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Summary: Health research using electronic health records (EHR) has gained popularity, but misclassification

of EHR-derived disease status and lack of representativeness of the study sample can result in substantial bias

in effect estimates and can impact power and type I error. In this paper, we develop new strategies for handling

disease status misclassification and selection bias in EHR-based association studies. We first focus on each type

of bias separately. For misclassification, we propose three novel likelihood-based bias correction strategies. A

distinguishing feature of the EHR setting is that misclassification may be related to patient-varying factors, and

the proposed methods leverage data in the EHR to estimate misclassification rates without gold standard labels.

For addressing selection bias, we describe how calibration and inverse probability weighting methods from the

survey sampling literature can be extended and applied to the EHR setting.

Addressing misclassification and selection biases simultaneously is a more challenging problem than dealing

with each on its own, and we propose several new strategies. For all methods proposed, we derive valid standard

error estimators and provide software for implementation. We provide a new suite of statistical estimation and

inference strategies for addressing misclassification and selection bias simultaneously that is tailored to problems

arising in EHR data analysis. We apply these methods to data from The Michigan Genomics Initiative (MGI),

a longitudinal EHR-linked biorepository.
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1 Introduction

Health research using data from large observational databases such as electronic health

records (EHR) has become increasingly popular (Beesley et al., 2019). Longitudinal, time-

stamped EHR data allow researchers to study a wide array of diseases across patients’

entire course of medical care, and linkages to other data sources such as census, death

records, prescription claims, or genomic data provide a data-rich environment for health

research. Additionally, EHR data are often collected without a specific hypothesis in mind,

allowing many researchers to use the same dataset to study many scientific questions in

a convenient and cost-effective way. In some applications, these results can then be more

easily translated into improvements in patient care through return of results and real-

time risk prediction. This provides opportunities for immediate, actionable translation of

generated knowledge. Unlike curated and well-designed population-based studies, these

databases are rarely originally intended for research use, and patient recruitment processes

may not be well understood. Without properly accounting for design issues (e.g. who

is in the sample, how data were measured), association analyses using these data are

naturally susceptible to bias (Beesley et al., 2020). With larger datasets at researchers’

fingertips, the impact of bias relative to variance is becoming more pronounced. In

particular, these biases do not disappear with increased sample size, resulting in a large

potential for “incorrect” inference with inflated type 1 error and suboptimal coverage.

This phenomenon is known as the “big data paradox” (Meng et al., 2018), and statistical

strategies for correcting these biases are needed. We focus on two common sources of bias

for EHR data analysis: (1) misclassification of derived disease status (information bias)

and (2) lack of representativeness (selection bias). We consider a common problem where

one is interested in relating a binary disease phenotype D to predictors Z.

EHR-derived disease variables (phenotypes) can be misclassified for many reasons.

Researchers often define disease status based on diagnosis codes recorded in the EHR

for billing purposes, which provide a restricted snapshot of a patient’s complete disease
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history. Even the most sophisticated phenotyping methods are limited by the information

available in the EHR. Over-reporting may be a concern for self-reported symptoms such as

pain or fatigue, and preferential coding or up-coding may occur in response to insurance

incentives (O’Malley et al., 2005). Under-reporting may often occur, since secondary

conditions may be inconsistently recorded, past medical history may be incomplete, and

symptoms between visits may be missed. For academic databases, patients may visit the

hospital for short-term treatment and return to local providers for continued care. Taken

together, these factors can lead to a large degree of misclassification relative to patients’

true disease history, and we hypothesize that under-reporting of disease is the primary

source of misclassification for many EHR phenotypes as a result of limited duration

and comprehensiveness of follow-up. Several researchers have explored misclassification

in EHR or claims data assuming constant sensitivity and specificity (Sinnott et al., 2014;

Lange et al., 2015; Hubbard et al., 2015). However, a key feature of misclassification

for EHR-derived phenotypes is that we expect more diagnoses to be missed for patients

followed for a shorter period of time and for fewer visits, so misclassification may depend

on patients’ individual observation patterns. This problem has been discussed in the

literature on EHR data analysis (e.g. Goldstein et al., 2016; Phelan et al., 2017). Even so,

statistical literature handling this covariate-related misclassification is sparse. Neuhaus

(1999) presented analytic expressions for bias under covariate-related misclassification,

and Beesley et al. (2020) provided a sensitivity analysis approach tailored to the EHR

setting. Ad hoc strategies including adjusting for number of encounters or clinic type

have also been proposed (Goldstein et al., 2016; Phelan et al., 2017). In general, however,

existing work considering covariate-related misclassification is limited, necessitating new

statistical methods that can address this more complex misclassification mechanism.

