false positive rates as lower as 0 for the down-regulated
genes, 0.03 for the up-regulated genes, 0.12 for the null genes to be classified as down-regulated genes, 0.09 for the null
genes to be classified as up-regulated genes. Overall, BNC can achieve higher accuracies and lower false positive and false
negative rates. BANFF performs worse in the true negative rates and false positive rates. locfdr performs well at selecting
the null genes, with a true negative rate of 1. However, it gives a false negative rate as high as 0.49 for the down-regulated
genes and 0.5 for the up-regulated genes, indicating the procedure is overly conservative.

Comparing the classification accuracies for Gamma and log-normal settings, BNC outperforms all the others in all
the measures. The BANFF performs worse than the BNC. It is because the proposed method can flexibly model the
gene subtypes so that it allows for different levels of deviation from the null for down-regulated and up-regulated genes.

T A B L E 2 Algorithm performance for complete data cases

Generative model Methods TP-down TP-up TN FP-down FP-up FN-down FN-up FDR

Gaussian BNC 0.87 0.91 0.97 0 0.03 0.12 0.09 0.03

BANFF 0.75 0.87 0.62 0.03 0.36 0.2 0.13 0.3

locfdr 0.5 0.51 1 0 0 0.49 0.5 0.01

Gamma BNC 0.92 0.96 0.99 0 0.01 0.08 0.04 0.01

BANFF 0.5 0.89 0.69 0 0.31 0.38 0.11 0.2

locfdr 0.57 0.71 0.98 0.01 0.01 0.43 0.29 0.03

Log-normal BNC 0.9 0.96 0.99 0 0.01 0.1 0.04 0.01

BANFF 0.73 0.92 0.55 0.05 0.04 0.17 0.08 0.31

locfdr 0.59 0.72 0.99 0.01 0.01 0.41 0.28 0.03
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The worse performance of locfdr compared to BNC indicates that by utilizing network information, better classification
accuracies can be obtained.

4.5 Simulation results for the missing data case

We further compare our method with the others when there are missing node observations in the network. We only
focus on the symmetric cases as described in Table 1, and compare five combinations of methods to perform feature
classification and to handle missingness simultaneously: (1) BNC+Bayes: we apply the BNC for feature classification
and the conditional sampling for fully Bayesian inference to impute the missing test statistics. (2) BNC+NN: we apply
the BNC for feature classification combined with the nearest neighbor imputation method to impute the missing test
statistics. (3) BNC+NArm: we first remove all the missing nodes and their edges in the network and then use BNC
for feature classification. In this case, only the estimated class indicators for gene nodes with observed test statis-
tics can be obtained. (4) BANFF+NN: we utilize the BANFF for feature classification and use the nearest neighbor
imputation method to impute the missing test statistics. (5) BANFF+NArm: we apply BANFF to the reduced network
comprised of nodes with observed test statistics. Similar to BNC+NArm, only replace the BNC with BANFF for feature
classification.

To summarize the classification accuracies, we separate different types of nodes to calculate the averaged rates: (1)
Missing: only average the rates among the genes whose test statistics are missing. (2) Observed: only average the rates
among all observed genes. (3) Total: average among all the genes nodes.

From Table 3, we observe that BNC+NN performs the best in general. The overall classification accuracies for the
all the down-regulated, the up-regulated and the null genes to be correctly classified are 0.87, 0.87, 0.89. The averaged
false positive rates for the null genes being classified as down-regulated or up-regulated are 0 and 0.01. The averaged
false negative rates for the down-regulated or the up-regulated genes are 0.12 and 0.13, respectively. The estimated false
discovery rate is 0.12. This performance keeps consistent among missing genes and the observed genes. Compared to
BNC+Bayes, BNC+NN is slightly better. It is because the nearest-neighbor imputation scheme is more flexible than the
model-based Bayesian posterior inferences since Bayesian posterior sampling needs to specify a proper prior. The Bayesian
model we are utilizing might not characterize very well the predictive distribution of the missing test statistics given
the observed test statistics across the network while utilizing the information from the nearest neighbors might help to
improve.

