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Abstract
Health research using electronic health records (EHR) has gained popularity, but
misclassification of EHR-derived disease status and lack of representativeness of
the study sample can result in substantial bias in effect estimates and can impact
power and type I error. In this paper, we develop new strategies for handling dis-
ease statusmisclassification and selection bias in EHR-based association studies.
We first focus on each type of bias separately. For misclassification, we propose
three novel likelihood-based bias correction strategies. A distinguishing feature
of the EHR setting is that misclassification may be related to patient-varying fac-
tors, and the proposed methods leverage data in the EHR to estimate misclas-
sification rates without gold standard labels. For addressing selection bias, we
describe how calibration and inverse probability weighting methods from the
survey sampling literature can be extended and applied to the EHR setting.
Addressing misclassification and selection biases simultaneously is a more chal-
lenging problem than dealing with each on its own, and we propose several new
strategies. For all methods proposed, we derive valid standard error estimators
and provide software for implementation. We provide a new suite of statistical
estimation and inference strategies for addressingmisclassification and selection
bias simultaneously that is tailored to problems arising in EHR data analysis. We
apply these methods to data from The Michigan Genomics Initiative, a longitu-
dinal EHR-linked biorepository.
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1 INTRODUCTION

Health research using data from large observational
databases such as electronic health records (EHR) has
become increasingly popular (Beesley et al., 2019). Lon-
gitudinal, time-stamped EHR data allow researchers to
study a wide array of diseases across patients’ entire course
of medical care, and linkages to other data sources such

as census, death records, prescription claims, or genomic
data provide a data-rich environment for health research.
Additionally, EHR data are often collected without a spe-
cific hypothesis in mind, allowing many researchers to
use the same dataset to study many scientific questions
in a convenient and cost-effective way. In some applica-
tions, these results can then be more easily translated into
improvements in patient care through return of results
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and real-time risk prediction. This provides opportunities
for immediate, actionable translation of generated knowl-
edge. Unlike curated and well-designed population-based
studies, these databases are rarely originally intended for
research use, and patient recruitment processesmay not be
well understood. Without properly accounting for design
issues (e.g., who is in the sample, how data were mea-
sured), association analyses using these data are natu-
rally susceptible to bias (Beesley et al., 2020). With larger
datasets at researchers’ fingertips, the impact of bias rela-
tive to variance is becoming more pronounced. In partic-
ular, these biases do not disappear with increased sample
size, resulting in a large potential for “incorrect” inference
with inflated type 1 error and suboptimal coverage. This
phenomenon is known as the “big data paradox” (Meng
et al., 2018), and statistical strategies for correcting these
biases are needed. We focus on two common sources of
bias for EHR data analysis: (1) misclassification of derived
disease status (information bias) and (2) lack of representa-
tiveness (selection bias). We consider a common problem
where one is interested in relating a binary disease pheno-
type 𝐷 to predictors 𝑍.
EHR-derived disease variables (phenotypes) can bemis-

classified for many reasons. Researchers often define dis-
ease status based on diagnosis codes recorded in the EHR
for billing purposes, which provide a restricted snapshot of
a patient’s complete disease history. Even the most sophis-
ticated phenotyping methods are limited by the informa-
tion available in the EHR. Overreporting may be a con-
cern for self-reported symptoms such as pain or fatigue,
and preferential coding or upcodingmay occur in response
to insurance incentives (O’Malley et al., 2005). Underre-
porting may often occur, since secondary conditions may
be inconsistently recorded, past medical history may be
incomplete, and symptoms between visits may be missed.
For academic databases, patients may visit the hospital for
short-term treatment and return to local providers for con-
tinued care. Taken together, these factors can lead to a large
degree of misclassification relative to patients’ true disease
history, and we hypothesize that underreporting of disease
is the primary source of misclassification for many EHR
phenotypes as a result of limited duration and comprehen-
siveness of follow-up. Several researchers have explored
misclassification in EHR or claims data assuming con-
stant sensitivity and specificity (Sinnott et al., 2014; Lange
et al., 2015; Hubbard et al., 2015). However, a key feature
of misclassification for EHR-derived phenotypes is that we
expect more diagnoses to be missed for patients followed
for a shorter period of time and for fewer visits, somisclassi-
ficationmay depend on patients’ individual observation pat-
terns. This problem has been discussed in the literature on
EHR data analysis (e.g., Goldstein et al., 2016; Phelan et al.,
2017). Even so, statistical literature handling this covariate-

related misclassification is sparse. Neuhaus (1999) pre-
sented analytic expressions for bias under covariate-related
misclassification, andBeesley et al. (2020) provided a sensi-
tivity analysis approach tailored to the EHR setting. Ad hoc
strategies including adjusting for number of encounters or
clinic type have also been proposed (Goldstein et al., 2016;
Phelan et al., 2017). In general, however, existing work
considering covariate-related misclassification is limited,
necessitating new statistical methods that can address this
more complex misclassification mechanism.
EHR data are also susceptible to bias due to a lack of rep-

resentativenesswith respect to somepopulation of interest,
for example, theUS population. It can be difficult to under-
stand the mechanism driving patient interactions with the
healthcare system, which may be related to many patient
factors including overall health and access to care. When
ignored, selection can negatively impact association analy-
ses (Beesley et al., 2019). Patient selection can be addressed
using survey techniques if the selection strategy is known,
but this is unknown in the EHR setting. Researchers have
partially accounted for selection bias by adjusting for fac-
tors such as referral status and clinic type (Phelan et al.,
2017; Goldstein et al., 2016). Haneuse and Daniels (2016)
developed a framework formodeling selection inEHRdata
as a series of selection steps. This strategy can be very use-
ful for characterizing selection mechanisms generating an
analytical sample from a bigger EHR database. However,
these methods do not address the systematic differences
between people that are and are not included in the EHR
itself. To bridge this gap, strategies in the survey sampling
literature for dealing with unknown selection probabili-
ties (termed nonprobability sampling) such as calibration
weighting and inverse probability of selection weighting
can be applied (Baker et al., 2013; Bower et al., 2017). Lit-
tle work has been done to describe how such methods can
be implemented in the EHR setting.
In this paper, we develop new, practical strategies for

handling phenotype misclassification and selection bias
in EHR-based association studies. We first focus on each
type of bias separately. For misclassification, we propose
three novel likelihood-based bias correction and inference
strategies. These strategies allow us to estimate the rate of
misclassification incorporating covariate relationships and
require minimal external information and no gold stan-
dard labels. For addressing selection bias, we describe how
calibration and inverse probability of selection weighting
methods from the survey sampling literature can be mod-
ified and applied in the EHR setting. Addressing both
sources of bias at once is more challenging, and we pro-
pose several new estimation and inference strategies. For
all strategies proposed, we derive valid standard errors and
provide software for implementation (R package, SAMBA).
Through simulation, we demonstrate the ability of these
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methods to reduce or eliminate bias and correctly esti-
mate standard errors. We apply our proposed methods
to data from The Michigan Genomics Initiative (MGI),
a longitudinal EHR-linked biorepository within Michi-
gan Medicine.

