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A Analytical Results

In this section, we provide proofs and derivations for the results in the main paper.

A.1 Proof of Eq. 3 and Eq. 4

Our goal is to relate the overall analysis model, P(D* = 1|Z,S = 1), to parameters in the
conceptual model in Eq. 1. We have the following
P(D*=1,5=1|2) Y,P(D*=1,5=1,D=d|Z)
P(S=1]2) N Y uP(S=1,D=d|Z)

Y P(D*=1|8=1,D=d,Z)P(S = 1|D = d, Z)P(D = d|Z)

B >y P(S=1D=d,Z)P(D=d|Z)
Now, under our model assumptions and notation in Fq. 2, P( =1S=1D=12) =
¢(Z) and P(D* = 1|S = 1,D = 0,Z) = 1 — b(Z) where b(Z) = [P(D* = 0|S = 1,D =
0,Y)f(Y1Z,D=0,S =1)dYT. We have

P(D*=1Z,8=1) =

e(Z)P(S =1|D =1,Z)P(D = 1|Z) + {1 — b(Z)}P(S = 1|D = 0, Z)P(D = 0|2)

P(D"=1]2,5=1) = P(S=1D=1,2)P(D=1|Z)+ P(S=1|D =0,2)P(D = 0/2)

P(S=1|D=1,7)
P(S=1|D=0,2)

(Z)r(Z2)P(D = 112) + {1 = b(2)} P(D = 0|%)
r(Z)P(D =1|Z) + P(D = 0|2)
_1-0(2) +[c(2)r(2) = {1 = b(2)}] P(D = 1]2)
1+ [r(2) -1 P(D = 1]2)

We also note that r(Z) = so we can simplify the above expression to

P(D*=1|Z,S=1) =

or equivalently,

P(D* =12, =1) — {1 - b(Z)}

P(D=1|2) = (2 (Z)—{1-b(2)} — P(D* = 1|Z,8 = ){r(Z) — 1}

Therefore, we can directly express the analysis model in terms of different contributions
to the conceptual model. This gives us the expression in Fq. 3. c¢(Z) reflects contributions
of misclassification in terms of sensitivity, b(Z) represents contributions of misclassification in
terms of specificity, and r(Z) reflects contributions of the sampling mechanism. Notably, if we
set r(Z) = 1, we have

PD*=1Z,8=1)=1-b2)+[c(Z) - {1 -b(2)}| P(D =1|%Z)
and P(D*=1|Z,S=1)=P(D =1|2) if ¢(Z) and b(Z) are also equal to 1.

Now, suppose we model D|Z using a logistic regression as in Eq. 1. In this case, we
have that

) P(D*=1|Z,5=1)—-{1-b(2Z)} . . B
toet [c<z>r<z> —(—02)} - P> = 17,5 = )[1(Z) - 11] = logit [P(D =112)] = bo + 622
P(D*=1|Z,S=1)—{1-b(2)} B
= log L(Z)T(Z) A (Z2)P(D =1]Z,5 = 1)] =0 +022

So we have that

- [p(p* 12,8 =1)— {1 - b(2)}

(2)—P(D* =1|2,58 = 1) :| =0p+ 027 +1logr(Z)]

This produces the expression in Eq. 4.



A.2 Bias under naive (uncorrected) analysis

The relationship in Eq. 4 provides insight into settings in which we do and do not expect bias
in estimating 0 by fitting standard logistic regression model for D*|S =1, Z.

Suppose first that ¢(Z) = b(Z) = 1, so we have no misclassification of observed D. In this
case, we have the following: logit [P(D = 1|Z,S =1)] = 6y + 0zZ + log [r(Z)]. Suppose further
that we attempt to estimate 6 by fitting a logistic regression model for D|Z on the sampled
patients using only main effects contributions of Z and ignoring the potential contribution of
r(Z). We expect bias in estimating 6 in this setting if (Z) depends on Z. This may happen
if selection depends directly on Z or if sampling depends on W that is associated with Z given
D as shown in Figure A.1lb. If selection depends on W that is independent of Z given D,
there is still some possibility of small bias in estimating 6 if W is independently related to D
(Neuhaus and Jewell, 1993).

Figure A.1: Settings resulting in bias in estimating 6 from logistic regression under imperfect
sensitivity (a) or selection bias (b). Bias will also occur when we have imperfect specificity. *

(a) Misclassification settings with bias in uncorrected analysis

D* D D* D* D*
7 et ]) A D Z D A D 7 =——— D
xt Xt xt Xt xt
Sensitivity c(Z)=¢ c(Z)=¢ c(Z)+ ¢ c(Z)+ ¢ c(Z)# ¢
Methods 3.1,3.2,3.3 3.1,3.2,33 32,33 3.2 (if ¢(Z) known) | 3.2 (if ¢(Z) known)

(b) Selection settings with bias in uncorrected analysis

§ & § §
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wt wt wt wt
* Solid lines indicate associations, and arrows indicate drivers of patient selection or misclassification. Diagonally-
shaded boxes correspond to sets of predictors that may or may not be empty (equal to (). Below each setting
in (a), we show implications for ¢(Z) and list the section or sections of the main paper that can be applied
(Sections 3.1, 3.2, and/or 3.3). We note that the method in Section 3.3 can only be applied in cases where
b(Z) = b = 1. The methods in Sections 3.1 and 3.2 can only be applied when b(Z) = b. The final setting in
(b) will generally only result in small or negligible bias. See Neuhaus and Jewell (1993) for details.

Suppose instead that selection is ignorable (r(Z) = 1) and that we model potentially mis-

classified D*|Z using a standard logistic regression model. In this case, the true relationship

is log [P(Q*ZTHPZ,(’%TBJ;;E)Z 1} - 0o + 07 7. Fitting a standard logistic regression will result in

some bias in estimating 6 for any ¢(Z) # 1 or b(Z) # 1. Figure A.la provides a roadmap for
which methods in the main paper can be applied to correct this bias based on the underlying
relationships between X, Z, D, and D*. If both (1) ¢(Z) # 1 or b(Z) # 1 and (2) r(Z) # 1,
there is even greater potential for bias.



A.3 Proof of Eq. 5 and its extension to non-ignorable sampling
A.3.1 Ignorable sampling or constant sampling ratio

In Beesley et al. (2020), we used Taylor series approximations to express the uncorrected pa-
rameter associated with Z from the model for D*|Z, S = 1, denoted 0%°, in terms of the true
#, unknown sensitivity and specificity ¢ and Z, and sampling ratio, 7. In that paper, we made
additional restricting assumptions on X, Y, and W that, ultimately, boil down to the following:
(1) r7(2) =7, (2) ¢(Z) = ¢, and (3) b(Z) = b. In this particular setting, we showed that we can
approximate 0%° as

otz 25 efotb2211 _ C}F

HUC% _ _ _
fot0z 25 41— efot0zZ{1 — )i+ b

0z

= . 00+077 N
where Z is the mean of Z. Now, suppose that we replace 1i£907+2z2 = P(D = 1]Z) with
population prevalence P(D = 1). We also note that p* = P(D* = 1|5 =1) =}, o, P(D* =
11D =d|S=1)P(D=d|lS=1)=c¢P(D=1S =1)+[L —b]P(D =0|S = 1). We rewrite the
above equation as

= P(D=1)= i b =

putting these together, we have

00+022 bo+0z2

gue 00,71 Gori L~ T ;

~ 00+02Z2 Y Y A
L e"oizzzzjlcr + e9o+19zbZ+1 GOEZzijl {1—chr+ 690+0Zz+*1

1 P(D =1)&F - P(D =1){1 -7 ;
P(D=1)F+P(D=0{1—-b} P(D=1){1-c}i+P(D=0)] ~

:_p*—{l—g}} _ Mcr - : o _ {1—5}7; - |y,
: {r-a-bfa+E-pra-5 {r-0-bp1-ai+{E-pib

]| Ay,
- ple-a-v} n-pife-a-v}

e {1=B}p 1 -p7]

[ —{(1-B}| e~ p"

This gives us Eq. 5. Now, if we also have that b= 1, this expression further reduces to

5[1 p]
—p*

This is the exact same structure as the estimator in Duffy et al. (2004). Our derivations show
that this estimator is justified for Z that is non-binary and for ¥ # 1 as well. One notable feature
of the above estimator is that it does not depend on 7. Under the restrictive assumptions on
r(Z), ¢(Z), and b(Z) above, we can adjust for both misclassification and selection using the

above estimator. Intuitively, this is because p* will be impacted by both the misclassification
and sampling mechanisms.

:>02’r?59%c

QZ (9“0



Treating ¢ and b as fixed and replacing 07° with an estimate, we can express
{e-a-n}p1-p}
{r-a-p}e-v

Var(éz) = Var(é%c)

or the following under b=1:

5 juey |41 =P}
Var(0z) =Var(0y) | ———
ar(lz) = Var(dy) L2
In reality, ¢ unknown. However, we can obtain an estimate of ¢ and incorporate our uncertainty
about this value. We will still treat p* as fixed due to the large sample we will be applying
these methods to. Additionally, we will consider the case where b =1 for simplicity. We have

Var(éz) =Var E(éz| )} + FE {Var( A )}

)

= Var _C{l_p} (é%ﬂc)}—i—E { . }2Var ]

~E(0y) - ]Var( _Ep>+VW( £) - ([efp*D

Using Taylor series and other approximations, we have

A\ ~ fuc? * [p*]Q ¥ Huc * E(E) 2
Var(0z) =~ 05 [1 —p PWVGT(E) + Var (GZ ) [1—p*)? [E(a—p*] (Eq. S1)

This is now a function of known values along with E(¢) and Var(¢). We can insert our prior
uncertainty about ¢ or its estimate into this expression to get the resulting variance.

A.3.2 Sampling ratio related to Z

We now consider the setting where the sampling ratio r(Z) is not assumed to be equal to a
constant. This is a more plausible setting for EHR data. We first take another look at the
estimator from Fq. 5. Under ignorable selection (r(Z) = 7), we get expression

e =B 1 -p7]
{1 =B} e ]
where p* = P(D* =1|S =1) = P(D* =1) and 6% is from f(D*|Z,5 =1) = f(D*|2).
In order to apply this estimator in the more general setting, we estimate p* = P(D* = 1)

and 0% from f(D*|Z) directly. Given the observed data on the sampled patients and IPW or
calibration weights w, we can estimate

CT)*
Zi in sample wZ‘Di
Zi in sample Wi

p*=P(D*=1)=

We can estimate 6%° by fitting a model for D*|Z on the sampled data weighted by w. The
resulting estimator takes a similar form to the setting with ignorable missingness, but the
estimation of 8% and p* incorporates sampling weights.



A.4 Replacing ¢(Z) with ¢y (X)

In Section 3.2 of the main paper, we discuss replacing c¢(Z) with cyyue(X) for estimation of
6. In this section, we make the assumption that specificity is a constant in Z, i.e. b(Z) = b.
We provide two conditions under which the replacement of ¢(Z) with ¢;rue(X) is appropriate.
Here, we provide some support for these assertions. First, we note that

crue(X)P(D =112, X1+ (1 = b)P(D = 0|2, XT) = P(D* = 1|2, XT)
Under a logistic regression model, this relationship implies

P(D* =1]|Z,XT) — (1-b)

lo
& | e (X) — P(D* = 1|2, XT)

— logit [P(D = 1\Z,XT)]

Suppose first that D L X T\Z . In this case, the above expression reduces to

P(D*=1|7Z,X1) — (1 —b)
corue(X) — P(D* = 1|2, XT)

log =0g+ 057

which is the expression we want to apply to estimate 0 after replacing c¢(Z) with cgyue(X).