The accuracies will drop if we use the BANFF for feature classification regardless of which schemes are used
for handling the missingness. It indicates that our proposed algorithm outperforms BANFF when there are miss-
ing observations in the network, which is consistent with the simulation results in fully observed cases. More-
over, regardless of which feature classification algorithms we utilize, either BNC or BANFF, comparing NArm

T A B L E 3 Algorithm performance for missing data cases

Algorithm Gene nodes type TP-down TP-up TN FP-down FP-up FN-down FN-up FDR

BNC+Bayes Missing 0.73 0.75 0.77 0.01 0.22 0.26 0.25 0.27

Observed 0.92 0.9 0.78 0 0.22 0.05 0.1 0.2

Total 0.88 0.88 0.78 0.01 0.22 0.1 0.12 0.21

BNC+NN Missing 0.83 0.81 0.88 0.01 0.11 0.17 0.19 0.15

Observed 0.88 0.88 0.89 0 0.01 0.11 0.12 0.11

Total 0.87 0.87 0.89 0 0.01 0.12 0.13 0.12

BNC+NArm Observed 0.87 0.88 0.66 0.01 0.33 0.07 0.12 0.3

BANFF+NN Missing 0.6 0.79 0.48 0.04 0.48 0.26 0.21 0.47

Observed 0.7 0.86 0.41 0.05 0.54 0.19 0.14 0.46

Total 0.68 0.85 0.42 0.05 0.53 0.21 0.15 0.46

BANFF+NArm Observed 0.67 0.82 0.5 0.05 0.45 0.23 0.18 0.43
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with the imputation methods Bayes or NN among the observed gene nodes, we observe that the classifica-
tion accuracies drop and the false positive/false negative rates increase, and so does the averaged false discov-
ered rates. Thus, imputation methods are recommended for feature classification problem with missing gene
observations.

5 SURVIVAL ANALYSIS OF CUTANEOUS MELANOMA

5.1 Dataset

We analyze the cutaneous melanoma dataset from The Cancer Genome Atlas (TCGA),33 downloaded from the cBio Can-
cer Genomics Portal.34 There are 478 patient records by the time we downloaded. After removing six patient records
that lack gene expression profiles, one patient record with a negative survival month due to possible errors, one patient
record that is missing survival status, and one patient record that is missing the sample type which is one of the covari-
ates we are interested in, we use the remaining 469 patient records in a Cox proportional hazard model to assess the
association between the expression levels of individual genes and survival time. In our model, we control for three
confounders: age at initial pathologic diagnosis (minimum 15, median 58, mean 58.08, max 90, and 8 are missing),
gender (180 females and 290 males), and sample type (366 of metastatic, 102 of primary tumor, and 1 of additional
metastatic).

We downloaded the protein-protein interactions in Homo sapiens from the High-quality INTeractomes (HINT)
database by Das and Yu.30 After data cleaning, there are a total of 11 662 genes and 87 482 edges. Then we
apply the community detection algorithm by Clauset et al31 to extract the largest connected subnetwork as our
network input. To be specific, the largest connected component contains 10 484 genes while the remaining genes
form 1097 tiny islands (1 island is of five genes, 2 islands are of four genes, 5 are of three genes, 61 of two
genes, and 1028 are formed by a single gene node). By excluding these tiny islands, the network contains a total
of 10 484 nodes, with a degree distribution of a minimum of 1, a median of 3, a mean of 8.328, and a maximum
of 400.

For the gene expression profile, we first map all 20 530 unique gene names to 18 978 Entrez IDs. Among the 10 484
genes in the network, 9833 can be mapped to an expression profile. There are 651 (6.21%) genes that do not have any
expression profile and another 1433 (13.67%) genes that are considered unreliably measured based on their low maxi-
mum expression level across the samples. Removing such genes leads to a total missing rate of 19.88% in our real data
analysis. For each gene included in the analysis, we first fitted the Cox proportional hazard model while controlling
for the three confounders. The z-statistic for the gene was extracted from the model and used in the node classification
analysis.