2 MODEL, NOTATION, AND
CONCEPTUAL FRAMEWORK

Let binary 𝐷 represent a patient’s true disease status. Sup-
pose we are interested in the relationship between 𝐷 and
person-level information, 𝑍. 𝑍 may contain genetic infor-
mation or any other characteristics of interest. We call this
the disease mechanism.
We consider a large EHR database with the goal of mak-

ing inference about some defined target population. For
example, we might define our target population as the US
adult population between ages 50 and 65. This population
may differ from our source population (e.g., people in the
catchment area of the health system). We will assume that
inference about 𝐷|𝑍 is transportable between the source
and target populations (Dahabreh and Hernán, 2019). To
simplify our discussion but without further loss of gener-
ality, we will imagine our target population is the same
as the source population and will use these terms inter-
changeably. Let 𝑆 indicate whether a given person in the
source/target population is included in our data, where the
probability of inclusion may depend on disease status, 𝐷,
and additional covariates, 𝑊. Let 𝑊† denote variables in
𝑊 that are not adjusted for in the disease model (not in 𝑍).
Wewill use the terms “sampled” or “selected” interchange-
ably to refer to patients included in our EHR dataset. We
may often expect the sampled and nonsampled people to
have different rates of disease, and other factors such as
age, residence, access to care, and general health state may
also impact inclusion.We call thismechanism the selection
mechanism. In reality, inclusion in the analytical dataset
may be impacted bymultiple selection phases as illustrated
for MGI in Figure A.3. Here, we focus on the aggregate
mechanism governing inclusion. In practice, wewill rarely
have𝑊 fully measured, and we consider theoretical𝑊.
Instances of the disease are recorded in the EHR. Fac-

tors such as patient age, length of follow-up, and number
of hospital visits may impact whether we observe/record
the disease for a given person. Let 𝐷∗ be the observed dis-
ease status. 𝐷∗ is a potentially misclassified version of 𝐷
with corresponding sensitivity and specificity. We call the
mechanisms generating 𝐷∗ given 𝐷 the observation mech-
anisms. Let 𝑋 denote patient and provider-level predic-
tors related to sensitivity, and let 𝑋† denote the variables
in 𝑋 not included in 𝑍. Let 𝑌 denote factors related to
specificity. Later on, we will assume 𝐷∗ has perfect speci-

ficity (no overreporting) or that specificity is constant in 𝑍.
Figure 1 shows the conceptual model, which is expressed
mathematically in Equation (1).

Conceptual model (1)

Disease mechanism ∶ logit(𝑃(𝐷 = 1|𝑍; 𝜃)) = 𝜃0 + 𝜃𝑍𝑍

Selection mechanism ∶ 𝑃(𝑆 = 1|𝐷,𝑊; 𝜙)

Observation mechanisms ∶

logit(𝑃(𝐷∗ = 1|𝐷 = 1, 𝑆 = 1, 𝑋; 𝛽)) = 𝛽0 + 𝛽𝑋𝑋

logit(𝑃(𝐷∗ = 1|𝐷 = 0, 𝑆 = 1, 𝑌; 𝛾)) = 𝜓0 + 𝜓𝑌𝑌

In our statistical development, we will often refer to the
following functions of the observation and selectionmodel
parameters:

𝑐true(𝑋) = 𝑃(𝐷∗ = 1|𝐷 = 1, 𝑆 = 1, 𝑋; 𝛽) (2)

𝑐(𝑍) = 𝑃(𝐷∗ = 1|𝐷 = 1, 𝑆 = 1, 𝑍; 𝛽)

= ∫ 𝑐true(𝑋)𝑓(𝑋
†|𝑍,𝐷 = 1, 𝑆 = 1)𝑑𝑋†

𝑐 = 𝑃(𝐷∗ = 1|𝐷 = 1, 𝑆 = 1; 𝛽)

= ∫ 𝑐(𝑍)𝑓(𝑍|𝐷 = 1, 𝑆 = 1)𝑑𝑍

𝑟(𝑍) =
𝑃(𝑆 = 1|𝐷 = 1, 𝑍; 𝜙)

𝑃(𝑆 = 1|𝐷 = 0, 𝑍; 𝜙)

=
∫ 𝑃(𝑆 = 1|𝐷 = 1,𝑊; 𝜙)𝑓(𝑊†|𝑍,𝐷 = 1)𝑑𝑊†

∫ 𝑃(𝑆 = 1|𝐷 = 0,𝑊; 𝜙)𝑓(𝑊†|𝑍,𝐷 = 0)𝑑𝑊†

�̃� =
𝑃(𝑆 = 1|𝐷 = 1; 𝜙)

𝑃(𝑆 = 1|𝐷 = 0; 𝜙)

=
∫ 𝑃(𝑆 = 1|𝐷 = 1, 𝑍; 𝜙)𝑓(𝑍|𝐷 = 1)𝑑𝑍

∫ 𝑃(𝑆 = 1|𝐷 = 0, 𝑍; 𝜙)𝑓(𝑍|𝐷 = 0)𝑑𝑍

The first expression represents the generating sensitivity
mechanism. The subsequent expressions show the aver-
age sensitivity as a function of 𝑍 and the overall marginal
sensitivity, 𝑐, both of which are implicit functions of 𝛽.
The fourth expression represents the sampling ratio with
respect to 𝐷 as a function of 𝑍, and constant �̃� represents
the ratio of marginal sampling probabilities (here, called
the marginal sampling ratio). We can define specificities
𝑏(𝑍) = 𝑃(𝐷∗ = 0|𝐷 = 0, 𝑆 = 1, 𝑍; 𝜓) and 𝑏 similarly.
A common approach is to model 𝐷∗|𝑍, 𝑆 = 1 (analysis

model) and interpret results under the target model, 𝐷|𝑍.
To explore settings in which this approach produces bias,
we relate the parameters in the conceptual and analysis
models. In Supporting Section A.1, we prove the following
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F IGURE 1 Diagram of the assumed data structure*
*This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

key relationship:

𝑃(𝐷∗ = 1|𝑍, 𝑆 = 1)

