
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Feature Selection and Classification over the network with
Missing Node Observations

Zhuxuan Jin1 | Jian Kang*2 | Tianwei Yu*3

1Splunk Inc., CA, USA
2Department of Biostatistics, University of
Michigan, MI, USA

3School of Data Science and Warshel
Institute, the Chinese University of Hong
Kong - Shenzhen, and Shenzhen Research
Institute of Big Data, Guangdong, China

Correspondence
*Corresponding authors, Email:
jiankang@umich.edu,
yutianwei@cuhk.edu.cn

Summary

Jointly analyzing transcriptomic data and the existing biological networks can yield
more robust and informative feature selection results, as well as better understanding
of the biological mechanisms. Selecting and classifying node features over genome-
scale networks has become increasingly important in genomic biology and genomic
medicine. Existing methods have some critical drawbacks. The first is they do not
allow flexible modeling of different subtypes of selected nodes. The second is they
ignore nodes with missing values, very likely to increase bias in estimation. To
address these limitations, we propose a general modeling framework for Bayesian
node classification (BNC) with missing values. A new prior model is developed for
the class indicators incorporating the network structure. For posterior computation,
we resort to the Swendsen-Wang algorithm for efficiently updating class indica-
tors. BNC can naturally handle missing values in the Bayesian modeling framework,
which improves the node classification accuracy and reduces the bias in estimating
gene effects. We demonstrate the advantages of our methods via extensive simulation
studies and the analysis of the cutaneous melanoma dataset from the Cancer Genome
Atlas.
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1 INTRODUCTION

Feature selection is a fundamental problem in high-dimensional data analysis. Existing biological networks, including biological
pathways andmolecular interactions, have been found to be helpful for depicting the biological relationship between the features.
In the field of transcriptomics, each node in the biological network corresponds to a feature measured in the high-dimensional
data. Researchers are interested in classifying the network node features in different categories according to their biological
characteristics and behavior in the transcriptomics data. We refer to this procedure as node classification on the network.
Node classification is different from the traditional differential expression framework which calculates false discovery rates,

i.e. posterior probabilities of differential expression using parametric or nonparametric density estimations, without considering
biological relations between features1,2.
For the classification of network nodes into "selected" and "unselected" categories, some filtering algorithms were developed

in the machine learning and bioinformatics fields, without much consideration of statistical inference3,4,5,6. In the statis-
tics field, the main approach for network-based feature selection is built under the parametric/regression framework, such as
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FIGURE 1 The impact of missing gene nodes in the network. (a) The missing gene is itself an up-regulated gene, it would be
excluded if missing genes are removed from data analysis; (b) the missing gene serves as a “bridge” for information exchange.
If it is simply removed, the light red node located on the left side would not be able to be recalled as up-regulated gene.

7,8,9,10,11,12,13,14,15,16,17,18,19, where model structures are developed to capture the dependency of genes by using various penalties
that smooth the regression coefficients of the features over the network, or applying different priors utilizing the structure of the
network.
Bayesian hierarchical models have been developed to cluster genes in complex high-dimensional data 20,21,22. We have pre-

viously developed the Bayesian network feature finder (BANFF) 23, a Bayesian nonparametirc method for selection of network
nodes24. Unlike the regression-based methods, BANFF allows any type of association between features and outcome variables,
or even testing behavior of the features without an outcome variable. It achieves this goal by conducting the analysis in two
steps. First, a test statistic is generated for each node in a univariate analysis, which can be supervised if an outcome variable is
involved in the analysis. Secondly, unsupervised node classification is conducted using a Bayesian nonparametric approach that
takes into account both the dependency structure on the network and the test statistic of each node.
While BANFF is suitable for analyzing data where the association of nodes with an outcome variable is considered, it can

also handle some situations that existing regression-based approaches cannot. Some examples include: (1) there is no outcome
variable, and some intrinsic properties of the nodes are summarized into a test statistic 24; (2) the study design is complex
and case-control type regression methods are not suitable, such as those involving longitudinal or functional measurements.
However, BANFF still has some major limitations. First, it assumes the test statistics of the null distribution follow a symmetric
distribution; while in many applications the null distribution of test statistics appear to be asymmetric. Second, it lumps up-
regulated and down-regulated genes into a single group and assumes they behave symmetrically. Third, it does not handle
missing values in a systematic modeling approach, thus it may lose power to detect signals while increasing the false positive
rates. Fourth, the posterior computation algorithm may suffer slow convergence in some applications.
In this work, we address these issues by developing a more flexible framework for Bayesian node classification (BNC). BNC

allows an asymmetric null distribution, as well as different levels of deviation from the null, for example, different degree of
deviation for down-regulated and up-regulated genes. Different from BANFF, BNC adopts more efficient posterior computation
algorithm, the Swendsen-Wang algorithm, and it can naturally handle missing values.
Missing data is an important issue in the network-based gene expression analysis. Here by missingness we refer to the lack

of observation on certain nodes across all samples, which is a common situation in gene expression data.25 laid the foundation
of missing mechanisms and provided ideas on how to handle missingness. However, most of the approaches do not handle the
missing of entire rows in the data well. In our motivating dataset, among the genes with at least one connection, around 6% are
not measured, and another 14% are observed but of a low and unreliable expression level for statistical testing. We treat them
as nodes with missing observations in the network. As a result, the occurrence of missingness makes our problem even more
challenging. Ignoring such nodes and their edges, as all existing methods do, causes severe loss of network structure and biases
the results. Thus handling missing nodes in the network is of great importance to our problem, due to the fact that missing nodes
are possible to be either down-regulated or up-regulated genes, and/or serve to communicate information via their edges with
observed genes (Figure 1).
Our proposed BNC is a nonparametric Bayesian method without imposing any parametric assumptions on the distributions of

the test statistics for each class. Instead, we use the Dirichlet process mixture (DPM) model. DPM is widely used and extensively



3

studied from the literature (See26 for an overview of DPM). To specify the prior for the network node specific class indicators,
BNC adopts a weighted Potts prior, which generalized the Ising prior from two categories to multi-categories that can satisfy
the three-class feature classification problem. Our proposed BNC can be seen as an extension of the local false discovery rate
control rule proposed by27 to adopt the extra information of the network and classify network nodes. We developed an R package
BNC (https://github.com/kangjian2016/BNC) to implement the proposed method.
The remainder of the manuscript is organized as follows. In Section 2, we describe the proposed model and the prior specifica-

tions. In Section 3, we present the posterior computation algorithms. In Section 4, we compare the performance of the proposed
method with the traditional methods via extensive simulation studies. In Section 5, we analyze the cutaneous melanoma dataset
and discuss biologically meaningful results.

2 BAYESIAN NODE CLASSIFICATION

2.1 The Model
Consider a network consisting of n nodes. At each node i(i = 1,… , n), we obtain a node-specific test statistic, denoted ri. Let
C = {cij} be the adjacency matrix characterizing the gene network configuration, where cij = 1 if genes i and j are biologically
connected and cij = 0 otherwise. In gene expression differentiation analysis, each node represents a gene, and ri is obtained
for testing gene behaviors. There are three common gene behaviors: “down-regulated", “up-regulated" and “not differentiated
expressed", to which we refer as the “null genes". Let zi ∈ {−1, 1, 0} indicate the latent class for node i and values −1, 1 and 0
represent “down-regulated", “up-regulated" and “null" genes, respectively. We consider a Bayesian nonparametric model:

[ri ∣ (�i, �2i )] ∼ N(�i, �
2
i ), (1)

[(�i, �2i ) ∣ zi] ∼ G−1I(zi = −1) + G0I(zi = 0) + G1I(zi = 1), (2)
Gk ∼ (G0k, �k), (3)

where Gk(k = −1, 0, 1) is a random probability measure defined on ℝ × [0,∞) following the Dirichlet process with base
measureG0k and precision parameter �k. The domain ofG0k is the same asGk. We choose the conjugate priors, i.e. (�, �2) ∼ G0k
is equivalent to � ∣ �2 ∼ N(�0k, �2�0k) and �2 ∼ IG(a0k, b0k).
To incorporate this topology structure, we assign a weighted Potts prior to z = (z1,… , zn), denoted by wPotts(�,�,w,C),

where � = (�−1, �0, �1) with �k > 0, � = (�−1, �0, �1) with �k ≥ 0 and w = (w1,… , wn) with wi ≥ 0. Then the probability
mass function is proportional to

exp

[ n
∑

i=1
(!̃i log(�zi) + �zi

∑

i≠j
!jcijI[zi = zj])

]

. (4)

The parameter � contains prior knowledge about the distribution of the class indicator z. We assume that �1+�−1 < �0 implying
that signals are sparse. Similar to the Ising model, parameter �k controls the global strength of the neighborhood similarity.
When �k = 0, zi is independent with zj for j in the neighborhood of i. However, when �k > 0, zi has a larger probability to take
the value of k when zj = k for j in the neighborhood of i. Across the whole gene network, the larger the �k is, the stronger the
tendency of genes to share the samememberships with neighbors.Weightwi can be elicited from the prior biological knowledge.
A larger weightwi implies a stronger prior belief of the similarity between gene i and its neighbors locally. The neighbor weight
w̃i =

∑n
j=1 cijwj∕

∑n
i=1 cij represents the average of weights from neighbors for gene i.

2.2 Missing Data Problem and Model Representation
Our goal is to make inference on the latent class zi from the observed network node-specific test statistics. However, as the test
statistics are not always fully observed in real data analysis, we introduce a missing data indicator si for gene i, si = 1 if ri is
missing, si = 0 if ri is observed. The missing test statistics introduce great challenges in classifying the features, thus, we utilize
gene network information to help in classifying gene nodes. For gene i, the objective is to make inference about zi when its test
statistics ri, missing indicator si and gene network information are provided. We assume the distribution of missing test statistics
is the same with the distribution of the test statistics been observed. To be specific, given gene i in the class of k, i.e. zi = k, we
further introduce a cluster index gi of gene i, gi represents the cluster index indicating which component in the mixture model

https://github.com/kangjian2016/BNC
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that ri is associated with. In particular, ri given gi is assumed to be normally distributed with mean �̃gi and variance �̃
2
gi
, denoted

byN(�̃gi , �̃
2
gi
). We write �̃g = (�̃gi , �̃

2
gi
) and assume they are independently drawn from a base measure calledG0k. The �̃ denotes

all the �̃gs for simplicity. Given zi = k, gi follows a discrete distribution with parameter ak,qk, which means gi can take values
in ak = (ak1 , a

k
2 ,⋯ , akLk)with probability qk = (q

k
1 , q

k
2 ,⋯ , qkLk), denoted asDiscrete(ak, qk). In fact, the actual values of gi given

zi = k can be arbitrary as long as they can be differentiated from each other, thus, we assume ak = (1, 2,⋯ , Lk) without loss
of generality. The probability qk follows a Dirichlet distribution with parameters (�k∕Lk, �k∕Lk,⋯ , �k∕Lk). Note that the total
number of components Lk for all k = −1, 0, 1 are unknown, this extended DPM model is nonparametric in nature. In summary,
we have the following Bayesian hierarchical model:

ri|gi, si = 0, �̃ ∼ N(�̃gi , �̃
2
gi
),

gi|zi = k, qk ∼ Discrete(ak, qk),
�̃g ∼ G0k for g ∈ ak,
qk ∼ Dirichlet(�k1Lk∕Lk),
z ∼ wPotts(�,�,w,C)

(5)

where test statistics {ri ∶ si = 0} and the network configurationC are observed data. The latent class z is of our primary interest
for Bayesian inference.

2.3 Methods for Handling Missing Data
When the test statistics r are partially observed, the nodes with missing r values can still serve to pass information between
their neighboring nodes. More importantly, some nodes with missing r values can still belong to the significant classes, and
their neighboring nodes with observed r values can provide evidence. In order to infer the class labels of nodes with missing
r values, we conduct inference on the missing r values of such nodes. The test statistics r can be partitioned into two parts
r = (rmis, robs) with rmis = {ri ∶ si = 1} and robs = {ri ∶ si = 0}. Similarly, we can also partition the cluster indices into the
observed component and the missing component as g = (gmis, gobs). The element-wise representation of the missing component
of the test statistics is rmis = (rmis,1,⋯ , rmis,m) and the cluster indices are gmis = (gmis,1,⋯ , gmis,m) where m is the number of
missing nodes in the network.
Under the fully Bayesian inference framework, the missing values are one type of latent variables in the model. We can make

posterior inference on the joint distribution of rmis and all the other latent quantities in the model. From the model representation
(5), test statistics are conditionally independent given their cluster indices and density specifications, whichmeans the conditional
distribution for rmis given robs, g, z, �̃ only depends on gmis, �̃:

P (rmis|robs, gobs, gmis, zobs, zmis, �̃) = P (rmis|gmis, �̃) = Πmi=1P (rmis,i|gmis,i, �̃)

This further implies that in the posterior computation algorithm (See Section 3) when there are missing gene nodes in the
network, we only need to introduce one more step to impute the missing test statistics rmis,i, i = 1,⋯ , m within each iteration.
Assume the superscript represents the results from the previous iteration tth, for the (t + 1)th iteration, we only need to draw a
imputed value for r(t+1)mis,i fromN(�̃(t)gmis,i , �̃

2(t)
gmis,i

).
We also propose a fast imputation approach by approximating the fully Bayesian inference based on the assumption that

neighboring genes are more likely to share the same functionalities. We can integrate out all the latent quantities in the model
and impute rmis,i using robs based on the conditional expectation:

E(rmis,i ∣ robs) = ∫ rmis,iP (rmis,i ∣ robs)drmis,i

where
P (rmis,i ∣ robs) = ∫ ∫ P (rmis,i ∣ zmis,i,

̃
�)P (zmis,i,

̃� ∣ robs)dzmis,id�̃.

Suppose we have N samples of (zmis,i, �̃) from the posterior distribution given robs, denoted as (z(1)mis,i,
̃

�(1)),… , (z(N)mis,i, �̃
(N)),

then P (rmis,i ∣ robs) can be approximated byN−1∑N
n=1 P (rmis,i ∣ z

(n)
mis,i, �̃

(n)).
As indicated by model (4), when � > 0, zmis,i has a larger probability to take the value of k when zj = k for j in the neighbor-

hood of i. From our experience, we can approximate P (rmis,i ∣ robs) by a discrete distribution P (rmis,i = rj ∣ robs) = 1∕|nbr(i)|
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for j ∈ nbr(i), where nbr(i) represents the neighborhood of i with rj observed. Then E(rmis,i ∣ robs) can be approximated
by

∑

j∈nbr(i) rj∕|nbr(i)| which is exactly the average of neighboring observed test statistics. We refer to this approach as the
nearest-neighbor imputation method.