Similar to the simulations, for the Potts prior model, the hyperparameters in Equation (4), we prefix the
𝜔j = 1, j = 1, 2,… ,n so that the w̃i = 1, i = 1, 2,… ,n. Set 𝝆 = (1.003, 0.479, 0.988) and 𝝅 = (0.15, 0.70, 0.15) as an
output from the DMH of 10 000 iterations with 5000 burn-in. Other hyperparameters settings are the same
with the settings used for simulations. In the following discussion, we refer to genes that significantly increase
the risk of death as high-risk genes, and genes that significantly decrease the risk of death as low-risk
genes.

5.2 Results

Our method finds 144 high-risk genes and 263 low-risk genes. Compared to ours, the locfdr method finds 217 low-risk
genes by central matching estimation for a symmetric null while it does not identify any differentially expressed genes by
applying a split normal version of central matching estimation for an asymmetric null. Thus, for the following discussion,
we will focus on the comparison between the proposed method and the locfdr utilizing central matching estimation
(see Figure 3A) even though the null density is asymmetric and the mode of the distribution is away from zero for the
motivating dataset.

Using the test statistics alone, combined with the common assumption of symmetric null distribution, locfdr identifies
significant genes only on the low-risk side (see Figure 3B). On the other hand, when the existing network is utilized, the
proposed method can detect both high-risk and low-risk genes.
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F I G U R E 3 Histogram of the test statistics, with estimated null density and frequencies of the selected genes. (A) Results by BNC; (B)
results by locfdr with center matching estimation for a symmetric null. Local false discovery rate is controlled at 0.2 for both methods. Blue,
low-risk genes; red, high-risk genes

To facilitate interpretation, we further find modules by applying the fast greedy community detection algorithm
among the selected nodes and their one-step neighbors.31 There is a total of 56 modules selected, 16 of which contain
more than 10 selected genes.

Here we present some example modules and discuss their biological functions in relation to the clinical out-
come. The module shown in Figure 4A contains 48 selected genes. There are 39 low-risk genes and 9 high-risk
genes in this module. Analyzing the biological functions of the selected genes using GOstats,35 we find the
biological function of the low-risk genes are focused in the area of immune responses, with 18 of the 39 genes
falling into the biological process of “regulation of immune response,” and various related functions. The prognosis
of melanoma is closely related to tumor-infiltrating lymphocytes.36 A cross-platform meta-analysis has shown that the
increased expression of immune function-related genes in melanoma is associated with longer patient survival, and B
and T cells are enriched in melanoma biopsies from patients with favorable outcome.37 The low-risk genes selected
from this bulk RNAseq data likely represent higher level of immune cell infiltration in patients with better survival
outcome.

The module shown in Figure 4B contains 23 high-risk genes and 17 low-risk genes. An interesting finding is
that the top gene ontology biological process being over-represented by the high-risk genes is transmembrane trans-
port, with eight of the 23 genes falling into this category. Six of the high-risk genes are involved in ion transport.
Although transmembrane transporters have not been systematically studied in melanoma progression, recent devel-
opments in other cancer have indicated their role in cancer prognosis.38 For example, among the genes selected by
BNC, gene 3764 (KCNJ8) encodes a potassium channel. It is found to be over-expressed in nasopharyngeal carci-
noma (NPC) tissues as well as in esophageal cancer.39,40 The gene 6520 (SLC3A2) encodes the heavy chain of the
transmembrane protein CD98 that regulates intracellular calcium levels and transports L-type amino acids. It has
been linked to Ras-driven skin carcinogenesis and prognosis of lung cancer.41,42 Gene 11 660 (ABCC9) is a member
of the ATP-binding cassette transporter (ABC transporter) family. Recently the down-regulation of ABC transporters,
including ABCC9, has been observed in prostate cancer.43 Gene 255 738 (PCSK9) is involved in peptide precursors
trafficking. It has been shown that tumor development influences the host lipid metabolism through PCSK9-mediated
degradation of hepatic LDLR, and PCSK9 is suppressed in hepatocellular carcinoma.44,45 Combined with these evi-
dence in other types of cancer, our results indicate a link between transmembrane transporters and the prognosis of
melanoma.
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F I G U R E 4 Two example modules of selected genes. (A) An example module with 39 low-risk genes and 9 high-risk genes; (B) An
example module with 23 high-risk genes and 17 low-risk genes