=
1 − 𝑏(𝑍) + [𝑐(𝑍)𝑟(𝑍) − {1 − 𝑏(𝑍)}]𝑃(𝐷 = 1|𝑍)

1 + [𝑟(𝑍) − 1]𝑃(𝐷 = 1|𝑍) . (3)

Equation (3) is an extension of Neuhaus (1999) allowing
for covariate-related misclassification and incorporating
selection. The contribution of misclassification and selec-
tion reduces to 𝑐(𝑍), 𝑏(𝑍), and 𝑟(𝑍) in Equation (2), where
𝑐(𝑍) and 𝑏(𝑍) represent misclassification and 𝑟(𝑍) repre-
sents selection. Under distinctness of 𝛽, 𝜓, and 𝜙 in Equa-
tion (1), 𝑐(𝑍), 𝑏(𝑍), and 𝑟(𝑍) are independent functions
of model parameters given 𝑍. These three factors work
together to generate bias in 𝑃(𝐷∗ = 1|𝑍, 𝑆 = 1) relative to
𝑃(𝐷 = 1|𝑍).We explore this bias in Supporting SectionA.2.
Briefly, we will have bias in estimating 𝜃𝑍 anytimewe have
misclassification. We will also have bias if 𝑟(𝑍) ≠ �̃� (some-
times, if 𝑟(𝑍) ≠ 1). A special case is when 𝐷|𝑍 follows a
logistic regression as in Equation (1). In this case, we can
show that

log
[
𝑃(𝐷∗ = 1|𝑍, 𝑆 = 1) − {1 − 𝑏(𝑍)}

𝑐(𝑍) − 𝑃(𝐷∗ = 1|𝑍, 𝑆 = 1)

]

= 𝜃0 + 𝜃𝑍𝑍 + log[𝑟(𝑍)]. (4)

The left-hand side of the equation takes a generalized lin-
ear model (GLM) form with a different (nonlogistic) link
function, and the right-hand side contains an offset term
as a function of the sampling ratio. If we knew 𝑐(𝑍), 𝑏(𝑍),
and 𝑟(𝑍), we could estimate 𝜃 by fitting Equation (4) to the
observed data. For the remainder of this paper, we assume
that we have perfect specificity (𝑏(𝑍) = 1) or that 𝑏(𝑍) is a
known constant, 𝑏. In this setting, we provide strategies for
estimating 𝜃 when 𝑐(𝑍) and 𝑟(𝑍) are unknown, all guided
by Equation (4).

3 ACCOUNTING FOR PHENOTYPE
MISCLASSIFICATION ASSUMING
IGNORABLE SELECTION

Suppose that patient selection is ignorable for 𝜃. In other
words, assume that 𝑟(𝑍) = 1, which occurs when selection
does not depend on 𝐷 given 𝑍. This might happen if, for
example, our target population is our internal hospital pop-
ulation. In this section, we propose strategies for estimat-
ing 𝜃 in Equation (4) accounting for unknown 𝑐(𝑍).

3.1 Method 1: Approximating 𝑫∗|𝒁
distribution

Suppose 𝑐(𝑍) is independent of 𝑍, so 𝑐(𝑍) = 𝑐. This will be
the case if 𝑋 is independent of 𝑍 given 𝐷. This is a strong
assumption that may be unrealistic for some EHR data
analyses. For example, disease risk factorsmay be included
in𝑍 and related tomisclassification through enhanced dis-
ease surveillance. Suppose further that 𝑏(𝑍) = 𝑏 is known.
If we know prevalence 𝑃(𝐷 = 1), then we can estimate
sensitivity as 𝑐 = 𝑃(𝐷∗=1)−[1−𝑏]𝑃(𝐷=0)

𝑃(𝐷=1)
. If 𝑏 = 1, we can esti-

mate 𝑐 = 𝑃(𝐷∗=1)

𝑃(𝐷=1)
. In Supporting Section A.3, we use Taylor

series approximations to relate true 𝜃𝑍 to the uncorrected
parameter 𝜃𝑢𝑐

𝑍
as follows:

𝜃𝑍 ≈ 𝜃
𝑢𝑐
𝑍

[
{𝑐 − (1 − 𝑏)}{1 − 𝑃(𝐷∗ = 1)}𝑃(𝐷∗ = 1)

{𝑐 − 𝑃(𝐷∗ = 1)}{𝑃(𝐷∗ = 1) − (1 − 𝑏)}

]
. (5)

Replacing 𝜃𝑢𝑐
𝑍
with an estimate, this expression recovers

an existing estimator for binary 𝑍 in Duffy et al. (2004).
We show we can apply Equation (5) more generally. This
expression is convenient, because it can be applied when
only summary statistics for 𝜃𝑢𝑐

𝑍
are available.
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3.2 Method 2: Direct estimation of 𝜽
using a nonlogistic link function

Suppose instead that 𝑐(𝑍) is not constant in 𝑍, so mis-
classification depends either directly on 𝑍 or on predic-
tors related to 𝑍 given 𝐷. Suppose further that 𝑏(𝑍) = 𝑏

is known. We can estimate 𝜃 using log
[
𝑃(𝐷∗=1|𝑍)−{1−𝑏}
𝑐(𝑍)−𝑃(𝐷∗=1|𝑍)

]
=

𝜃0 + 𝜃𝑍𝑍, which is a generalized linear model with a non-
logistic link function. The question then becomes how to
estimate 𝑐(𝑍).
In Supporting Section A.4, we show that we can replace

𝑐(𝑍) with estimated 𝑐true(𝑋) if either (1) 𝑋† is indepen-
dent of 𝑍 given 𝐷 or (2) 𝑋† is independent of 𝐷 given
𝑍. The latter case may rarely hold, because 𝑋† may con-
tain information such as the length of follow-up related to
𝐷. However, the former assumption may often be reason-
able. As shown in Supporting Section A.5, we can estimate
𝑐true(𝑋) = expit[𝛽0 + 𝛽𝑋𝑋] using

log
[

𝑃(𝐷∗ = 1|𝑋) − {1 − 𝑏}𝑃(𝐷 = 0|𝑋)
𝑃(𝐷 = 1|𝑋) + {1 − 𝑏}𝑃(𝐷 = 0|𝑋) − 𝑃(𝐷∗ = 1|𝑋)

]

= 𝛽0 + 𝛽𝑋𝑋, (6)

assuming 𝑃(𝐷 = 1|𝑋) is known. In practice, we will
approximate 𝑃(𝐷 = 1|𝑋) as in Supporting Section A.5.
Importantly, Equation (6) may not always have a solution
for a given estimate of𝑃(𝐷 = 1|𝑋), andwe can instead esti-
mate 𝑐true(𝑋) = min

(
𝑃(𝐷∗=1|𝑋)−[1−𝑏]𝑃(𝐷=0|𝑋)

𝑃(𝐷=1|𝑋) , 1
)
.