EHR data are also susceptible to bias due to a lack of representativeness with respect

to some population of interest, e.g. the US population. It can be difficult to understand

the mechanism driving patient interactions with the health care system, which may be



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Selection bias and phenotype misclassification in electronic health records 3

related to many patient factors including overall health and access to care. When ig-

nored, selection can negatively impact association analyses (Beesley et al., 2019). Patient

selection can be addressed using survey techniques if the selection strategy is known, but

this is unknown in the EHR setting. Researchers have partially accounted for selection

bias by adjusting for factors such as referral status and clinic type (Phelan et al., 2017;

Goldstein et al., 2016). Haneuse and Daniels (2016) developed a framework for modeling

selection in EHR data as a series of selection steps. This strategy can be very useful for

characterizing selection mechanisms generating an analytical sample from a bigger EHR

database. However, these methods do not address the systematic differences between

people that are and are not included in the EHR itself. To bridge this gap, strategies in the

survey sampling literature for dealing with unknown selection probabilities (termed non-

probability sampling) such as calibration weighting and inverse probability of selection

weighting can be applied (Bower et al., 2017; Baker et al., 2013). Little work has been

done to describe how such methods can be implemented in the EHR setting.

In this paper, we develop new, practical strategies for handling phenotype misclas-

sification and selection bias in EHR-based association studies. We first focus on each

type of bias separately. For misclassification, we propose three novel likelihood-based

bias correction and inference strategies. These strategies allow us to estimate the rate

of misclassification incorporating covariate relationships and require minimal external

information and no gold standard labels. For addressing selection bias, we describe how

calibration and inverse probability of selection weighting methods from the survey sam-

pling literature can be modified and applied in the EHR setting. Addressing both sources

of bias at once is more challenging, and we propose several new estimation and infer-

ence strategies. For all strategies proposed, we derive valid standard errors and provide

software for implementation (R package, SAMBA). Through simulation, we demonstrate

the ability of these methods to reduce or eliminate bias and correctly estimate standard
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errors. We apply our proposed methods to data from The Michigan Genomics Initiative

(MGI), a longitudinal EHR-linked biorepository within Michigan Medicine.

2 Model, notation, and conceptual framework

Let binary D represent a patient’s true disease status. Suppose we are interested in

the relationship between D and person-level information, Z. Z may contain genetic

information or any other characteristics of interest. We call this the disease mechanism.

We consider a large EHR database with the goal of making inference about some

defined target population. For example, we might define our target population as the

US adult population between ages 50-65. This population may differ from our source

population (e.g. people in the catchment area of the health system). We will assume

that inference about D|Z is transportable between the source and target populations

(Dahabreh and Hernán, 2019). To simplify our discussion but without further loss of

generality, we will imagine our target population is the same as the source population

and will use these terms interchangeably. Let S indicate whether a given person in the

source/target population is included in our data, where the probability of inclusion may

depend on disease status, D, and additional covariates, W . Let W † denote variables in W

that are not adjusted for in the disease model (not in Z). We will use the terms “sampled”

or “selected” interchangeably to refer to patients included in our EHR dataset. We may

often expect the sampled and non-sampled people to have different rates of disease, and

other factors such as age, residence, access to care, and general health state may also

impact inclusion. We call this mechanism the selection mechanism. In reality, inclusion

in the analytical dataset may be impacted by multiple selection phases as illustrated for

MGI in Figure A.3. Here, we focus on the aggregate mechanism governing inclusion. In

practice, we will rarely have W fully measured, and we consider theoretical W .

Instances of the disease are recorded in the EHR. Factors such as patient age, length

of follow-up, and number of hospital visits may impact whether we observe/record the
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disease for a given person. Let D∗ be the observed disease status. D∗ is a potentially

misclassified version of D with corresponding sensitivity and specificity. We call the

mechanisms generating D∗ given D the observation mechanisms. Let X denote patient

and provider-level predictors related to sensitivity, and let X† denote the variables in X

not included in Z. Let Y denote factors related to specificity. Later on, we will assume

D∗ has perfect specificity (no over-reporting) or that specificity is constant in Z. Figure

1 shows the conceptual model, which is expressed mathematically in Eq. 1 .

[Figure 1 about here.]

Conceptual Model (Eq. 1 )

Disease Mechanism : logit(P (D = 1|Z; θ)) = θ0 + θZZ

Selection Mechanism : P (S = 1|D,W ;φ)

Observation Mechanisms : logit(P (D∗ = 1|D = 1, S = 1, X; β)) = β0 + βXX

logit(P (D∗ = 1|D = 0, S = 1, X; β)) = ψ0 + ψY Y

In our statistical development, we will often refer to the following functions of the

observation and selection model parameters

ctrue(X) = P (D∗ = 1|D = 1, S = 1, X; β) (Eq. 2 )

c(Z) = P (D∗ = 1|D = 1, S = 1, Z; β) =

∫
ctrue(X)f(X†|Z,D = 1, S = 1)dX†

c̃ = P (D∗ = 1|D = 1, S = 1; β) =

∫
c(Z)f(Z|D = 1, S = 1)dZ

r(Z) =
P (S = 1|D = 1, Z;φ)

P (S = 1|D = 0, Z;φ)
=

∫
P (S = 1|D = 1,W ;φ)f(W †|Z,D = 1)dW †

∫
P (S = 1|D = 0,W ;φ)f(W †|Z,D = 0)dW †

r̃ =
P (S = 1|D = 1;φ)

P (S = 1|D = 0;φ)
=

∫
P (S = 1|D = 1, Z;φ)f(Z|D = 1)dZ∫
P (S = 1|D = 0, Z;φ)f(Z|D = 0)dZ

The first expression represents the generating sensitivity mechanism. The subsequent

expressions show the average sensitivity as a function of Z and the overall marginal

sensitivity, c̃, both of which are implicit functions of β. The fourth expression represents
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the sampling ratio with respect to D as a function of Z, and constant r̃ represents the

ratio of marginal sampling probabilities (here, called the marginal sampling ratio). We

can define specificities b(Z) = P (D∗ = 0|D = 0, S = 1, Z;ψ) and b̃ similarly.