3 POSTERIOR COMPUTATION

The posterior computation algorithm has three major steps in each iteration: 1) Impute missing test statistics rmis (if any) either
by conditional sampling (fully Bayesian inference) or by the nearest-neighbor imputation method; 2) Update class indicators z
by the Swendsen-Wang algorithm, and 3) Update �̃ by refitting a DPM to estimate densities for each regulation type. Others
including Lk, gk are omitted temporarily for simplicity. For updating the hyperparameters in the Potts model for z, we adopt the
method of Double Metropolis-Hastings (DMH) sampler proposed by28.

3.1 Swendsen-Wang algorithm
It has been widely used in the Potts model. It works by introducing another set of auxiliary variables denoted as W =
{Wij , i ∼ j}. Wij is defined only when gene pairs i and j are connected. Given zi, zj , Wij is uniformly distributed between
0 and exp(�zi!jcijI[zi = zj]). Then the full conditional distribution for z given W can be simplified as proportional to

P (r|z, �̃) exp
[ n
∑

i=1
!̃i log(�zi)

]

.

The posterior sampling scheme has two steps: the network partitioning step (sample W given z) and the network relabeling
step (sample z given W). The objective for network partitioning is to cut the network into smaller connected subnetworks so
that the genes located within the same subnetwork share the same class indicators. Then in the network relabeling step, the class
indicators of all the genes located within the same subnetwork can be flipped simultaneously. Comparing to the Gibbs sampler
when it updates the genes each one at a time, the Swendsen-Wang algorithm advantages itself by a more efficient group level
updating scheme and a better convergence.

3.2 DPM Density Updating
Conditional on the class indicators, we update gi and �̃i given g1,… , gi−1, �̃1,… , �̃i−1. Utilizing Algorithm 8 in29, we firstly
summarize the frequency for each of the total l unique g values ever appeared in set (g1,… , gi−1), denoted as (1, 2,… , l) with
cluster parameters (�̃1,… , �̃l). It is ni,g =

∑i−1
j=1 I[gj = g], g = 1, 2,⋯ , l. Then the prior probability of gi equals to any of the

ever-appeared cluster index g is given by ni,g∕(i−1+�k), g ∈ (1, 2,… , l), if the sampled gi equals to any appeared cluster index
g, then we set �̃i = �̃g; on the other hand, the prior probability of gi being a new index is given by �k∕(i−1+�k), g ∉ (1, 2,⋯ , l),
if the sampled gi is a new index, then we sample a new set of parameter �̃g from base measure G0k. Given the cluster index g,
ri follows a normal distribution with parameter �̃g . In every iteration, we maintain the order of Gk(k = −1, 0, 1) by swapping
the labels if necessary.

3.3 Choice of Initial Values
In order to speed up the convergence in Markov chain Monte Carlo, we specify the initial values for G0k, (k = −1, 0, 1), z, g, �̃
and L based on the DPM density fitting of the test statistics rwithout the network information, we develop the Kullback-Leibler-
divergence-based hierarchical ordered density clustering algorithm (KL-HODC). In the beginning, we order all the small cluster
density parameters �̃g , �̃g = (�̃g , �̃2g ) based on their mean value �̃g locations. Each time, we pick several clusters to form a
proposed null. We calculate the KL distance between this proposed null and a prior null which is pre-determined by biological
knowledge. The combination of the clusters with the smallest KL distance is selected and added as the initial value for the null
densities.
Once all the clusters are assigned to three classes, z, g, �̃,L can be determined as well. When the biology knowledge is not

available for the prior null, it can be estimated by a truncated bi-Gaussian distribution using the central part of the test statistics
such as statistics within 15% and 75% quantiles.
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TABLE 1 Simulation settings
down-regulated class null class up-regulated class

Gaussian N(-0.6, 0.2) N(0, 0.2) N(0.6, 0.2)
Gamma Gamma(shape=2, scale=0.5) N(0, 0.4) Gamma(shape=2, scale=0.3)

truncated within (−∞, 2], shifted -1.9 truncated within (−∞, 1.8], shifted +1.7
log-normal log N(0, 1) N(0, 0.4) log N(0, 1)+2.2

truncated within (−∞, 2], shifted -1.9 truncated within (−∞, 2.3], shifted +2.2

KL-HODC is a hierarchical density clustering algorithm that substantially improves the existing algorithmHODC24. The KL-
HODC incorporates the biological knowledge as a prior null density and it is able to handle the multi-class feature classification
problem, while HODC can only be used for selecting features, not further differentiating their subtypes.

4 SIMULATION STUDIES

We conduct extensive simulation studies to evaluate the performance of the proposed methods for the complete data case and
the missing data case.

4.1 Settings
The network used in the simulation studies is a subnetwork of the real biological network used in real data analysis downloaded
from the High-quality INTeractomes (HINT) database30. It is formed by a total of 776 nodes with a median degree of 3, a
mean degree of 5.2 and a maximum degree of 30. The underlying true gene regulation types are assigned based on the merged
communities by the fast greedy modularity optimization algorithm31. We assign the genes located in the largest community as
the null class and then we randomly assign the down-regulated or the up-regulated class to the other two. For the null genes,
their test statistics are independently drawn from a normal distribution, and for the up-regulated or the down-regulated genes,
their test statistics are independently drawn from one of the following three distributions: a normal, a gamma or a lognormal.
(See Figure 2 for an illustration of one simulated dataset; See Table 1 for the designs of the simulation settings). The missing
locations are randomly selected among the genes with network degrees less than 6, which is the 66% quantile of the degrees of
the nodes in the network. We simulate 20% missingness since it is the missing rate in the real dataset.

4.2 Evaluation Criteria
For each simulation setting, we simulate 50 datasets in total, indexed by s = 1,⋯ , 50. A classification rate of the genes with
true class indicator zi = a being classified as b for a, b = −1, 0, 1 is defined by

∑50
s=1 I[ẑ

(s)
i = b, zi = a]∕50, where ẑ(s)i is the

estimate of zi in the simulated dataset s. Denote TP-down, TP-up and TN the true positive rate averaged across all simulations
for the down-regulated (a = b = −1), up-regulated (a = b = 1) and null genes (a = b = 0) respectively. Denote FN-down
and FN-up the averaged false negative rates for the down-regulated and up-regulated genes. Additionally, FP-down and FP-up
are the averaged false positive rates into the down-regulated and up-regulated classes respectively. And finally, FDR is the false
discovery rate defined as the proportion of false discoveries among all the discoveries on average.

4.3 Hyperprior Specifications
For hyperprior settings in the Potts prior model (4), we set weights !j = 1, j = 1, 2,⋯ , n. Then w̃i = 1, i = 1, 2,⋯ , n. We
set � = (1.001, 0.497, 0.998), � = (0.15, 0.70, 0.15) as an output from DMH of a 10000-iteration run with 5000 burn-ins. The
proposal used in DMH for (�,�) is an independent random walk proposal for � and �: for each element of �, it is a truncated
Gaussian distribution with a mean of 0, a standard deviation of 0.03, a lower-bound of 0 and a upper-bound of 1.5; for �, since it
must satisfy �2 = 1−�1−�3 and �1+�3 < 0.5, thus we assume �1 and �3 follow the truncated Gaussian distribution with a mean
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FIGURE 2 An illustration of the distributions of test statistics under each simulation setting.

of 0, a standard deviation of 0.03, a lower-bound of 0 and a upper-bound of 0.5. As for the hyperparameters for the DPM model
fitting, For each regulation type k, we assume the base measure G0k = P (�,Σ) is conjugate Normal-inverse-Gamma (NIWG)
distribution with parameters (�0k, c0k, S0k,  0k) and the scale parameter c0k in the normal part of the base measure follows a
gamma distribution with parameters (a0k, b0k). In general, we denote the the distribution G0k as NIWG(�0k, S0k,  0k, a0k, b0k).
For this prior model, we firstly apply the normal mixture modeling for model-based clustering method (Mclust by32) where the
parameter indicating the total number of groups is set to be 3. Then we use the estimated mean and variance from each group k
as �0k and S0k. And we set �0k = 3, a0k = 1, b0k = 100, �k = 3.

4.4 Simulation Results for the Complete Observed Case
We first consider the cases when all the test statistics are fully observed. For each of these simulation settings, we compare
our method (BNC) with the Bayesian nonparametric mixture model for selecting genes (BANFF) by24 and the false discovery
rate controlling procedures for identifying differentially expressed genes (locfdr) by1. The locfdr method does not consider the
network structure and only uses the gene-level test statistics.
BANFF is a Bayesian nonparametric gene and gene-network selection method, it can also utilize the network information but

it is mainly for selecting the activated-state genes from the null genes. In order to modify BANFF for this feature classification
problem, we firstly classify genes into three groups by MCLUST - Gaussian finite mixture models fitted via EM algorithm32.
Then we flip the sign of the test statistics of the genes assigned to the down-regulated class so that ideally those genes combined
with the up-regulated class should be of the active state. Then the finalized class indicators are assigned based on the results
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TABLE 2 Algorithm performance for complete data cases

Generative model Methods TP-down TP-up TN FP-down FP-up FN-down FN-up FDR

Gaussian BNC 0.87 0.91 0.97 0 0.03 0.12 0.09 0.03
BANFF 0.75 0.87 0.62 0.03 0.36 0.2 0.13 0.3
locfdr 0.5 0.51 1 0 0 0.49 0.5 0.01

Gamma BNC 0.92 0.96 0.99 0 0.01 0.08 0.04 0.01
BANFF 0.5 0.89 0.69 0 0.31 0.38 0.11 0.2
locfdr 0.57 0.71 0.98 0.01 0.01 0.43 0.29 0.03

log-normal BNC 0.9 0.96 0.99 0 0.01 0.1 0.04 0.01
BANFF 0.73 0.92 0.55 0.05 0.04 0.17 0.08 0.31
locfdr 0.59 0.72 0.99 0.01 0.01 0.41 0.28 0.03

from BANFF being flipped back. For the locfdr, it is a kernel density-based non-parametric method for selecting differentially
expressed genes without considering the network. To be specific, we applied the central matching for estimating the null densities
and then calculated the estimated local false discovery rate for each gene. We adopt a commonly used cutoff of 0.2 so that the
genes with the posterior probability of being in the null class below 0.2 will be identified as differentially expressed, and the null
class otherwise. Then the differentially expressed genes can be further classified by comparing the relative locations of their test
statistics with 0.
Table 2 indicates that for Gaussian simulations, under each regulation type, BNC performs better than the BANFF and locfdr.

BNC achieves classification accuracies as high as 0.87 for the down-regulated genes, 0.91 for the up-regulated genes, and 0.97
for the null genes. At the same time, BNC achieves the false positive rates as lower as 0 for the down-regulated genes, 0.03 for
the up-regulated genes, 0.12 for the null genes to be classified as down-regulated genes, 0.09 for the null genes to be classified
as up-regulated genes. Overall, BNC can achieve higher accuracies and lower false positive and false negative rates. BANFF
performs worse in the true negative rates and false positive rates. locfdr performs well at selecting the null genes, with a true
negative rate of 1. However, it gives a false negative rate as high as 0.49 for the down-regulated genes and 0.5 for the up-regulated
genes, indicating the procedure is overly conservative.
Comparing the classification accuracies for Gamma and log-normal settings, BNC outperforms all the others in all the mea-

sures. The BANFF performs worse than the BNC. It is because the proposed method can flexibly model the gene subtypes so
that it allows for different levels of deviation from the null for down-regulated and up-regulated genes. The worse performance
of locfdr compared to BNC indicates that by utilizing network information, better classification accuracies can be obtained.

4.5 Simulation Results for the Missing Data Case
We further compare our method with the others when there are missing node observations in the network. We only focus on
the symmetric cases as described in table 1, and compare five combinations of methods to perform feature classification and to
handle missingness simultaneously: 1. BNC+Bayes: we apply the BNC for feature classification and the conditional sampling
for fully Bayesian inference to impute the missing test statistics. 2. BNC+NN: we apply the BNC for feature classification
combined with the nearest neighbor imputation method to impute the missing test statistics. 3. BNC+NArm: we firstly remove
all the missing nodes and their edges in the network and then use BNC for feature classification. In this case, only the estimated
class indicators for gene nodes with observed test statistics can be obtained. 4. BANFF+NN: we utilize the BANFF for feature
classification and use the nearest neighbor imputation method to impute the missing test statistics. 5. BANFF+NArm: we apply
BANFF to the reduced network comprised of nodes with observed test statistics. Similar to BNC+NArm, only replace the BNC
with BANFF for feature classification.
To summarize the classification accuracies, we separate different types of nodes to calculate the averaged rates: 1. Missing:

only average the rates among the genes whose test statistics are missing. 2. Observed: only average the rates among all observed
genes. 3. Total: average among all the genes nodes.
From Table 3, we observe that BNC+NN performs the best in general. The overall classification accuracies for the all the

down-regulated, the up-regulated and the null genes to be correctly classified are 0.87, 0.87, 0.89. The averaged false positive
rates for the null genes being classified as down-regulated or up-regulated are 0 and 0.01. The averaged false negative rates for
the down-regulated or the up-regulated genes are 0.12 and 0.13, respectively. The estimated false discovery rate is 0.12. This
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TABLE 3 Algorithm performance for missing data cases

Algorithm Gene nodes type TP-down TP-up TN FP-down FP-up FN-down FN-up FDR

BNC+Bayes Missing 0.73 0.75 0.77 0.01 0.22 0.26 0.25 0.27
Observed 0.92 0.9 0.78 0 0.22 0.05 0.1 0.2
Total 0.88 0.88 0.78 0.01 0.22 0.1 0.12 0.21

BNC+NN Missing 0.83 0.81 0.88 0.01 0.11 0.17 0.19 0.15
Observed 0.88 0.88 0.89 0 0.01 0.11 0.12 0.11
Total 0.87 0.87 0.89 0 0.01 0.12 0.13 0.12

BNC+NArm Observed 0.87 0.88 0.66 0.01 0.33 0.07 0.12 0.3

BANFF+NN Missing 0.6 0.79 0.48 0.04 0.48 0.26 0.21 0.47
Observed 0.7 0.86 0.41 0.05 0.54 0.19 0.14 0.46
Total 0.68 0.85 0.42 0.05 0.53 0.21 0.15 0.46

BANFF+NArm Observed 0.67 0.82 0.5 0.05 0.45 0.23 0.18 0.43

performance keeps consistent among missing genes and the observed genes. Compared to BNC+Bayes, BNC+NN is slightly
better. It is because the nearest-neighbor imputation scheme is more flexible than the model-based Bayesian posterior inferences
since Bayesian posterior sampling needs to specify a proper prior. The Bayesian model we are utilizing might not characterize
very well the predictive distribution of the missing test statistics given the observed test statistics across the network while
utilizing the information from the nearest neighbors might help to improve.
The accuracies will drop if we use the BANFF for feature classification regardless of which schemes are used for handling the

missingness. It indicates that our proposed algorithm outperforms BANFF when there are missing observations in the network,
which is consistent with the simulation results in fully observed cases. Moreover, regardless of which feature classification
algorithms we utilize, either BNC or BANFF, comparing NArm with the imputation methods Bayes or NN among the observed
gene nodes, we observe that the classification accuracies drop and the false positive/ false negative rates increase, and so does
the averaged false discovered rates. Thus, imputation methods are recommended for feature classification problem with missing
gene observations.

