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Abstract 

 

Objective: Several studies of nurse staffing and patient outcomes found a curvilinear or U-shaped 

relationship, with benefits from additional nurse staffing diminishing or reversing at high staffing levels. 

This study examined potential diminishing returns to nurse staffing and the existence of a “tipping point”, 

or the level of staffing after which higher nurse staffing no longer improves and may worsen readmissions. 

Data Sources/ Study Setting:  The READI study database of over 130,000 adult (18+) inpatient discharges 

from 62 medical, surgical, and medical-surgical (non-critical care) units from 31 US hospitals during 

10/2014-3/2017. 

Study Design:  Observational cross-sectional study using a fully non-parametric random forest machine 

learning method. Primary exposure was nurse hours per patient day (HPPD) broken down by registered 

nurses (non-overtime and overtime) and non-licensed nursing personnel. The outcome was 30-day all-

cause readmission. Partial dependence plots were used to visualize the pattern of predicted patient 

readmission risk along a range of unit staffing levels, holding all other patient characteristics and hospital 

and unit structural variables constant. 

Data Collection/Extraction methods: Secondary data analysis. Missing values were imputed using the 

missing forest algorithm in R.  

Principal Findings: Partial dependence plots were U-shaped showing the readmission risk first declining 

and then rising with additional staffing. The tipping points were at 6.95 and 0.21 HPPD for registered nurse 

staffing (non-overtime and overtime) and 2.91 HPPD of non-licensed nursing personnel. The U-shaped 

association was consistent with diminishing returns to nurse staffing. 
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Conclusions: this observational study showed that incremental gains in readmission reduction from 

additional nurse staffing diminish and could reverse at high staffing levels. If confirmed in future causal 

analyses across multiple outcomes, accompanying investments in infrastructure and human resources 

may be needed to maximize nursing performance outcomes at higher levels of nurse staffing.  

Keywords 

Readmissions, Machine Learning, Nursing, Unit Staffing, Diminishing Returns  

 

What is known on this topic: 

• Several studies have reported positive associations between hospital nurse staffing and 

patient outcomes that taper off or reverse at high levels of nurse staffing. 

• Few explanations for these findings and no theoretical framework have yet been offered. 

• No studies have examined the association of hospital nurse staffing with hospital 

readmissions. 

What this study adds: 

• The study demonstrates a novel application of machine learning methods for uncovering a 

non-linear association where traditional parametric regression may not be as effective. 

• The study finds tapering off and reversal of the association of nurse staffing with 

readmissions. 

• The study’s findings are consistent with diminishing returns on readmissions from additional 

nurse staffing. 
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INTRODUCTION 

When the United States (US) Center for Medicare and Medicaid Services implemented 

the Hospital Readmission Reduction Program (HRRP) in 2012, US hospitals intensified efforts to 

reduce readmissions. A small number of analyses have pointed to the potential benefits of 

monitoring and correcting low nurse staffing levels to reduce readmissions [1-3] and avoid 

HRRP penalties,[4] adding to a broadly accepted body of evidence that higher nurse staffing 

levels are associated with improved quality and safety outcomes (mortality, failure to rescue, 

and other patient outcomes [5-12]) and patient satisfaction with hospital nursing care.[12]  

Yet, depending on the skill mix of nursing personnel and the existing level of nurse 

staffing in an organization, increasing the amount of nursing hours assigned to patient care may 

not always be uniformly beneficial. In a recent study from the United Kingdom, a uniform dose-

response reduction in mortality on patient wards was associated with higher professional nurse 

staffing, but a U-shaped relationship with nursing assistant staffing—at low nursing assistant 

staffing levels, mortality decreased with additional nursing assistant staffing, but at high staffing 

levels, additional nursing assistant staffing was associated with higher mortality.[7] This was not 

the first time a U-shaped pattern was reported – nearly two decades ago, researchers reported 

higher rates of medication errors as registered nurse staffing increased past a certain level [13] 

and in a subsequent multihospital study, a robust and consistent tapering-off pattern of 

diminishing returns to increased nurse staffing was found across multiple outcome measures 

(mortality, hospital-acquired infections, pressure ulcers).[14] Two systematic reviews and 

meta-analyses noted a ‘curvilinear’ relationship with benefits of increased registered nurse 

staffing tapering off and even reversing at higher staffing levels in the US [9] and internationally 
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[15]. While no such evidence has ever been reported for readmissions, a curvilinear pattern 

was found for nurse staffing and patient satisfaction with hospital nursing care, and specifically 

with nurse communication, discharge information, and care transitions, in a large study of US 

hospitals.[12]  Most recently, Needleman and Shekelle [16] proposed that the tapering-off 

effect may be a natural consequence of “diffusion of effort or responsibility” that may occur at 

high nurse staffing levels, and conjectured that this phenomenon may occur across many types 

of patient outcomes.  