A common approach is to model D∗|Z, S = 1 (analysis model) and interpret results

under the target model, D|Z. To explore settings in which this approach produces bias,

we relate the parameters in the conceptual and analysis models. In Supporting Section

A.1, we prove the following key relationship:

P (D∗ = 1|Z, S = 1) =
1− b(Z) + [c(Z)r(Z)− {1− b(Z)}]P (D = 1|Z)

1 + [r(Z)− 1]P (D = 1|Z)
. (Eq. 3 )

Eq. 3 is an extension of Neuhaus (1999) allowing for covariate-related misclassification

and incorporating selection. The contribution of misclassification and selection reduces to

c(Z), b(Z), and r(Z) in Eq. 2 , where c(Z) and b(Z) represent misclassification and r(Z)

represents selection. Under distinctness of β, ψ, and φ in Eq. 1 , c(Z), b(Z), and r(Z) are

independent functions of model parameters given Z. These three factors work together

to generate bias in P (D∗ = 1|Z, S = 1) relative to P (D = 1|Z). We explore this bias in

Supporting Section A.2. Briefly, we will have bias in estimating θZ anytime we have

misclassification. We will also have bias if r(Z) 6= r̃ (sometimes, if r(Z) 6= 1). A special

case is when D|Z follows a logistic regression as in Eq. 1 . In this case, we can show that

log

[
P (D∗ = 1|Z, S = 1)− {1− b(Z)}

c(Z)− P (D∗ = 1|Z, S = 1)

]
= θ0 + θZZ + log [r(Z)] . (Eq. 4 )

The left-hand side of the equation takes a GLM form with a different (non-logistic) link

function, and the right-hand side contains an offset term as a function of the sampling

ratio. If we knew c(Z), b(Z), and r(Z), we could estimate θ by fitting Eq. 4 to the observed

data. For the remainder of this paper, we assume that we have perfect specificity

(b(Z) = 1) or that b(Z) is a known constant, b̃. In this setting, we provide strategies

for estimating θ when c(Z) and r(Z) are unknown, all guided by Eq. 4 .



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Selection bias and phenotype misclassification in electronic health records 7

3 Accounting for phenotype misclassification assuming ignorable selection

Suppose that patient selection is ignorable for θ. In other words, assume that r(Z) = 1,

which occurs when selection does not depend on D given Z. This might happen if, for

example, our target population is our internal hospital population. In this section, we

propose strategies for estimating θ in Eq. 4 accounting for unknown c(Z).

3.1 Method 1: approximating D∗|Z distribution

Suppose c(Z) is independent of Z, so c(Z) = c̃. This will be the case if X is independent

of Z given D. This is a strong assumption that may be unrealistic for some EHR data

analyses. For example, disease risk factors may be included in Z and related to misclassi-

fication through enhanced disease surveillance. Suppose further that b(Z) = b̃ is known. If

we know prevalence P (D = 1), then we can estimate sensitivity as c̃ = P (D∗=1)−[1−b̃]P (D=0)
P (D=1)

.

If b̃ = 1, we can estimate c̃ = P (D∗=1)
P (D=1)

. In Supporting Section A.3, we use Taylor series

approximations to relate true θZ to the uncorrected parameter θucZ as follows:

θZ ≈ θucZ

[
{c̃− (1− b̃)}{1− P (D∗ = 1)}P (D∗ = 1)

{c̃− P (D∗ = 1)}{P (D∗ = 1)− (1− b̃)}

]
. (Eq. 5 )

Replacing θucZ with an estimate, this expression recovers an existing estimator for binary

Z in Duffy et al. (2004). We show we can apply Eq. 5 more generally. This expression is

convenient, because it can be applied when only summary statistics for θucZ are available.

3.2 Method 2: direct estimation of θ using a non-logistic link function

Suppose instead that c(Z) is not constant in Z, so misclassification depends either directly

on Z or on predictors related to Z given D. Suppose further that b(Z) = b̃ is known. We

can estimate θ using log
[
P (D∗=1|Z)−{1−b̃}
c(Z)−P (D∗=1|Z)

]
= θ0 +θZZ, which is a generalized linear model

with a non-logistic link function. The question then becomes how to estimate c(Z).