In practice, it may not be reasonable to assume that D is independent of factors in X such
as length of follow-up or number of doctor’s visits. Therefore, we want to explore alternative
assumptions that will allow for this substitution. First, we note that

f(XTID=1,Z2)P(D = 1|2)
f(XT1Z)
- f(XT|D=1,2)P(D =1|2)
f(XT|\D=1,Z2)P(D=1|Z) + f(XT|D=0,Z)P(D =0|2)
Replacing this expression into the logistic regression above, we have that
P(D* =1]Z,XT) - (1 - b) f(X1D =0, Z)]
ctrue(X) — P(D* =1]|Z, XT) f(XT|D=1,2)

P(D=1|Z,X") =

log

:90+GZZ—log[

Again, this last term is zero if f(XT|D =0,2) = f(XT|D =1,2),s0if D L XT|Z. Alternatively,
suppose that Z L XT|D. In this case, the above expression reduces to

F(xtD = o>]
JXTD=1)

P(D*=1|Z,X1) = (1-b)
corue(X) — P(D* = 1|2, XT)

log :9O+GZZlog[

The final term will be a function of XT or possibly a constant. In either case, we do not expect
failure to include this offset term will result in much bias in estimating 7 (Neuhaus and Jewell,
1993). However, 6y may be impacted by a failure to include this term. Usually, however, we are
primarily interested in estimating 6z, and inference about 6z obtained by replacing ¢(Z) with
ctrue(X) and ignoring the offset term will have little residual bias.



A.5 Proof of Eq. 6 and Eq. 9

In this section, we explore how to estimate ¢y (X). We can apply this strategy for estimating
Crue(X) whether or not we have perfect specificity under assumptions that specificity b(Z) =
b=P(D*=0|Z,S =1,D =0) is a known constant. We will also assume selection is ignorable
(r=1). We observe that
P(D*=1]X) - {1 -0} + {1 —b}P(D = 1|X .
Ctrue(X) = ( %) {P(Di1|§() I 1X) = expit (8o + Bx X)
If we assume a logistic regression model structure for sensitivity as in Fq. 1, we have

P(D* =1]X) — {1 —b} + {1 —b}P(D = 1|X)
P(D =1|X)

logit

] = B0+ Bx X
So we have that

P(D* =1|X) — {1-b}P(D = 0|X)
P(D =1|X)+ {1 —b}P(D =0|X) — P(D* = 1|X)

log

] =fBo+BxX  (Eq. S2)

In the special case where b= 1, we have that

P(D* = 1|X)
P(D = 1|X) — P(D* = 1|X)

10g[ ] = Bo+ BxX

These expressions allow us to estimate 3 if P(D = 1]/X) is known, but in reality we will not
know this term. For example, X may contain information such as the length of follow-up in the
EHR, and we will likely not know how this is related to true disease status. However, we can
incorporate some prior beliefs about P(D = 1|X) to estimate /3 using the above expression.

Specifying P(D = 1|X) in practice

Suppose first that D is independent of X, so P(D = 1|X) = P(D = 1). In this case, we
can replace P(D = 1|X) with P(D = 1), the population disease prevalence. For EHR data,
it may be that known risk factors such as age and gender are indicators for enhanced disease
screening and, therefore, may be incorporated into X and related to D. In this case, we may
know the relationship P(D = 1|Xg) for some subset X, of X from population summary
statistics. If we assume D is independent of the elements of X not included in Xg,p, then we
have P(D = 1|X) = P(D = 1| Xgu), which can be replaced with population summary statistics.
This will allow us to estimate 3.

Suppose, instead, that there are elements of X that are related to D and that the relation-
ship between those elements and D is unknown. In that case, P(D = 1|X) is unknown. In this
case, we propose approzimating P(D = 1|X) with what information is available, i.e. P(D =1)
or P(D = 1|X). The extent to which estimates of 8 and downstream estimates of 6 are
impacted is considered in simulations in Section B.3.

Importantly, Fq. S2 may not always have a solution for a given estimate P(D = 1|Xgy),
and it could produce inaccurate sensitivity estimates when P(D = 1|X,;) is poorly specified
(see simulations for details). An alternative strategy for estimating ¢y (X) is to fit a standard
regression model for P(D* = 1|X) and estimate ¢ (X) using the ratio

. (P(D*=1|X) - {1 -b} + {1 —b}P(D = 1|X) .
o P(D = 1X) ’

using estimates for both the numerator and denominator. This “ratio” estimator will provide



estimates of ¢y (X) in settings where there is no solution to Eq. S2.

Now, we consider the setting where we have potential selection bias. We first observe
that

o _ P(S=1|X,D=1)P(D = 1|X)
P(D—HS—LX)—zdp(SZHX,D:d)P(D:dIX)

Suppose we approximate % with 7 = %. This then gives that P(D = 1|5 =

1,X) = 7B Djﬁggj_g‘(xg:o' Xy We may expect broadly different factors to be driving selection
and misclassification given D, so it may be reasonable to assume X is independent of W given
D, which gives P(S = 1|X, D) = P(S = 1|D). This may not always be the case if, for example,
age is a driver of both selection and misclassification given D. Future work can explore the
sensitivity of estimated c;rye(X) and resulting 6 estimates to the implicit assumption that

P(S = 1|X, D) = P(S = 1|D).

Suppose that we can make this approximation. Using logic as before, we have that

P(D*=1X,S=1)—{1-b}P(D=0|X,5=1)

lo = = fo+ BxX
PO 1X,S= D)+ (1B PD=0X,5=1) - P(D*=1|x,5=1)| %
Substituting the approximation for P(D = 1S = 1, X), we have
P(D* = 1|X,S = 1) — {1 — b} ey P=0X)_
log PO=1X)TPO=0X] | Bo + By X

FP(D=1|X)+{1-b} P(D=0|X . _ B
OAXALHEC A0 _ P(D* = 1|X, 5 = 1)

Assuming b= 1, this gives

P(D*=1|X,8 =1)

TP(D=1|X g _
FP(D:1\§()+P|(D):0|X) - P(D - 1‘X>S - 1)

log ~ Bo+ BxX

As before, this expression may not always have a solution in 3 for a given specification of
or P(D = 1|X) incompatible with the data. In this case, we could also estimate cyye(X) using
the ratio

P(D* =1|X,8 =1) — {1 = b} + {1 - b} sprr Bri=or) )

min PD=1IX) (Eq. S3)

FP(D=1|X)+P(D=0|X)




A.6 Jointly estimating 6 and [

In this section, we describe how we can jointly estimate 6 and 3 to deal with misclassification.
In this section, we are assuming that b(Z) = b = 1, so we have perfect specificity.

A.6.1 Some assumptions

First, we notice that P(D* = 1|Z, XT) = cyue(X)P(D = 1|Z, XT). As shown in Supporting
Section A.4, we have that

(a) P(D* = 1|Z, XT) = expit(By + Bx X)expit(fy + 022) if D L X1|Z or that

(b) P(D* = 1|7, X1) = expit(fo + Bx X )expit [90 1077 —log (%)} if 71 X1|D.
Fixing £, we would expect little bias in estimating 6, in the latter case if we were to drop
the offset term involving X' from the equation (Neuhaus and Jewell, 1993). Therefore, we will

define the observed data log-likelihood using model structure
P(D* =1]Z, X1) = expit(By + Bx X )expit(fy + 622)

with an understanding that either (a) D L X|Z or (b) Z L Xt|D must hold and resulting
inference about 6y may be subject to residual bias under (b) and not (a). Diop et al. (2011)
shows that this model is identifiable if we have a continuous covariate that is included in X
but not Z or vice-versa. For EHR data, we expect factors such as length of follow-up in the
EHR to be included in X but not Z, so we will often have identifiability, and we can improve
identifiability by fixing By as discussed later on.

A.6.2 Direct maximization of observed data log-likelihood

Under these assumptions, we define the observed data log-likelihood as follows:
ePot+Bx X ebo+0zZ; eBo+Bx X ebo+0zZ;

Lobs (0, 8) = Z Dylog [1 + ePotBxXi 1 & 690+9ZZi:| + (1= Dijlog [1 T 1+ eBotBxXi 1 + ebot0zZ;
=Y Dilog[K(0, 8)] + (1 — D;)log 1 — K; (0, 5)

We can estimate 6§ and [ by directly maximizing this likelihood through a Newton-Raphson
algorithm or numerical optimization method. We have the following score and expected infor-
mation matrices.
obs(ev ﬁ) = Z ] ] )
p Kz(evﬁ)[l_KZ(975)] Ou
uv 0 —
SO =D @A KGR ou o

0K,(6,8) [u=0: KO8 _(1,27)

1+ef t027Z;

ou | u=B: (1, x])

1+€50+5XX1'

These expressions can be easily calculated given the observed data.

The task of jointly maximizing 6 and [, however, can be numerically challenging. In par-
ticular, the likelihood surface can be difficult to maximize when both intercepts 6y and (5, are
left unspecified. Therefore, we perform parameter estimation using a profile likelihood strategy
across By, where we specify discrete values of 5y, perform maximization to estimate other pa-
rameters given that value of 3y, and ultimately choose the value of 8y that results in the largest
log-likelihood values. In simulation, we have found that this strategy tends to have improved
performance over joint maximization of all model parameters. Additionally, one can specify a
single fixed value for By a priori. One strategy is to set By to the logit of an estimate of ¢ as in



Section 3.1 for mean-centered X. This may be a useful strategy for improving our ability to
estimate other model parameters and tends to perform well in simulation.

A.6.3 Maximization using an EM algorithm

Direct numerical maximization of the observed data log-likelihood can sometimes be cumber-
some for large datasets. In this setting, it can be faster to perform parameter estimation using
the following expectation-maximization (EM) algorithm. Firstly, we can write the complete
data log-likelihood as follows:

efo+0zZ; 1
Leom (0, 8) = D_ Dilog {Hewz] (1= DiJlog [H@M}
. eBo+Bx X .
+ D Djlog {Heﬁcmxx] + (1= D;j)Dilog {Heﬁmxx]

This expression is linear in D;. Given the observed data and our modeling assumptions, we can
replace D; in the E-step of the EM-algorithm with
P(D*=0|X,D=1)P(D=1|2)
Yo P(D*=0|X,D =d)P(D=d|Z)
P(D*=0|X,D=1)P(D=1/2)
P(D=0|Z)+ P(D*=0|X,D=1)P(D=1|2)
ebot+0zZ;

p=P(D=1D*"X,Z)=D"+ (1 - D")

=D"+ (1- DY)

= D"+ (1- D%

1+ efot+0zZi 4 cPo+BxXi

In the M-step, we maximize the following expected log-likelihood with respect to 6 and j3:
ebo+0zZ;

1
Q = Zpilog |:1 n 690+9ZZ1‘:| + (1 7pi)10g |:1 T 690+QZZi:|
i

. ePo+Bx Xi . 1

In practice, this can be accomplished by (1) fitting a logistic regression with p; as the outcome
and Z; as covariates and (2) fitting a logistic regression with D} given X; weighted by p;.

A.6.4 Incorporating weights into the algorithms

We can address selection bias and misclassification simultaneously by maximizing a weighted
version of the observed data log-likelihood, called a pseudo log-likelihood, as follows:
eBo+Bx X ebo+0zZ; eBo+Bx X efo+0z2;
ZwiDlﬂog [1 + eBot+BxXi ] 4 690+62Zi:| +wi(l = Dj)log [1 14 ePotBxXi ] 690+HZZi:|
(2

We can similarly estimate 6 using a weighted version of the above EM algorithm. In particular,
let w; be our weights. In the E-step, we replace D; as before. In the M-step, we maximize the
following expected pseudo log-likelihood
Oo+0z7Z;
e 1
Q= Zwipilog [He@oJrBZZi] + wi(1 = p;)log |:1—{—€90+0ZZ2':|
7

. ePo+Bx X . 1

Similar to before, we can obtain estimates of § and § in the M-step by (1) fitting a logistic
regression for p; given Z; weighted by w; and (2) fitting a logistic regression for D} given X,
weighted by p; X w;.