5 SURVIVAL ANALYSIS OF CUTANEOUS MELANOMA

5.1 Dataset
We analyze the cutaneous melanoma dataset from The Cancer Genome Atlas (TCGA)33, downloaded from the cBio Cancer
Genomics Portal34. There are 478 patient records by the time we downloaded. After removing six patient records that lack gene
expression profiles, one patient record with a negative survival month due to possible errors, one patient record that is missing
survival status, and one patient record that is missing the sample type which is one of the covariates we are interested in, we
use the remaining 469 patient records in a Cox proportional hazard model to assess the association between the expression
levels of individual genes and survival time. In our model, we control for three confounders: age at initial pathologic diagnosis
(minimum 15, median 58, mean 58.08, max 90, and 8 are missing), gender (180 females and 290 males), and sample type (366
of metastatic, 102 of primary tumor and 1 of additional metastatic).
We downloaded the protein-protein interactions in Homo Sapiens from the High-quality INTeractomes (HINT) database by30.

After data cleaning, there are a total of 11,662 genes and 87,482 edges. Then we apply the community detection algorithm
by31 to extract the largest connected subnetwork as our network input. To be specific, the largest connected component contains
10,484 genes while the remaining genes form 1097 tiny islands (1 island is of five genes, 2 islands are of four genes, 5 are of
three genes, 61 of two genes and 1028 are formed by a single gene node). By excluding these tiny islands, the network contains
a total of 10484 nodes, with a degree distribution of a minimum of 1, a median of 3, a mean of 8.328, and a maximum of 400.
For the gene expression profile, we firstly map all 20530 unique gene names to 18978 Entrez IDs. Among the 10484 genes in

the network, 9833 can be mapped to an expression profile. There are 651 (6.21%) genes that do not have any expression profile
and another 1433 (13.67%) genes that are considered unreliably measured based on their low maximum expression level across
the samples. Removing such genes leads to a total missing rate of 19.88% in our real data analysis. For each gene included in
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FIGURE 3 Histogram of the test statistics, with estimated null density and frequencies of the selected genes. (a) Results by
BNC; (b) Results by locfdr with center matching estimation for a symmetric null. Local false discovery rate is controlled at 0.2
for both methods. Blue: low-risk genes; red: high-risk genes.

the analysis, we first fitted the Cox proportional hazard model while controlling for the three confounders. The z-statistic for the
gene was extracted from the model and used in the node classification analysis.
Similar to the simulations, for the Potts prior model, the hyperparameters in Equation (4), we prefix the !j = 1, j = 1, 2,⋯ , n

so that the w̃i = 1, i = 1, 2,⋯ , n. Set � = (1.003, 0.479, 0.988) and � = (0.15, 0.70, 0.15) as an output from the DMH of 10000
iterations with 5000 burn-in. Other hyperparameters settings are the same with the settings used for simulations. In the following
discussion, we refer to genes that significantly increase the risk of death as high-risk genes, and genes that significantly decrease
the risk of death as low-risk genes.

5.2 Results
Our method finds 144 high-risk genes and 263 low-risk genes. Compared to ours, the locfdr method finds 217 low-risk genes
by central matching estimation for a symmtric null while it does not identify any differentially expressed genes by applying a
split normal version of central matching estimation for an asymmetric null. Thus, for the following discussion, we will focus on
the comparison between the proposed method and the locfdr utilizing central matching estimation (See Figure 3a) even though
the null density is asymmetric and the mode of the distribution is away from zero for the motivating dataset.
Using the test statistics alone, combined with the common assumption of symmetric null distribution, locfdr identifies sig-

nificant genes only on the low-risk side (See Figure 3b). On the other hand, when the existing network is utilized, the proposed
method can detect both high-risk and low-risk genes.
To facilitate interpretation, we further find modules by applying the fast greedy community detection algorithm among the

selected nodes and their one-step neighbors31. There is a total of 56 modules selected, 16 of which contain more than 10 selected
genes.
Here we present some example modules and discuss their biological functions in relation to the clinical outcome. The module

shown in Figure 4a contains 48 selected genes. There are 39 low-risk genes and 9 high-risk genes in this module. Analyzing the
biological functions of the selected genes using GOstats35, we find the biological function of the low-risk genes are focused in
the area of immune responses, with 18 of the 39 genes falling into the biological process of “regulation of immune response”, and
various related functions. The prognosis of melanoma is closely related to tumor-infiltrating lymphocytes36. A cross-platform
meta-analysis has shown that the increased expression of immune function-related genes in melanoma is associated with longer
patient survival, and B and T cells are enriched in melanoma biopsies from patients with favorable outcome37. The low-risk
genes selected from this bulk RNAseq data likely represent higher level of immune cell infiltration in patients with better survival
outcome.
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FIGURE 4 Two example modules of selected genes

The module shown in Figure 4b contains 23 high-risk genes and 17 low-risk genes. An interesting finding is that the top gene
ontology biological process being over-represented by the high-risk genes is transmembrane transport, with eight of the 23 genes
falling into this category. Six of the high-risk genes are involved in ion transport. Although transmembrane transporters haven’t
been systematically studied in melanoma progression, recent developments in other cancer have indicated their role in cancer
prognosis38. For example, among the genes selected by BNC, gene 3764 (KCNJ8) encodes a potassium channel. It is found to
be over-expressed in nasopharyngeal carcinoma (NPC) tissues as well as in esophageal cancer39,40. The gene 6520 (SLC3A2)
encodes the heavy chain of the transmembrane protein CD98 that regulates intracellular calcium levels and transports L-type
amino acids. It has been linked to Ras-driven skin carcinogenesis and prognosis of lung cancer41,42. Gene 11660 (ABCC9) is a
member of the ATP-binding cassette transporter (ABC transporter) family. Recently the down-regulation of ABC transporters,
including ABCC9, has been observed in prostate cancer43. Gene 255738 (PCSK9) is involved in peptide precursors trafficking.
It has been shown that tumor development influences the host lipid metabolism through PCSK9-mediated degradation of hepatic
LDLR, and PCSK9 is suppressed in hepatocellular carcinoma44,45. Combined with these evidence in other types of cancer, our
results indicate a link between transmembrane transporters and the prognosis of melanoma.
Six of the 17 low-risk genes belong to cytokine-mediated signaling pathways, which are critical in leukocyte trafficking and

immune functions46. Gene 643 (CXCR5), a member of the CXC chemokine receptor family, is expressed in mature B-cells and
Burkitt’s lymphoma. The loss of CXCR5 in naive T cells is linked to the metastatic dissemination of melanoma into lungs47.
Gene 3434 (IFIT1) is an interferon-induced protein. Overexpression of IFIT1 has been shown to predict improved outcome in
newly diagnosed glioblastoma48. Gene 4261 (CIITA) regulates class II major histocompatibility complex gene transcription.
CIITA overexpression facilitates engulfment of the T-cell material bymelanoma cells, which can blunt the anti-tumor response49.
Gene 10563 (CXCL13) is a cytokine that belongs to the CXC chemokine family.Its expression is correlated with the densities
of tumor high endothelial venules (HEVs), which allows the recruitment of tumor-infiltrating lymphocytes (TILs)50. CXCL13
is also found to be one of a group of diagnostic markers of melanoma51. Gene 25939 (SAMHD1) is a deoxyribonucleoside
triphosphate triphosphohydrolase that decreases dNTP pools, which in turn affects DNA replication fidelity. Although it hasn’t
been well studied in melanoma, SAMHD1 is found to be frequently mutated in colon cancers, resulting in decreased SAMHD1
activity and thereby facilitating cancer cell proliferation52.
Figure 5 shows a module where two nodes with missing observations are identified as low-risk genes. These two genes, 3135

(HLA-G) and 3133 (HLA-E) have both been implicated in melanoma immunomodulation. HLA-G can inhibit the function of T
cells, natural killer cells, and dendritic cells. It has been documented that HLA-G is inconsistently expressed in melanoma, and
its expression can provide the malignant cells a mechanism of escaping immune surveillance53,54. Similarly, HLA-E expression
on the cell surface facilitates the melanoma cells’ escape from CTL and NK cell surveillance55. Among all the 13 genes in
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FIGURE 5 A module containing two nodes with missing observations being identified as low-risk genes by BNC.

TABLE 4 Module Group Sizes and Concordant Scores
Module ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total number of genes nodes 116 101 86 61 57 40 40 37 28 27 26 26 24 21 21 20
high-risk genes by BNC 24 9 23 7 9 10 7 1 3 2 4 8 6 4 2 0
low-risk genes by BNC 29 39 17 24 15 12 11 16 11 10 8 8 8 5 8 11
low-risk genes by locfdr 13 16 7 8 11 5 6 8 7 7 4 3 1 2 0 7

low-risk genes by both methods 12 13 6 8 9 5 5 8 7 7 3 3 1 2 0 7
C-statistics by BNC 0.7491 0.7363 0.7311 0.7113 0.7196 0.7146 0.7097 0.6846 0.6788 0.6902 0.688 0.6996 0.6928 0.7006 0.6695 0.6806
C-statistics by locfdr 0.6702 0.6504 0.6648 0.6899 0.6761 0.6635 0.6688 0.649 0.6497 0.661 0.6558 0.6679 0.6557 0.6612 NA 0.6667

this module, 10 are annotated to the biological process of regulation of immune response, which is consistent with our earlier
discussion about the association of immune function-related genes with patient survival37,36. The figure also shows that by test
statistic alone, three of the 13 genes are not selected by locfdr. They are selected by BNC because their connections in the network
offer extra evidence that they are related to the clinical outcome. These three genes are 910 (CD1B), 3811 (KIR3DL1), 3823
(KLRC3). It has been found that down-regulating CD1 molecules including CD1B on infiltrating dendritic cells by secreting
IL-10 are associated with metastasis of melanoma56. Both KIR3DL1 and KLRC3 are receptors expressed on natural killer (NK)
cells, the induction of which shows the potential of suppressing solid melanoma tumors57.
Besides being biologically relevant, the selected modules each has good predictive power on the clinical outcome. Here we

compare concordance statistics which is commonly used in survival analysis to check on model validity. Concordance statistics
(C-statistics) is defined as the probability of agreement between any two randomly chosen observations. If a model predicts a
higher risk of death of one patient when it is observed with a shorter survival time compared to the other, then we define this
pair as “agree”, otherwise as “disagree”. Since ties of the predicted and the observed survival time may occur, we refer to those
pairs are “tie”. Then, the C-statistics is defined as P (agreement) = (agree+ tied∕2)∕(agree+ disagree+ tied) for all possible
comparable pairs58. By saying “comparable”, it is defined as the opposite to “uncomparable”. The “uncomparable” pairs are
the pairs when we lack the information of whether the predicted and the survival time agree or disagree with each other. For
example, one patent record is censored at time 2 while the survival time we predict is 4. In general a C-statistic of 1 means
perfect agreement; 0.6-0.7 is a common result for survival data while 0.5 is an agreement that is no better than the random guess.



13

We then calculate the C-statistics by the direct comparisons between the observed survival time and the predicted survival
time generated by the model fitting results of the Cox proportional hazard model for each selected module. Due to the lack of the
ability to handle the nodes when their expression profiles are completely missing in the Cox proportional hazard model, thus,
all the models are fitted using data except for those missing nodes. The modules with the number of genes larger than 20 are
outputted in Table 4. From the table 4, we observe that our proposed method can successfully recall the high-risk genes when
they cannot be discovered by locfdr method. The averaged C-statistics for these top 16 modules are 0.70 for our method while
it is 0.66 for locfdr. This indicates a better predicting power using our method.