In Supporting Section A.4, we show that we can replace c(Z) with estimated ctrue(X)

if either (1) X† is independent of Z given D or (2) X† is independent of D given Z. The

latter case may rarely hold, because X† may contain information such as the length of
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follow-up related to D. However, the former assumption may often be reasonable. As

shown in Supporting Section A.5, we can estimate ctrue(X) = expit [β0 + βXX] using

log

[
P (D∗ = 1|X)− {1− b̃}P (D = 0|X)

P (D = 1|X) + {1− b̃}P (D = 0|X)− P (D∗ = 1|X)

]
= β0 + βXX, (Eq. 6 )

assuming P (D = 1|X) is known. In practice, we will approximate P (D = 1|X) as in Sup-

porting Section A.5. Importantly, Eq. 6 may not always have a solution for a given esti-

mate of P (D = 1|X), and we can instead estimate ctrue(X) = min
(
P (D∗=1|X)−[1−b̃]P (D=0|X)

P (D=1|X)
, 1
)
.

3.3 Method 3: joint estimation of β and θ using observed data log-likelihood

Rather than estimating sensitivity and θ in a two-step process, we can jointly estimate

θ and sensitivity parameter β. For this estimation, we assume perfect specificity

(̃b = 1). Let ⊥ represent conditional independence. If either (1) X† ⊥ Z|D or (2)

X† ⊥ D|Z, we can estimate (θ, β) using the following observed data log-likelihood:

∑
iD
∗
i log

[
eβ0+βXXi

1+eβ0+βXXi
eθ0+θZZi

1+eθ0+θZZi

]
+ (1 −D∗i )log

[
1− eβ0+βXXi

1+eβ0+βXXi
eθ0+θZZi

1+eθ0+θZZi

]
. This is a zero-

inflated logistic regression. We jointly estimate θ and β by maximizing this log-likelihood

through either a Newton-Raphson algorithm or expectation-maximization algorithm. We

may run into numerical problems tied to weak identifiability in practice, which can be

reduced by fixing a model parameter. We observed good performance when β0 was fixed

at logit(c̃) for c̃ = P (D∗=1)
P (D=1)

. Details are presented in Supporting Section A.6.

4 Accounting for patient selection under perfect classification

Suppose instead that D is perfectly observed (so D∗ = D) and that we have some unob-

served mechanism governing patient selection. We have that logit [P (D = 1|Z, S = 1)] =

θ0+θZZ+log [r(Z)], where r(Z) is defined in Eq. 2 . When r(Z) is known, we can estimate

θ by fitting this model. In the setting of case-control sampling, r(Z) is a constant and does

not impact estimation of θZ . When r(Z) is a function of Z, however, failure to account for

r(Z) can result in bias. Estimation of r(Z) is challenging, and researchers have developed

many strategies for estimating θ without requiring r(Z). Here, we describe two strategies
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for obtaining weights for selection bias adjustment, and we extend these methods to

incorporate selection composed of many intermediate sampling stages. In practice, we

will not have W fully available, so our goal will be to reduce bias due to selection.

4.1 Method 1: inverse probability of selection weighting using external data

When sampling probabilities are known or estimable, inverse probability of selection

weighting (IPW) can be applied to correct for selection bias. In this approach, we can

estimate θ by fitting a weighted regression for D|Z, where each patient’s data is weighted

by ω ∝ 1
P (S=1|D,W )

. Estimation of P (S = 1|D,W ) for EHR data is generally difficult.

However, we can borrow results from the non-probability sampling literature and leverage

limited external data from the population of interest to obtain rough estimates.

Suppose we have individual-level data on D and W for an external sample of people

from the target population. Example data sources from the US adult population include

National Health and Nutrition Examination Survey (NHANES); the NCI Surveillance,

Epidemiology, and End Results (SEER) program; and the US Census. We can estimate

the selection probability for our internal EHR dataset as follows. Let Sext indicate

inclusion in the external data and Sall indicate inclusion in either the internal or external

data. We suppose P (Sext = 1|D,W ) for the external sample is known. When only

sampling weights are available, we can estimate P (Sext = 1|D,W ) by fitting a regression

model, e.g. beta regression, for the weights in the external data (Elliot, 2009). Define pjk =

P (S = j, Sext = k|W,D, Sall = 1). Following Elliot (2009) and Supporting Section A.7,

P (S = 1|D,W ) = P (Sext = 1|D,W )
p11 + p10

p11 + p01

in large populations, ≈ P (Sext = 1|D,W )
P (S = 1|W,D, Sall = 1)

1− P (S = 1|W,D, Sall = 1)
. (Eq. 7 )

We can estimate p11, p01, and p10 using a multinomial regression for inclusion in the

external data only, internal data only, or both. In large populations where we have little

or no overlap between the internal and external datasets (p11 ≈ 0), we can apply the
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second expression. When overlap between the two datasets is unknown, we can apply Eq.

S4 , which relies on estimated joint distributions in the external and internal data.

We may also want to incorporate multiple selection stages into the modeling of the

aggregate selection mechanism P (S = 1|D,W ), as in Haneuse and Daniels (2016). In

Supporting Section A.9, we re-write P (S = 1|D,W ) as a product of selection stage

models, and we propose a patchwork strategy for accounting for each selection stage using

the available information, which may be individual-level data or just summary statistics.