Justification for the usual EM algorithm is based on properties of likelihoods. In the weighted

10



example, however, we no longer are working with a valid likelihood. Therefore, convergence
properties are not immediately clear. However, this strategy can be justified under literature
exploring a variant of the EM algorithm called the expectation-solution (ES) algorithm. In this
variant, we transform the problem from maximizing a log-likelihood to solving corresponding
score equations. Theoretical properties of the ES algorithm are explored in Elashoff (2004) and
Rosen (2000).

A more challenging concern is estimation of the covariance matrix. Since we are no longer
maximizing a valid observed data log-likelihood, we can no longer rely on the observed data in-
formation matrix directly. Instead, we apply the following commonly-used sandwich estimation
strategy (e.g. as implemented by the R package sandwich). First, we define the “bread” of the
sandwich matrix as follows

B 1 6K¢(9a5)®2 .
B(0,8) = [; wiKi(e,B)[l - Ki(0,3)] 06,8 ]

This is the inverse of a weighted version of the information matrix for the observed data log-
likelihood of interest. For the “meat” of the sandwich estimator, we express the weighted
variance of the observed data score matrix as follows:
D — K(8 OK;i(6,8)1%°
M(Q,B)ZZ[C% i 1( aB) 2( 7/3):|

Using these components, we express
Var([6,8)) = B(6,8)M(6,5)B(0, B)

Suppose we perform this estimation fixing 8y. We then obtain corresponding standard errors
for the other parameters by calculating B and M excluding the column and row corresponding
to Bp. In the case of B, we exclude this column and row prior to inverting the weighted matrix.
In simulations, this estimator resulted in nominal coverage.

11



A.7 Proof of Eq. 7 and Eq. 10

A.7.1 Assuming no phenotype misclassification

In this section, obtain expressions for estimating P(S = 1|D, W) that can be used to obtain
IPW weights as discussed in Section 4.1. First, we review some notation. Suppose we have
an external dataset with corresponding selection indicator Sey;. For this dataset, we assume we
know the selection mechanism P(Se,s = 1|D, W) or have corresponding selection weights from
which to estimate the selection mechanism. For now, we will assume that the population used
to define P(Se,;s = 1|D, W) is the same as our target population. Define S,;; to take the value
1if S =1 orif Sezy = 1. When individual subjects are in both datasets, all three selection
indicators equal 1 (S = Szt = Sqy = 1). For now, we allow such overlap in our non-probability
sample (internal data) and probability sample (external data).
We first note that

P(D,W|S =1)P(S = 1)

P(S=1|D,W) = PO
P(D,W|Sezt = 1)P(Sezt = 1

Putting those pieces together, we have

P(D,W|S = 1)P(S = 1)
P(D, W|Seat = 1)P(Seat = 1)

P(S:HD?W):P(S&'M:HD’W) (Eq 54)

In Eq. S4, we relate the selection mechanism of interest (P(S = 1|D,W)) to the known
selection model for the probability sample and to joint distributions of D and W in the internal
and external samples, which can be estimated. We can use this expression directly to obtain
estimates of P(S = 1|D,W). We note some parallels between this expression and calibration
weighting. Firstly, we do not require individual-level data on D and W from the probability
sample to use this expression as long as the joint distribution in the probability sample is known
along with the corresponding selection model for the probability sample. Secondly, Eq. 54
involves the ratio of joint distributions for the internal data and some external data. Unlike usual
calibration weighting, this joint distribution comes from a probability sample rather than the
population of interest, and the resulting estimator is modified by P(Sez: = 1|/D, W) to account
for this. Under simple random sampling for the external dataset, this expression produces
weights proportional to those obtained through poststratification as discussed in Section 4.

FEq. 54 can be used to estimate IPW weights, but it may be unappealing to model or estimate
the joint distributions of D and W when W is high-dimensional. The following expressions may
be very useful in this case. We first recall that patients in the combined internal and external
datasets may fall into one of three groups: (1) S =1 and Sz = 1, (2) S = 0 and Se,r = 1, and
(3) S =1 and Seyt = 0. We have that

P(S = j,Sext = k, D,W|Sy = 1)
P(D,W|Su = 1)
P(D,W|S = j, Seat = k, San = 1) P(S = j, Seat = k|Sau = 1)
S wre00110) P(DWIS = @, Sear = b, St = 1) P(S = @, Seat = b|Sas = 1)
_ P(D’W|S:jase:pt:k)P(S:jasezt:k)
a Eabe(l0,0Lll) P(D’ W|S =, Sext = b)P(S =a, Sext = b)
for jk € (10,01,11). Defining
ik = P(D, WIS = j, Sexr = k)
ajr = P(S =7, =k)

P(S =j,Sest = k|D,W,Se = 1) =

12



Pjk = P(S = j) Sext = k‘D7W7 Sall - 1)

we have

HjkCk H11011 H10¢10 Ho1001
p110a1 + po1o1 + H1oaio D11 P10 Po1
We also note that

P(D,W|S=1)=Y P(D,WI[S =1, Sz = b)P(Sear = b|S = 1)
b

pio
_ p11oa1 + H100Qa0 p11o1 + H110a1

P(S=1) P(S=1)
P(D,W|Sewt = 1) =Y  P(D,W|S = a, Sear = 1)P(S = a| Sear = 1)

_ p11aa1 + porapr | H11A11 + /Lllall%

P(Se:vt = 1) P(Sext = 1)

Replacing these terms in Fq. S4, we have that
P11 + P1o
P(S=1|D, W)= P(Sept = 1|D,W)——
( | ) (Sear | )pn + Po1

Replacing our notation, we have
P(S=1|D,W) (Eq. S5)

(S = 1756mt = I‘D,W, Sall = 1) + P(S = 1;Sea:t = 0’D>W> Sall = 1)
(S = 1, 8o = 1‘D,W, Sl = 1) + P(S =0, Sest = HD, W, Sau = 1)

P
:P(Sext = 1|D’W)P

This expression depends on terms that we can easily estimate given the external and internal
data. In particular, we can fit a multinomial regression for whether a person is in the internal
dataset only, external dataset only, or both given D and W.

Now, suppose further that our population is so large and sampling fractions are small enough
such that no people are included in both the internal and external samples. In this case, we
can approximate P(S = 1|D, W) as follows:

P(S:1|D7I/Va8all:1)

P(S =1|D,W) ~ P(Seat = 1\D7W)1_p(5: 1|D,W, Sy = 1)

(Eq. S6)

Eq. S6 is used in Elliot (2009) to account for non-probability selection using an external
probability sample. Here, we extend this expression to allow for overlap between the internal
and external datasets through Fq. S5 and accompanying multinomial regression modeling of
selection.

Of course, W may not be available in practice for either the internal or external datasets, and
a subset, W, must be used in its place. We would effectively be approximating P(S = 1|D, W)
using available P(S = 1|D, Wgy). In this case, we may hope to weight our analysis to reduce
the bias rather than expecting it to remove bias.

13



A.7.2 Relationship between selection model and calibration weights

In the main paper, we describe how we can use summary statistics on D and W (or possibly a
subset Wy,;) to define poststratification weights as follows:

f(D,W)
f(D,W|5=1)
To help clarify the link between poststratification weights and inverse probability of selection
weights, we note the following:

W X

D,W,S=1 DW|IS=1)PS=1
(D, W) (D, W)
If we were to define inverse probability of selection weights using the above expression, we would

define

1 f(D, W)
x
P(S=1D,W) * F(D,W[S =1)
These weights take the exact same form as the poststratification weights, so we can view post-
stratification weights as a similar type of weight as inverse probability of selection weights but

using different types of information (individual patient data vs. summary statistics) to estimate
P(S=1|D,W).

W X

A.7.3 Assuming phenotype misclassification

Now, we suppose that we have phenotype misclassification, so D is not observed. We will
further assume that we can write specificity b(Z) = b, where b is a known constant. We further
assume that specificity is a constant in W, so P(D* = 0|D = 0,W,S = 1) = P(D* = 0|D =
0,S=1)= b. Ideally, we would obtain selection bias adjustment weights using the inverse of
P(S = 1|D, W), but this is difficult to estimate in this setting. Instead, the best we can do is
weight by the inverse of P(S = 1|D*, W). We observe the following

D*|S=1,W)
f(D*[W)
The first term, f(D*|S = 1, W), can be estimated by modeling D* directly using the observed
data. P(S = 1|IW) can be estimated using the methods in Section A.7.1 but only conditioning
on W rather than W and D. If D* is measured on the external probability sample, then

f(D*|W) can also be estimated directly. Usually, however, our external dataset may have D
measured. In this case, we can estimate f(D*|WW) using that

P(D*=1W)= > P(D*=1W,D=d)P(D =dW)
d=0,1

P(s = 1p*,w) = L

P(S = 1|W)

If we further assume that D* is independent of S given D and W (as we do in Eq. 1 by
specifying that selection independently depends on W and D but not D*), we have that

P(D* =1|W) = P(D* =1|W,D = 1,5 = 1)P(D = 1|W) + (1 — b)P(D = 0|W)

In practice, we will approximate P(D* = 1|W, D = 1,5 = 1) with either the (1) marginal
sensitivity estimate ¢ or (2) sensitivity estimate ciyue(X). The former substitution can be
applied when either sensitivity is a constant or X is independent of W given D = 1 and
S = 1. The reasonableness of this assumption has been discussed previously. The impact
of this substitution when X and W are related is briefly demonstrated in simulations later on
(Figure B.14). Briefly, we should use ¢ty (X) instead of ¢ when Z is related to X and W given
D, which induces a relationship between X and W given D. As before, we might not always
have W measured in the internal and external datasets in practice, and we might approximate
the above distributions using available predictors, W,;.
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A.7.4 External data with different target population

It may often be the case that the target population used for the external data is different than
our desired target population. A natural question, then, is to what extent we can still apply the
expressions in Section A.7.1 under different target populations. This is important, because it
impacts how we incorporate the selection probabilities or weights provided for the probability
sample.

Suppose we define two populations, population A and population B. These populations may
overlap or may not. Let P4 and Pp be indicators corresponding to whether a random person in
some shared base population is included in population A or population B respectively. We define
our goal selection probability as P(S = 1|D, W, Pg = 1) and suppose P(Seyt = 1|D, W, P4 = 1)
is known or estimable using the probability sample. Figure A.2 provides a visualization of our
notation and modeling setting.

Figure A.2: Visualizing an external probability sample with different target population

Merged Data: S;;; = 1

External Data | Model | |nternal Data

(Sext=1) (S=1)
P(Sexe = 11D, W, Py = 1)V ?777?
External Data Target
Population —-_—— Population
Py=1 Known? Pg=1

The main idea is that we want to relate our observed data to our target population using

an external dataset. In doing so, we will need to consider the relationship between the two

populations associated with the external data and our target analysis. We have that

P(D,W|S=1,Pp=1)P(S=1|Pg=1)
P(D,W|Pg=1)

P(D,W|Sest =1,P4 = 1)P(Sext = 1|P4 = 1)

P(D,W|P4y =1)

Suppose we assume that P(D,W|P4 = 1) = P(D,W|Pp = 1), so we set the denominators on

the righthand side of the two equations above to be equal. Replacing the second equation into

the denominator of the first equation and ignoring terms that do not depend on D and/or W,

we have that

P(S=1|D,W,Pg=1) =

P(Seqt = 1|D,W, Py =1) =

P(D,2W|S=1,Pg=1)
P(D,W|Sest =1,P4 =1)
The expression follows the same form as Eq. 54, and we can obtain expressions similar to
Eq. 55 and Fq. S6 as well. In other words, we can apply the expressions in Section A.7.1
ignoring the different populations assuming that P(D,W|P4 = 1) = P(D,W|Pp = 1).
This will occur when the two populations differ with respect to factors that are independent of
D and W.