No studies to date have examined the underlying empirical patterns behind the 

observed associations between nurse staffing and readmissions across a range of staffing levels. 

Therefore, the objective of this study was to examine the pattern of the association between 

nurse staffing and hospital readmissions, specifically examining the possibility that additional 

nurse staffing has diminishing returns, with the existence of a “tipping point” after which 

adding more nurse staffing no longer improves (and may worsen) readmissions. Evidence of a 

non-linear association between nurse staffing and readmissions could inform future causal 

studies of the relationship between staffing and readmission, toward the ultimate goal of novel 

practice and policy recommendations for maximizing the value-added contribution of nursing 

to patient and cost outcomes and hospital performance.  

 

THEORETICAL FRAMEWORK 

Most investigations of the relationship between nurse staffing and patient outcomes are 

grounded in Donabedian’s structure-process-outcomes model.[17] The model views patient 

outcomes as the result of many organizational structural factors catalyzed during the process of 
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care delivery. Donabedian defines organizational structure as “the settings in which care is 

provided and the instrumentalities of which care delivery is a product”. Nurse staffing is but 

one of many structural factors that jointly comprise organizational structure; others include the 

availability and qualifications of other clinical staff, adequacy of facilities and equipment, and 

the structure and operationalization of programs that support and direct the provision of 

care.[17] An extension [18] of Donabedian’s model also identifies patient characteristics 

(specifically those directly contributing to the likelihood of an outcome, such as clinical risk 

factors and sociodemographic characteristics) as an additional input into the care delivery 

process. 

In the field of economics, the theory of production [19] also views care delivery as a 

production process that utilizes healthcare resources as inputs to produce patient outcomes. 

Economic production theory categorizes structural inputs into two broad types: factors of 

production (“the who”) and technology (“the how”). Factors of production are the inputs that 

an organization employs to produce an output, and they are further categorized into labor and 

capital inputs. The labor input category concerns with the quantity (e.g., number of working 

hours, number of full-time equivalents) and the quality (e.g., education, experience, expertise) 

of the human resources employed by the organization (nurses, physicians, etc). The capital 

input category refers to the hospital’s built environment and equipment, administrative and 

other support systems, type and organization of the electronic health records (EHR), and other 

non-labor resources than enable employees to deliver care. Technology encompasses all 

organizational rules and norms prescribing how the labor and capital inputs ought to interact 

during the care delivery process; it refers to the established care delivery components within 
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the organization that form the organizational standard of care (such as protocols, programs, 

practice guidelines). All structural factors (labor and capital inputs, technology) are part of a 

joint production process. As such, the incremental productivity of any single factor is 

determined by the quantity of all other inputs and the technology used in the production 

process. As such, the contribution of the nursing input to outcomes is not static, but rather it 

can be enhanced by increasing the availability of other types of labor, capital and technology 

relevant to the delivery of nursing care.  

 Guided by these parallel theoretical frameworks, we conceptualized a patient’s 

likelihood of a readmission as an outcome of the process of care delivery that uses an 

organization’s labor and capital resources and the care delivery technology established in the 

organization. Doing so allowed us to view the relationship between readmissions and nurse 

staffing as a partial derivative, or partial dependence, of readmissions on nurse staffing 

specifically, while holding all other structural inputs (other types of labor, capital, and 

technology) constant as observed in the data.  

Table 1 parallels the constructs and definitions of Donabedian’s structure-process-

outcome model, as expanded by Mitchell et al. (1998),[18] and the economic theory of 

production,[19] and shows the types of variables that we used as empirical measures for each 

construct.    
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METHODS 

Approach 

To examine the relationship between nurse staffing and readmissions, this secondary 

analysis applied a machine learning (ML) approach [20] to a large multi-hospital data set of 

adult inpatient discharges. ML methods “learn” data patterns from the data itself, without 

imposing restrictions on the functional form of the relationship among variables. Therefore, ML 

methods are capable of exposing the true data pattern behind the association of nurse staffing 

and readmissions, be it linear, curvilinear, a U-shape, or virtually any other potentially unknown 

pattern.  