Eq. 7 assumes P (Sext = 1|D,W ) is defined using our target population. In Supporting

Section A.7.4, we explore the more general setting where the external data population

(population A) and our target population (population B) are different. We show that we

can apply Eq. 7 if the joint distributions of D and W are the same in the two populations.

Furthermore, if population B is a subset of population A, we can estimate selection into

population B if we have additional information about population differences as follows:

P (S = 1|D,W,PB = 1) ∝ P (Sext = 1|D,W,PA = 1)

P (PB = 1|D,W,PA = 1)

P (S = 1|W,D, Sall = 1)

1− P (S = 1|W,D, Sall = 1)
,

where P (PB = 1|D,W,PA = 1) is the proportion of people in population A that are also

in population B as a function of D and W .

4.2 Method 2: calibration weighting using external summary statistics

Calibration weighting uses summary statistics from the population to re-weight the

internal data so that the weighted distributions match the population. Several versions

of calibration weighting exist. We will focus on two types: (1) poststratification, where

the joint distribution of D and W is available, and (2) raking, where only marginal

distributions are available. Under poststratification, we define weights ω ∝ f(W,D)
f(W,D|S=1)

,

which incorporates summary information from the population along with estimated re-

lationships from the EHR data. Construction of raking weights involves an iterative

algorithm to produce weights ω that recover the marginal distributions in the population.
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5 Jointly addressing phenotype misclassification and patient selection

When c(Z) and selection weights ω are known, adjustment for both sources of bias is a

simple extension of Section 3 to incorporate weighting. However, sensitivity and weights

ω will rarely be known, and estimation of these quantities simultaneously is difficult.

Firstly, misclassification complicates the estimation of selection weights, and Section

4 cannot be applied directly. Secondly, sensitivity estimates in Section 3 often rely

on differences between observed and population disease rates, which will be impacted

by selection. Each source of bias complicates estimation of terms used to correct for the

other source of bias, and additional thought is needed. As shown in Figure 2, we propose

a series of intermediate steps through which these quantities can be estimated. Fixing

these quantities, we then describe how we can estimate θ following Eq. 4 .

[Figure 2 about here.]

Step 1: Estimating the marginal sampling ratio

We first specify the marginal sampling ratio, r̃. This can be treated as a fixed hyperpa-

rameter. We can use the data, known b̃, the population disease rate P (D = 1), and our

prior beliefs about c̃ to inform plausible r̃ as follows (Supporting Section A.8):

r̃ =
P (D∗ = 1|S = 1)− [1− b̃]
c̃− P (D∗ = 1|S = 1)

1− P (D = 1)

P (D = 1)
. (Eq. 8 )

Step 2: Estimating marginal or patient-specific sensitivities

Given r̃, we estimate either marginal or patient-varying sensitivity. Using P (D = 1|S =

1) = r̃P (D=1)
r̃P (D=1)+P (D=0)

, we can estimate c̃ using c̃ = P (D∗=1|S=1)−[1−b̃]P (D=0|S=1)
P (D=1|S=1)

, noting that

this could give c̃ > 1. We can estimate ctrue(X) using the approximate relationship:

log

[
P (D∗ = 1|X,S = 1)− {1− b̃}P (D = 0|X,S = 1)

b̃P (D = 1|X,S = 1) + {1− b̃} − P (D∗ = 1|X,S = 1)

]
≈ β0 + βXX, (Eq. 9 )

where P (D = 1|X,S = 1) is replaced with r̃P (D=1|X)
r̃P (D=1|X)+P (D=0|X)

(Supporting Section

A.5). Eq. 9 may have no solution for P (D = 1|X,S = 1) incompatible with the data,
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and we may directly estimate ctrue(X) ≈ min
(
P (D∗=1|X,S=1)−[1−b̃]P (D=0|X,S=1)

P (D=1|X,S=1)
, 1
)

, where

P (D∗ = 1|X,S = 1) is estimated using the EHR data.

Step 3: Estimating sampling or calibration weights

Given c̃ or ctrue(X), we can estimate weights ω for selection bias adjustment. Since D

is not available due to misclassification, we propose defining inverse probability weights

using P (S = 1|W,D∗), with W replaced with available data in practice. We have that

P (S = 1|W,D∗) =
f(D∗|S = 1,W )

f(D∗|W )
P (S = 1|W ). (Eq. 10 )

P (D∗ = 1|S = 1,W ) can be directly estimated using the internal data, and we can

estimate P (S = 1|W ) using Eq. 7 or Eq. S4 . Combining sensitivity c = c̃ or ctrue(X) with

estimated P (D = 1|W ) from the external data, we approximate P (D∗ = 1|W ) ≈ cP (D =

1|W ) + [1− b̃]P (D = 0|W ). We can define poststratification weights as ω ∝ f(D∗,W )
f(D∗,W |S=1)

.