P(S=1|D,W,Pg =1) & P(Sezt = 1|D,W, P4 = 1)

Suppose we cannot assume P(D,W|P4 = 1) = P(D,W|Pp = 1). This is the more common
case. Suppose instead that population A contains population B, so the target population
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is a subset of the larger population associated with the probability sample. We have that
P(D,W|S=1,Pp=1)P(S=1|Pg=1)P(Pg=1)
P(Pgp =1|D,W)P(D,W)
P(D7W|Sext = 17PA = 1)P(Se:ct = 1‘PA = 1)P(PA = 1)
P(Py=1|D,W)P(D,W)

P(S=1|D,W,Pg=1) =

P(Sext =1|D,W, Py =1) =
Putting these expressions together, we have that

P(S=1|D,W,Pg=1)

P(Py=1|D,W) P(D,W|S=1,Pg=1)
P(Seqt = 1|D, W, Py = 1
o P(Seat = 1] A=) BBy 1D, W) P(D.W|Sus = L PA = 1)
P(D,W|Py=1) P(D,W|S=1,Pg=1)
P(Seq = 1|D, W, Py = 1 Eq. S7
o P(Sear =1 A=Y B D WP =) PO WS = LPa=1) (2457

If either (1) P(P4 = 1|D,W) and P(Pp = 1|D,W) (i.e. the probabilities that a person in
some shared base population in included in each sub-population) or (2) P(D,W|P4 = 1) and
P(D,W|Pp = 1) are known, we can apply Eq. S7 to estimate P(S = 1|D,W,Pg = 1). In
other words, we could theoretically handle the problem of different populations for the target
analysis and the external probability sample if we understand how the two populations differ
in terms of D and W. Intuitively, this is akin to incorporating calibration weighting accounting
for differences between the populations. We note, however, that the second form of Eq. S7 relies
on P(D,W|Pp = 1). If this were known, we could just apply calibration weighting relating our
internal data to population B and ignore the external dataset entirely.

Since population B is assumed to be a subset of population A, we could instead define the
larger shared base population as population A, so P(P4 = 1|D, W) = 1. In this case, we have
that P(Pg = 1|D,W) = P(Pg = 1|D,W, P4 = 1). We may have some sense of how population
B relates to larger population A. For example, population A may represent all adults over 50
in the US, and population B may represent all adults age 50-65 in the US. In this case, we have
that

P(S =1|D,W, Pg = 1) (Eq. S8)
1 P(D,W|S =1,Pg = 1)
P(Suwt = 1|D, W, Py = 1
PPy = 1D, W, Py = 1) (Seat = 1| 2 )P(D, W(Seat = 1, Ps = 1)

This expression does not require us to know the joint distribution of D and W in either
population and involves one more term (i.e., P(Pg = 1|D, W, P4 = 1)) compared to expressions
assuming the populations are the same. We can then derive expressions similar to Eq. S5 and
Eq. S6 in this setting, avoiding the need to model the joint distributions of D and W entirely.
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A.8 Proof of Eq. 8

In this section, we develop an expression to relate r to ¢ and b. We have that
P(S=1D=1) PD=1S=1)P(D=0)

F= =

P(S=1D=0) PD=0S=1)PD=1)

Now, we also have that
P(D*=1|S=1)=Y P(D*=1|S=1,D=d)P(D=d|S =1)
d

—eP(D=1|S=1)+(1—-b)P(D=0|S =1)

s TS0

Putting these pieces together, we have

_ P(D*=1|S=1)—(1-b) P(D
T TP =15S=1 PD=

0)
1)
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A.9 Combining multiple complicated selection mechanisms

As discussed in Haneuse and Daniels (2016), the mechanism governing patient selection in our
EHR analytical dataset may be complicated and composed of many different sub-mechanisms.
Figure A.3 provides a visualization of the various selection stages generating patient inclusion
in MGI.

Figure A.3: Stages of selection from source population to analytical sample in MGI

e.g. PEOPLE IN
SOUTHEAST MI ENTIRE HOSPITAL EHR AVAILABLE INTERNAL DATA
Seen at Seen at .
Source S Michigan + Catchment E Approached for Consgnted, Analytical
Population Medicine Clinic Consent Data in MGl S Sample

We consider two over-arching conceptual strategies for addressing selection. In the first, we
view the selection probability as an aggregate across all these various selection stages and relate
our analytical sample to our target population using a single selection model as in Figure
A.4a. Of course, this has corresponding transportability assumptions involved, since the source
population (the population from which we sample) and the target population (the population
we want to make inference about) may not be the same. A second approach (as in Haneuse and
Daniels (2016)) is to model individual selection stages separately. For example, we may model
individual selection stages patients pass through to be selected into the analytical dataset from
the broader hospital EHR. Then, we relate the hospital EHR patients to our target population.
This approach is visualized in Figure A.4b. An advantage of this latter approach is the ability
to incorporate prior knowledge and additional data available for individual selection stages.

Figure A.4: Stages of selection from source population to analytical sample in MGI
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We can define a set of intermediate selection indicators corresponding to different stages
of selection. In the MGI example, let S7 indicate whether a patient was seen at Michigan
Medicine, let S5 indicate whether the patient visited a clinic involved in MGI recruitment, let
S3 indicate whether the patient was approached for consent, let 54 indicate whether the patient
was included in MGI, and let S5 indicate whether the patient was included in our analytical
sample. We define these indicators such that S = 1 only if S;_1 = 1. Define So = 1 for
all people in the target population. The target population could vary based on our analysis,
and we may often suppose it could be the Michigan or US adult population. This target
population could even be the set of people seen at Michigan Medicine, but for generality we will
assume a broader target population. In this updated notation, the overall sampling indicator
S corresponds to S5 and can be written as

5
P(S=1|D,W) = [] P(Sk = 1|D, W, 8,1 = 1) (Eq. S9)
k=1

First, we make a distinction between the selection model P(S; = 1|D, W, Sy = 1) = P(S1 =
1|D, W), which corresponds to the relationship between the EHR and the target population,
and the other models. For the selection models conditional on inclusion in the EHR, we may
have available individual-level data from which to estimate each P(Sy = 1|D, W, Sx_1 = 1) as
is done in Haneuse and Daniels (2016). In contrast, we will not have individual-level data on
everyone in the target population for modeling P(S; = 1|D, W, Sy = 1). A particular challenge,
therefore, is linking the EHR population to the target population through P(S; = 1|D, W).

In Section 4 of the main paper, we describe how we can estimate P(S = 1|D, W) either
using a probability sample from the target population or using summary statistics from the
target population. Here, we can apply the same approach to estimate P(S; = 1|D,W) or
corresponding calibration weights, viewing the S7 = 1 sample as the “internal” data. We can
then work to estimate each stage of selection within the EHR 57 = 1 sample using the available
data.

In an ideal world, we could model each selection step within the EHR separately using data
on D and W from every individual in the population. In practice, we may not have individual-
level data on all patients in the EHR S; = 1 sample. Even if we do, we may not have as much
detailed data available for patients in the larger EHR compared to patients in the analytical
sample. In MGI, for example, we have a much wider spectrum of patient information available
for patients in MGI than in the entire Michigan Medicine sample. Since we do not expect W
and D to be necessarily available for all patients in the S; = 1 sample (or indeed, the final
analytical sample), we can take a patchwork approach to estimating each component selection
model using the information that is available for every stage of the selection. Our ultimate goal
is to generate selection weights that may help reduce selection bias.

Often, we may only have individual-level data for some stages of selection and summary
statistics for others. When we have individual-level data on all Sp_; = 1 patients, we can
directly model P(Sg|Wk,Sx—1 = 1) using the set of covariates W} available in the Sy_; and
S samples. When only summary statistics are available for the S;_q or Si samples, we can
take a calibration weighting approach and estimate P(Sy = 1|D, W, Sx_1 = 1) proportional to

%‘ In this way, we can estimate each component piece in Eq. S9 using the most
information possible at each stage. By combining traditional modeling of multi-stage selection
with strategies for relating non-probability samples to the target population, we can bridge the

gap between our analytical sample and the target population in our data analyses.
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A.10 Estimating standard errors

In the main paper, we develop statistical methods for obtaining bias-corrected point estimates
for A, but we do not directly address estimation of corresponding standard errors. Here, we
describe how this can be done, appealing to existing results in the maximum likelihood estima-
tion and survey sampling literature. We focus on the setting where we have perfect specificity,
and the setting with imperfect specificity is similar. Table A.1 provides details about the
proposed variance estimators for each of the bias-correction methods proposed in this paper.
We provide estimators for each one of the bias-correction methods treating estimated sensitivity
and/or IPW/calibration weights w as fixed. In the footnote, we describe how we can account
for additional uncertainty due to estimating sensitivity and/or w using bootstrap methods.
Derivations motivating these variance estimators can be found elsewhere in the text (e.g. Web
Appendices A.3 and A.6 and below).

Table A.1: Strategies for estimating standard errors for 6 *

Bias Method

Misclass.  Approximating D*|Z distribution (Section 3.1)

5 5 F1-P(D*=1))7? 4
e Var(fz) ~ Var(6%°) [%] where 6%° is the uncorrected log-odds ratio.

A Auc? = — f= 2 Juc c)ll— t= 2
o Var(by) ~ by [P b B Var(@) + Ve (0) [ S5

Misclass.  Non-logistic link function (Section 3.2)
5 o(2) f0+022 @2] 1
o Var(d) = [, 177 « (1,2)%]

1—c(Z)]ef0t927Z (1+e%F0z2)2
where we replace ¢(Z) with an estimate.

Misclass.  Obs. data log-likelihood (Section 3.3)
e Using the expected obs. data information matrix, we have

-1
AN OK;(6,8) 0K4(6,8 B
Var(9) = |3, wmmnman b sogr| | where Ki(6.8) =

ePoTBx X ef0t022;
1+ePotBxXi 140010275

Selection ~ Weighting by w (Section 4)
e Apply Huber-White sandwich estimator with survey weights
as implemented in R package survey (Freedman, 2006).

Both Approximating D*|Z distribution 4+ weighting (Section 5.1)
e We can use the same general variance structure as in the unweighted case except
we estimate 0%° using a weighted regression model fit with Huber-White standard errors.

We also replace P(D* = 1) with p* = %

Both Non-logistic link function + weighting (Section 5.2)
e We can again apply the Huber-White sandwich estimator with survey weights
as implemented in R package survey (Freedman, 2006), except this time we specify a
non-logistic link function for the estimation and define the meat and bread matrices
corresponding to the modified link function given cgpye(X).

Both Obs. data log-likelihood + weighting (Section 5.3)
e We no longer have a valid likelihood, and we apply the following sandwich estimator

—1
_ 0K, (0,8) 0K, (0,8)
We have B(6, 5) = {Zi D o ey i e ey R TR e }

_— — ®2 U JUR JUR A A
M©,8) =Y, [wi e 1 . ogf;’eﬁ,]zﬂ and Var([0, 8]) = B(0, 3)M (8, B)B(0, )

* Many of the above estimators treat sensitivity and/or IPW /calibration weights w as fixed and do not take into
account the uncertainty in estimating sensitivity or w. One could account for this uncertainty through bootstrap
methods, where sensitivity, w, and 6 are estimated for each of many bootstrap samples of the data. The resulting

distribution of § can then be used to obtain standard errors.
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A.10.1 Comparison between naive and misclassification-corrected standard errors

In this section, we focus on the setting where we have misclassification and where selection is
ignorable. We want to compare the magnitude of the standard errors obtained using the var-
ious bias-correction strategies amongst each other. We also will compare these bias-correction
strategies to naive analysis.