Six of the 17 low-risk genes belong to cytokine-mediated signaling pathways, which are critical in leukocyte traf-
ficking and immune functions.46 Gene 643 (CXCR5), a member of the CXC chemokine receptor family, is expressed in
mature B-cells and Burkitt’s lymphoma. The loss of CXCR5 in naive T cells is linked to the metastatic dissemination of
melanoma into lungs.47 Gene 3434 (IFIT1) is an interferon-induced protein. Overexpression of IFIT1 has been shown to
predict improved outcome in newly diagnosed glioblastoma.48 Gene 4261 (CIITA) regulates class II major histocompati-
bility complex gene transcription. CIITA overexpression facilitates engulfment of the T-cell material by melanoma cells,
which can blunt the anti-tumor response.49 Gene 10 563 (CXCL13) is a cytokine that belongs to the CXC chemokine
family. Its expression is correlated with the densities of tumor high endothelial venules (HEVs), which allows the recruit-
ment of tumor-infiltrating lymphocytes (TILs).50 CXCL13 is also found to be one of a group of diagnostic markers of
melanoma.51 Gene 25 939 (SAMHD1) is a deoxyribonucleoside triphosphate triphosphohydrolase that decreases dNTP
pools, which in turn affects DNA replication fidelity. Although it has not been well studied in melanoma, SAMHD1 is
found to be frequently mutated in colon cancers, resulting in decreased SAMHD1 activity and thereby facilitating cancer
cell proliferation.52

Figure 5 shows a module where two nodes with missing observations are identified as low-risk genes. These two
genes, 3135 (HLA-G) and 3133 (HLA-E) have both been implicated in melanoma immunomodulation. HLA-G can inhibit
the function of T cells, natural killer (NK) cells, and dendritic cells. It has been documented that HLA-G is inconsis-
tently expressed in melanoma, and its expression can provide the malignant cells a mechanism of escaping immune
surveillance.53,54 Similarly, HLA-E expression on the cell surface facilitates the melanoma cells’ escape from CTL and
NK cell surveillance.55 Among all the 13 genes in this module, 10 are annotated to the biological process of regulation of
immune response, which is consistent with our earlier discussion about the association of immune function-related genes
with patient survival.36,37 The figure also shows that by test statistic alone, three of the 13 genes are not selected by locfdr.
They are selected by BNC because their connections in the network offer extra evidence that they are related to the clinical
outcome. These three genes are 910 (CD1B), 3811 (KIR3DL1), 3823 (KLRC3). It has been found that down-regulating CD1
molecules including CD1B on infiltrating dendritic cells by secreting IL-10 are associated with metastasis of melanoma.56

Both KIR3DL1 and KLRC3 are receptors expressed on NK cells, the induction of which shows the potential of suppressing
solid melanoma tumors.57

Besides being biologically relevant, the selected modules each has good predictive power on the clinical outcome. Here
we compare concordance statistics which is commonly used in survival analysis to check on model validity. Concordance
statistics (C-statistics) is defined as the probability of agreement between any two randomly chosen observations. If a
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F I G U R E 5 A module containing two nodes with missing observations being identified as low-risk genes by BNC

T A B L E 4 Module group sizes and concordant scores

Module ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total number of
genes nodes