Step 4: Estimating θ given sampling/calibration weights ω and sensitivity

5.1 Method 1: approximation of D∗|X accounting for selection

Suppose we assume r(Z) = r̃. This may be reasonable if W † ⊥ Z|D and the covariates of

interest in Z are not in W . Suppose further that X ⊥ Z|D. Then, Eq. 5 can be used to

correct for both sources of bias (Supporting Section A.3). Intuitively, the impact of

the selection enters that estimator through the observed rate of disease in the sample. In

general, r(Z) may rarely be constant, and we have θZ ≈ θω,ucZ

[
{c̃−(1−b̃)}{1−p∗}p∗
{c̃−p∗}{p∗−(1−b̃)}

]
, where

θω,ucZ is estimated from fitting a model for D∗|Z on the sampled patients and weighting by

ω, and p∗ is the ω−weighted average of D∗ in our sample (Supporting Section A.3).

5.2 Method 2: non-logistic link function method with weighting

Suppose c(Z) is a function of Z. We again remove the contribution of r(Z) in Eq. 4 by

weighting estimation by ω. We estimate θ by fitting an ω-weighted version of the model

log
[
P (D∗=1|Z)−{1−b̃}
c(Z)−P (D∗=1|Z)

]
= θ0 + θZZ to the patients in the sample. Assuming X† ⊥ Z|D or

X† ⊥ D|Z, we can replace c(Z) with estimated ctrue(X) from Step 2.
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5.3 Method 3: joint estimation using observed data log-likelihood incorporating weights

When b̃ = 1, we can jointly estimate θ and β accounting for selection bias by maximizing a

ω−weighted version of the log-likelihood in Section 3.3 through a weighted expectation-

maximization algorithm. Details are available in Supporting Section A.6.

6 Standard error estimation for bias-corrected estimates

In Supporting Section A.10, we detail how to estimate standard errors for each method

assuming perfect specificity. The imperfect specificity case is similar. Here, we summarize

that discussion. When we ignore selection bias, variance estimation is straightforward.

For the method in Section 3.1, we can estimate standard errors for θ̂Z given c̃ as

Var(θ̂Z) ≈ Var(θ̂ucZ )
[
c̃{1−P (D∗=1)}
c̃−P (D∗=1)

]2

. When we estimate θ as in Section 3.2, the cor-

responding information matrix can be inverted to obtain standard errors. We can obtain

a covariance matrix for θ and β from Section 3.3 by inverting the expected observed data

information matrix. We prove that methods in Section 3 will result in larger standard

errors relative to uncorrected analysis on average (Supporting Section A.10).

Methods for selection bias adjustment in Section 4 involve fitting a weighted regression

model. Corresponding standard errors can be estimated using a Huber-White sandwich

estimator as implemented in the R package survey (Freedman, 2006). We obtain standard

errors for methods in Sections 5.1 and 5.2 similarly. To estimate standard errors for

the method in Section 5.3, we propose a sandwich estimator based on weighting the

observed data score and information matrices as detailed in Supporting Section A.6.

These standard errors are mainly estimated fixing sensitivity and/or selection bias

weights ω. However, rigorous standard errors should also incorporate uncertainty from

estimating these quantities. To account for this residual uncertainty, we could apply

bootstrap methods. We compare the impact of ignoring this uncertainty in simulations.

We find that this does not impact variance estimation too much, but there may be some

underestimation of variance when we ignore uncertainty in estimating selection weights.
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7 Simulations

We present simulations for evaluating the proposed methods in terms of bias and standard

error estimation. We divide this simulation study into three parts. In the first part, we

focus on the setting with outcome misclassification and ignorable patient selection. In

the second part, we focus on selection and assume we have no misclassification. After

evaluating these two simpler cases, we then explore the setting with both sources of bias.

Unless otherwise stated, all simulations assume perfect specificity (̃b = 1).

In all settings, we generate 500 datasets with 5000 members and P (D = 1) ≈ 10%. In

part 1, we impose outcome misclassification under different covariate-related sensitivity

mechanisms (c̃ ≈ 40-50%) and different relationships between X, Z, and D. In part 2,

we sub-sample about 50% of patients under different sampling mechanisms. In part 3,

we sub-sample patients and impose misclassification, where X is related to Z given D

(c̃ ≈ 65%). We apply our methods to correct bias in estimated θZ . Details about data

generation and implementation can be found in Supporting Section B.1.

7.1 Simulation results

Figure 3 presents the biases in the estimated log-odds ratio of Z across 500 simulated

datasets for the first two scenarios. Figure 4 presents the bias for the third scenario.

Misclassification Only: Uncorrected analysis produces bias in all settings considered,

with relative biases reaching 40% when X† and Z are related (given D). The method in

Section 3.1 performs well in settings where X and Z are independent (so c(Z) = c̃) but

performs poorly when X and Z are related. The method in Section 3.2 performs well as

long as X† is not related to both D and Z. In this case, we see some residual bias, which

comes from the substitution of ctrue(X) for c(Z). Still, this bias may be substantially

lower than bias in uncorrected analysis. We would expect this method to perform well

in all settings if the correct c(Z) were known. When β0 is fixed at a reasonable value,

the method in Section 3.3 performs well as long as X† is not related to both Z and D.
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Even when theoretically justified, the observed data log-likelihood maximization without

fixed β0 struggles, particularly when X† is related to D given Z, indicating difficulty in

estimating θ and β jointly without incorporating external information (e.g. P (D = 1)).