Naive: We suppose we fit a logistic regression model to the observed data and treat the
resulting parameters as if they were . The structure of the resulting expected information
matrix is as follows:

ot02Z

Iuc(‘g) = Z W(l’ Z)®2

Approximation of D*|Z method: The variance estimation equation for éz from approxi-

~ ~ ~ *__ 2
mating the D*|Z distribution is Var(dz) ~ Var(f%) [%] . Since ¢ and P(D* = 1)

are both strictly less than 1 under imperfect sensitivity, we have that Var(6z) > Var(d%). Ad-
ditionally, we can write the expected information matrix implied by this model as a function of
0 as follows:

_[e1—PD*=1))]? efo+027 92
Tapproa(8) = [ P =1) | 2 (1tmzzph?)

Non-logistic link function method: Consider the likelihood function corresponding to the
distribution of D*|Z and its relationship to 6 and ¢(Z) as follows:

Oo+0z7 D Oo+02 2 1-D*
e e
b= H [C(Z) 1+ e90+922] [1 — D17 690+92Z]
(2
log(L) = ZD*(GO +0z7) —log [1 + eeO‘HQZZ] + (1 — D%)log {1 +(1- C(Z))e(?o—HﬂzZ} + constant
7
with score function

bo+022 1 — o(7))ebo+022
e =2, {D* ez 0D a —(c()Z)))e‘90+92Z} (1.2)

i
and information matrix
690+92Z (1 _ C(Z))€90+92Z

10 =3t ey ~ 0~ PV ey 0

This information matrix is strictly less than the information matrix for naive logistic regression
when ¢(Z) < 1. Therefore, ¢(Z) less than 1 will result in an increase in corresponding standard
errors when we correctly account for the misclassification.

We might also be interested in the expected information matrix, where we replace D* with
its expectation, ¢(Z)expit(fy + 027). Replacing D* in the above equation and re-writing, we
have that

C(Z) 690+0ZZ
Ilink<6) = Z 1+ [1 _ C(Z)]€9()+GZZ (1 4 690+92Z)

i

2 (17 Z)®2

Again, this will be strictly less than the information matrix from naive analysis.
Suppose we estimate 6 replacing ¢(Z) with ¢ (X), which is a function of 5. We can write
the expected information matrix as a function of 3 as follows:
I o) — eBO‘i’BXXi 690+92Z
lmk( ) - Z 1 + eBot+BxXi 4 ebo+0z72 (1 + 690+9ZZ)

7

5(1,2)%? (Eq. S10)

21



We will use this quantity later on.

Observed data log-likelihood maximization method: When we jointly estimate 6 and /3
using the observed data log-likelihood, we have corresponding expected observed data informa-
tion matrix as follows:

Io S 97 /8 =
0s(0,) Z Ki(0,5)[1 - K,(6.8)] 9(6,8) 9(0,5)T

eBot+Bx X efot0z2;

®2
_ 1+ePotBx Xi 14ebot+027; 1 ‘ ; |
_Z 1 ] [1—&-690"‘9221'(1722)’ 1—|—650+6XX7;(1’X7‘):|
3

eBot+Bx X efot0z7;
T 14ePotBxXi 14ef0 027,
eBo+BxXi b0+022Z; 1 1 ®2
= 1 N — (1. X;
Z 1+ ePot+BxXi 4 ebo+02Z; |1 4 ebo+02Z; (1, Z), 1 + eBot+BxXi (1, Xi)
1

0; Y A S Lot (1,2)%2 Y, Lotttz (1,2)(1X)"
. ) i 14+ePotBxXitebotoz7; (1+600+6Z2i)2 ’ 1 14+ePotBxXitebotoz7; (1+eﬂ0+ﬂxxi)(1+eeo+azzi)
- Bo+Bx Xiebo+0z7Z; (1,Z:)T (1,X; 00+072; Bo+Bx X; 2

. [ e ) ) e [&
5, Z i) ( i) Z (17X1)®

t 14ePotBxXi L elot0z7i (14ePotPx Xi)(14e00102%:) t 14-ePotBxXipelot0z2i (14ePotPxXi)2

Now, we appeal to results in the linear algebra literature to relate the corresponding covariance
matrix with the covariance matrix we would obtain if we fit the naive, uncorrected model.
Denote the terms in I, as
A B
Iobs(eaﬂ) = |: BT D :|

Assuming D is invertible, we have that

Lpu(6.5)] ) = (A—BD™1BT)! —(A-BD™'BT)"1BD!
obsi | -D'B"(A-BD7'BT)"' D'+ D 'BTA-BD'BT)"'BD™!

following Lu and Shiou (2002). Now, let’s take a closer look at the element corresponding to the
covariance matrix of 6, (A — BD~'BT)~!. Using properties of the inverse of sums of matrices,
we have that

1

1 — trace(BD—1BT A1)

Assuming D is invertible (which it is) and has non-negative diagonal elements (which it does), we
have that BD !B will also have non-negative diagonal elements. Assuming A is also invertible
(which it is), A=*BD~! BT A~! will also have non-negative diagonal elements. Now, we need to
determine the sign of ;— trace(B 5,1 BTA=T)" We have already concluded that BD~'B” has non-

negative diagonal elements. Additionally, A~! is invertible and will have non-negative diagonal
elements. Therefore, trace(BD ™' BT A~1) will be positive. The question remains whether it will
be greater than or less than 1. We generally expect trace(BD~'BT A~1) will be less than 1 for
sufficient sample size, since A~! will have small entries in this setting. We make this assertion
noting that A~! is equal to the inverse of Ij;x(6) when c(Z) is replaced by cirue(X) as in Eq.
S10. Therefore, A~! is the variance of 6 when sensitivity is fixed to be equal to cyye(X).

For sufficient sample size, we have that

A'BD BT A1

(A-BD !Byl =414

1
1 —trace(BD—1BTA-1)
where ‘diag’ represents the diagonal elements of the matrix.
Noting that A = Ij;.(0) with ¢(Z) replaced by ciue(X), we showed previously A=! >
L..(0)~% Putting things together, we have that the diagonal elements covariance matrix asso-
ciated with 0 from the observed data log-likelihood maximization follows

diag([Lovs(0, B)]gg) > diag(A™") > diag([L.e(0)) ")

AT'BDT'BTA™Y) > diag(A™Y)

diag([Tos(0; B)]y9) = diag(A~" +
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This shows that for a fixed value of 0, the standard errors will be larger under the observed data
log-likelihood maximization method than the naive method. For fixed values of the corrected
and uncorrected maximum likelihood estimates, however, it is possible for the standard errors
to be smaller. In generally, however, we expect larger standard errors under the observed data
log-likelihood method.

Overall comparisons: Putting everything together, we have the following for a fixed 6

diag(Le(0)™") < diag(Link(0) "), diag(Luppros (0) ™) < diag([Lops(0, B)]55)

noting that A = Ij;,,(0). This states that the standard errors for all bias correction methods
will tend to be larger than the naive method and that the method using the observed data
log-likelihood will tend to be the largest. This may not always be the case for a single data
analysis, however, because these functions will be evaluated at different estimates for . In
general, however, we expect the above orderings.

Overall, we expect the methods that use fixed sensitivity to produce smaller estimated
standard errors than the observed data log-likelihood method (without fixed f3p). We expect
this to be often true even when we account for the estimation of sensitivity for the non-logistic
link function and approximation methods, since external information is incorporated into these
methods. It is difficult to determine the relative orderings of standard errors for the non-logistic
link function method and the method approximating the D*|Z distribution in general.
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A.11 Extension to allow for probabilistic phenotyping

Most methods in the statistical literature for dealing with outcome misclassification assume
either (1) sensitivity and specificity are known (e.g. Neuhaus (1999)) or (2) D and D* are
available for some validation subset of patients (e.g. Carroll (2006)). The PIE (Prior knowledge
guided Integrated Estimation) method in Huang et al. (2018) provides a strategy for estima-
tion that incorporates our prior beliefs for plausible values of sensitivity and specificity without
using either the true values or a validation dataset. Although mentioned in Neuhaus (1999),
very little work has been done in the setting with misclassification related to covariates. All of
these methods assume the observed outcome, D*, takes the form of a binary variable.
Recently, many researchers have used validation datasets to develop statistical models for the
predicted probability of having the disease, estimated as pp, given a spectrum of electronic
health record data (e.g. Castro et al. (2015)). The functional form of pp is obtained using a
validation dataset for which EHR variables X and true disease status D are known. This pp can
be viewed as the EHR-derived phenotype and can be considered a random variable when we do
not condition on EHR variables X used to generate pp. Given estimated pp, a common strategy
is to then apply a threshold on this probability to obtain a binary disease status outcome for
analysis. In contrast, Sinnott et al. (2014) describes an approach for analyzing a transformed
version of pp to produce a non-binary disease status outcome for analysis. In this section, we
describe how our proposed approach relates to the methods in Sinnott et al. (2014) and pro-
pose new extensions of their work to account for covariate-related misclassification and selection.

Existing method in Sinnott et al. (2014)
First, we summarize the method in Sinnott et al. (2014) using our notation. Sinnott et al.
(2014) shows that we can obtain valid inference about 6 by solving

n
>,z Vi - g(6; 2:)] = 0 (Eq. S11)
i=1
for 6, where Y; is some known transformation of pp and ¢(0; Z;) = P(D; = 1|Z;) is the disease
model of interest. In our case, function g is the expit function corresponding to logistic regres-
sion. This approach will provide an unbiased estimate for 6 if we define function Y (pp) such
that E(Y|Z) = E[Y (pp)|Z] = P(D = 1|Z). Assuming that pp L Z|D, Sinnott et al. (2014)
defines

pp — E(pp|D =0)
(pp|D =1) — E(pp|D = 0)

Y=Y0p)= ¢ (Eq. 512)

where E(pp|D = 1) and E(pp|D = 0) are calculated ahead of time from the validation data.

Relationship to Fq. 4
Suppose we do not assume that pp L Z|D. We can apply the same approach in Sinnott et al.
(2014) to obtain the following transformation:

pp — E(pp|Z, D = 0)
(pp|Z,D =1) — E(pp|Z, D = 0)
Suppose we define pp such that pp = D* is binary. We can re-write the above expression as

v = D*— P(D*=1|Z,D =0) _ D*—[1-0b(2)]

- P(D*=1|Z,D=1)-P(D*=1|Z,D=0) ¢(Z)—[1—b2)]
Under logistic regression for g(0; Z;), one can show that solving Eq. S11 for 6 using the above
transformation Y is equivalent to the non-logistic link function method in Section 3.2 given

fixed ¢(Z) . By “equivalent”, we mean that the two approaches result in the exact same score

Y =Y(pp) = I3
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equation, Fq. S11. Similarly, we can account for selection bias by solving a modified version
of Eq. S11 incorporating selection weights as follows:

> _wil, Z) [Yi = g0 + 022:))] = 0 (Eg. 513)
i=1

Suppose instead that r(Z) is known and pp is allowed to be non-binary. In this case, we
can estimate 6 by solving Fq. S11 using an appropriate transformation Y of pp such that
EY|Z,S =1) = ¢g(6;Z). It is difficult to obtain an exact transformation of pp such that
E(Y|Z,S = 1) = ¢(0;Z). However, we can obtain a transformation of pp with expectation
with zero-th order approzimation g(0; Z). Suppose we define
v _ i ﬁD—E(ﬁD\ZZD:O,Szl) i (Eq. 514)
r(Z)E(pp|Z,D =1,5 =1) — E(pp|Z, D =0,S =1) — pp[r(Z) — 1]

We can show that

PD — E(ﬁDlsz =0,5= 1)
T(Z)E(ﬁD‘Z7D =1,5= 1) - E(ﬁD|ZaD =0,5= 1) _ﬁD[r(Z) - 1]
E(pplZ,S=1)— E(pp|Z,D=0,5=1)
7 r(Z)E(pp|Z,D=1,S=1)— E(pp|Z,D=0,S=1) — E(pp|Z,S =1)[r(Z) — 1]
The expectation of a function is not equal to the function of the expectations in this case.
However, the expectation of Y given Z,S =1 is a zero-th order approximation to g(; 7).
Future work can explore the performance of this approach for estimating 6 in the presence of
both misclassification and selection bias. In the main text, we consider a particular case where
pp = D*. If we solve Fq. S11 using the transformation in Fq. S14 in this setting, we can
obtain an estimate of 6 that is equivalent to solving the score equation associated with the
non-logistic regression model in Fq. 4.