116 101 86 61 57 40 40 37 28 27 26 26 24 21 21 20

High-risk genes
by BNC

24 9 23 7 9 10 7 1 3 2 4 8 6 4 2 0

Low-risk genes
by BNC

29 39 17 24 15 12 11 16 11 10 8 8 8 5 8 11

Low-risk genes
by locfdr

13 16 7 8 11 5 6 8 7 7 4 3 1 2 0 7

Low-risk genes
by both
methods

12 13 6 8 9 5 5 8 7 7 3 3 1 2 0 7

C-statistics by
BNC

0.7491 0.7363 0.7311 0.7113 0.7196 0.7146 0.7097 0.6846 0.6788 0.6902 0.688 0.6996 0.6928 0.7006 0.6695 0.6806

C-statistics by
locfdr

0.6702 0.6504 0.6648 0.6899 0.6761 0.6635 0.6688 0.649 0.6497 0.661 0.6558 0.6679 0.6557 0.6612 NA 0.6667

model predicts a higher risk of death of one patient when it is observed with a shorter survival time compared to the other,
then we define this pair as “agree,” otherwise as “disagree.” Since ties of the predicted and the observed survival time
may occur, we refer to those pairs are “tie.” Then, the C-statistics is defined as P(agreement) = (agree + tied∕2)∕(agree +
disagree + tied) for all possible comparable pairs.58 By saying “comparable,” it is defined as the opposite to “uncompara-
ble.” The “uncomparable” pairs are the pairs when we lack the information of whether the predicted and the survival
time agree or disagree with each other. For example, one patent record is censored at time 2 while the survival time we
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predict is 4. In general a C-statistic of 1 means perfect agreement; 0.6-0.7 is a common result for survival data while 0.5 is
an agreement that is no better than the random guess.

We then calculate the C-statistics by the direct comparisons between the observed survival time and the predicted
survival time generated by the model fitting results of the Cox proportional hazard model for each selected module. Due
to the lack of the ability to handle the nodes when their expression profiles are completely missing in the Cox proportional
hazard model, thus, all the models are fitted using data except for those missing nodes. The modules with the number of
genes larger than 20 are outputted in Table 4. From the Table 4, we observe that our proposed method can successfully
recall the high-risk genes when they cannot be discovered by locfdr method. The averaged C-statistics for these top 16
modules are 0.70 for our method while it is 0.66 for locfdr. This indicates a better predicting power using our method.

6 DISCUSSION

The feature classification problem utilizing existing network information is a novel problem which has drawn increasing
attention recently. Based on our knowledge, we are the first to propose a non-parametric Bayesian framework not only to
select features but also to differentiate the subtypes of the selected features over genome-scale networks, and to handle
the missing node observations simultaneously.

We have applied our method to the cutaneous melanoma dataset from TCGA. The results provided novel gene regu-
lation evidence for unveiling the disease mechanism. In general, we recommend BNC for feature classification over the
network. If there are missing node observations in the network, we recommend nearest-neighbor imputation method to
handle missingness.

It is noteworthy that in the application section, we do not consider genes that are not part of the network because the
main purpose of the subsequent analysis is to select subnetworks, which are functionally coherent and easy to interpret.

Moreover, the KL-HODC algorithm we proposed for setting up the initial values for fast convergence can be further
utilized in another fast version of our proposed algorithm based on density approximations, which can be implemented
in our package. The fast algorithm works by fitting DPM densities for several iterations and then the densities are fixed,
the algorithm continues to run but only update the class indicators given the densities until the Markov Chain reaches
its equilibrium. For this fast version, it is of great importance to choose an initial value based on our experience. Thus,
KL-HODC advantages itself by providing a better inference of the density specifications and class indicators since it can
properly incorporate the prior biological knowledge.