A unique feature of ML is that, being purely atheoretical and non-parametric, the 

association between the dependent variable (readmission) and an explanatory variable (e.g. 

staffing) is revealed as a Partial Dependence Plot (PDP). [20, 21]  A PDP shows how the 

predicted probability of readmission varies along the observed range of nurse staffing in the 

sample, while holding all other variables constant as observed. In constructing a PDP, neither 

the direction nor the magnitude of the association between readmissions and staffing 

(traditionally measured by a regression coefficient) is derived as a parameter; instead the local 

marginal effect (the derivative of readmission likelihood with respect to staffing) is represented 

by the slope of the PDP at each staffing level and can vary in sign and magnitude along the 

range of observed staffing values.  

A limitation of all current ML methods is the inability to tackle unobserved and 

unmeasured variables and potential reverse causality. For example, a hospital’s decisions on 

level of or budgeted nurse staffing are likely linked to the patient case-mix (hospitals treating 
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more complex patients tend to have higher nurse staffing levels), which could create a positive 

pattern of association between staffing and readmissions in the absence of a causal pathway. In 

an attempt to partially mitigate endogeneity, we used a unique proprietary data set collected 

by a team of economists and clinicians to examine the impact of nursing care on readmissions. 

As described in the Data section below, the database includes all relevant structural input 

variables available in the EHR; a comprehensive set of technology variables capturing 

organizational practices relating to discharge, and an extensive set of patient characteristics. 

Nevertheless, our results should not be interpreted as causal, which is one of the overt 

limitations of our approach. 

Data 

The READI (Readiness Evaluation And Discharge Interventions) study [NCT01873118; 20] 

was a multi-hospital cluster-randomized clinical trial, approved by [Blinded for Review] 

Institutional Review Board to test the impact of unit-based implementation of a discharge 

readiness assessment intervention on readmission and emergency department use. The study 

team recruited hospitals through a call for interest to Magnet-designated organizations 

coordinated by the American Nurse Credentialing Center of the American Nurses Association. 

The sample included nearly 145,000 adult (18+) inpatients discharged to home from 66 general 

medical, surgical, or medical-surgical units. Thirty-one US and 2 Saudi Arabia Magnet hospitals 

participated in the study between October 2014 and March 2017. Each hospital contributed 2 

units that were randomly assigned to intervention or usual care control conditions. Data 

collection followed Donabedian’s structure-process-outcomes model [17] and the economic 

theory of production.[19] 



Nurse Staffing Machine Learning 
10 

 
The intervention involved augmenting the existing discharge standard of care protocol 

with a formalized discharge readiness assessment to inform patient preparation for discharge. 

The study was conducted in four phases over 19-months including a baseline phase followed by 

three intervention phases, each testing a different version of the discharge readiness 

assessment protocol. The intervention had high fidelity with more than 90% of nurses trained 

and more than 70% of patients assessed per study protocol on intervention units. Despite some 

evidence of potential effectiveness in units with high baseline readmission rates, the 

intervention was overall not effective in changing readmissions. We treated the READI 

intervention as a unit-specific discharge process variable in the study along with other variables 

in the “technology” category.  

Sample 

We used 137,778 adult (18+) inpatients discharged from 62 units in 31 U.S. hospitals in 

the READI study. Following the scientific standards for ML methods, [20] we split the sample 

into a 70% learning sample of 96,444 observations and a 30% testing sample of 41,334 

observations.  

Study variables and measures 

 The outcome was 30-day all-cause same-hospital readmission, measured as a 

dichotomous variable (1=patient had at least one readmission within 30 days post-discharge; 

0=no readmissions). The primary exposure was unit nurse staffing, measured in hours per 

patient day (HPPD) with three continuous range variables: direct-care registered nurse non-

overtime (RN non-OT HPPD), RN overtime (RN-OT HPPD), and unlicensed nursing personnel 

(Non-RN HPPD). Nurse staffing was reported monthly by each study unit for a total of 1,178 
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unit-month observations (62 units x 19 months), and linked to patients by the discharge month. 

We included three READI intervention features: a dichotomous variable for the study units’ 

assignments (1, if randomized to intervention condition; 0, if randomized to usual standard of 

care control condition), a dichotomous variable for the study patients’ discharge protocol (1 if 

discharged per study protocol on an intervention unit; 0 if discharged not per study protocol or 

if discharged from a control unit); and a categorical variable for the study month at discharge (1 

through 19). Structural input variables, technology, and patient characteristics are included in 

Table 1.  