E(Y|Z,8=1)=E 12,5 =1

=g(0;2)
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B Simulations

B.1 Simulation study set-up

The simulation study is broken up into three parts: (1) misclassification only, (2) selection bias
only, and (3) misclassification and selection bias. In all simulation settings, we first generate 500
datasets with 5000 patients each. This sample of 5000 represents the true population. For each
simulated dataset, we started by generating covariates Z, W, and X from a multivariate normal
with mean 0, unit variances, and covariances g, 0., and g,,,. True disease status D was then
generated using the following relation: logit (P(D =1|Z)) = —2 4 0.5Z. In all simulations, we
had Xt = X and Wt = W, so Z was not a direct driver of either misclassification or selection
given D. In presenting these simulation results, we often use X and X1 interchangeably. Unless
otherwise noted, all simulations assume that we have perfect specificity, so b = 1.

Simulation part 1:

We considered several different scenarios for the relationships between X, D, and Z. The in-
dependent relationship between X and Z given D was controlled by o,, above. We allowed
for additional correlation between X and D by defining Xy, = Xoriginal + 0dz D, Where o4,
controls the strength of the relationship between D and X. We considered 4 different simula-
tion scenarios for o4, and o, as shown in Table B.1. In each scenario, we then generated
D* using the sensitivity relation logit (P(D* = 1|X = Xpew, D = 1)) = fp + X and assuming
perfect specificity. We performed a large number of simulations across different combinations of
parameters, and we present results for Sy = —0.4, which corresponds to marginal sensitivities ¢
between roughly 0.4 and 0.45 in each simulation scenario.

Simulation part 2:

In simulation part 2, we define D* = D. We allowed for the possibility of correlation between
W and D by defining Wyew = Woriginal +0dwD, Where o4, controls the strength of the relation-
ship between D and W. We then imposed sub-sampling to obtain our analytical sample using
the following relation: logit (P(S = 1|W = Wyew, D)) = ¢o + ¢pD + ¢wW. We considered 4
different simulation scenarios as shown in Table B.1. The ¢ values were chosen to give roughly
a b0% selection probability on average.

Simulation part 3:

In simulation part 3, we simulate data as in part 2 but also generate D* using

logit (P(D* =1|X,D = 1)) = 0.65+X with 0, = 0.5 and 04, = 0. This corresponds to roughly
a 65% marginal sensitivity with X related to Z given D. Many other simulation settings were
explored with similar results, but these will not be presented here.

Methods:
For each dataset in simulation part 1, we corrected for misclassification bias by applying the
various methods discussed in Section 3. Unless otherwise specified, these methods were im-
plemented using estimates for sensitivity based on the simulated data. ¢ was estimated as
];((%*::11)). In the main paper, cyye(X) was estimated using the method in Eq. ¢ and assuming
known P(D = 1]X). In this Supporting Information, we also estimated c;(X) as the
ratio of P(D* = 1|X) and P(D = 1|X) instead of using Eq. 6. As a sensitivity analysis, we
further considered the setting where crye(X) is estimated with unknown P(D = 1|X). Unless
otherwise stated, implementation of the observed data log-likelihood maximization method as-
sumed fixed intercept By = logit(c)

In simulation part 2, we corrected selection bias using IPW or calibration weighting. In-
verse probability weights were obtained either by fitting a model for selection using the entire
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population or estimated using a probability sample from that population using equations in
Section A.7. In the main paper, weights were estimated using Fq. 54, and we also consider
weights estimated using Eq. S5 in this Supporting Information. Poststratification weights
were estimated using the correct population summary statistics for W and D after binning
continuous W.

For each dataset in simulation part 3, we corrected selection bias and bias due to phenotype
misclassification using the methods discussed in Section 5. In the main paper, ¢ and c¢gye(X)

P(D*=1|5=1) _ . _ _

or Fq. 9 respectively. In this Supporting Information, we also explore

were estimated using 7 fixed at the simulation truth and using ¢ =
1)?P(D~:1)+P(D:0)
rP(D=1)
settings where 7 is misspecified and where c¢ge(X) is estimated as in Fg. S3. In the main
paper, we present simulation results using correct IPW weights rather than sample-estimated
weights. Results are similar when weights are estimated using correctly-specified 7. We explore
different sample-estimated weights and their relationship to chosen 7 and sensitivity estimation.

For each simulated dataset, we apply the above methods to estimate the log-odds ratio of Z
corresponding to the logistic regression for D|Z. In all settings, we then estimate the average
and median deviation from the truth of 0.5 across the 500 simulated datasets. We also estimate
coverage of 95% confidence intervals and corresponding statistical power. For each simulation
setting, we also run a paired simulation where true 8z is set to 0, allowing us to assess false
positive rates. Standard errors were estimated as discussed in Supporting Section A.10,
treating estimated sensitivities or selection adjustment weights as fixed.

In the main paper, we present a set of three simulation studies exploring the performance of
our proposed methods for handling (1) phenotype misclassification, (2) selection bias, and (3)
both misclassification and selection bias. In the following sections, we provide additional explo-
rations into these simulation study results and additional evaluation of our proposed estimators
for sensitivity and sampling/calibration weights.

Table B.1: Simulation set-up

Part 1 Part 2
Setting BO Ozx Odx ¢O (rbD ¢W Ozw g
1 -0.4 0 0 -0.6 2 -1 0.4
-0.4 0.5 0 -0.6 2 -1 0.4
0
0

-04 0 0.2 | -0.2 -1 04
-04 05 05| -01 -1 04
0.65 0.5 0 - - - -

= o olf

Ttk W N

Part 3
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B.2 Simulation part 1: p-values, power, and type I error

In the main paper, we focus on assessing bias in estimating 6, but we may also be interested
in studying the impact of misclassification and our methods on the resulting p-values. Figure
B.1 shows the estimated p-values and 6 across 500 in Setting 1 (X independent of Z), Setting
2 (X related to Z given D), and Setting 3 (X related to D given Z) from Table B.1.

Figure B.1: Estimated p-values and 67 across 500 simulations after imposing phenotype
misclassification™®

-log10(P-Values) log(Odds Ratios)
= > o«
2 - 2 |
2 o |+ XindependentofDandZ - 2 ©°
g < 7| A Xrelated to Z e g ~ |
A X related to D . n ©°
ol o ] ol
g © 8 3 -
o) o)
L o | o w |
© N © ©
o o
= S < _|
() o _| () o
= — =
< < 2 4
3 I T T T 5 2 9 T T T T T
10 20 30 40 0.3 0.4 0.5 0.6 0.7 0.8
Uncorrected Uncorrected

* Applying method from Section 3.2 using correct ctrue(X). True log-odds ratio is 0.5.

The left panel of Figure B.1 demonstrates that p-values for the uncorrected and corrected
analysis are nearly identical when X and Z are independent given D (Settings 1 and 3). This is
consistent with existing literature in the area of outcome misclassification and was shown in the
setting of link function misspecification in Li and Duan (1989). Importantly, p-values differ
when X is related to Z given D. In Settings 1 and 3 we have that ¢(Z) = ¢, but this is not true
for Setting 2. As shown in the right panel, however, the resulting 6 estimates differ between
corrected and uncorrected analysis in all three settings. This figure illustrates the property
that p-values are not impacted by ignoring misclassification when ¢(Z) = ¢, but they are when
c(Z) #e¢.

Suppose our interest is in estimating p-values as in a PheWAS study, which compares p-
values resulting from regression modeling of many different phenotypes, each of which has
different sensitivity properties. These results indicate that there should not be a large impact
of the differential misclassification across diseases on the resulting p-value comparison when X
and Z are reasonably assumed to be independent given D. When X and Z may be related
given D, however, accounting for misclassification across diseases can be important. When 6
itself is of primary interest, uncorrected analysis will produce bias in all settings with imperfect
sensitivity /specificity.

Now, we take a closer look at the impact of misclassification and our corrections on type I
error and power. We simulate data as before but vary the true value of 8;. Figure B.2 shows
the results across 500 simulated datasets corresponding to 95% confidence intervals.

Figure B.2a shows the type I error rates. When X and Z are uncorrelated given D, we
see nominal type I error rate across simulation settings considered, where the horizontal line
in Figure B.2a corresponds to a type I error rate of 0.05. This is consistent with Figure
B.1, which showed little difference in the resulting p-values. When X is related to Z given D
but not related to D given Z, we see nominal type I error rates for analyses that correct for
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misclassification. That is, all methods except the uncorrected analysis and the method where
we approximate the D*|Z distribution, which assumes constant sensitivity ¢(Z) = ¢.

In the setting where X is independently related to both Z and D, the observed data log-
likelihood maximization method and the D*|Z distribution approximation methods perform
poorly. This is because we are violating the assumptions required for these methods. For the
non-logistic link function method, we only require this independence when we are estimating
ctrue(X ) and using it to replace ¢(Z). In these simulations, we see that use of both estimated
and true ¢y (X) results in nominal type I error rates even when these assumptions are violated.

Figure B.2a also emphasizes that we cannot ignore misclassification related to covariates
when X is related to Z given D (so ¢(Z) is not a constant). This is particularly important
because, unlike other types of misclassification, we can have bias toward or away from
the null when sensitivity depends on covariates independently related to Z.

Figure B.2b shows the power when 67 = 0.05. Note that this is a small value for 8. We
chose a small value to allow for imperfect power and easier comparison across methods. In all
settings where bias is corrected appropriately, power is fairly low but generally still above the
0.05 level as expected.

Figure B.2: Estimated false positive rates and power across 500 simulations after imposing
phenotype misclassification

(a) False Positive Rates (b) Power

B X independentofzandD B X' related to Z only B x'independentofZandD |8 X' related to Z only

° X! refated to D only B X! related to Z and D o X' refated to D only B X' related to Z and D

False Positive Rate
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B.3 Simulation part 1: sensitivity estimators and misspecification of P(D =
11X)

In the main paper, we propose several methods for estimating either marginal sensitivity or
individual-level sensitivity using the observed data and some additional information about the
population of interest. In this section, we will refer to these methods as follows:

Method 1: (Section 3.1) Estimate “crude” marginal sensitivity as ¢ = %
Method 2a: (Section 3.2) Estimate cyryue(X) using non-logistic link function method
assuming P(D = 1|X) is known. We fit the following model for D*|X:

P(D* = 1|X)
P(D =1|X) - P(D*=1|X)
Method 2b: (Section 3.2) Estimate ¢y (X) using the following ratio
P(D* =1|X)
P(D=1|X)’
Method 3a: (Section 3.3) Estimate cyue(X) through joint estimation of 5 and 6.
Method 3b: (Section 3.3) Estimation as in Method 3a but with fy fixed at logit(c).

log ] = o + Bx X = logit(ctrue(X))

Ctrue(X) = min <

We will evaluate our ability to estimate ¢ and ¢y (X) in several settings. We consider four
general scenarios corresponding to different relationships between D, X, and Z. In particular,
we consider simulation Settings 1-4 in Table B.1. In Settings 1 and 3, we have that Z is
independent of X given D, and we have conditional dependence in Settings 2 and 4. Addition-
ally, we have X and D associated given Z in Settings 3 and 4. We note that Settings 1 and 3
correspond to settings where ¢(Z) = ¢ even though sensitivity c¢te(X) depends on covariates.
In all simulation settings considered, the average sensitivity is roughly 0.4-0.5.