3.3 Method 3: Joint estimation of 𝜷 and
𝜽 using observed data log-likelihood

Rather than estimating sensitivity and 𝜃 in a two-
step process, we can jointly estimate 𝜃 and sensitiv-
ity parameter 𝛽. For this estimation, we assume per-
fect specificity (𝑏 = 1). Let ⟂ represent conditional inde-
pendence. If either (1) 𝑋† ⟂ 𝑍|𝐷 or (2) 𝑋† ⟂ 𝐷|𝑍,
we can estimate (𝜃, 𝛽) using the following observed

data log-likelihood:
∑
𝑖
𝐷∗
𝑖
log

[
𝑒𝛽0+𝛽𝑋𝑋𝑖

1+𝑒𝛽0+𝛽𝑋𝑋𝑖

𝑒𝜃0+𝜃𝑍𝑍𝑖

1+𝑒𝜃0+𝜃𝑍𝑍𝑖

]
+ (1 −

𝐷∗
𝑖
)log

[
1 −

𝑒𝛽0+𝛽𝑋𝑋𝑖

1+𝑒𝛽0+𝛽𝑋𝑋𝑖

𝑒𝜃0+𝜃𝑍𝑍𝑖

1+𝑒𝜃0+𝜃𝑍𝑍𝑖

]
. This is a zero-inflated

logistic regression.We jointly estimate 𝜃 and𝛽 bymaximiz-
ing this log-likelihood through either a Newton–Raphson
algorithm or expectation–maximization algorithm. We
may run into numerical problems tied to weak identifia-
bility in practice, which can be reduced by fixing a model
parameter. We observed good performance when 𝛽0 was
fixed at logit(𝑐) for 𝑐 = 𝑃(𝐷∗=1)

𝑃(𝐷=1)
. Details are presented in

Supporting Section A.6.

4 ACCOUNTING FOR PATIENT
SELECTION UNDER PERFECT
CLASSIFICATION

Suppose instead that 𝐷 is perfectly observed (so 𝐷∗ = 𝐷)
and that we have some unobserved mechanism govern-
ing patient selection. We have that logit[𝑃(𝐷 = 1|𝑍, 𝑆 =
1)] = 𝜃0 + 𝜃𝑍𝑍 + log[𝑟(𝑍)], where 𝑟(𝑍) is defined in Equa-
tion (2). When 𝑟(𝑍) is known, we can estimate 𝜃 by fitting
this model. In the setting of case-control sampling, 𝑟(𝑍)
is a constant and does not impact estimation of 𝜃𝑍 . When
𝑟(𝑍) is a function of 𝑍, however, failure to account for 𝑟(𝑍)
can result in bias. Estimation of 𝑟(𝑍) is challenging, and
researchers have developed many strategies for estimating
𝜃 without requiring 𝑟(𝑍). Here, we describe two strategies
for obtainingweights for selection bias adjustment, andwe
extend these methods to incorporate selection composed
of many intermediate sampling stages. In practice, we will
not have𝑊 fully available, so our goal will be to reduce bias
due to selection.

4.1 Method 1: Inverse probability of
selection weighting using external data

When sampling probabilities are known or estimable,
inverse probability of selection weighting (IPW) can be
applied to correct for selection bias. In this approach, we
can estimate 𝜃 by fitting a weighted regression for 𝐷|𝑍,
where each patient’s data are weighted by 𝜔 ∝ 1

𝑃(𝑆=1|𝐷,𝑊)
.

Estimation of 𝑃(𝑆 = 1|𝐷,𝑊) for EHR data is generally
difficult. However, we can borrow results from the non-
probability sampling literature and leverage limited exter-
nal data from the population of interest to obtain rough
estimates.
Suppose we have individual-level data on 𝐷 and 𝑊

for an external sample of people from the target popu-
lation. Example data sources from the US adult popu-
lation include National Health and Nutrition Examina-
tion Survey (NHANES); the NCI Surveillance, Epidemi-
ology, and End Results (SEER) program; and the US
Census. We can estimate the selection probability for
our internal EHR dataset as follows. Let 𝑆ext indicate
inclusion in the external data, and 𝑆all indicate inclu-
sion in either the internal or external data. We sup-
pose 𝑃(𝑆ext = 1|𝐷,𝑊) for the external sample is known.
When only sampling weights are available, we can esti-
mate 𝑃(𝑆ext = 1|𝐷,𝑊) by fitting a regression model,
for example, beta regression, for the weights in the
external data (Elliot, 2009). Define 𝑝𝑗𝑘 = 𝑃(𝑆 = 𝑗, 𝑆ext =

𝑘|𝑊,𝐷, 𝑆all = 1). Following Elliot (2009) and Supporting
Section A.7,
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𝑃(𝑆 = 1|𝐷,𝑊) = 𝑃(𝑆ext = 1|𝐷,𝑊)
𝑝11 + 𝑝10
𝑝11 + 𝑝01

in large populations,

≈ 𝑃(𝑆ext = 1|𝐷,𝑊)
𝑃(𝑆 = 1|𝑊,𝐷, 𝑆all = 1)

1 − 𝑃(𝑆 = 1|𝑊,𝐷, 𝑆all = 1)
. (7)

We can estimate 𝑝11, 𝑝01, and 𝑝10 using a multinomial
regression for inclusion in the external data only, internal
data only, or both. In large populations where we have lit-
tle or no overlap between the internal and external datasets
(𝑝11 ≈ 0), we can apply the second expression.When over-
lap between the two datasets is unknown, we can apply
Equation (S4),which relies on estimated joint distributions
in the external and internal data.
We may also want to incorporate multiple selection

stages into the modeling of the aggregate selection mech-
anism 𝑃(𝑆 = 1|𝐷,𝑊), as in Haneuse and Daniels (2016).
In Supporting Section A.9, we rewrite 𝑃(𝑆 = 1|𝐷,𝑊) as a
product of selection stage models, and we propose a patch-
work strategy for accounting for each selection stage using
the available information, which may be individual-level
data or just summary statistics.
Equation (7) assumes 𝑃(𝑆ext = 1|𝐷,𝑊) is defined using

our target population. In Supporting Section A.7.4, we
explore the more general setting where the external data
population (population A) and our target population (pop-
ulation B) are different. We show that we can apply Equa-
tion (7) if the joint distributions of𝐷 and𝑊 are the same in
the two populations. Furthermore, if population B is a sub-
set of population A, we can estimate selection into popula-
tion B if we have additional information about population
differences as follows:

𝑃(𝑆 = 1|𝐷,𝑊, 𝑃𝐵 = 1) ∝

𝑃(𝑆ext = 1|𝐷,𝑊, 𝑃𝐴 = 1)

𝑃(𝑃𝐵 = 1|𝐷,𝑊, 𝑃𝐴 = 1)

𝑃(𝑆 = 1|𝑊,𝐷, 𝑆all = 1)

1 − 𝑃(𝑆 = 1|𝑊,𝐷, 𝑆all = 1)
,

where 𝑃(𝑃𝐵 = 1|𝐷,𝑊, 𝑃𝐴 = 1) is the proportion of people
in population A that are also in population B as a function
of 𝐷 and𝑊.