Statistical analyses 

Model selection and performance: Using the learning sample and starting with the full 

set of structural inputs and patient variables available in the READI data set, we performed a 

random forest recursive feature elimination process using the caret package V6.0-84 [22] with 

10-fold cross-validation, 500 trees, and a minimum node size of 6 observations. We chose a 

random forest model as the best tool for learning about the relationships between the 

outcome and individual variables, given its robust classification power and easily interpretable 

learning mechanism.[23-25] A random forest is a set of decision trees that each use 

explanatory variables  as logical “if/then” splits leading down the paths, or ‘branches,’ ending 

either in a predicted readmission or in no predicted readmission. Randomly reshuffling the 

values of each of the explanatory variables one at a time while holding all other variables 

constant at the values observed for each patient in the sample, the algorithm sorts through a 

large number of different combinations of the variables and selects a model with the highest 

predictive performance. We measured predictive performance by two statistics: the random-
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chance-adjusted proportion of correctly predicted outcomes, or Cohen’s Kappa, and the area 

under the curve (AUC). Cohen’s Kappa (κ) varies between 0 and 1 and has a similar 

interpretation to the traditional R-squared of the regression.[29] We also evaluated the 

importance of the three nurse staffing variables relative to other explanatory variables in our 

model. We measured a variable’s importance by the size of reduction in the model’s Cohen’s 

Kappa (Δκ) when the variable’s values were reshuffled at random, with larger Δκ’s indicating 

more important variables. For our final model, we reported the Δκ and AUC in both the learning 

and the testing samples. All other results were presented for the testing sample only (results in 

the learning sample were similar, see the sensitivity analysis section).   

Sample descriptive characteristics: Once the variables selected into the model were 

determined, we calculated sample descriptive statistics using counts and sample proportions 

for all categorical variables, means and interquartile ranges (IQRs) for continuous unit-level and 

hospital-level variables, and means and standard deviations for continuous patient-level 

variables.  

Partial dependence plots: We built partial dependence plots (PDPs) for the three nurse 

staffing variables as predictors of readmission in the learning sample, using a 100-point evenly 

spaced grid from the minimum value through the observed range of each variable. We then 

calculated 95% confidence bounds using the standard errors of the point predictions obtained 

after 100 bootstrap replications for each point. 

Missing data:  There were no missing values in the outcome variable. The nurse staffing 

variables were not reported by two units during the first study month, for a total of 236 patient 

observations (0.17%). Among the unit and hospital variables, missing data included: unit case 
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mix index (12,508, 9.08% of patient observations), unit RN experience (10,180, 7.39% of 

observations), and unit nurse certification (6,848, 4.97% of patient observations).These missing 

values were imputed using the missing forest algorithm in the R statistical computing 

environment.[22-24] Among the patient characteristics, several categorical variables had values 

coded as “unknown” in the hospitals’ EHR (see Table 2); the unknown category was preserved 

in the analyses. No continuous patient variables had missing values.  

RESULTS 

Model selection and performance: From the full set of 141 variables in the READI data, 

ML selected a subset of 60, including the three nurse staffing variables (Supplemental File: 

Figure A). The predictive accuracy of the final model was κ=0.24 and AUC=0.99 in the learning 

sample, and κ=0.13, AUC=0.71 in the testing sample. (Table 2)  

In variable importance analysis, patient characteristics as a group were most important 

in predicting readmissions (joint Δκ=0.23). The three nurse staffing variables as a group (joint 

Δκ=0.04) were more important for predicting readmissions than other unit-specific structure 

variables, but less important than hospital characteristics (joint Δκ=0.14). Individually, the nurse 

staffing variables ranked 15th (RN OT HPPD), 17th (RN Non-OT HPPD), and 19th (Non-RN HPPD) 

among the 60 variables in the model, and 1st, 2nd, and 7th among the 32 labor, capital, and 

technology variables. Among the three READI study design features, unit assignment 

(intervention, control) and patient treatment status (per protocol, usual care) contributed very 

minimally to readmissions. (Supplemental File: Figure A) 

Sample descriptive characteristics: The readmission rate was 12.2%. Patient 

characteristics of the sample are presented in Table 3; there were no significant differences 
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between the learning and testing samples. The 62 study units were staffed with 10.3 hours of 

nursing care per day (HPPD) including 6.77 RN Non-OT HPPD, 0.20 RN OT HPPD, and 3.35 Non-

RN HPPD. The proportion of BSN-prepared nurses was 68% and the average nurse experience 

on the unit was 6 years. (Table 4).  