B.3.1 Estimating Marginal Sensitivity

In Figure B.3, we plot a histogram of the estimated ¢ using Method 1 across 500 simulations.
In all settings, these estimates are well-centered around the true marginal sensitivity (vertical
line). We emphasize that we can do a good job in estimating the marginal sensitivity ¢ even
when sensitivity ¢ (X) does depend on covariates.

Figure B.3: Estimated ¢ across 500 simulations using Method 1 *

(a) Setting 1 (b) Setting 2 (c) Setting 3 (d) Setting 4

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

* The vertical line in each figure represents the simulation truth value for ¢. We assume the population P(D = 1)
is known.
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B.3.2 Estimating c;ye(X)

Next, we evaluate our ability to estimate ¢y (X ) using Methods 2a, 2b, 3a, and 3b. In Figure
B.4, we compare ¢ (X) estimates and the truth for 50 simulated datasets, where cgpye(X)
is estimated using different methods. For Methods 2a and 2b, we assume that P(D = 1|X) is
known. For Method 3b, [y was fixed at the truth. Method 2a performs very well across all
four simulation settings. In all settings, Method 2b does not quite capture the true cgrye(X)
at the upper end, but the general magnitude and trend for cyque(X) are close to the truth.
Unlike Methods 2a and 2b, Method 3 does not incorporate any outside information about D|X.
Methods 3a and 3b both perform well when X is not independently related to D given Z. Both
methods struggle more to estimate c¢gyue(X) when X is independently related to D given Z,
and Method 3b (where we fix the intercept in the sensitivity model) has better performance.

Figure B.4: Estimated ¢y (X) for 50 simulated datasets using Methods 2 and 3*

(a) Setting 1: X independent of Z and D (b) Setting 2: X related to Z
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* Estimated sensitivities for 50 individual datasets are plotted using thin lines. Bolded lines correspond to
the average estimated sensitivity, sorted according to the corresponding average true sensitivity value across 50
simulated datasets.

Method 2 sensitivity estimation relies on known P(D = 1|X), but this may not often be
known in practice. For example, suppose X includes the length of follow-up in the EHR. We
may rarely know the relationship between length of follow-up in this EHR and true disease
status D. Instead, we may approximate P(D = 1|X) using available P(D = 1) or P(D = 1|U)
for some U related to X or a subset of X. In Figure B.5, we explore how well we can estimate
ctrue(X ) using Method 2 when P(D = 1), P(D = 1|U), or true P(D = 1|X) is known. Here,
we generate U = X + e where e ~ Normal(0,1). When X is independent of Z and D (Setting
1), P(D = 1|X) = P(D = 1), and all approaches perform well. In all other settings, use of
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P(D = 1) or P(D = 1|U) results in some error in estimating cirye(X).
concern when X is related to both D and Z (Setting 4). We note that, while there is still some
error in estimating ¢y (X) using P(D = 1|U) in Settings 2-4, we see greater error when we just
use P(D = 1). This demonstrates a benefit to incorporating what information that is available

to best approximate P(D = 1|X) if the goal is to estimate cgpye(X).

Figure B.5: Estimated cypyue(X) using Method 2 when P(D = 1|X) not known*
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B.3.3 Estimating Sx

We might also be interested in estimating Sx rather than ¢y (X). In Figure B.6, we show the
estimated values for Sy for several methods and across 500 simulations. When X is independent
of both Z and D, all methods perform well, with estimates of 5x well-centered around the truth
of 1. We notice that the observed data log-likelihood method with no fixed parameters results in
greater spread in estimated Sx compared to the other methods. This is due to the more difficult
task of jointly estimating § and 6, resulting in less efficient estimates with greater variability.

When X is related to Z given D but is not related to D given Z (Setting 2), the observed
log-likelihood methods perform well for estimating 8, but some bias can be seen in estimating
[ with misspecified P(D = 1/X). This bias is smaller when we specify P(D = 1|U) rather
than just P(D = 1). When X is related to D given Z (Settings 3 and 4), all methods struggle
somewhat in estimating Sx unless true P(D = 1|X) is known. However, it should be noted that
all methods produce estimated Bx of generally similar magnitude and correct direction. If the
goal is to estimate directions of association in the sensitivity model, we may be less concerned
about our specification of P(D = 1|X). Interestingly, we also note that Method 3a out-performs
Method 3b (with 5y fixed at the truth) in terms of estimated 67 in Settings 3 and 4. This may
indicate greater adaptability of Method 3a (no fixed intercept) compared to 3b (fixed intercept)
when P(D =1|Z,X) # P(D = 1|Z) in terms of estimating cgrye(X).

Figure B.6: Estimated Sx across 500 simulations (true Sx = 1)
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B.3.4 Impact of sensitivity estimation on estimated 6

Now, suppose we are interested in 07, and estimation of sensitivity is more of a means to an end.
We want to understand to what extent difficulty in estimating sensitivity impacts estimation
of §. In Figure B.7, we provide boxplots of the estimated 0z across 500 simulated datasets
with sensitivity estimated in different ways. Observed log-likelihood maximization without a
fixed intercept performs well in estimating 67 when X is independent of D given Z but poorly
otherwise. When we fix the intercept [y at or near the truth, we do a good job estimating 6,
when X is independently related to Z given D, but neither observed log-likelihood maximization
strategy performs well when X is independently related to both D and Z.

In Settings 1 and 3, we have that ¢(Z) = ¢. In these settings, the method in Section ?? in
which we approximate the D*|Z distribution and use estimated ¢ performs well. This method
performs poorly in Settings 2 and 4, where ¢(Z) is not truly a constant. Similarly, the non-
logistic link function method performs well in both Setting 1 and 3. This is notable, since we
are replacing constant ¢(Z) = ¢ with ¢grue(X) in these settings. This good performance comes
from results in Section A.4, which indicate we can replace ¢(Z) with ¢ipyue(X) for estimation
with the non-logistic link function method in Settings 1-3. In Settings 2 and 4, estimation using
a non-logistic link function from Section 3.2) performs well when P(D = 1|X) is correctly
specified. We can see some error in estimating 6, when P(D = 1|X) is not correctly specified.
Importantly, all methods in Section 3.2 and 3.3 out-perform estimation assuming constant
sensitivity Section 3.1 when X is independently related to Z (even when P(D = 1|X) is
misspecified). This suggests that accounting for covariate relationships with sensitivity using
methods in Section 3.2 may be a good idea even when P(D = 1]|X) is not well-known.

Figure B.7: Estimated 67 across 500 simulations (true 6z = 0.5)
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B.4 Simulation part 1: estimation under imperfect specificity

In other simulations, we assume we have perfect specificity, but this may not always be the
case. We consider the setting where specificity is a known constant less than 1. We generate
data as in Settings 1 and 2 in Table B.1 under imperfect specificity with b equal to 0.99 or
0.90. This results in 4 simulation settings. We then estimate 67 using uncorrected analysis,
after applying the methods in Sections 3.1 and 3.2 assuming perfect specificity, and after
applying the methods in Sections 3.1 and 3.2 assuming known b < 1. Estimated 67 values
across each of 500 simulated datasets for each simulation setting and method combination are
shown in Figure B.8. We first note that uncorrected analysis results in bias in all simulation
settings. Application of methods that correct for imperfect sensitivity but incorrectly assume
imperfect specificity do not correct this bias and can sometimes make the bias worse. When
we apply our methods that correctly account for imperfect specificity, we can do a good job at
estimating 6.

Figure B.8: Estimated 07 across 500 simulations under imperfect specificity™*
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B.5 Simulation part 2: estimating selection probabilities using external data

In each scenario in Settings 1-4 of Simulation part 2 in Table B.1, we generate a probability
sample from the population with a 50% selection probability. We use this external probability
sample combined with the internal data to estimate sampling probabilities using either Eq. S4
(“joint” method: relying on the joint distribution of D and W) or Eq. S5 (“selection” method:
relying on a multinomial selection model for inclusion in the non-probability sample, the prob-
ability sample, or both). We assume both D and W are available for all people.

Figure B.9 compares the estimated and true selection probabilities for 10 simulated datasets.
We also plot the estimated selection probabilities obtained using data from the “true” (entire)
population and consider modeling based on (1) D and W and (2) W only. In all simulation
settings, the estimators in Fq. S5 and Eq. S4 do a good job at recovering the true selection
probabilities. Unsurprisingly, estimated sampling probabilities obtained using these methods
have greater variability across simulated datasets than when sampling probabilities are esti-
mated using the entire population. When selection depends directly on D in addition to W
(Settings 1 and 2), failure to include D in the selection model resulted in poor estimation of the
selection probabilities. These simulations demonstrate that the methods in Fq. §4 and Eq. S5
can do a good job at estimating the selection probabilities using an external probability sample
as long as the various selection models are correctly specified.

Figure B.9: Estimated sampling probabilities for 10 simulated datasets

(a) Setting 1: D and W (W related to Z only)* (b) Setting 2: D and W (W related to D and Z)*
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B.6 Simulation part 3: exploring plausible values for sampling ratio

In Eq. 8, we express 7 as a function of ¢ and P(D = 1) as follows:

~ P(D*=1S=1) 1-P(D=1)

r= =

c—PD*=1S=1) P(D=1)

We can use this relationship to plot a curve relating 7 and ¢ as shown for 500 simulations under
Simulation part 3 Settings 1-4 in Figure B.10. True values for ¢ and 7 are plotted as red
lines, and we can see that the predicted curves intersect the true values. Using this plot, we
can estimate either 7 or ¢ by fixing a value for the other. Alternatively, we can use these plots
to inform plausible values of 7 based on our beliefs about ¢ and repeat our analysis for several
plausible values of 7.

Figure B.10: Estimated relationship between 7 and ¢ for 500 simulated datasets

(a) Setting 1: D and W (W related to Z only)* (b) Setting 2: D and W (W related to D and Z)*
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B.7 Simulation part 3: estimating sensitivity as a function of the sampling
ratio

In Section 5, we describe several strategies for estimating ¢y (X). Here, we will explore how
these approaches perform for different fixed 7 in several simulation settings. Strategies include
use of the observed data log-likelihood maximization method, which can be applied with or
without fixing Sy = logit(¢). For this exploration, we apply the observed data log-likelihood
method to estimate cyye(X) with and without IPW weighting to adjust for selection bias. Fix-
ing 7 and assuming P(D = 1|X) is known, we can also estimate cyye(X) using two strategies.
In the first “Link” method, we fit the non-logistic link function model in Section 5 to estimate
B and, therefore, cirye(X). In the second “Ratio” method, we estimate ¢y (X) as the ratio of
P(D*=1|X,S=1)and P(D=1|X,S =1).

Figure B.11 provides boxplots of the estimated individual-level sensitivities in a single
simulated dataset. When we specify the correct marginal sampling ratio and P(D = 1]|X), we
see that we can do a good job at estimating cyqe(X). However, estimation of ¢gpye(X) using
the non-logistic link function or ratio methods may be somewhat sensitive to the choice of 7.
Alternatively, suppose we specify 5y instead of 7. We can apply the observed data log-likelihood
maximization methods. Whether or not we also account for selection, we tend to do a good job
at estimating sensitivities when we fix fy, suggesting that selection bias may play a larger role
in estimation of 6 than Bx if By is roughly known. In contrast, observed data log-likelihood
estimation without a fixed /3y value performs poorly at estimating ¢y (X) (i.e. has a hard time
estimating 6, Bx, and Sy at once).