Future work may include the extension of our method to a multivariate statistics cases when combined informa-
tion can provide more aspect of the information for classifying features, which can intuitively improve the classification
accuracy. In addition, much of the gene network is directional, including signal transduction and regulatory relations. In
the current work, we assumed the network was non-directional. There have been some related work that allow for the
structure of a directed graph under the regression framework.59,60 Given the complexities due to the structure of loops,
substantial modification of our model is necessary to adapt it to directed graphs.
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APPENDIX A

Equation derivations
Swendsen-Wang Suppose W = {Wij, i ∼ j} where the Wij is defined only when gene pair i and j are connected. The
distribution of Wij is

P(Wij|zi, zj) = exp(−𝜌zi𝜔jCijI[zi = zj]) × I[0 ≤ Wij ≤ exp(𝜌zi𝜔jCijI[zi = zj])]

Then the conditional distribution of W given z is:

P(W|z) ∝ exp

(∑
i=1

∑
j≠i

− 𝜌zi𝜔jcijI[zi = zj]

)∏
i=1

∏
j≠i

I[0 ≤ Wij ≤ exp(𝜌zi𝜔jcijI[zi = zj])]
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Algorithm 1. Fully Bayesian posterior updating algorithm

Input observed test statistics r = (robs, rmis), adjacency matrix C = {cij}, 𝝉 , w, 𝝅=NULL, 𝝆=NULL, 𝝆0, r0, z, Prior-
NullDensity=NULL, PriorForDPMDensityFitting, ParaForMCMC, rhoSD, rhoUpperBound, rhoLowerBound, piSD,
piUpperBound, piLowerBound, MissingDataImputationMethod, TotalNumIterationsForDMH, nSaveForDMH, Total-
NumIterations, nSave
Initialization:
if (is.null(PriorNullDensity)) then

PriorNullDensity ← BiGaussianDensityByCentralFitting(robs)
end if
(z, g, 𝜽̃,L) ← KL-HODC(robs, PriorForDPMDensityFitting, ParaForMCMC)
if (is.null(𝝅) | is.null(𝝆)) then

(𝝅,𝝆) ← DMH(C, robs, 𝝆0, r0, z, rhoSD, rhoUpperBound, rhoLowerBound, piSD, piUpperBound, piLowerBound,
TotalNumIterationsForDMH, nSaveForDMH)
end if
rmis ← Mean(robs)
Loop:
zTrace ← z
Iter ← 0
while (Iter < TotalNumIterations) do

z ← SW(C, z, robs, 𝜽̃,𝝆,𝝅)
(𝜽̃, g) ← DPMDensityFitting(C, z, r, PriorForDPMDensityFitting, ParaForMCMC)
rmis ← MissingDataImputation(MissingDataImputationMethod, C, r, g, 𝜽̃)
zTrace ← cbind(zTrace, z)
Iter ← Iter+1

end while
ClassIndicators ← ClassIndicatorsWithLocalFDRControl(zTrace, nSave)
return ClassIndicators

Algorithm 2. Function: prior null density fitted as bi-Gaussian density

function BiGaussianDensityByCentralFitting(r, QuantileForFitting=NULL)
if is.null(QuantileForFitting) then

QuantileForFitting ← c(0.25, 0.75)
end if
CentralTestStat ← r[which(r ∈ QuantileForFitting)]
CutOff ← quantile(r,0.5)
NormalFitForUpRegulateClass ←

NormalDensityFitting(CentralTestStat>CutoffWithItsReflected)
NormalFitForDownRegulateClass ←

NormalDensityFitting(CentralTestStat<CutoffWithItsReflected)
return CutOff, NormalDensityForUpRegulateClass, NormalDensityForDownRegulateClass

end function
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Algorithm 3. Function: initial values based on KL-HODC

function KL-HODC(r, PriorForDPMDensityFitting, ParaForMCMC, PriorNullDensity)
(g, 𝜽̃)← DPdensity(r, PriorForDPMDensityFitting, ParaForMCMC)
(g, 𝜽̃)← SortClusterByMeanLocation(g, 𝜽̃)
procedure (initialize null class index)

Dmin ← +∞
NullClassIndex ← ∅
DownRegulateClassIndex ← ∅
UpRegulateClassIndex ← ∅
for all l0 ∈ s do

CandidateNullDensity ← {𝜃l0}
D ← KLDistance(CandidateNullDensity, PriorNullDensity)
if D < Dmin then