6 DISCUSSION

The feature classification problem utilizing existing network information is a novel problemwhich has drawn increasing attention
recently. Based on our knowledge, we are the first to propose a non-parametric Bayesian framework not only to select features
but also to differentiate the subtypes of the selected features over genome-scale networks, and to handle the missing node
observations simultaneously.
We have applied our method to the cutaneous melanoma dataset from the Cancer Genome Atlas. The results provided novel

gene regulation evidence for unveiling the disease mechanism. In general, we recommend BNC for feature classification over the
network. If there are missing node observations in the network, we recommend nearest-neighbor imputation method to handle
missingness.
It is noteworthy that in the application section, we do not consider genes that are not part of the network because the main

purpose of the subsequent analysis is to select subnetworks, which are functionally coherent and easy to interpret.
Moreover, the KL-HODC algorithmwe proposed for setting up the initial values for fast convergence can be further utilized in

another fast version of our proposed algorithm based on density approximations, which can be implemented in our package. The
fast algorithm works by fitting DPM densities for several iterations and then the densities are fixed, the algorithm continues to
run but only update the class indicators given the densities until the Markov Chain reaches its equilibrium. For this fast version,
it is of great importance to choose an initial value based on our experience. Thus, KL-HODC advantages itself by providing a
better inference of the density specifications and class indicators since it can properly incorporate the prior biological knowledge.
Future work may include the extension of our method to a multivariate statistics cases when combined information can

provide more aspect of the information for classifying features, which can intuitively improve the classification accuracy. In
addition, much of the gene network is directional, including signal transduction and regulatory relations. In the current work,
we assumed the network was non-directional. There have been some related work that allow for the structure of a directed graph
under the regression framework59,60. Given the complexities due to the structure of loops, substantial modification of our model
is necessary to adapt it to directed graphs.
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APPENDIX

Equation Derivations
Swendsen-Wang Suppose W = {Wij , i ∼ j} where the Wij is defined only when gene pair i and j are connected. The
distribution ofWij is

P (Wij|zi, zj) = exp(−�zi!jCijI[zi = zj]) × I[0 ≤ Wij ≤ exp(�zi!jCijI[zi = zj])]

Then the conditional distribution ofW given z is:

P (W|z) ∝ exp
(

∑

i=1

∑

j≠i
−�zi!jcijI[zi = zj]

)

∏

i=1

∏

j≠i
I[0 ≤ Wij ≤ exp(�zi!jcijI[zi = zj])]

The full conditional distribution for z givenW is:

P (z|W, r, �̃) ∝ P (W|z)P (r|z, �̃)P (z) ∝ P (r|z, �̃) exp
[ n
∑

i=1
(!̃i log(�zi))

]

(1)

DPM Density Updating Consider gene i with class indicator k and all the other genes with the same class indicator, if we
integrate over qk, then the cluster index gi has the following distribution:

P (gi = g|g1, g2,⋯ , gi−1) =
P (g1, g2,⋯ , gi−1, gi = g)

P (g1, g2,⋯ , gi−1)

=
∫(g1,g2,⋯,g) Γ(�k)Γ(�k∕Lk)

−Lkg(�k∕Lk)−11 ⋯ g(�k∕Lk)−1Lk
dg1g2⋯ gLk

∫(g1,g2,⋯,gi−1) Γ(�k)Γ(�k∕Lk)
−Lkg(�k∕Lk)−11 ⋯ g(�k∕Lk)−1Lk

dg1g2⋯ gLk

=
ni,g + �k∕Lk
i − 1 + �k

where ni,g =
∑i−1
j=1 I[gj = g] denotes the count of gj , j < i such that gj = g.

Then let Lk →∞:
P (gi = g, |g1, g2,⋯ , gi−1&g ∈ (g1,⋯ , gi−1))→

ni,g
i − 1 + �k

P (gi = g, |g1, g2,⋯ , gi−1&g ∉ (g1,⋯ , gi−1))→
�k

i − 1 + �k

(2)
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Algorithm 1 Fully Bayesian Posterior Updating Algorithm
Input observed test statistics r = (robs, rmis), adjacencymatrixC = {cij}, � ,w, �=NULL, �=NULL, �0, r0, z, PriorNullDen-
sity=NULL, PriorForDPMDensityFitting, ParaForMCMC, rhoSD, rhoUpperBound, rhoLowerBound, piSD, piUpperBound,
piLowerBound, MissingDataImputationMethod, TotalNumIterationsForDMH, nSaveForDMH, TotalNumIterations, nSave
Initialization:
if (is.null(PriorNullDensity)) then

PriorNullDensity← BiGaussianDensityByCentralFitting(robs)
end if
(z, g, �̃,L)← KL-HODC(robs, PriorForDPMDensityFitting, ParaForMCMC)
if (is.null(�) | is.null(�)) then

(�,�) ← DMH(C, robs, �0, r0, z, rhoSD, rhoUpperBound, rhoLowerBound, piSD, piUpperBound, piLowerBound,
TotalNumIterationsForDMH, nSaveForDMH)
end if
rmis ←Mean(robs)
Loop:
zTrace← z
Iter← 0
while (Iter < TotalNumIterations) do

z ← SW(C, z, robs, �̃,�,�)
(�̃, g)← DPMDensityFitting(C, z, r, PriorForDPMDensityFitting, ParaForMCMC)
rmis ←MissingDataImputation(MissingDataImputationMethod, C, r, g, �̃)
zTrace← cbind(zTrace, z)
Iter← Iter+1

end while
ClassIndicators← ClassIndicatorsWithLocalFDRControl(zTrace, nSave)
return ClassIndicators

Algorithm 2 Function: Prior Null Density Fitted as Bi-Gaussian Density
function BIGAUSSIANDENSITYBYCENTRALFITTING(r, QuantileForFitting=NULL)

if is.null(QuantileForFitting) then
QuantileForFitting ← c(0.25, 0.75)

end if
CentralTestStat ← r[which(r ∈ QuantileForFitting)]
CutOff← quantile(r,0.5)
NormalFitForUpRegulateClass ←
NormalDensityFitting(CentralTestStat>CutoffWithItsReflected)
NormalFitForDownRegulateClass ←
NormalDensityFitting(CentralTestStat<CutoffWithItsReflected)
return CutOff, NormalDensityForUpRegulateClass, NormalDensityForDownRegulateClass

end function
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Algorithm 3 Function: Initial Values based on KL-HODC
function KL-HODC(r, PriorForDPMDensityFitting, ParaForMCMC, PriorNullDensity)

(g, �̃)← DPdensity(r, PriorForDPMDensityFitting, ParaForMCMC)
(g, �̃)← SortClusterByMeanLocation(g, �̃)
procedure (initialize null class index)

Dmin ← +∞
NullClassIndex← ∅
DownRegulateClassIndex ← ∅
UpRegulateClassIndex ← ∅
for all l0 ∈ s do

CandidateNullDensity← {�̃l0}
D← KLDistance(CandidateNullDensity, PriorNullDensity)
if D < Dmin then

Dmin ← D
NullClassIndex← {l0}
DownRegulateClassIndex← {l′}∀l′,1≤l′<l0
UpRegulateClassIndex← {l′}∀l′,l′>l0 ;

end if
end for

end procedure
procedure (merge multiple clusters to search for clusters in null class)

Ddiff ← +∞
while Ddiff > 0 & DownRegulateClassIndex ≠ ∅ & UpRegulateClassIndex ≠ ∅ do

CandidateNullClass← NullClassIndex ∪ {l0 + 1}
CandidateNullDensity← CandidateNullDensity ∪ {�̃l0+1}
D+ ← KLDistance(CandidateNullDensity, PriorNullDensity)
CandidateNullClass ← NullClassIndex ∪ {l0 − 1}
CandidateNullDensity← CandidateNullDensity ∪ {�̃l0+1}
D− ← KLDistance(CandidateNullDensity, PriorNullDensity)
if D− ≤ D+ then

NullClassIndex← NullClassIndex ∪ {l0 − 1}
DownRegulateClassIndex← DownRegulateClassIndex{l′}∀l′,1≤l′<(l0−1)
Ddiff ← Dmin −D−
Dmin = D−

else
NullClassIndex← NullClassIndex ∪ {l0 + 1}
UpRegulateClassIndex← UpRegulateClassIndex{l′}∀l′,l′>(l0+1);
Ddiff ← Dmin −D+
Dmin = D+

end if
end while

end procedure
z ← z = (z1,⋯ , zn),∀i ∈ NullClassIndex, zi = 0,∀i ∈ DownRegulateClassIndex, zi = −1,∀i ∈

UpRegulateClassIndex, zi = +1
g ← z
�̃← �̃ = {�̃gi}
L ← c(|DownRegulateClassIndex|, |NullClassIndex|, |UpRegulateClassIndex|)
return z, g, �̃,L

end function
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Algorithm 4 Function: Hyperparameters by Double Metropolis-Hasting
function DMH(Network, TestStat, �, r, z, rhoSD, rhoUpperBound, rhoLowerBound, piSD, piUpperBound, piLowerBound,
TotalNumIterations, nSave)

rhoTrace← �
piTrace← r
Iter← 0
for ( Iter< TotalNumIterations ) do

repeat
�′ = (�′1,�

′
2,�

′
3,�

′
4)← rtruncnorm(1, �, rhoSD, rhoLowerBound, rhoUpperBound)

�′ = (�′1,�
′
2,�

′
3)← rtruncnorm(1, �, rhoSD, rhoLowerBound, rhoUpperBound)

�′2 ← 1 − �′1 − �
′
3

until �′1 > �
′
2 & �′3 > �

′
2 & �′2 > 0.5

z′ ← DrawSampleFromPriorModel(Network, TestStat, �′,�′)
LogAcceptRate ← LogDataLikelihood(Network, TestStat, z′,�,�) + LogDataLikelihood(Network, TestStat,

z,�′,�′) -LogDataLikelihood(Network, TestStat, z,�,�) - LogDataLikelihood(Network, TestStat, z′,�′,�′)
if (log(runif(1))< LogAcceptRate) then

�← �′
� ← �′
z ← z′
rhoTrace← cbind(rhoTrace, �)
piTrace← cbind(piTrace, r)

end if
end for
�← rowMeans(rhoTrace[, nSave])
� ← rowMeans(piTrace[, nSave]) return �

end function

Algorithm 5 Function: updating z|�̃ by Swendsen-Wang

function SW(Network, z, r, �̃,�,�)
G =< V ,E >← as.GraphObject(Network)
procedure (graph clustering)

G ← G−1 ∪ G0 ∪ G1; where ∀ node i ∈ Gk =< Vk, Ek >, zi = k
for l ← {−1, 0, 1} do

for all e ∈ El do
We ← runif(1, 0, exp(�zl ))
if (We < 1) then e← NULL
end if

end for
Gl ← ∪nls=1Gls, Gls =< Vls, Els >

end for
G ← ∪1l=−1 ∪

nl
s=1 Gls, Gls =< Vls, Els >

end procedure
procedure (graph relabling)

for all Gcluster =< Vcluster, Ecluster >∈ {Gls =< Vls, Els >, l = −1, 0, 1, s = 1, 2,⋯ , nl} do
z′i∈Gcluster ← SampleFromPosteriorDistributionOfZ(r, z, �̃)

end for
return z

end procedure
end function
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Algorithm 6 Procedure: update �̃|z via DPM fitting
function DPMDENSITYFITTING(Network, z, r, PriorForDPMDensityFitting, ParaForMCMC)

for z in {−1, 0, 1} do
Nodes← {i}∀i,zi=z
DPMFit ← DPDensityFitting({ri}i∈Nodes, PriorForDPMDensityFitting, ParaForMCMC)
DPMFitSort ← DPMFitClusterSortByMeanLocation(DPMFit)
�̃z ← DPMFitSort.Para
{gi}∀i,i∈Nodes ← DPMFitSort.ClusterIndex

end for
return �̃, g

end function

Algorithm 7Missing Data Imputation Algorithm
function MISSINGDATAIMPUTATION(MissingDataImputationMethod= c(‘FullyBayesianInference’, ‘NearestNeighborIm-
pute’), Network, r, g, �̃)

if (MissingDataImputationMethod==‘FullyBayesianInference’) then
for loc in {i}∀i,ri∈rmis do

rloc ← rnorm(�̃gloc )
end for

end if
if (MissingDataImputationMethod==‘NearestNeighborImpute’) then

for loc in {i}∀i,ri∈rmis do
Nbrs← ExtractNeighborsFromNetwork(Network)
rloc ←

1
|Nbrs|

∑

|Nbrs|
k=1 rk

end for
end if
return rmis

end function
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Summary

Jointly analyzing transcriptomic data and the existing biological networks can yield
more robust and informative feature selection results, as well as better understanding
of the biological mechanisms. Selecting and classifying node features over genome-
scale networks has become increasingly important in genomic biology and genomic
medicine. Existing methods have some critical drawbacks. The first is they do not
allow flexible modeling of different subtypes of selected nodes. The second is they
ignore nodes with missing values, very likely to increase bias in estimation. To
address these limitations, we propose a general modeling framework for Bayesian
node classification (BNC) with missing values. A new prior model is developed for
the class indicators incorporating the network structure. For posterior computation,
we resort to the Swendsen-Wang algorithm for efficiently updating class indica-
tors. BNC can naturally handle missing values in the Bayesian modeling framework,
which improves the node classification accuracy and reduces the bias in estimating
gene effects. We demonstrate the advantages of our methods via extensive simulation
studies and the analysis of the cutaneous melanoma dataset from the Cancer Genome
Atlas.
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Bayesian nonparametrics; Feature selection; Gene networks; False discovery rate control

1 INTRODUCTION

Feature selection is a fundamental problem in high-dimensional data analysis. Existing biological networks, including biological
pathways andmolecular interactions, have been found to be helpful for depicting the biological relationship between the features.
In the field of transcriptomics, each node in the biological network corresponds to a feature measured in the high-dimensional
data. Researchers are interested in classifying the network node features in different categories according to their biological
characteristics and behavior in the transcriptomics data. We refer to this procedure as node classification on the network.
Node classification is different from the traditional differential expression framework which calculates false discovery rates,

i.e. posterior probabilities of differential expression using parametric or nonparametric density estimations, without considering
biological relations between features1,2.
For the classification of network nodes into "selected" and "unselected" categories, some filtering algorithms were developed

in the machine learning and bioinformatics fields, without much consideration of statistical inference3,4,5,6. In the statis-
tics field, the main approach for network-based feature selection is built under the parametric/regression framework, such as
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FIGURE 1 The impact of missing gene nodes in the network. (a) The missing gene is itself an up-regulated gene, it would be
excluded if missing genes are removed from data analysis; (b) the missing gene serves as a “bridge” for information exchange.
If it is simply removed, the light red node located on the left side would not be able to be recalled as up-regulated gene.