4.2 Method 2: Calibration weighting
using external summary statistics

Calibration weighting uses summary statistics from the
population to re-weight the internal data so that the
weighted distributions match the population. Several ver-
sions of calibration weighting exist. We will focus on two
types: (1) poststratification, where the joint distribution of

𝐷 and𝑊 is available, and (2) raking, where only marginal
distributions are available. Under poststratification,
we define weights 𝜔 ∝ 𝑓(𝑊,𝐷)

𝑓(𝑊,𝐷|𝑆=1) , which incorporates
summary information from the population along with
estimated relationships from the EHR data. Construction
of raking weights involves an iterative algorithm to pro-
duce weights 𝜔 that recover the marginal distributions in
the population.

5 JOINTLY ADDRESSING
PHENOTYPEMISCLASSIFICATION AND
PATIENT SELECTION

When 𝑐(𝑍) and selectionweights𝜔 are known, adjustment
for both sources of bias is a simple extension of Section 3
to incorporate weighting. However, sensitivity andweights
𝜔 will rarely be known, and estimation of these quantities
simultaneously is difficult. First, misclassification compli-
cates the estimation of selection weights, and Section 4
cannot be applied directly. Second, sensitivity estimates in
Section 3 often rely on differences between observed and
population disease rates, which will be impacted by selec-
tion. Each source of bias complicates estimation of terms
used to correct for the other source of bias, and additional
thought is needed. As shown in Figure 2, we propose a
series of intermediate steps throughwhich these quantities
can be estimated. Fixing these quantities, we then describe
how we can estimate 𝜃 following Equation (4).
Step 1: Estimating themarginal sampling ratio.We

first specify the marginal sampling ratio, �̃�. This can be
treated as a fixed hyperparameter. We can use the data,
known 𝑏, the population disease rate 𝑃(𝐷 = 1), and our
prior beliefs about 𝑐 to inform plausible �̃� as follows (Sup-
porting Section A.2):

�̃� =
𝑃(𝐷∗ = 1|𝑆 = 1) − [1 − 𝑏]

𝑐 − 𝑃(𝐷∗ = 1|𝑆 = 1)

1 − 𝑃(𝐷 = 1)

𝑃(𝐷 = 1)
. (8)

Step 2: Estimating marginal or patient-
specific sensitivities. Given �̃�, we estimate either
marginal or patient-varying sensitivity. Using 𝑃(𝐷 = 1|
𝑆 = 1) =

�̃�𝑃(𝐷=1)

�̃�𝑃(𝐷=1)+𝑃(𝐷=0)
, we can estimate 𝑐 using

𝑐 =
𝑃(𝐷∗=1|𝑆=1)−[1−𝑏]𝑃(𝐷=0|𝑆=1)

𝑃(𝐷=1|𝑆=1) , noting that this could
give 𝑐 > 1. We can estimate 𝑐t𝑟𝑢𝑒(𝑋) using the approximate
relationship:

log
[

𝑃(𝐷∗ = 1|𝑋, 𝑆 = 1) − {1 − 𝑏}𝑃(𝐷 = 0|𝑋, 𝑆 = 1)

𝑏𝑃(𝐷 = 1|𝑋, 𝑆 = 1) + {1 − 𝑏} − 𝑃(𝐷∗ = 1|𝑋, 𝑆 = 1)

]

≈ 𝛽0 + 𝛽𝑋𝑋, (9)



220 BEESLEY and MUKHERJEE

F IGURE 2 Flowchart of data analysis accounting for both misclassification and patient selection*
* The notation 𝑢 ⟂ 𝑣|𝑤 corresponds to conditional independence between random variables (or sets of random variables) 𝑢 and 𝑣 given 𝑤.
Labels along arrows correspond to external information used in the estimation. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version.

where 𝑃(𝐷 = 1|𝑋, 𝑆 = 1) is replaced with
�̃�𝑃(𝐷=1|𝑋)

�̃�𝑃(𝐷=1|𝑋)+𝑃(𝐷=0|𝑋) (Supporting Section A.5). Equa-
tion (9) may have no solution for 𝑃(𝐷 = 1|𝑋, 𝑆 = 1)

incompatible with the data, and we may directly estimate
𝑐true(𝑋) ≈ min

(
𝑃(𝐷∗=1|𝑋,𝑆=1)−[1−𝑏]𝑃(𝐷=0|𝑋,𝑆=1)

𝑃(𝐷=1|𝑋,𝑆=1) , 1
)
, where

𝑃(𝐷∗ = 1|𝑋, 𝑆 = 1) is estimated using the EHR data.
Step 3: Estimating sampling or calibrationweights.

Given 𝑐 or 𝑐true(𝑋), we can estimate weights𝜔 for selection
bias adjustment. Since 𝐷 is not available due to misclassi-
fication, we propose defining inverse probability weights
using 𝑃(𝑆 = 1|𝑊,𝐷∗), with𝑊 replacedwith available data
in practice. We have that

𝑃(𝑆 = 1|𝑊,𝐷∗) =
𝑓(𝐷∗|𝑆 = 1,𝑊)

𝑓(𝐷∗|𝑊)
𝑃(𝑆 = 1|𝑊). (10)

𝑃(𝐷∗ = 1|𝑆 = 1,𝑊) can be directly estimated using the
internal data, and we can estimate 𝑃(𝑆 = 1|𝑊) using
Equation (7) or Equation (S4). Combining sensitivity
𝑐 = 𝑐 or 𝑐true(𝑋) with estimated 𝑃(𝐷 = 1|𝑊) from the
external data, we approximate 𝑃(𝐷∗ = 1|𝑊) ≈ 𝑐𝑃(𝐷 =

1|𝑊) + [1 − 𝑏]𝑃(𝐷 = 0|𝑊). We can define poststratifica-
tion weights as 𝜔 ∝ 𝑓(𝐷∗,𝑊)