Dmin ← D
NullClassIndex ← {l0}
DownRegulateClassIndex ← {l′}∀l′,1≤l′<l0

UpRegulateClassIndex ← {l′}∀l′,l′>l0 ;
end if

end for
end procedure
procedure (merge multiple clusters to search for clusters in null class)

Ddiff ← +∞
while Ddiff > 0 & DownRegulateClassIndex ≠ ∅ & UpRegulateClassIndex ≠ ∅ do

CandidateNullClass ← NullClassIndex ∪ {l0 + 1}
CandidateNullDensity ← CandidateNullDensity ∪ {𝜃l0+1}
D+ ← KLDistance(CandidateNullDensity, PriorNullDensity)
CandidateNullClass ← NullClassIndex ∪ {l0 − 1}
CandidateNullDensity ← CandidateNullDensity ∪ {𝜃l0+1}
D− ← KLDistance(CandidateNullDensity, PriorNullDensity)
if D− ≤ D+ then

NullClassIndex ← NullClassIndex ∪ {l0 − 1}
DownRegulateClassIndex ← DownRegulateClassIndex{l′}∀l′,1≤l′<(l0−1)
Ddiff ← Dmin − D−
Dmin = D−

else
NullClassIndex ← NullClassIndex ∪ {l0 + 1}
UpRegulateClassIndex ← UpRegulateClassIndex{l′}∀l′,l′>(l0+1);
Ddiff ← Dmin − D+
Dmin = D+

end if
end while

end procedure
z ← z = (z1,… , zn),∀i ∈ NullClassIndex, zi = 0,∀i ∈ DownRegulateClassIndex, zi = −1,∀i ∈

UpRegulateClassIndex, zi = +1
g ← z
𝜽̃ ← 𝜽̃ = {𝜃gi}
L ← c(|DownRegulateClassIndex|, |NullClassIndex|, |UpRegulateClassIndex|)
return z, g, 𝜽̃,L

end function
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Algorithm 4. Function: hyperparameters by Double Metropolis-Hasting

function DMH(Network, TestStat, 𝝆, r, z, rhoSD, rhoUpperBound, rhoLowerBound, piSD, piUpperBound, piLower-
Bound, TotalNumIterations, nSave)

rhoTrace ← 𝝆

piTrace ← r
Iter ← 0
for (Iter < TotalNumIterations) do

repeat
𝝆′ = (𝝆′

1,𝝆
′
2,𝝆

′
3,𝝆

′
4) ← rtruncnorm(1, 𝝆, rhoSD, rhoLowerBound, rhoUpperBound)

𝝅′ = (𝝅′
1,𝝅

′
2,𝝅

′
3) ← rtruncnorm(1, 𝝅, rhoSD, rhoLowerBound, rhoUpperBound)

𝝅′
2 ← 1 − 𝝅′

1 − 𝝅′
3

until 𝝆′
1 > 𝝆′

2 & 𝝆′
3 > 𝝆′

2 & 𝝅′
2 > 0.5

z′ ← DrawSampleFromPriorModel(Network, TestStat, 𝝆′,𝝅′)
LogAcceptRate ← LogDataLikelihood(Network, TestStat, z′,𝝆,𝝅) + LogDataLikelihood(Network, TestStat,

z,𝝆′,𝝅′) -LogDataLikelihood(Network, TestStat, z,𝝆,𝝅) - LogDataLikelihood(Network, TestStat, z′,𝝆′,𝝅′)
if (log(runif(1))< LogAcceptRate) then

𝝆 ← 𝝆′

𝝅 ← 𝝅′

z ← z′
rhoTrace ← cbind(rhoTrace, 𝝆)
piTrace ← cbind(piTrace, r)

end if
end for
𝝆 ← rowMeans(rhoTrace[, nSave])
𝝅 ← rowMeans(piTrace[, nSave])return 𝝅

end function

Algorithm 5. Function: updating z|𝜽̃ by Swendsen-Wang

function SW(Network, z, r, 𝜽̃,𝝆,𝝅)
G = <V ,E>← as.GraphObject(Network)
procedure (graph clustering)