7,8,9,10,11,12,13,14,15,16,17,18,19, where model structures are developed to capture the dependency of genes by using various penalties
that smooth the regression coefficients of the features over the network, or applying different priors utilizing the structure of the
network.
Bayesian hierarchical models have been developed to cluster genes in complex high-dimensional data 20,21,22. We have pre-

viously developed the Bayesian network feature finder (BANFF) 23, a Bayesian nonparametirc method for selection of network
nodes24. Unlike the regression-based methods, BANFF allows any type of association between features and outcome variables,
or even testing behavior of the features without an outcome variable. It achieves this goal by conducting the analysis in two
steps. First, a test statistic is generated for each node in a univariate analysis, which can be supervised if an outcome variable is
involved in the analysis. Secondly, unsupervised node classification is conducted using a Bayesian nonparametric approach that
takes into account both the dependency structure on the network and the test statistic of each node.
While BANFF is suitable for analyzing data where the association of nodes with an outcome variable is considered, it can

also handle some situations that existing regression-based approaches cannot. Some examples include: (1) there is no outcome
variable, and some intrinsic properties of the nodes are summarized into a test statistic 24; (2) the study design is complex
and case-control type regression methods are not suitable, such as those involving longitudinal or functional measurements.
However, BANFF still has some major limitations. First, it assumes the test statistics of the null distribution follow a symmetric
distribution; while in many applications the null distribution of test statistics appear to be asymmetric. Second, it lumps up-
regulated and down-regulated genes into a single group and assumes they behave symmetrically. Third, it does not handle
missing values in a systematic modeling approach, thus it may lose power to detect signals while increasing the false positive
rates. Fourth, the posterior computation algorithm may suffer slow convergence in some applications.
In this work, we address these issues by developing a more flexible framework for Bayesian node classification (BNC). BNC

allows an asymmetric null distribution, as well as different levels of deviation from the null, for example, different degree of
deviation for down-regulated and up-regulated genes. Different from BANFF, BNC adopts more efficient posterior computation
algorithm, the Swendsen-Wang algorithm, and it can naturally handle missing values.
Missing data is an important issue in the network-based gene expression analysis. Here by missingness we refer to the lack

of observation on certain nodes across all samples, which is a common situation in gene expression data.25 laid the foundation
of missing mechanisms and provided ideas on how to handle missingness. However, most of the approaches do not handle the
missing of entire rows in the data well. In our motivating dataset, among the genes with at least one connection, around 6% are
not measured, and another 14% are observed but of a low and unreliable expression level for statistical testing. We treat them
as nodes with missing observations in the network. As a result, the occurrence of missingness makes our problem even more
challenging. Ignoring such nodes and their edges, as all existing methods do, causes severe loss of network structure and biases
the results. Thus handling missing nodes in the network is of great importance to our problem, due to the fact that missing nodes
are possible to be either down-regulated or up-regulated genes, and/or serve to communicate information via their edges with
observed genes.
Our proposed BNC is a nonparametric Bayesian method without imposing any parametric assumptions on the distributions of

the test statistics for each class. Instead, we use the Dirichlet process mixture (DPM) model. DPM is widely used and extensively
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studied from the literature (See26 for an overview of DPM). To specify the prior for the network node specific class indicators,
BNC adopts a weighted Potts prior, which generalized the Ising prior from two categories to multi-categories that can satisfy
the three-class feature classification problem. Our proposed BNC can be seen as an extension of the local false discovery rate
control rule proposed by27 to adopt the extra information of the network and classify network nodes. We developed an R package
BNC (https://github.com/kangjian2016/BNC) to implement the proposed method.
The remainder of the manuscript is organized as follows. In Section 2, we describe the proposed model and the prior specifica-

tions. In Section 3, we present the posterior computation algorithms. In Section 4, we compare the performance of the proposed
method with the traditional methods via extensive simulation studies. In Section 5, we analyze the cutaneous melanoma dataset
and discuss biologically meaningful results.

2 BAYESIAN NODE CLASSIFICATION

2.1 The Model
Consider a network consisting of n nodes. At each node i(i = 1,… , n), we obtain a node-specific test statistic, denoted ri. Let
C = {cij} be the adjacency matrix characterizing the gene network configuration, where cij = 1 if genes i and j are biologically
connected and cij = 0 otherwise. In gene expression differentiation analysis, each node represents a gene, and ri is obtained
for testing gene behaviors. There are three common gene behaviors: “down-regulated", “up-regulated" and “not differentiated
expressed", to which we refer as the “null genes". Let zi ∈ {−1, 1, 0} indicate the latent class for node i and values −1, 1 and 0
represent “down-regulated", “up-regulated" and “null" genes, respectively. We consider a Bayesian nonparametric model:

[ri ∣ (�i, �2i )] ∼ N(�i, �
2
i ), (1)

[(�i, �2i ) ∣ zi] ∼ G−1I(zi = −1) + G0I(zi = 0) + G1I(zi = 1), (2)
Gk ∼ (G0k, �k), (3)

where Gk(k = −1, 0, 1) is a random probability measure defined on ℝ × [0,∞) following the Dirichlet process with base
measureG0k and precision parameter �k. The domain ofG0k is the same asGk. We choose the conjugate priors, i.e. (�, �2) ∼ G0k
is equivalent to � ∣ �2 ∼ N(�0k, �2�0k) and �2 ∼ IG(a0k, b0k).
To incorporate this topology structure, we assign a weighted Potts prior to z = (z1,… , zn), denoted by wPotts(�,�,w,C),

where � = (�−1, �0, �1) with �k > 0, � = (�−1, �0, �1) with �k ≥ 0 and w = (w1,… , wn) with wi ≥ 0. Then the probability
mass function is proportional to

exp

[ n
∑

i=1
(!̃i log(�zi) + �zi

∑

i≠j
!jcijI[zi = zj])

]

. (4)

The parameter � contains prior knowledge about the distribution of the class indicator z. We assume that �1+�−1 < �0 implying
that signals are sparse. Similar to the Ising model, parameter �k controls the global strength of the neighborhood similarity.
When �k = 0, zi is independent with zj for j in the neighborhood of i. However, when �k > 0, zi has a larger probability to take
the value of k when zj = k for j in the neighborhood of i. Across the whole gene network, the larger the �k is, the stronger the
tendency of genes to share the samememberships with neighbors.Weightwi can be elicited from the prior biological knowledge.
A larger weightwi implies a stronger prior belief of the similarity between gene i and its neighbors locally. The neighbor weight
w̃i =

∑n
j=1 cijwj∕

∑n
i=1 cij represents the average of weights from neighbors for gene i.

2.2 Missing Data Problem and Model Representation
Our goal is to make inference on the latent class zi from the observed network node-specific test statistics. However, as the test
statistics are not always fully observed in real data analysis, we introduce a missing data indicator si for gene i, si = 1 if ri is
missing, si = 0 if ri is observed. The missing test statistics introduce great challenges in classifying the features, thus, we utilize
gene network information to help in classifying gene nodes. For gene i, the objective is to make inference about zi when its test
statistics ri, missing indicator si and gene network information are provided. We assume the distribution of missing test statistics
is the same with the distribution of the test statistics been observed. To be specific, given gene i in the class of k, i.e. zi = k, we
further introduce a cluster index gi of gene i, gi represents the cluster index indicating which component in the mixture model

https://github.com/kangjian2016/BNC
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that ri is associated with. In particular, ri given gi is assumed to be normally distributed with mean �̃gi and variance �̃
2
gi
, denoted

byN(�̃gi , �̃
2
gi
). We write �̃g = (�̃gi , �̃

2
gi
) and assume they are independently drawn from a base measure calledG0k. The �̃ denotes

all the �̃gs for simplicity. Given zi = k, gi follows a discrete distribution with parameter ak,qk, which means gi can take values
in ak = (ak1 , a

k
2 ,⋯ , akLk)with probability qk = (q

k
1 , q

k
2 ,⋯ , qkLk), denoted asDiscrete(ak, qk). In fact, the actual values of gi given

zi = k can be arbitrary as long as they can be differentiated from each other, thus, we assume ak = (1, 2,⋯ , Lk) without loss
of generality. The probability qk follows a Dirichlet distribution with parameters (�k∕Lk, �k∕Lk,⋯ , �k∕Lk). Note that the total
number of components Lk for all k = −1, 0, 1 are unknown, this extended DPM model is nonparametric in nature. In summary,
we have the following Bayesian hierarchical model:

ri|gi, si = 0, �̃ ∼ N(�̃gi , �̃
2
gi
),

gi|zi = k, qk ∼ Discrete(ak, qk),
�̃g ∼ G0k for g ∈ ak,
qk ∼ Dirichlet(�k1Lk∕Lk),
z ∼ wPotts(�,�,w,C)

(5)

where test statistics {ri ∶ si = 0} and the network configurationC are observed data. The latent class z is of our primary interest
for Bayesian inference.

2.3 Methods for Handling Missing Data
When the test statistics r are partially observed, the nodes with missing r values can still serve to pass information between
their neighboring nodes. More importantly, some nodes with missing r values can still belong to the significant classes, and
their neighboring nodes with observed r values can provide evidence. In order to infer the class labels of nodes with missing
r values, we conduct inference on the missing r values of such nodes. The test statistics r can be partitioned into two parts
r = (rmis, robs) with rmis = {ri ∶ si = 1} and robs = {ri ∶ si = 0}. Similarly, we can also partition the cluster indices into the
observed component and the missing component as g = (gmis, gobs). The element-wise representation of the missing component
of the test statistics is rmis = (rmis,1,⋯ , rmis,m) and the cluster indices are gmis = (gmis,1,⋯ , gmis,m) where m is the number of
missing nodes in the network.
Under the fully Bayesian inference framework, the missing values are one type of latent variables in the model. We can make

posterior inference on the joint distribution of rmis and all the other latent quantities in the model. From the model representation
(5), test statistics are conditionally independent given their cluster indices and density specifications, whichmeans the conditional
distribution for rmis given robs, g, z, �̃ only depends on gmis, �̃:

P (rmis|robs, gobs, gmis, zobs, zmis, �̃) = P (rmis|gmis, �̃) = Πmi=1P (rmis,i|gmis,i, �̃)

This further implies that in the posterior computation algorithm (See Section 3) when there are missing gene nodes in the
network, we only need to introduce one more step to impute the missing test statistics rmis,i, i = 1,⋯ , m within each iteration.
Assume the superscript represents the results from the previous iteration tth, for the (t + 1)th iteration, we only need to draw a
imputed value for r(t+1)mis,i fromN(�̃(t)gmis,i , �̃

2(t)
gmis,i

).
We also propose a fast imputation approach by approximating the fully Bayesian inference based on the assumption that

neighboring genes are more likely to share the same functionalities. We can integrate out all the latent quantities in the model
and impute rmis,i using robs based on the conditional expectation:

E(rmis,i ∣ robs) = ∫ rmis,iP (rmis,i ∣ robs)drmis,i

where
P (rmis,i ∣ robs) = ∫ ∫ P (rmis,i ∣ zmis,i,

̃
�)P (zmis,i,

̃� ∣ robs)dzmis,id�̃.

Suppose we have N samples of (zmis,i, �̃) from the posterior distribution given robs, denoted as (z(1)mis,i,
̃

�(1)),… , (z(N)mis,i, �̃
(N)),

then P (rmis,i ∣ robs) can be approximated byN−1∑N
n=1 P (rmis,i ∣ z

(n)
mis,i, �̃

(n)).
As indicated by model (4), when � > 0, zmis,i has a larger probability to take the value of k when zj = k for j in the neighbor-

hood of i. From our experience, we can approximate P (rmis,i ∣ robs) by a discrete distribution P (rmis,i = rj ∣ robs) = 1∕|nbr(i)|
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for j ∈ nbr(i), where nbr(i) represents the neighborhood of i with rj observed. Then E(rmis,i ∣ robs) can be approximated
by

∑

j∈nbr(i) rj∕|nbr(i)| which is exactly the average of neighboring observed test statistics. We refer to this approach as the
nearest-neighbor imputation method.

3 POSTERIOR COMPUTATION

The posterior computation algorithm has three major steps in each iteration: 1) Impute missing test statistics rmis (if any) either
by conditional sampling (fully Bayesian inference) or by the nearest-neighbor imputation method; 2) Update class indicators z
by the Swendsen-Wang algorithm, and 3) Update �̃ by refitting a DPM to estimate densities for each regulation type. Others
including Lk, gk are omitted temporarily for simplicity. For updating the hyperparameters in the Potts model for z, we adopt the
method of Double Metropolis-Hastings (DMH) sampler proposed by28.

3.1 Swendsen-Wang algorithm
It has been widely used in the Potts model. It works by introducing another set of auxiliary variables denoted as W =
{Wij , i ∼ j}. Wij is defined only when gene pairs i and j are connected. Given zi, zj , Wij is uniformly distributed between
0 and exp(�zi!jcijI[zi = zj]). Then the full conditional distribution for z given W can be simplified as proportional to

P (r|z, �̃) exp
[ n
∑

i=1
!̃i log(�zi)

]

.

The posterior sampling scheme has two steps: the network partitioning step (sample W given z) and the network relabeling
step (sample z given W). The objective for network partitioning is to cut the network into smaller connected subnetworks so
that the genes located within the same subnetwork share the same class indicators. Then in the network relabeling step, the class
indicators of all the genes located within the same subnetwork can be flipped simultaneously. Comparing to the Gibbs sampler
when it updates the genes each one at a time, the Swendsen-Wang algorithm advantages itself by a more efficient group level
updating scheme and a better convergence.

3.2 DPM Density Updating
Conditional on the class indicators, we update gi and �̃i given g1,… , gi−1, �̃1,… , �̃i−1. Utilizing Algorithm 8 in29, we firstly
summarize the frequency for each of the total l unique g values ever appeared in set (g1,… , gi−1), denoted as (1, 2,… , l) with
cluster parameters (�̃1,… , �̃l). It is ni,g =

∑i−1
j=1 I[gj = g], g = 1, 2,⋯ , l. Then the prior probability of gi equals to any of the

ever-appeared cluster index g is given by ni,g∕(i−1+�k), g ∈ (1, 2,… , l), if the sampled gi equals to any appeared cluster index
g, then we set �̃i = �̃g; on the other hand, the prior probability of gi being a new index is given by �k∕(i−1+�k), g ∉ (1, 2,⋯ , l),
if the sampled gi is a new index, then we sample a new set of parameter �̃g from base measure G0k. Given the cluster index g,
ri follows a normal distribution with parameter �̃g . In every iteration, we maintain the order of Gk(k = −1, 0, 1) by swapping
the labels if necessary.