Selection Only: Uncorrected analysis produces biases reaching 25% except when W is

independent of D and is the only driver of selection. These biases can grow larger with

stronger covariate effects on selection. We compare weighting strategies for correcting

this bias. When the IPW model is correctly structured, we can estimate θZ with low

bias. This is true even when the true selection probabilities are estimated using external

data as in Eq. 7 . Poststratification on W and D has good performance in all settings.

Poststratification on W and raking performed similarly. These methods perform poorly

when selection depends on D, and we see residual bias when selection depends on W

with W related to D. This is a result of binning continuous W during weight estimation.

Both Selection and Misclassification: Bias of uncorrected analysis ranges from about

15% to 50%. Methods that only correct for misclassification can result in residual bias,

sometimes even be larger than in uncorrected analysis (e.g. 70%). When we also account

for selection, however, we see little bias for methods in Sections 5.2 and 5.3. The

method in Section 5.1 performs poorly since X is related to Z given D in this example.

Other Metrics for Inference: Figure 5 provides empirical and estimated variances.

Estimated variances tend to be similar to empirical variances. Ignoring uncertainty due

to estimation of selection weights seems to be a bigger problem than ignoring uncertainty

due to estimation of sensitivity. Coverage rates of 95% confidence intervals tend to be

low (even 5%) for uncorrected analyses. In contrast, coverages tend to be near nominal

for methods that fully correct bias. In Figure B.1, we show that misclassification bias-

adjusted p-values are similar to unadjusted p-values when Z and X are independent

(assuming ignorable selection). However, when Z and X are associated, the corrected

and uncorrected p-values differ, and uncorrected type I error can be highly inflated.

Sensitivity to P (D = 1|X) and r̃: In Web Appendices B.3 and B.7, we explore
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the sensitivity of estimated ctrue(X) to the choice of P (D = 1|X) and r̃. Misspecification

of P (D = 1|X) or r̃ can adversely impact sensitivity estimation, but the impact on

estimated θZ tends to be small relative to bias from uncorrected analysis.

Imperfect specificity: In Figure B.8, we demonstrate that incorrectly assuming per-

fect specificity can result in residual bias, which can sometimes even be greater than bias

from uncorrected analysis. Our methods in Sections 3.1 and 3.2 correct this bias when

b̃ is known and the method’s assumptions about c(Z) hold. We might expect the impact

of ignoring over-reporting to be a function of both b̃ and c̃.

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

8 Illustrative example: correcting for imposed misclassification in MGI

The Michigan Genomics Initiative (MGI) is an EHR-linked biorepository containing

> 40, 000 patients with International Classification of Disease diagnosis information

(Fritsche et al., 2018). We define a binary cancer phenotype based on whether each

MGI patient ever received any cancer diagnosis code. We view this phenotype as true D

and study the relationship between D and gender (Z). We impose misclassification

(generate D∗) under different covariate-related sensitivities corresponding to different

relationships between X and Z (c̃ ≈ 70%) assuming perfect specificity. In Figure 6, we

apply Section 3 to correct bias in the gender odds ratio. In all settings, bias is evident in

uncorrected analysis and is strong when X is related to gender. The method in Section

3.1 performs poorly unless X is independent of Z. When sensitivity depends on smoking

(related to gender and disease), assumptions for all methods are violated and residual

bias is seen. Sensitivity depending directly on gender creates estimation difficulty and

resulting bias. For the method in Section 3.2, this bias goes away when c(Z) is known.
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[Figure 6 about here.]

9 Discussion

Data analyses using electronic health records (EHR) data are susceptible to bias, which

can negatively impact the accuracy and generalizability of statistical inference. In this

paper, we focus on two common sources of bias: (1) misclassification of derived disease

variables and (2) lack of representativeness. To address these key problems, we propose

a variety of bias-correction strategies. We derive valid standard errors and provide an

R package, SAMBA. A key advancement is the development of strategies to handle

covariate-related misclassification. Our methods leverage each patient’s follow-up history

and external disease information to estimate the rate of misclassification without requiring

gold standard disease status labels. We also explore strategies for dealing with the harder

problem of selection bias. Correction for selection bias is extremely difficult for EHR data,

and we describe how we can apply weighting methods in the survey sampling literature

to at least partially address selection. As in Haneuse and Daniels (2016), our methods

can accommodate multi-stage selection often present for EHR data, but our methods

further bridge the gap between patients that are and are not included in the EHR. A key

limitation of these methods is the need for high-quality external information, including

external summary statistics or individual-level data from the population of interest.