G ← G−1 ∪ G0 ∪ G1; where ∀ node i ∈ Gk = <Vk,Ek>, zi = k
for l ← {−1, 0, 1} do

for all e ∈ El do
We ← runif(1, 0, exp(𝜌zl))
if (We < 1) then e ← NULL
end if

end for
Gl ← ∪nl

s=1Gls, Gls = <Vls,Els>

end for
G ← ∪1

l=−1 ∪
nl
s=1 Gls, Gls = <Vls,Els>

end procedure
procedure (graph relabling)

for all Gcluster = <Vcluster,Ecluster> ∈ {Gls = <Vls,Els>, l = −1, 0, 1, s = 1, 2,… ,nl} do
z′i∈Gcluster

← SampleFromPosteriorDistributionOfZ(r, z, 𝜽̃)
end for
return z

end procedure
end function
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Algorithm 6. Procedure: update 𝜽̃|z via DPM fitting

function DPMDensityFitting(Network, z, r, PriorForDPMDensityFitting, ParaForMCMC)
for z in {−1, 0, 1} do

Nodes ← {i}∀i,zi=z
DPMFit ← DPDensityFitting({ri}i∈Nodes, PriorForDPMDensityFitting, ParaForMCMC)
DPMFitSort ← DPMFitClusterSortByMeanLocation(DPMFit)
𝜽̃z ← DPMFitSort.Para
{gi}∀i,i∈Nodes ← DPMFitSort.ClusterIndex

end for
return 𝜽̃, g

end function

Algorithm 7. Missing data imputation algorithm

function MissingDataImputation(MissingDataImputationMethod=c(‘FullyBayesianInference’, ‘NearestNeigh-
borImpute’), Network,r, g, 𝜽̃)

if (MissingDataImputationMethod==‘FullyBayesianInference’) then
for loc in {i}∀i,ri∈rmis do

rloc ← rnorm(𝜃gloc )
end for

end if
if (MissingDataImputationMethod==‘NearestNeighborImpute’) then

for loc in {i}∀i,ri∈rmis do
Nbrs ← ExtractNeighborsFromNetwork(Network)
rloc ←

1|Nbrs| ∑|Nbrs|
k=1 rk

end for
end if
return rmis

end function

The full conditional distribution for z given W is:

P(z|W, r, 𝜽̃) ∝ P(W|z)P(r|z, 𝜽̃)P(z) ∝ P(r|z, 𝜽̃) exp

[ n∑
i=1

(𝜔̃i log(𝜋zi))

]
(A1)

DPM density updating Consider gene i with class indicator k and all the other genes with the same class indicator, if
we integrate over qk, then the cluster index gi has the following distribution:

P(gi = g|g1, g2,… , gi−1) =
P(g1, g2,… , gi−1, gi = g)

P(g1, g2,… , gi−1)

=
∫(g1,g2,…,g) Γ(𝜏k)Γ(𝜏k∕Lk)−Lk g(𝜏k∕Lk)−1

1 · · · g(𝜏k∕Lk)−1
Lk

dg1g2 · · · gLk

∫(g1,g2,…,gi−1)
Γ(𝜏k)Γ(𝜏k∕Lk)−Lk g(𝜏k∕Lk)−1

1 · · · g(𝜏k∕Lk)−1
Lk

dg1g2 · · · gLk

=
ni,g + 𝜏k∕Lk

i − 1 + 𝜏k

where ni,g =
∑i−1

j=1I[gj = g] denotes the count of gj, j < i such that gj = g.
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Then let Lk → ∞:
P(gi = g, |g1, g2,… , gi−1 & g ∈ (g1,… , gi−1)) →

ni,g

i − 1 + 𝜏k

P(gi = g, |g1, g2,… , gi−1 & g ∉ (g1,… , gi−1)) →
𝜏k

i − 1 + 𝜏k
(A2)