3.3 Choice of Initial Values
In order to speed up the convergence in Markov chain Monte Carlo, we specify the initial values for G0k, (k = −1, 0, 1), z, g, �̃
and L based on the DPM density fitting of the test statistics rwithout the network information, we develop the Kullback-Leibler-
divergence-based hierarchical ordered density clustering algorithm (KL-HODC). In the beginning, we order all the small cluster
density parameters �̃g , �̃g = (�̃g , �̃2g ) based on their mean value �̃g locations. Each time, we pick several clusters to form a
proposed null. We calculate the KL distance between this proposed null and a prior null which is pre-determined by biological
knowledge. The combination of the clusters with the smallest KL distance is selected and added as the initial value for the null
densities.
Once all the clusters are assigned to three classes, z, g, �̃,L can be determined as well. When the biology knowledge is not

available for the prior null, it can be estimated by a truncated bi-Gaussian distribution using the central part of the test statistics
such as statistics within 15% and 75% quantiles.
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TABLE 1 Simulation settings
down-regulated class null class up-regulated class

Gaussian N(-0.6, 0.2) N(0, 0.2) N(0.6, 0.2)
Gamma Gamma(shape=2, scale=0.5) N(0, 0.4) Gamma(shape=2, scale=0.3)

truncated within (−∞, 2], shifted -1.9 truncated within (−∞, 1.8], shifted +1.7
log-normal log N(0, 1) N(0, 0.4) log N(0, 1)+2.2

truncated within (−∞, 2], shifted -1.9 truncated within (−∞, 2.3], shifted +2.2

KL-HODC is a hierarchical density clustering algorithm that substantially improves the existing algorithmHODC24. The KL-
HODC incorporates the biological knowledge as a prior null density and it is able to handle the multi-class feature classification
problem, while HODC can only be used for selecting features, not further differentiating their subtypes.

4 SIMULATION STUDIES

We conduct extensive simulation studies to evaluate the performance of the proposed methods for the complete data case and
the missing data case.

4.1 Settings
The network used in the simulation studies is a subnetwork of the real biological network used in real data analysis downloaded
from the High-quality INTeractomes (HINT) database30. It is formed by a total of 776 nodes with a median degree of 3, a
mean degree of 5.2 and a maximum degree of 30. The underlying true gene regulation types are assigned based on the merged
communities by the fast greedy modularity optimization algorithm31. We assign the genes located in the largest community as
the null class and then we randomly assign the down-regulated or the up-regulated class to the other two. For the null genes,
their test statistics are independently drawn from a normal distribution, and for the up-regulated or the down-regulated genes,
their test statistics are independently drawn from one of the following three distributions: a normal, a gamma or a lognormal.
(See Figure 2 for an illustration of one simulated dataset; See Table 1 for the designs of the simulation settings). The missing
locations are randomly selected among the genes with network degrees less than 6, which is the 66% quantile of the degrees of
the nodes in the network. We simulate 20% missingness since it is the missing rate in the real dataset.

4.2 Evaluation Criteria
For each simulation setting, we simulate 50 datasets in total, indexed by s = 1,⋯ , 50. A classification rate of the genes with
true class indicator zi = a being classified as b for a, b = −1, 0, 1 is defined by

∑50
s=1 I[ẑ

(s)
i = b, zi = a]∕50, where ẑ(s)i is the

estimate of zi in the simulated dataset s. Denote TP-down, TP-up and TN the true positive rate averaged across all simulations
for the down-regulated (a = b = −1), up-regulated (a = b = 1) and null genes (a = b = 0) respectively. Denote FN-down
and FN-up the averaged false negative rates for the down-regulated and up-regulated genes. Additionally, FP-down and FP-up
are the averaged false positive rates into the down-regulated and up-regulated classes respectively. And finally, FDR is the false
discovery rate defined as the proportion of false discoveries among all the discoveries on average.

4.3 Hyperprior Specifications
For hyperprior settings in the Potts prior model (4), we set weights !j = 1, j = 1, 2,⋯ , n. Then w̃i = 1, i = 1, 2,⋯ , n. We
set � = (1.001, 0.497, 0.998), � = (0.15, 0.70, 0.15) as an output from DMH of a 10000-iteration run with 5000 burn-ins. The
proposal used in DMH for (�,�) is an independent random walk proposal for � and �: for each element of �, it is a truncated
Gaussian distribution with a mean of 0, a standard deviation of 0.03, a lower-bound of 0 and a upper-bound of 1.5; for �, since it
must satisfy �2 = 1−�1−�3 and �1+�3 < 0.5, thus we assume �1 and �3 follow the truncated Gaussian distribution with a mean



7

FIGURE 2 An illustration of the distributions of test statistics under each simulation setting.

of 0, a standard deviation of 0.03, a lower-bound of 0 and a upper-bound of 0.5. As for the hyperparameters for the DPM model
fitting, For each regulation type k, we assume the base measure G0k = P (�,Σ) is conjugate Normal-inverse-Gamma (NIWG)
distribution with parameters (�0k, c0k, S0k,  0k) and the scale parameter c0k in the normal part of the base measure follows a
gamma distribution with parameters (a0k, b0k). In general, we denote the the distribution G0k as NIWG(�0k, S0k,  0k, a0k, b0k).
For this prior model, we firstly apply the normal mixture modeling for model-based clustering method (Mclust by32) where the
parameter indicating the total number of groups is set to be 3. Then we use the estimated mean and variance from each group k
as �0k and S0k. And we set �0k = 3, a0k = 1, b0k = 100, �k = 3.

4.4 Simulation Results for the Complete Observed Case
We first consider the cases when all the test statistics are fully observed. For each of these simulation settings, we compare
our method (BNC) with the Bayesian nonparametric mixture model for selecting genes (BANFF) by24 and the false discovery
rate controlling procedures for identifying differentially expressed genes (locfdr) by1. The locfdr method does not consider the
network structure and only uses the gene-level test statistics.
BANFF is a Bayesian nonparametric gene and gene-network selection method, it can also utilize the network information but

it is mainly for selecting the activated-state genes from the null genes. In order to modify BANFF for this feature classification
problem, we firstly classify genes into three groups by MCLUST - Gaussian finite mixture models fitted via EM algorithm32.
Then we flip the sign of the test statistics of the genes assigned to the down-regulated class so that ideally those genes combined
with the up-regulated class should be of the active state. Then the finalized class indicators are assigned based on the results
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TABLE 2 Algorithm performance for complete data cases

Generative model Methods TP-down TP-up TN FP-down FP-up FN-down FN-up FDR

Gaussian BNC 0.87 0.91 0.97 0 0.03 0.12 0.09 0.03
BANFF 0.75 0.87 0.62 0.03 0.36 0.2 0.13 0.3
locfdr 0.5 0.51 1 0 0 0.49 0.5 0.01

Gamma BNC 0.92 0.96 0.99 0 0.01 0.08 0.04 0.01
BANFF 0.5 0.89 0.69 0 0.31 0.38 0.11 0.2
locfdr 0.57 0.71 0.98 0.01 0.01 0.43 0.29 0.03

log-normal BNC 0.9 0.96 0.99 0 0.01 0.1 0.04 0.01
BANFF 0.73 0.92 0.55 0.05 0.04 0.17 0.08 0.31
locfdr 0.59 0.72 0.99 0.01 0.01 0.41 0.28 0.03

from BANFF being flipped back. For the locfdr, it is a kernel density-based non-parametric method for selecting differentially
expressed genes without considering the network. To be specific, we applied the central matching for estimating the null densities
and then calculated the estimated local false discovery rate for each gene. We adopt a commonly used cutoff of 0.2 so that the
genes with the posterior probability of being in the null class below 0.2 will be identified as differentially expressed, and the null
class otherwise. Then the differentially expressed genes can be further classified by comparing the relative locations of their test
statistics with 0.
Table 2 indicates that for Gaussian simulations, under each regulation type, BNC performs better than the BANFF and locfdr.

BNC achieves classification accuracies as high as 0.87 for the down-regulated genes, 0.91 for the up-regulated genes, and 0.97
for the null genes. At the same time, BNC achieves the false positive rates as lower as 0 for the down-regulated genes, 0.03 for
the up-regulated genes, 0.12 for the null genes to be classified as down-regulated genes, 0.09 for the null genes to be classified
as up-regulated genes. Overall, BNC can achieve higher accuracies and lower false positive and false negative rates. BANFF
performs worse in the true negative rates and false positive rates. locfdr performs well at selecting the null genes, with a true
negative rate of 1. However, it gives a false negative rate as high as 0.49 for the down-regulated genes and 0.5 for the up-regulated
genes, indicating the procedure is overly conservative.
Comparing the classification accuracies for Gamma and log-normal settings, BNC outperforms all the others in all the mea-

sures. The BANFF performs worse than the BNC. It is because the proposed method can flexibly model the gene subtypes so
that it allows for different levels of deviation from the null for down-regulated and up-regulated genes. The worse performance
of locfdr compared to BNC indicates that by utilizing network information, better classification accuracies can be obtained.

4.5 Simulation Results for the Missing Data Case
We further compare our method with the others when there are missing node observations in the network. We only focus on
the symmetric cases as described in table 1, and compare five combinations of methods to perform feature classification and to
handle missingness simultaneously: 1. BNC+Bayes: we apply the BNC for feature classification and the conditional sampling
for fully Bayesian inference to impute the missing test statistics. 2. BNC+NN: we apply the BNC for feature classification
combined with the nearest neighbor imputation method to impute the missing test statistics. 3. BNC+NArm: we firstly remove
all the missing nodes and their edges in the network and then use BNC for feature classification. In this case, only the estimated
class indicators for gene nodes with observed test statistics can be obtained. 4. BANFF+NN: we utilize the BANFF for feature
classification and use the nearest neighbor imputation method to impute the missing test statistics. 5. BANFF+NArm: we apply
BANFF to the reduced network comprised of nodes with observed test statistics. Similar to BNC+NArm, only replace the BNC
with BANFF for feature classification.
To summarize the classification accuracies, we separate different types of nodes to calculate the averaged rates: 1. Missing:

only average the rates among the genes whose test statistics are missing. 2. Observed: only average the rates among all observed
genes. 3. Total: average among all the genes nodes.
From Table 3, we observe that BNC+NN performs the best in general. The overall classification accuracies for the all the

down-regulated, the up-regulated and the null genes to be correctly classified are 0.87, 0.87, 0.89. The averaged false positive
rates for the null genes being classified as down-regulated or up-regulated are 0 and 0.01. The averaged false negative rates for
the down-regulated or the up-regulated genes are 0.12 and 0.13, respectively. The estimated false discovery rate is 0.12. This
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TABLE 3 Algorithm performance for missing data cases

Algorithm Gene nodes type TP-down TP-up TN FP-down FP-up FN-down FN-up FDR

BNC+Bayes Missing 0.73 0.75 0.77 0.01 0.22 0.26 0.25 0.27
Observed 0.92 0.9 0.78 0 0.22 0.05 0.1 0.2
Total 0.88 0.88 0.78 0.01 0.22 0.1 0.12 0.21

BNC+NN Missing 0.83 0.81 0.88 0.01 0.11 0.17 0.19 0.15
Observed 0.88 0.88 0.89 0 0.01 0.11 0.12 0.11
Total 0.87 0.87 0.89 0 0.01 0.12 0.13 0.12

BNC+NArm Observed 0.87 0.88 0.66 0.01 0.33 0.07 0.12 0.3

BANFF+NN Missing 0.6 0.79 0.48 0.04 0.48 0.26 0.21 0.47
Observed 0.7 0.86 0.41 0.05 0.54 0.19 0.14 0.46
Total 0.68 0.85 0.42 0.05 0.53 0.21 0.15 0.46

BANFF+NArm Observed 0.67 0.82 0.5 0.05 0.45 0.23 0.18 0.43

performance keeps consistent among missing genes and the observed genes. Compared to BNC+Bayes, BNC+NN is slightly
better. It is because the nearest-neighbor imputation scheme is more flexible than the model-based Bayesian posterior inferences
since Bayesian posterior sampling needs to specify a proper prior. The Bayesian model we are utilizing might not characterize
very well the predictive distribution of the missing test statistics given the observed test statistics across the network while
utilizing the information from the nearest neighbors might help to improve.
The accuracies will drop if we use the BANFF for feature classification regardless of which schemes are used for handling the

missingness. It indicates that our proposed algorithm outperforms BANFF when there are missing observations in the network,
which is consistent with the simulation results in fully observed cases. Moreover, regardless of which feature classification
algorithms we utilize, either BNC or BANFF, comparing NArm with the imputation methods Bayes or NN among the observed
gene nodes, we observe that the classification accuracies drop and the false positive/ false negative rates increase, and so does
the averaged false discovered rates. Thus, imputation methods are recommended for feature classification problem with missing
gene observations.

5 SURVIVAL ANALYSIS OF CUTANEOUS MELANOMA

5.1 Dataset
We analyze the cutaneous melanoma dataset from The Cancer Genome Atlas (TCGA)33, downloaded from the cBio Cancer
Genomics Portal34. There are 478 patient records by the time we downloaded. After removing six patient records that lack gene
expression profiles, one patient record with a negative survival month due to possible errors, one patient record that is missing
survival status, and one patient record that is missing the sample type which is one of the covariates we are interested in, we
use the remaining 469 patient records in a Cox proportional hazard model to assess the association between the expression
levels of individual genes and survival time. In our model, we control for three confounders: age at initial pathologic diagnosis
(minimum 15, median 58, mean 58.08, max 90, and 8 are missing), gender (180 females and 290 males), and sample type (366
of metastatic, 102 of primary tumor and 1 of additional metastatic).
We downloaded the protein-protein interactions in Homo Sapiens from the High-quality INTeractomes (HINT) database by30.