Among the methods for handling misclassification, the method in Section 5.2 is

particularly attractive and easy to implement. Estimating sensitivity under that method

requires some external summary information, but simulations demonstrate good perfor-

mance even with imperfect summary information and under some assumption violations

(Supporting Section B.3 and Figure 3a). When only disease prevalence is available,

the method in Section 5.3 with fixed sensitivity model intercept can perform well, but

it can be more sensitive to assumption violations, so these assumptions must be carefully

considered. Poststratification emerges as an appealing approach for handling selection

bias since it relies on summary statistics from the population rather than individual-level
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data. We recommend the combination of poststratification and the method in Section

5.2 as a starting point for analysts interested in applying these methods.

Simulations assume perfect specificity, but Sections 3.1 and 3.2 can also be applied

when specificity is a known constant less than 1. Disease model estimates may be sensitive

to these specificity assumptions. In general, sensitivity estimation could be improved

by incorporating external validation data when available. Throughout, we assume D∗

is binary, and we explore non-binary phenotyping in Supporting Section A.11. We

focus our attention on a single disease D and adjustment factors Z, but these methods

could be applied to study many disease-covariate combinations. Automation strategies are

discussed in Supporting Section C.2. Overall, this paper provides useful strategies and

software for handling outcome misclassification and selection bias in EHR data analysis.
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Figure 1: Diagram of the assumed data structure*

Person in 
Target 

Population

Has or had disease, D=1

Never had disease, D=0

Not Selected, S=0

Selected, S=1

Not Selected, S=0

Selected, S=1
Disease Mechanism

Selection Mechanism

Observed Disease, D*=1

No Observed Disease, D*=0

Observation Mechanism

No Observed Disease, D*=0

Z

X
W

W

Observed Disease, D*=1
Y

*This figure appears in color in the electronic version of this article, and any mention of color refers to that version.



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

22 Biometrics, October 2019

Figure 2: Flowchart of data analysis accounting for both misclassification and patient
selection*

Fix marginal sampling ratio  "̃

P(D=1)

Estimate marginal sensitivity #̃ Estimate sensitivity #!"#$(%)

Estimate IPW/calibration weights '

P(D=1|X)

External data or 
summary statistics

Estimate disease model parameters

METHOD Approx. D*|Z Non-Logistic Link Method Observed Data Log-Likelihood 

SECTIONS 3.1 and 5.1 3.2 and 5.2 3.3 and 5.3

SPECIFICITY Known constant () Known constant () Perfect (() = 1)

ASSUME % ⊥ - | / %% ⊥ - | / or   %% ⊥ / | -
(neither if # - known) %% ⊥ - | / or   %% ⊥ / | -

(skip step if "̃ = 1) 

- - or - -

* The notation u ⊥ v|w corresponds to conditional independence between random variables (or sets of random variables)
u and v given w. Labels along arrows correspond to external information used in the estimation. This figure appears in
color in the electronic version of this article, and any mention of color refers to that version.
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Figure 4: (Part 3) Bias in estimated log-odds ratio of Z across 500 simulations under
selection bias and phenotype misclassification.† ** Bars (points) represent the average
(median) difference between estimates and the truth of θZ = 0.5.
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† The “D∗|Z approx.” method uses estimated c̃ assuming true P (D = 1) is known. “Link” represents the non-logistic GLM
fit using estimated ctrue(X) in place of c(Z) assuming P (D = 1|X) was known. For the observed log-likelihood method, β0
was set to estimated logit(c̃). For all methods, c̃ and ctrue(X) were estimated assuming true r̃ was known and true b̃ = 1.
** Labels correspond to variables included in the selection model and associations between variables. IPW was implemented
using the true selection probabilities. We obtain similar results using estimated probabilities. This figure appears in color
in the electronic version of this article, and any mention of color refers to that version.
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Figure 5: Comparison of empirical and median estimated variances for the log-odds ratio
of Z across 500 simulations†
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Part 3: MISCLASSIFICATION AND SELECTION BIAS

† The “D∗|Z approx.” method uses estimated c̃ assuming true P (D = 1) is known. “Link” represents the non-logistic
GLM fit using estimated ctrue(X) in place of c(Z) and assuming P (D = 1|X) was known. For the observed log-likelihood
method, β0 was set to estimated logit(c̃). In Part 2, True Weights indicates weighting using the true selection model and
“External Data” indicates weights estimated using Eq. 7 . For poststratification, W was binned into intervals of roughly
0.5. Labels correspond to variables included in the selection model and associations between variables. In Part 3, c̃ and
ctrue(X) were estimated assuming true r̃ was known. For Part 3, we show results for IPW weighting using the true selection

probabilities. In all simulations, we assume b̃ = 1 is known. This figure appears in color in the electronic version of this
article, and any mention of color refers to that version.
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Figure 6: Estimated MGI cancer and gender odds ratio after imposed misclassification
and correction (reference category = male)*
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*Solid lines indicate estimation using no bias correction (“uncorrected”) or using estimated sensitivity. Dashed lines indicate

use of the true sensitivity, c(Z). Methods from Sections 3.1-3.3 are applied with known b̃ = 1. This figure appears in
color in the electronic version of this article, and any mention of color refers to that version.