𝑓(𝐷∗,𝑊|𝑆=1) .
Step 4: Estimating 𝜃 given sampling/calibration

weights 𝜔 and sensitivity

5.1 Method 1: Approximation of 𝑫∗|𝑿
accounting for selection

Suppose we assume 𝑟(𝑍) = �̃�. This may be reasonable if
𝑊† ⟂ 𝑍|𝐷 and the covariates of interest in 𝑍 are not in𝑊.
Suppose further that 𝑋 ⟂ 𝑍|𝐷. Then, Equation (5) can be
used to correct for both sources of bias (Supporting Section
A.3). Intuitively, the impact of the selection enters that esti-
mator through the observed rate of disease in the sample.
In general, 𝑟(𝑍)may rarely be constant, and we have 𝜃𝑍 ≈
𝜃
𝜔,𝑢𝑐
𝑍

[
{𝑐−(1−𝑏)}{1−𝑝∗}𝑝∗

{𝑐−𝑝∗}{𝑝∗−(1−𝑏)}

]
, where 𝜃𝜔,𝑢𝑐

𝑍
is estimated from fit-

ting a model for 𝐷∗|𝑍 on the sampled patients and weight-
ing by𝜔, and𝑝∗ is the𝜔-weighted average of𝐷∗ in our sam-
ple (Supporting Section A.3).

5.2 Method 2: Nonlogistic link function
method with weighting

Suppose 𝑐(𝑍) is a function of 𝑍. We again remove the con-
tribution of 𝑟(𝑍) in Equation (4) by weighting estimation
by 𝜔. We estimate 𝜃 by fitting an 𝜔-weighted version of
the model log

[
𝑃(𝐷∗=1|𝑍)−{1−𝑏}
𝑐(𝑍)−𝑃(𝐷∗=1|𝑍)

]
= 𝜃0 + 𝜃𝑍𝑍 to the patients

in the sample. Assuming 𝑋† ⟂ 𝑍|𝐷 or 𝑋† ⟂ 𝐷|𝑍, we can
replace 𝑐(𝑍) with estimated 𝑐true(𝑋) from Step 2.
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5.3 Method 3: Joint estimation using
observed data log-likelihood incorporating
weights

When 𝑏 = 1, we can jointly estimate 𝜃 and 𝛽 account-
ing for selection bias by maximizing a 𝜔-weighted ver-
sion of the log-likelihood in Section 3.3 through aweighted
expectation-maximization algorithm. Details are available
in Supporting Section A.6.

6 STANDARD ERROR ESTIMATION
FOR BIAS-CORRECTED ESTIMATES

In Supporting SectionA.10, we detail how to estimate stan-
dard errors for each method assuming perfect specificity.
The imperfect specificity case is similar. Here, we summa-
rize that discussion. When we ignore selection bias, vari-
ance estimation is straightforward. For the method in Sec-
tion 3.1, we can estimate standard errors for �̂�𝑍 given 𝑐

as Var(�̂�𝑍) ≈ Var(�̂�𝑢𝑐
𝑍
)
[
𝑐{1−𝑃(𝐷∗=1)}

𝑐−𝑃(𝐷∗=1)

]2
. When we estimate

𝜃 as in Section 3.2, the corresponding information matrix
can be inverted to obtain standard errors. We can obtain a
covariance matrix for 𝜃 and 𝛽 from Section 3.3 by inverting
the expected observed data information matrix. We prove
that methods in Section 3 will result in larger standard
errors relative to uncorrected analysis on average (Support-
ing Section A.10).
Methods for selection bias adjustment in Section 4

involve fitting a weighted regression model. Correspond-
ing standard errors can be estimated using a Huber–White
sandwich estimator as implemented in the R package sur-
vey (Freedman, 2006). We obtain standard errors for meth-
ods in Sections 5.1 and 5.2 similarly. To estimate stan-
dard errors for the method in Section 5.3, we propose a
sandwich estimator based on weighting the observed data
score and information matrices as detailed in Supporting
Section A.6.
These standard errors are mainly estimated fixing sen-

sitivity and/or selection bias weights 𝜔. However, rigorous
standard errors should also incorporate uncertainty from
estimating these quantities. To account for this residual
uncertainty, we could apply bootstrap methods. We com-
pare the impact of ignoring this uncertainty in simula-
tions. We find that this does not impact variance estima-
tion too much, but there may be some underestimation of
variance when we ignore uncertainty in estimating selec-
tion weights.

7 SIMULATIONS

We present simulations for evaluating the proposed meth-
ods in terms of bias and standard error estimation. We
divide this simulation study into three parts. In the first
part, we focus on the setting with outcome misclassifica-
tion and ignorable patient selection. In the second part,
we focus on selection and assume we have no misclassi-
fication. After evaluating these two simpler cases, we then
explore the setting with both sources of bias. Unless oth-
erwise stated, all simulations assume perfect specificity
(𝑏 = 1).
In all settings, we generate 500 datasets with 5000mem-

bers and 𝑃(𝐷 = 1) ≈ 10%. In part 1, we impose outcome
misclassification under different covariate-related sensitiv-
ity mechanisms (𝑐 ≈ 40–50%) and different relationships
between 𝑋, 𝑍, and 𝐷. In part 2, we subsample about 50%
of patients under different sampling mechanisms. In part
3, we subsample patients and impose misclassification,
where 𝑋 is related to 𝑍 given 𝐷 (𝑐 ≈ 65%). We apply our
methods to correct bias in estimated 𝜃𝑍 . Details about data
generation and implementation can be found in Support-
ing Section B.1.

7.1 Simulation results

Figure 3 presents the biases in the estimated log-odds ratio
of 𝑍 across 500 simulated datasets for the first two scenar-
ios. Figure 4 presents the bias for the third scenario.
Misclassificationonly:Uncorrected analysis produces

bias in all settings considered, with relative biases reach-
ing 40% when 𝑋† and 𝑍 are related (given 𝐷). The method
in Section 3.1 performs well in settings where 𝑋 and 𝑍 are
independent (so 𝑐(𝑍) = 𝑐) but performspoorlywhen𝑋 and
𝑍 are related. The method in Section 3.2 performs well as
long as 𝑋† is not related to both 𝐷 and 𝑍. In this case,
we see some residual bias, which comes from the substi-
tution of 𝑐t𝑟𝑢𝑒(𝑋) for 𝑐(𝑍). Still, this bias may be substan-
tially lower than bias in uncorrected analysis. We would
expect this method to perform well in all settings if the
correct 𝑐(𝑍) were known. When 𝛽0 is fixed at a reason-
able value, the method in Section 3.3 performs well as long
as 𝑋† is not related to both 𝑍 and 𝐷. Even when theoreti-
cally justified, the observed data log-likelihood maximiza-
tion without fixed 𝛽0 struggles, particularly when 𝑋† is
related to 𝐷 given 𝑍, indicating difficulty in estimating 𝜃
and 𝛽 jointly without incorporating external information
(e.g., 𝑃(𝐷 = 1)).
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3.3
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Link with est. ctrue(X)