Rather than ¢ (X), we might also be interested in estimating Sx. Figure B.12 provides
boxplots of the estimated values of Sx across 50 simulated datasets using a variety of estima-
tion strategies. Using the non-logistic link function method, estimated Sx does appear to be
somewhat sensitive to the choice of 7. However, all Sx estimates are in the correct direction
from zero, so we may be less worried about the exact value of 7 if we want to get a general
sense of the important drivers of sensitivity. When 7 is correctly specified, the Sx estimate is
near the truth. The observed data log-likelihood method with fixed Sx does a reasonable job
at estimating By with or without correcting for selection bias in Settings 1-3.

Key Takeaway: Generally, we need to fix either 5y or 7 in order to do a good
job estimating Sx and cpye(X).

It appears that cye(X) and Sx are at least moderately impacted by the specification of
7 and/or fx. However, we are more interested in the downstream implications for estimated
0. Figure B.13 provides boxplots of estimated 6, across 50 simulated datasets across values
for 7 (assuming 6, was estimable using the non-logistic link function method in Section 5).
For example, in Setting 4, many values of 7 are not plotted since no solution existed for Fq. 6
for any of the 50 simulated datasets. We see that 87 can be somewhat sensitive to the choice
of 7, but the bias in mis-specifying 7 is often smaller than bias of uncorrected data analysis,
particularly when selection is related to D.
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Figure B.11: Estimated ¢ (X) across sampling ratios in single simulated dataset
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Figure B.12: Estimation of Sx across sampling ratios in 50 simulated datasets
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Figure B.13: Estimation of fz across sampling ratios in 50 simulated datasets (using correct
selection weights)
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B.8 Simulation part 3: estimating selection probabilities given sensitivity

Now, we turn our attention to estimation of selection probabilities. Ideally, we would obtain
an estimate of P(S = 1|D,W). Beyond the challenges due to unobserved components of W,
it is particularly challenging to estimate this probability when D is misclassified in the non-
probability EHR sample. In Section 5, we propose instead attempting to address selection
bias using P(S = 1|W, D*) instead of P(S = 1|D, W).

In this section, we compare 6z using the non-logistic link function method using different

estimated selection probabilities. For these explorations, we use the true values of ¢ and cye (X)
to estimate the selection probabilities and €7 where applicable. We suppose we generate an
external probability sample from the population. We estimate selection probabilities using the
following methods: (1) P(S = 1|W) estimated using Eq. S4, (2) P(S = 1|D, W) ignoring that
disease status is misclassified using Eq. S/, (3) P(S = 1|D*, W) correcting for misclassification
and using ¢ and Eq. 10, and (4) P(S = 1|D* = 1, W) correcting for misclassification and using
cirue(X) and Eq. 10.
Figure B.14, we provide boxplots of estimated 6, across 500 simulated datasets, where weights
for selection bias adjustment are estimated using various approaches. We find that 8z is poorly
estimated when IPW weights ignore D or D* and selection depends on D (Settings 1 and 2).
In contrast, estimation of 6 with weights estimated ignoring the misclassification of D (“IPW:
W and D*”) does a reasonable job at correcting for the selection bias, particularly when W
is not independently related to D. The estimation strategy in Eq. 10 performs poorly when
we use marginal sensitivity ¢ in place of ¢yyue(X). This occurs in simulation settings where X
and Z are associated given D, but this is less of a problem when X and Z are conditionally
independent (simulations not shown). We generally see good performance of the estimator in
Eq. 10 when we use true ¢ (X) to account for the misclassification.
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Figure B.14: Estimated 07 using different IPW weights across 500 simulated datasets (using
weighted non-logistic link function method and correct sensitivity)
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Eq. S4 and ignoring misclassification. The other methods estimate P(S = 1|D*, W) using Eq. 10.
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C Implementation

C.1 R package SAMBA

Accompanying this paper, we have developed an R package called SAMBA (sampling and mis-
classification bias adjustment) for implementing the proposed methods. Methods implemented
include estimation of ¢ and ¢4 (X ) with and without selection bias adjustment and estimation
of 0 using the methods in Section 3 and 5 in the main paper. We assume that IPW /calibration
weights w used for selection bias adjustment are estimated separately by the user, perhaps using
the methods developed in this paper. Current implementation assumes perfect specificity, and
future code developments will extend to the setting of imperfect specificity. We demonstrate
how we can use SAMBA to perform the proposed analyses through the following pseudo-code:

Downloading R package:

devtools::install_github("umich-cphds/SAMBA" ,build_vignettes = TRUE, build_opts = c("--
no-resave-data", "--no-manual"))
library (SAMBA)

Estimating ¢ and ¢ (X):

estimated_sensitivity = sensitivity(X = sensitivity model predictors,
Dstar = observed disease indicator,
r = marginal sampling ratio if desired,
prev = assumed relationship between disease and X)

Estimating 0:

### Approximation of D*|Z (Sections 3.1 [unweighted] and 5.1 [weighted])
approx = approxdist(Z = disease model predictors,

Dstar = observed disease indicator,

weights = IPW or calibration weights if desired,

c_marg = marginal sensitivity)

### Non-logistic link function method (Sections 3.2 [unweighted] and 5.2 [weighted])
nonlog = nonlogistic(Z, Dstar, weights,
c_X = patient-specific sensitivity estimates)

### Observed data likelihood maximization (Sections 3.3 [unweighted] and 5.3 [weighted])
loglik = obsloglik(Z, X, Dstar,

start = starting values for (theta, beta),
betalO_fixed = fixed betal if desired,
weights)

For more details about this package, we refer readers to the instructive vignette.

browseVignettes (‘SAMBA’)
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C.2 Automating methods for large-scale association studies

In the main paper, we focus on the setting with a single disease D of interest and a single predic-
tor set, Z. In modern EHR data analysis, we are often interested in studying many associations
at once. Two common study designs are genome-wide association studies (GWAS), where we
relate a single D to many different Z’s, and phenome-wide association studies (PheWAS), where
we relate many different diseases (many D’s) to a single Z. Increasingly, researchers are also
interested in studying associations across both the phenome and genome (many D’s and Z’s).

GWAS: For GWAS, we can adjust for phenotype misclassification and selection bias using
a single set of sampling weights and sensitivity estimates, since the disease outcome is the same
for each of the associations of interest. Given estimates of sensitivity and weights w, we can then
estimate 0z for each Z of interest using the methods discussed in this paper. We discuss three
general methods: (1) approximation of the D*|Z distribution, (2) regression modeling with a
non-logistic link function, and (3) joint estimation of sensitivity and disease model parameters.
Given the large numbers of associations of interest and the comparative slowness of estimation,
we do not recommend method (3) in the GWAS setting. The first two methods, however, can
be easily implemented and scalable to a large number of association tests.

We first consider the setting where we are only doing adjustment for misclassification and
not for selection bias. In this case, we are looking at the methods in Section 3. With sensitivity
€ or cyyue(X) estimated, both methods (1) and (2) are simple to implement. Method (1), in
particular, will be very fast to implement genome-wide, since it involves a simple transformation
of the uncorrected point estimates. Therefore, it does not require any models to be re-fit after
the uncorrected analysis is performed. The main limitation of method (1) is that it requires
strong assumptions about the sensitivity to hold. In particular, we require that ¢(Z) can be
reasonably approximated by constant ¢, which occurs if X is independent of Z given D. This
is a strong assumption, which may not always hold. When this assumption does hold, however,
this method will result in corrected and uncorrected point estimates that differ but p-values that
are the same. When the p-values are of sole interest, therefore, application of method (1) bias
correction ignoring selection bias will have no impact on p-values. Method (2) can be applied in
the more general setting where X1 is independent of Z given D. This allows adjustment factors
in the disease model to be related to sensitivity. Method (2) p-values and point estimates will
differ relative to uncorrected analysis. Compared to method (1), method (2) will be slower,
but it will be on the order of standard logistic regression. Therefore, method (2) should be
reasonably scalable to many association tests when sensitivity (and sampling weights if used)
are already estimated.

Now, we consider the setting where we are doing adjustment for selection bias or misclas-
sification and selection bias. Similar In this case, the uncorrected and corrected p-values will
be different, and the point estimates will also be impacted. Either method (1) or method (2)
can be implemented, and the comparison between methods is similar to the setting ignoring
selection bias adjustment.

PheWAS: For PheWAS, a separate set of sensitivities and sampling weights are estimated for
each association of interest. If we want to perform 2000 tests, for example, we will need to
estimate sensitivity and sampling weights (if we adjust for both misclassification and selection)
for 2000 different diseases.

Suppose first that sensitivities (¢ and cryue(X)) and weights w have already been estimated
for each association of interest in the Phe WAS. Methods (1) and (2) above can then be applied
across all associations as in the GWAS setting described previously. Method (3) may be more
feasible to implement for thousands of parallel tests in a PheWAS rather than millions in a
GWAS, but estimation will be slower than for the other two methods. Therefore, the results on
scalability described for GWAS above apply here.
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The primary challenge for applying the proposed methods for PheWAS is in estimating
sensitivity and sampling weights, which will differ for each association test. Sampling weights,
in particular, are challenging to specify even when we have a single association of interest, and
scaling this estimation phenome-wide would be very difficult. Currently, our proposed methods
will be very difficult to apply phenome-wide when both misclassification and selection are being
accounted for when sampling weights are not known. Instead, we will focus on the setting where
we assume selection is ignorable and want to estimate 6 and sensitivities as in Section 3.

Firstly, we can estimate sensitivity jointly with 6 through maximizing the observed data
log-likelihood as in method (3) above, and we will not need to separately estimate sensitivity
and can just implement method (3) for each association of interest. Two other strategies were

% and (b) estimation of ¢pye(X)

proposed for estimating sensitivity are as follows: (a) ¢ =
using Fq. 6 and given P(D = 1|X).

The primary challenge for automating (a) is that it requires us to known the population
marginal disease rate for all diseases of interest. These rates may be easy to obtain for many
common diseases (e.g. cancer statistics from SEER or recent statistics from NHANES), but it
may be difficult to obtain P(D = 1) for all diseases of interest in the phenome. Suppose we
focus our attention to diseases for which the population disease rates are known. In this case, ¢
can be easily estimated for all associations of interest and applied to estimate 67 using method
(1).

Additionally, suppose we have gold standard known 65 for some D and Z. We can use the
expression in Fq. 5 and an estimated association using our misclassified EHR-derived D* to
back out a reasonable value for ¢ for that disease as follows:

E(l - P(D* = 1)) ~ QZ,goldstandardP(D* = 1)

07 goldstandard = 07 | —= = c=
,goldstandar Z T — P(D* — 1) QZ,goldstandard _ Q%CP(D* — 0)

If we have such gold standard information (e.g. associations with gender) for many diseases,
we can use this information to estimate ¢ for many diseases of interest. One example source for
such gold standard associations might be the NHGRI GWAS Catalog, which compiles estimated
associations between diseases and genotype information across a broad spectrum of diseases. If
we can duplicate those associations for diseases of interest in our EHR dataset, we can use that
information to estimate ¢ for each disease.

Suppose instead that we want to estimate cyye(X) and apply method (2). Estimation of
Ctrue(X) requires P(D = 1|X), which can be very difficult to specify for a large number of
diseases. In our data analyses in MGI, for example, we obtained an estimate for cancer using
SEER statistics. This method, therefore, may be difficult to implement phenome-wide at this
time.
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