After data cleaning, there are a total of 11,662 genes and 87,482 edges. Then we apply the community detection algorithm
by31 to extract the largest connected subnetwork as our network input. To be specific, the largest connected component contains
10,484 genes while the remaining genes form 1097 tiny islands (1 island is of five genes, 2 islands are of four genes, 5 are of
three genes, 61 of two genes and 1028 are formed by a single gene node). By excluding these tiny islands, the network contains
a total of 10484 nodes, with a degree distribution of a minimum of 1, a median of 3, a mean of 8.328, and a maximum of 400.
For the gene expression profile, we firstly map all 20530 unique gene names to 18978 Entrez IDs. Among the 10484 genes in

the network, 9833 can be mapped to an expression profile. There are 651 (6.21%) genes that do not have any expression profile
and another 1433 (13.67%) genes that are considered unreliably measured based on their low maximum expression level across
the samples. Removing such genes leads to a total missing rate of 19.88% in our real data analysis. For each gene included in
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FIGURE 3 Histogram of the test statistics, with estimated null density and frequencies of the selected genes. (a) Results by
BNC; (b) Results by locfdr with center matching estimation for a symmetric null. Local false discovery rate is controlled at 0.2
for both methods. Blue: low-risk genes; red: high-risk genes.

the analysis, we first fitted the Cox proportional hazard model while controlling for the three confounders. The z-statistic for the
gene was extracted from the model and used in the node classification analysis.
Similar to the simulations, for the Potts prior model, the hyperparameters in Equation (4), we prefix the !j = 1, j = 1, 2,⋯ , n

so that the w̃i = 1, i = 1, 2,⋯ , n. Set � = (1.003, 0.479, 0.988) and � = (0.15, 0.70, 0.15) as an output from the DMH of 10000
iterations with 5000 burn-in. Other hyperparameters settings are the same with the settings used for simulations. In the following
discussion, we refer to genes that significantly increase the risk of death as high-risk genes, and genes that significantly decrease
the risk of death as low-risk genes.

5.2 Results
Our method finds 144 high-risk genes and 263 low-risk genes. Compared to ours, the locfdr method finds 217 low-risk genes
by central matching estimation for a symmtric null while it does not identify any differentially expressed genes by applying a
split normal version of central matching estimation for an asymmetric null. Thus, for the following discussion, we will focus on
the comparison between the proposed method and the locfdr utilizing central matching estimation (See Figure 3a) even though
the null density is asymmetric and the mode of the distribution is away from zero for the motivating dataset.
Using the test statistics alone, combined with the common assumption of symmetric null distribution, locfdr identifies sig-

nificant genes only on the low-risk side (See Figure 3b). On the other hand, when the existing network is utilized, the proposed
method can detect both high-risk and low-risk genes.
To facilitate interpretation, we further find modules by applying the fast greedy community detection algorithm among the

selected nodes and their one-step neighbors31. There is a total of 56 modules selected, 16 of which contain more than 10 selected
genes.
Here we present some example modules and discuss their biological functions in relation to the clinical outcome. The module

shown in Figure 4a contains 48 selected genes. There are 39 low-risk genes and 9 high-risk genes in this module. Analyzing the
biological functions of the selected genes using GOstats35, we find the biological function of the low-risk genes are focused in
the area of immune responses, with 18 of the 39 genes falling into the biological process of “regulation of immune response”, and
various related functions. The prognosis of melanoma is closely related to tumor-infiltrating lymphocytes36. A cross-platform
meta-analysis has shown that the increased expression of immune function-related genes in melanoma is associated with longer
patient survival, and B and T cells are enriched in melanoma biopsies from patients with favorable outcome37. The low-risk
genes selected from this bulk RNAseq data likely represent higher level of immune cell infiltration in patients with better survival
outcome.
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FIGURE 4 Two example modules of selected genes

The module shown in Figure 4b contains 23 high-risk genes and 17 low-risk genes. An interesting finding is that the top gene
ontology biological process being over-represented by the high-risk genes is transmembrane transport, with eight of the 23 genes
falling into this category. Six of the high-risk genes are involved in ion transport. Although transmembrane transporters haven’t
been systematically studied in melanoma progression, recent developments in other cancer have indicated their role in cancer
prognosis38. For example, among the genes selected by BNC, gene 3764 (KCNJ8) encodes a potassium channel. It is found to
be over-expressed in nasopharyngeal carcinoma (NPC) tissues as well as in esophageal cancer39,40. The gene 6520 (SLC3A2)
encodes the heavy chain of the transmembrane protein CD98 that regulates intracellular calcium levels and transports L-type
amino acids. It has been linked to Ras-driven skin carcinogenesis and prognosis of lung cancer41,42. Gene 11660 (ABCC9) is a
member of the ATP-binding cassette transporter (ABC transporter) family. Recently the down-regulation of ABC transporters,
including ABCC9, has been observed in prostate cancer43. Gene 255738 (PCSK9) is involved in peptide precursors trafficking.
It has been shown that tumor development influences the host lipid metabolism through PCSK9-mediated degradation of hepatic
LDLR, and PCSK9 is suppressed in hepatocellular carcinoma44,45. Combined with these evidence in other types of cancer, our
results indicate a link between transmembrane transporters and the prognosis of melanoma.
Six of the 17 low-risk genes belong to cytokine-mediated signaling pathways, which are critical in leukocyte trafficking and

immune functions46. Gene 643 (CXCR5), a member of the CXC chemokine receptor family, is expressed in mature B-cells and
Burkitt’s lymphoma. The loss of CXCR5 in naive T cells is linked to the metastatic dissemination of melanoma into lungs47.
Gene 3434 (IFIT1) is an interferon-induced protein. Overexpression of IFIT1 has been shown to predict improved outcome in
newly diagnosed glioblastoma48. Gene 4261 (CIITA) regulates class II major histocompatibility complex gene transcription.
CIITA overexpression facilitates engulfment of the T-cell material bymelanoma cells, which can blunt the anti-tumor response49.
Gene 10563 (CXCL13) is a cytokine that belongs to the CXC chemokine family.Its expression is correlated with the densities
of tumor high endothelial venules (HEVs), which allows the recruitment of tumor-infiltrating lymphocytes (TILs)50. CXCL13
is also found to be one of a group of diagnostic markers of melanoma51. Gene 25939 (SAMHD1) is a deoxyribonucleoside
triphosphate triphosphohydrolase that decreases dNTP pools, which in turn affects DNA replication fidelity. Although it hasn’t
been well studied in melanoma, SAMHD1 is found to be frequently mutated in colon cancers, resulting in decreased SAMHD1
activity and thereby facilitating cancer cell proliferation52.
Figure 5 shows a module where two nodes with missing observations are identified as low-risk genes. These two genes, 3135

(HLA-G) and 3133 (HLA-E) have both been implicated in melanoma immunomodulation. HLA-G can inhibit the function of T
cells, natural killer cells, and dendritic cells. It has been documented that HLA-G is inconsistently expressed in melanoma, and
its expression can provide the malignant cells a mechanism of escaping immune surveillance53,54. Similarly, HLA-E expression
on the cell surface facilitates the melanoma cells’ escape from CTL and NK cell surveillance55. Among all the 13 genes in
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FIGURE 5 A module containing two nodes with missing observations being identified as low-risk genes by BNC.

TABLE 4 Module Group Sizes and Concordant Scores
Module ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total number of genes nodes 116 101 86 61 57 40 40 37 28 27 26 26 24 21 21 20
high-risk genes by BNC 24 9 23 7 9 10 7 1 3 2 4 8 6 4 2 0
low-risk genes by BNC 29 39 17 24 15 12 11 16 11 10 8 8 8 5 8 11
low-risk genes by locfdr 13 16 7 8 11 5 6 8 7 7 4 3 1 2 0 7

low-risk genes by both methods 12 13 6 8 9 5 5 8 7 7 3 3 1 2 0 7
C-statistics by BNC 0.7491 0.7363 0.7311 0.7113 0.7196 0.7146 0.7097 0.6846 0.6788 0.6902 0.688 0.6996 0.6928 0.7006 0.6695 0.6806
C-statistics by locfdr 0.6702 0.6504 0.6648 0.6899 0.6761 0.6635 0.6688 0.649 0.6497 0.661 0.6558 0.6679 0.6557 0.6612 NA 0.6667

this module, 10 are annotated to the biological process of regulation of immune response, which is consistent with our earlier
discussion about the association of immune function-related genes with patient survival37,36. The figure also shows that by test
statistic alone, three of the 13 genes are not selected by locfdr. They are selected by BNC because their connections in the network
offer extra evidence that they are related to the clinical outcome. These three genes are 910 (CD1B), 3811 (KIR3DL1), 3823
(KLRC3). It has been found that down-regulating CD1 molecules including CD1B on infiltrating dendritic cells by secreting
IL-10 are associated with metastasis of melanoma56. Both KIR3DL1 and KLRC3 are receptors expressed on natural killer (NK)
cells, the induction of which shows the potential of suppressing solid melanoma tumors57.
Besides being biologically relevant, the selected modules each has good predictive power on the clinical outcome. Here we

compare concordance statistics which is commonly used in survival analysis to check on model validity. Concordance statistics
(C-statistics) is defined as the probability of agreement between any two randomly chosen observations. If a model predicts a
higher risk of death of one patient when it is observed with a shorter survival time compared to the other, then we define this
pair as “agree”, otherwise as “disagree”. Since ties of the predicted and the observed survival time may occur, we refer to those
pairs are “tie”. Then, the C-statistics is defined as P (agreement) = (agree+ tied∕2)∕(agree+ disagree+ tied) for all possible
comparable pairs58. By saying “comparable”, it is defined as the opposite to “uncomparable”. The “uncomparable” pairs are
the pairs when we lack the information of whether the predicted and the survival time agree or disagree with each other. For
example, one patent record is censored at time 2 while the survival time we predict is 4. In general a C-statistic of 1 means
perfect agreement; 0.6-0.7 is a common result for survival data while 0.5 is an agreement that is no better than the random guess.
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We then calculate the C-statistics by the direct comparisons between the observed survival time and the predicted survival
time generated by the model fitting results of the Cox proportional hazard model for each selected module. Due to the lack of the
ability to handle the nodes when their expression profiles are completely missing in the Cox proportional hazard model, thus,
all the models are fitted using data except for those missing nodes. The modules with the number of genes larger than 20 are
outputted in Table 4. From the table 4, we observe that our proposed method can successfully recall the high-risk genes when
they cannot be discovered by locfdr method. The averaged C-statistics for these top 16 modules are 0.70 for our method while
it is 0.66 for locfdr. This indicates a better predicting power using our method.

6 DISCUSSION

The feature classification problem utilizing existing network information is a novel problemwhich has drawn increasing attention
recently. Based on our knowledge, we are the first to propose a non-parametric Bayesian framework not only to select features
but also to differentiate the subtypes of the selected features over genome-scale networks, and to handle the missing node
observations simultaneously.
We have applied our method to the cutaneous melanoma dataset from the Cancer Genome Atlas. The results provided novel

gene regulation evidence for unveiling the disease mechanism. In general, we recommend BNC for feature classification over the
network. If there are missing node observations in the network, we recommend nearest-neighbor imputation method to handle
missingness.
It is noteworthy that in the application section, we do not consider genes that are not part of the network because the main

purpose of the subsequent analysis is to select subnetworks, which are functionally coherent and easy to interpret.
Moreover, the KL-HODC algorithmwe proposed for setting up the initial values for fast convergence can be further utilized in

another fast version of our proposed algorithm based on density approximations, which can be implemented in our package. The
fast algorithm works by fitting DPM densities for several iterations and then the densities are fixed, the algorithm continues to
run but only update the class indicators given the densities until the Markov Chain reaches its equilibrium. For this fast version,
it is of great importance to choose an initial value based on our experience. Thus, KL-HODC advantages itself by providing a
better inference of the density specifications and class indicators since it can properly incorporate the prior biological knowledge.
Future work may include the extension of our method to a multivariate statistics cases when combined information can

provide more aspect of the information for classifying features, which can intuitively improve the classification accuracy. In
addition, much of the gene network is directional, including signal transduction and regulatory relations. In the current work,
we assumed the network was non-directional. There have been some related work that allow for the structure of a directed graph
under the regression framework59,60. Given the complexities due to the structure of loops, substantial modification of our model
is necessary to adapt it to directed graphs.
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APPENDIX

Equation Derivations
Swendsen-Wang Suppose W = {Wij , i ∼ j} where the Wij is defined only when gene pair i and j are connected. The
distribution ofWij is

P (Wij|zi, zj) = exp(−�zi!jCijI[zi = zj]) × I[0 ≤ Wij ≤ exp(�zi!jCijI[zi = zj])]

Then the conditional distribution ofW given z is:

P (W|z) ∝ exp
(

∑

i=1

∑

j≠i
−�zi!jcijI[zi = zj]

)

∏

i=1

∏

j≠i
I[0 ≤ Wij ≤ exp(�zi!jcijI[zi = zj])]

The full conditional distribution for z givenW is:

P (z|W, r, �̃) ∝ P (W|z)P (r|z, �̃)P (z) ∝ P (r|z, �̃) exp
[ n
∑

i=1
(!̃i log(�zi))

]

(1)

DPM Density Updating Consider gene i with class indicator k and all the other genes with the same class indicator, if we
integrate over qk, then the cluster index gi has the following distribution:

P (gi = g|g1, g2,⋯ , gi−1) =
P (g1, g2,⋯ , gi−1, gi = g)

P (g1, g2,⋯ , gi−1)

=
∫(g1,g2,⋯,g) Γ(�k)Γ(�k∕Lk)

−Lkg(�k∕Lk)−11 ⋯ g(�k∕Lk)−1Lk
dg1g2⋯ gLk

∫(g1,g2,⋯,gi−1) Γ(�k)Γ(�k∕Lk)
−Lkg(�k∕Lk)−11 ⋯ g(�k∕Lk)−1Lk

dg1g2⋯ gLk

=
ni,g + �k∕Lk
i − 1 + �k

where ni,g =
∑i−1
j=1 I[gj = g] denotes the count of gj , j < i such that gj = g.