D*|Z approx
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Bias in estimated log OR of Z

X† independent of Z and D X† related to Z only

X† related to D only X† related to Z and D

4.1

4.1

4.2

4.2

4.2

Section

Raking on W, D

Poststratification on W, D

Poststratification on W

IPW on D, W (External Data)

IPW on D, W (True Weights)

Uncorrected

True

-0.05 0.00 0.05 0.10 0.15
Bias in estimated log OR of Z

D and W (W related to D and Z) D and W (W related to Z only)

W only (W related to D and Z) W only (W related to Z only)

(a) Part 1: MISCLASSIFICATION † (b) Part 2: SELECTION BIAS *

F IGURE 3 Bias in estimated log-odds ratio of 𝑍 across 500 simulations under selection bias (b) or phenotype misclassification (a). Bars
(points) represent the average (median) difference between estimates and the truth of 𝜃𝑍 = 0.5.
† The “𝐷∗|𝑍 approx.” method uses estimated 𝑐 assuming true 𝑃(𝐷 = 1) is known. “Link” represents the nonlogistic generalized linear model
fit using either true or estimated 𝑐t𝑟𝑢𝑒(𝑋) in place of 𝑐(𝑍). 𝑐t𝑟𝑢𝑒(𝑋) was estimated assuming 𝑃(𝐷 = 1|𝑋) was known. For the observed
log-likelihood method with fixed 𝛽0, 𝛽0 was set to estimated logit(𝑐). In all simulations, we assume 𝑏 = 1 is known.
* Labels correspond to variables included in the selection model and associations between variables. “True Weights” indicates weighting
using the true selection model. “External Data” indicates weights estimated using Equation (7). For all calibration weighting
(poststratification and raking),𝑊 was binned into intervals of roughly 0.5. This figure appears in color in the electronic version of this article,
and any mention of color refers to that version.

Selection only: Uncorrected analysis produces biases
reaching 25% except when 𝑊 is independent of 𝐷 and is
the only driver of selection. These biases can grow larger
with stronger covariate effects on selection. We compare
weighting strategies for correcting this bias. When the
IPW model is correctly structured, we can estimate 𝜃𝑍
with low bias. This is true even when the true selection
probabilities are estimated using external data as in Equa-
tion (7). Poststratification on 𝑊 and 𝐷 has good perfor-
mance in all settings. Poststratification on 𝑊 and rak-
ing performed similarly. These methods perform poorly
when selection depends on 𝐷, and we see residual bias
when selection depends on 𝑊 with 𝑊 related to 𝐷.
This is a result of binning continuous 𝑊 during weight
estimation.
Both selection and misclassification: Bias of uncor-

rected analysis ranges from about 15% to 50%. Methods
that only correct for misclassification can result in resid-
ual bias, sometimes even be larger than in uncorrected
analysis (e.g., 70%). When we also account for selection,

however, we see little bias for methods in Sections 5.2 and
5.3. The method in Section 5.1 performs poorly since 𝑋 is
related to 𝑍 given 𝐷 in this example.
Othermetrics for inference: Figure 5 provides empir-

ical and estimated variances. Estimated variances tend to
be similar to empirical variances. Ignoring uncertainty due
to estimation of selection weights seems to be a bigger
problem than ignoring uncertainty due to estimation of
sensitivity. Coverage rates of 95% confidence intervals tend
to be low (even 5%) for uncorrected analyses. In contrast,
coverages tend to be near nominal for methods that fully
correct bias. In Figure B.1, we show that misclassification
bias-adjusted p-values are similar to unadjusted p-values
when 𝑍 and𝑋 are independent (assuming ignorable selec-
tion). However, when𝑍 and𝑋 are associated, the corrected
and uncorrected p-values differ, and uncorrected type I
error can be highly inflated.
Sensitivity to 𝑃(𝐷 = 1|𝑋) and �̃�: In Web Appendices

B.3 and B.7, we explore the sensitivity of estimated 𝑐true(𝑋)
to the choice of 𝑃(𝐷 = 1|𝑋) and �̃�. Misspecification of
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 Adjustment

Misclassification 
 Adjustment Only

No Adjustment

3.1

3.2

3.3

5.1

5.1
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5.3
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Section

Poststratification

IPW

Poststratification

IPW
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Uncorrected
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Bias in estimated log OR of Z

D and W (W related to D and Z) D and W (W related to Z only)

W only (W related to D and Z) W only (W related to Z only)

F IGURE 4 (Part 3) Bias in estimated log-odds ratio of 𝑍 across 500 simulations under selection bias and phenotype misclassification.† *
Bars (points) represent the average (median) difference between estimates and the truth of 𝜃𝑍 = 0.5.
† The “𝐷∗|𝑍 approx.” method uses estimated 𝑐 assuming true 𝑃(𝐷 = 1) is known. “Link” represents the nonlogistic GLM fit using estimated
𝑐t𝑟𝑢𝑒(𝑋) in place of 𝑐(𝑍) assuming 𝑃(𝐷 = 1|𝑋) was known. For the observed log-likelihood method, 𝛽0 was set to estimated logit(𝑐). For all
methods, 𝑐 and 𝑐t𝑟𝑢𝑒(𝑋) were estimated assuming true �̃� was known and true 𝑏 = 1.
* Labels correspond to variables included in the selection model and associations between variables. IPW was implemented using the true
selection probabilities. We obtain similar results using estimated probabilities. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version.

𝑃(𝐷 = 1|𝑋) or �̃� can adversely impact sensitivity estima-
tion, but the impact on estimated 𝜃𝑍 tends to be small rel-
ative to bias from uncorrected analysis.
Imperfect specificity: In Figure B.8, we demonstrate

that incorrectly assuming perfect specificity can result
in residual bias, which can sometimes even be greater
than bias from uncorrected analysis. Our methods in Sec-
tions 3.1 and 3.2 correct this bias when 𝑏 is known and the
method’s assumptions about 𝑐(𝑍) hold. We might expect
the impact of ignoring overreporting to be a function of
both 𝑏 and 𝑐.