Then let Lk →∞:
P (gi = g, |g1, g2,⋯ , gi−1&g ∈ (g1,⋯ , gi−1))→

ni,g
i − 1 + �k

P (gi = g, |g1, g2,⋯ , gi−1&g ∉ (g1,⋯ , gi−1))→
�k

i − 1 + �k

(2)
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Algorithm 1 Fully Bayesian Posterior Updating Algorithm
Input observed test statistics r = (robs, rmis), adjacencymatrixC = {cij}, � ,w, �=NULL, �=NULL, �0, r0, z, PriorNullDen-
sity=NULL, PriorForDPMDensityFitting, ParaForMCMC, rhoSD, rhoUpperBound, rhoLowerBound, piSD, piUpperBound,
piLowerBound, MissingDataImputationMethod, TotalNumIterationsForDMH, nSaveForDMH, TotalNumIterations, nSave
Initialization:
if (is.null(PriorNullDensity)) then

PriorNullDensity← BiGaussianDensityByCentralFitting(robs)
end if
(z, g, �̃,L)← KL-HODC(robs, PriorForDPMDensityFitting, ParaForMCMC)
if (is.null(�) | is.null(�)) then

(�,�) ← DMH(C, robs, �0, r0, z, rhoSD, rhoUpperBound, rhoLowerBound, piSD, piUpperBound, piLowerBound,
TotalNumIterationsForDMH, nSaveForDMH)
end if
rmis ←Mean(robs)
Loop:
zTrace← z
Iter← 0
while (Iter < TotalNumIterations) do

z ← SW(C, z, robs, �̃,�,�)
(�̃, g)← DPMDensityFitting(C, z, r, PriorForDPMDensityFitting, ParaForMCMC)
rmis ←MissingDataImputation(MissingDataImputationMethod, C, r, g, �̃)
zTrace← cbind(zTrace, z)
Iter← Iter+1

end while
ClassIndicators← ClassIndicatorsWithLocalFDRControl(zTrace, nSave)
return ClassIndicators

Algorithm 2 Function: Prior Null Density Fitted as Bi-Gaussian Density
function BIGAUSSIANDENSITYBYCENTRALFITTING(r, QuantileForFitting=NULL)

if is.null(QuantileForFitting) then
QuantileForFitting ← c(0.25, 0.75)

end if
CentralTestStat ← r[which(r ∈ QuantileForFitting)]
CutOff← quantile(r,0.5)
NormalFitForUpRegulateClass ←
NormalDensityFitting(CentralTestStat>CutoffWithItsReflected)
NormalFitForDownRegulateClass ←
NormalDensityFitting(CentralTestStat<CutoffWithItsReflected)
return CutOff, NormalDensityForUpRegulateClass, NormalDensityForDownRegulateClass

end function
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Algorithm 3 Function: Initial Values based on KL-HODC
function KL-HODC(r, PriorForDPMDensityFitting, ParaForMCMC, PriorNullDensity)

(g, �̃)← DPdensity(r, PriorForDPMDensityFitting, ParaForMCMC)
(g, �̃)← SortClusterByMeanLocation(g, �̃)
procedure (initialize null class index)

Dmin ← +∞
NullClassIndex← ∅
DownRegulateClassIndex ← ∅
UpRegulateClassIndex ← ∅
for all l0 ∈ s do

CandidateNullDensity← {�̃l0}
D← KLDistance(CandidateNullDensity, PriorNullDensity)
if D < Dmin then

Dmin ← D
NullClassIndex← {l0}
DownRegulateClassIndex← {l′}∀l′,1≤l′<l0
UpRegulateClassIndex← {l′}∀l′,l′>l0 ;

end if
end for

end procedure
procedure (merge multiple clusters to search for clusters in null class)

Ddiff ← +∞
while Ddiff > 0 & DownRegulateClassIndex ≠ ∅ & UpRegulateClassIndex ≠ ∅ do

CandidateNullClass← NullClassIndex ∪ {l0 + 1}
CandidateNullDensity← CandidateNullDensity ∪ {�̃l0+1}
D+ ← KLDistance(CandidateNullDensity, PriorNullDensity)
CandidateNullClass ← NullClassIndex ∪ {l0 − 1}
CandidateNullDensity← CandidateNullDensity ∪ {�̃l0+1}
D− ← KLDistance(CandidateNullDensity, PriorNullDensity)
if D− ≤ D+ then

NullClassIndex← NullClassIndex ∪ {l0 − 1}
DownRegulateClassIndex← DownRegulateClassIndex{l′}∀l′,1≤l′<(l0−1)
Ddiff ← Dmin −D−
Dmin = D−

else
NullClassIndex← NullClassIndex ∪ {l0 + 1}
UpRegulateClassIndex← UpRegulateClassIndex{l′}∀l′,l′>(l0+1);
Ddiff ← Dmin −D+
Dmin = D+

end if
end while

end procedure
z ← z = (z1,⋯ , zn),∀i ∈ NullClassIndex, zi = 0,∀i ∈ DownRegulateClassIndex, zi = −1,∀i ∈

UpRegulateClassIndex, zi = +1
g ← z
�̃← �̃ = {�̃gi}
L ← c(|DownRegulateClassIndex|, |NullClassIndex|, |UpRegulateClassIndex|)
return z, g, �̃,L

end function
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Algorithm 4 Function: Hyperparameters by Double Metropolis-Hasting
function DMH(Network, TestStat, �, r, z, rhoSD, rhoUpperBound, rhoLowerBound, piSD, piUpperBound, piLowerBound,
TotalNumIterations, nSave)

rhoTrace← �
piTrace← r
Iter← 0
for ( Iter< TotalNumIterations ) do

repeat
�′ = (�′1,�

′
2,�

′
3,�

′
4)← rtruncnorm(1, �, rhoSD, rhoLowerBound, rhoUpperBound)

�′ = (�′1,�
′
2,�

′
3)← rtruncnorm(1, �, rhoSD, rhoLowerBound, rhoUpperBound)

�′2 ← 1 − �′1 − �
′
3

until �′1 > �
′
2 & �′3 > �

′
2 & �′2 > 0.5

z′ ← DrawSampleFromPriorModel(Network, TestStat, �′,�′)
LogAcceptRate ← LogDataLikelihood(Network, TestStat, z′,�,�) + LogDataLikelihood(Network, TestStat,

z,�′,�′) -LogDataLikelihood(Network, TestStat, z,�,�) - LogDataLikelihood(Network, TestStat, z′,�′,�′)
if (log(runif(1))< LogAcceptRate) then

�← �′
� ← �′
z ← z′
rhoTrace← cbind(rhoTrace, �)
piTrace← cbind(piTrace, r)

end if
end for
�← rowMeans(rhoTrace[, nSave])
� ← rowMeans(piTrace[, nSave]) return �

end function

Algorithm 5 Function: updating z|�̃ by Swendsen-Wang

function SW(Network, z, r, �̃,�,�)
G =< V ,E >← as.GraphObject(Network)
procedure (graph clustering)

G ← G−1 ∪ G0 ∪ G1; where ∀ node i ∈ Gk =< Vk, Ek >, zi = k
for l ← {−1, 0, 1} do

for all e ∈ El do
We ← runif(1, 0, exp(�zl ))
if (We < 1) then e← NULL
end if

end for
Gl ← ∪nls=1Gls, Gls =< Vls, Els >

end for
G ← ∪1l=−1 ∪

nl
s=1 Gls, Gls =< Vls, Els >

end procedure
procedure (graph relabling)

for all Gcluster =< Vcluster, Ecluster >∈ {Gls =< Vls, Els >, l = −1, 0, 1, s = 1, 2,⋯ , nl} do
z′i∈Gcluster ← SampleFromPosteriorDistributionOfZ(r, z, �̃)

end for
return z

end procedure
end function
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Algorithm 6 Procedure: update �̃|z via DPM fitting
function DPMDENSITYFITTING(Network, z, r, PriorForDPMDensityFitting, ParaForMCMC)

for z in {−1, 0, 1} do
Nodes← {i}∀i,zi=z
DPMFit ← DPDensityFitting({ri}i∈Nodes, PriorForDPMDensityFitting, ParaForMCMC)
DPMFitSort ← DPMFitClusterSortByMeanLocation(DPMFit)
�̃z ← DPMFitSort.Para
{gi}∀i,i∈Nodes ← DPMFitSort.ClusterIndex

end for
return �̃, g

end function

Algorithm 7Missing Data Imputation Algorithm
function MISSINGDATAIMPUTATION(MissingDataImputationMethod= c(‘FullyBayesianInference’, ‘NearestNeighborIm-
pute’), Network, r, g, �̃)

if (MissingDataImputationMethod==‘FullyBayesianInference’) then
for loc in {i}∀i,ri∈rmis do

rloc ← rnorm(�̃gloc )
end for

end if
if (MissingDataImputationMethod==‘NearestNeighborImpute’) then

for loc in {i}∀i,ri∈rmis do
Nbrs← ExtractNeighborsFromNetwork(Network)
rloc ←

1
|Nbrs|

∑

|Nbrs|
k=1 rk

end for
end if
return rmis

end function
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We appreciate the opportunity to revise our work. We find the reviewers’
comments very helpful. We addressed all the comments positively by revising
our manuscript. Changes in the manuscript are colored in blue. Below please
find a point-by-point response to the reviewers’ comments.

1 Reviewer 1

Comments to the Author The authors proposed a fully Bayesian approach to
gene/feature/node selection/detection by incorporating prior knowledge in a
gene/feature/node network/graph. The proposed approach was novel, techni-
cally sounded, strongly motivated by and thus with important applications to
gene expression data analysis. Numerical examples lend support for the pro-
posed approach. The paper was well written.

We appreciate the reviewer’s encouragement.

My minor comment is that the authors might have missed a part of relevant
literature. As correctly stated by the authors, many existing approaches are for
regression. But there is a literature on the related problem, though it might be
formulated as genomic discovery or hypothesis testing, as shown in the below
few representative ones. Some comparisons or comments on how the proposed
approach differs from the existing ones would be helpful and appreciated.

Wei, Z. and Li, H. (2007) A Markov Random Field Model for Network-based
Analysis of Genomic Data. Bioinformatics, 23, 1537–1544.

Wei P, Pan W. Incorporating gene networks into statistical tests for ge-
nomic data via a spatially correlated mixture model. Bioinformatics. 2008 Feb
1;24(3):404-11.

Wei, P. and Pan, W. (2010), Network-based genomic discovery: application
and comparison of Markov random-field models. Journal of the Royal Statisti-
cal Society: Series C (Applied Statistics), 59: 105-125.
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Thanks to the reviewer for pointing out the relevant literature. We have
added them into the Introduction section. We also discussed the differences
with the existing methods in the Introduction section. Please see third para-
graph of page 2.

2 Reviewer 2

This paper develops a Bayesian node classification framework to borrow depen-
dence information encoded in a reference gene/protein network. The approach
is capable of imputing missing data seamlessly. Overall, I find that the paper is
quite interesting and makes meaningful contributions to statistics and biomed-
ical science. I have some comments below, most of which are clarifications that
I think would benefit the readers of the article.

1. Identifiability. Eqn (2)(3) define a nested mixture model (Eqn (2) a mix-
ture with 3 components and Eqn (3) an infinite mixture). I wonder if there
would be any identifiability issue with this nested mixture representation? For
example, a mixture component of G[-1] may be moved to G[0] without changing
the likelihood if the probability of z is adjusted accordingly. Incidentally, it may
be good to mention that the parameters of G[0k] will be fixed empirically from
the data, which gives the right interpretation of z (otherwise G[-1], G[0], G[1]
appears to be exchangeable when they are first introduced).

We appreciate the question. Indeed there is the possibility of label swapping
if no constraint is put on the three classes. In every iteration, we maintain the
order of Gk, k = 1, 0, 1, by swapping the labels if necessary. We now clarify this
point in section 3.2.

In addition, Dirichlet Process is controlled by the concentration parameter
τ . The intuition is that the smaller the τ is, the more concentrated of the clus-
ters; the larger the τ is, distributions are the more ”mixing”. In the simulation
studies and the real data example, we set τ = 3 which helps prevents the iden-
tifiability issue from happening.

2. wPotts model. What’s the rationale of constraining rho to be positive?
Since negative dependencies are common in biological networks, relaxing rho to
be real value seems a natural choice.

This is a very insightful question. The parameter ρ controls the strength
of the neighborhood similarity. So the key is how ”similarity” is defined. Al-
though the ρ values are positive, we can adopt negative correlation by changing
the indicator function in equation (4) to encourage links between nodes from
G[1] and G[-1] classes. In the current study, we examined the data and observed
most correlations between neighboring genes were positive. Thus we used the
current setup, which tends to select subnetworks with the same class label.
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3. Lines 35-36 on page 3. The author mentioned w[i] can be elicited from the
prior biological knowledge, which isn’t obvious to me. Can the authors provide
some explanations and examples on how it is elicited in practice?

Weight wi of gene i represents the belief on the strength of co-functionality
of gene i and its neighbors in the network. We leave the option open for it to be
set based on biological knowledge. For example, in studying a developmental
dataset, the user might be able to assign higher wi to known developmental
genes.

In the current study, we did not elicit wi, as the dataset was a cancer data,
where many pathways can be associated with cancer survival. Thus we didn’t
want to impose prior knowledge about cancer genes.

4. Benefit of imputing missing values. I think it would improve the clarity of
the paper if the authors could explain better the rationale and benefit of imput-
ing the missing values. For example, on lines 24-25 of page 4, the conditional
distribution of r[mis] still depends on variable-specific parameter g[mis]. With
both r[mis] and g[mis] being missing/latent, does the proposed method improve
the estimation of non-variable-specific parameter theta? Or perhaps imputing
the missing values is primarily for the inference of z[mis]. A clearer description
of the rationale and benefit of imputation will be very helpful.

This is a very insightful question. The missing data imputation is one of
the benefit of this Bayesian Classification model we proposed. As the reviewer
pointed out, imputing r[mis] is not the main interest. The g[miss] is needed to
infer z[mis] which is of primary interest of us. We have added clarification to
this point in section 2.3.

5. It seems some notations are used without being defined. For example,
line 21 on page 7: NIWG, S[0k] (I could have missed the definitions somewhere
in the paper).

Sorry for the confusion. It represents the conjugate Normal-inverse-Gamma
distribution. We have added the full names when these terms were first men-
tioned in section 4.3.

6. In real data, what is the test statistic? I assume it’s the test statistic of
regression coefficient from the CoxPH model.

We clarified in the revised manuscript, that the z-statistic of the gene from
the CoxPH model was used in the analysis. Please see blue text in sectino 5.1.

7. A non-technical discussion on extension to directed graphs would be, in
my opinion, interesting because gene networks are directed/causal in nature.
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We have added some discussion about directed graphs in the Discussions
section.

8. Some relevant latent class model literature is missing. For example, the
following papers also have some hierarchical structure on the latent classes.

a. A Bayesian approach to restricted latent class models for scientifically
structured clustering of multivariate binary outcomes

b. Bayesian biclustering for microbial metagenomic sequencing data via
multinomial matrix factorization.

We appreciate the reviewer pointing out the references. We have added them
in the Introduction section. Please see second paragraph of page 2.

9. It may be good to mention the node classification is “unsupervised” up
front.

We have made the clarification in the Introduction section. Please see the
blue text in the second paragraph of page 2.
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