8 ILLUSTRATIVE EXAMPLE:
CORRECTING FOR IMPOSED
MISCLASSIFICATION INMICHIGAN
GENOMICS INITIATIVE

The MGI is an EHR-linked biorepository containing
> 40, 000 patients with International Classification of
Disease diagnosis information (Fritsche et al., 2018). We
define a binary cancer phenotype based on whether each
MGI patient ever received any cancer diagnosis code. We
view this phenotype as true 𝐷 and study the relationship



224 BEESLEY and MUKHERJEE

Points = Average estimated variance      Bars = Empirical variance

94 5 9448 9395 25 9559 9593 63 9466 9495 91 9476 93C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

0.000

0.005

0.010

0.015

0.020

True Uncorrected D*|Z approx Link with

est. ctrue(X)

Obs. log−lik,

fix β0

V
ar

ia
nc

e

D and W (W related to Z only) D and W (W related to D and Z)

W only (W related to Z only) W only (W related to D and Z)

Part 3: MISCLASSIFICATION AND SELECTION BIAS

Points = Average estimated variance      Bars = Empirical variance

96 35 97 92 9594 79 95 93 9295 95 94 94 9395 88 95 95 94C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

C
ov

er
ag

e
C

ov
er

ag
e

0.000

0.005

0.010

True Uncorrected IPW on D, W 
 (True Weights)

IPW on D, W 
 (External Data)

Poststratification 
 on W, D

V
ar

ia
nc

e

� D and W (W related to Z only) D and W (W related to D and Z)

W only (W related to Z only) W only (W related to D and Z)

Part 2: SELECTION BIAS

Points = Average estimated variance      Bars = Empirical variance

96 89 9695 9595 8 972 9894 87 9595 9595 13 853 95

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

egarevo
C

0.000

0.002

0.004

0.006

True Uncorrected D*|Z approx Link with

est. ctrue(X)

Obs. log-lik,

fix β0

V
ar

ia
nc

e

X† independent of Z and D X† related to Z only

X† related to D only X† related to Z and D

Part 1: MISCLASSIFICATION

F IGURE 5 Comparison of empirical and median-estimated variances for the log-odds ratio of 𝑍 across 500 simulations†

† The “𝐷∗|𝑍 approx.” method uses estimated 𝑐 assuming true 𝑃(𝐷 = 1) is known. “Link” represents the nonlogistic GLM fit using estimated
𝑐t𝑟𝑢𝑒(𝑋) in place of 𝑐(𝑍) and assuming 𝑃(𝐷 = 1|𝑋) was known. For the observed log-likelihood method, 𝛽0 was set to estimated logit(𝑐). In
Part 2, True Weights indicates weighting using the true selection model and “External Data” indicates weights estimated using Equation (7).
For poststratification,𝑊 was binned into intervals of roughly 0.5. Labels correspond to variables included in the selection model and
associations between variables. In Part 3, 𝑐 and 𝑐t𝑟𝑢𝑒(𝑋) were estimated assuming true �̃� was known. For Part 3, we show results for IPW
weighting using the true selection probabilities. In all simulations, we assume 𝑏 = 1 is known. This figure appears in color in the electronic
version of this article, and any mention of color refers to that version.
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F IGURE 6 Estimated MGI cancer and gender odds ratio after imposed misclassification and correction (reference category =male)*
*Solid lines indicate estimation using no bias correction (“uncorrected”) or using estimated sensitivity. Dashed lines indicate use of the true
sensitivity, 𝑐(𝑍). Methods from Sections 3.1–3.3 are applied with known 𝑏 = 1. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version.

between 𝐷 and gender (𝑍). We impose misclassification
(generate 𝐷∗) under different covariate-related sensitiv-
ities corresponding to different relationships between 𝑋
and 𝑍 (𝑐 ≈ 70%) assuming perfect specificity. In Figure 6,
we apply Section 3 to correct bias in the gender odds ratio.
In all settings, bias is evident in uncorrected analysis and
is strong when 𝑋 is related to gender. The method in
Section 3.1 performs poorly unless 𝑋 is independent of 𝑍.
When sensitivity depends on smoking (related to gender
and disease), assumptions for all methods are violated
and residual bias is seen. Sensitivity depending directly on
gender creates estimation difficulty and resulting bias. For
the method in Section 3.2, this bias goes away when 𝑐(𝑍)
is known.

9 DISCUSSION

Data analyses using EHR data are susceptible to bias,
which can negatively impact the accuracy and general-
izability of statistical inference. In this paper, we focus
on two common sources of bias: (1) misclassification of
derived disease variables and (2) lack of representative-
ness. To address these key problems, we propose a vari-
ety of bias-correction strategies. We derive valid stan-
dard errors and provide an R package, SAMBA. A key
advancement is the development of strategies to han-
dle covariate-related misclassification. Our methods lever-
age each patient’s follow-up history and external disease
information to estimate the rate of misclassification with-
out requiring gold standard disease status labels. We also
explore strategies for dealing with the harder problem of

selection bias. Correction for selection bias is extremely
difficult for EHR data, and we describe how we can apply
weighting methods in the survey sampling literature to
at least partially address selection. As in Haneuse and
Daniels (2016), our methods can accommodate multistage
selection often present for EHR data, but our methods fur-
ther bridge the gap between patients that are and are not
included in the EHR. A key limitation of these methods is
the need for high-quality external information, including
external summary statistics or individual-level data from
the population of interest.
Among the methods for handling misclassification, the

method in Section 5.2 is particularly attractive and easy
to implement. Estimating sensitivity under that method
requires some external summary information, but simu-
lations demonstrate good performance even with imper-
fect summary information and under some assumption
violations Supporting Section B.3 and Figure 3a). When
only disease prevalence is available, the method in Sec-
tion 5.3with a fixed sensitivitymodel intercept canperform
well, but it can be more sensitive to assumption violations,
so these assumptions must be carefully considered. Post-
stratification emerges as an appealing approach for han-
dling selection bias since it relies on summary statistics
from the population rather than individual-level data. We
recommend the combination of poststratification and the
method in Section 5.2 as a starting point for analysts inter-
ested in applying these methods.
Simulations assume perfect specificity, but Sections 3.1

and 3.2 can also be applied when specificity is a known
constant less than 1. Disease model estimates may be
sensitive to these specificity assumptions. In general,
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sensitivity estimation could be improved by incorporating
external validation data when available. Throughout, we
assume 𝐷∗ is binary, and we explore nonbinary pheno-
typing in Supporting Section A.11. We focus our attention
on a single disease 𝐷 and adjustment factors 𝑍, but these
methods could be applied to study many disease-covariate
combinations. Automation strategies are discussed in Sup-
porting Section C.2. Overall, this paper provides useful
strategies and software for handling outcome misclassifi-
cation and selection bias in EHR data analysis.
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