Partial Dependence Plots: The PDPs for nurse staffing variables (RN non-OT HPPD, RN 

OT HPPD, non-RN HPPD) revealed a common quasi-parabolic data pattern with readmission 

likelihood first falling as staffing increased from the lowest staffing levels, reaching a minimum 

point, and then increasing as staffing levels increased. (Figure 1). The tipping points were 

observed at 6.95 HPPD of RN non-OT staffing, 0.21 HPPD of RN OT staffing, and 2.91 HPPD Non-

RN staffing. 

In sensitivity analyses, the quasi-parabolic patterns were also evident: 1) in the testing 

data sample, supporting the robustness of the model in out-of-sample performance 

(Supplemental File: Figure B); 2) using restricted models that eliminated various features, 

reducing concerns about overfitting (Supplemental File: Figure C); 3) in a subsample of patients 

discharged from control units, eliminating potential confounding from the intervention 

(Supplemental File: Figure D); and 4) after case-wise deletion, instead of imputation of missing 

data prior to estimation (Supplemental File: Figure E). 

 

DISCUSSION 

In our sample of medical, surgical, and medical-surgical units in 31 US Magnet hospitals, 

we found that hospital readmissions are related to nurse staffing via a robust U-shaped data 

pattern consistent with a tipping point past which additional staffing was associated with 
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increasing readmission rates. Adding to several prior studies reporting diminishing returns to 

nurse staffing,[7, 9, 12-15] our findings suggest that when it comes to optimizing delivery of 

care for maximum outcomes, “more is better” approach may not be a universally applicable 

principle to guide organizations in workforce planning.  

From the lens of the economic theory of production, the observed U-shaped 

relationship between staffing and readmissions can be explained by the law of diminishing 

returns.[19, 26] It states that the production of additional output will decrease as more of a 

single factor of production (e.g., nursing labor) is incrementally added while the amounts of all 

other factors (other types of labor, capital) and technology stay the same. The law of 

diminishing returns is a direct derivative from the economic theory of production: because the 

contribution of any one input, such as labor, depends on the amounts of the other inputs and 

technology, adding more labor alone, without simultaneously increasing the levels of the other 

inputs or improving technology, will eventually diminish the productivity (or returns) of labor. 

For example, as more auto workers are hired by an automobile manufacturer, without also 

modifying the production floor for safety, installing additional equipment, and hiring more 

training and management personnel, the productivity of the expanding workforce will 

eventually decline.  

Applied to nursing, the law of diminishing returns predicts that increasing a nursing 

unit’s staff will lead to initial performance gains. Eventually, however, economic theory predicts 

that without additional investments in all relevant structural factors that enable the delivery of 

high-quality care by nurses, adding more nursing hours alone will first reduce, then eliminate, 

and may eventually even reverse the initial productivity gains. One explanation could be what 
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Needleman and Shekelle called ‘the diffusion of effort and responsibility’[16]—simply 

increasing the number of direct care nurses may lead to missed, duplicative or low-value 

nursing care that fails to improve and may even worsen outcomes.[27, 28] Specific to 

readmissions, diffusion of effort and responsibility may manifest itself as poor nurse-patient 

communication during discharge planning, coordination, and teaching[12] thus inhibiting a 

successful patient transition from hospital to home and increasing readmissions.[29] This 

conceptual framework and our results align with the previous studies showing tapering off and 

a U-shaped relationship between nurse staffing and adverse patient outcomes.[7, 12-15] 

The downward-trending part of the U-shape is consistent with a large body of staffing 

literature reporting lower rates of readmission and other adverse outcomes with increasing RN 

staffing.[1-11] Higher nurse staffing and lower patient-nurse ratios can afford more direct 

nursing care time for assessment of patients’ readiness for discharge, discharge teaching, and 

discharge coordination, thus reducing risk of readmission.[29] Higher nurse staffing can also 

contribute to reducing readmissions indirectly, by affording more time for professional 

development and unit-based nursing governance, which can improve nurse job satisfaction and 

reduce burnout and turnover.[30, 31] For units with nurse staffing levels below their tipping 

point, retention and recruitment of a larger unit nurse workforce can be foundational to 

reducing readmissions.  

It is important, however, not to wrongfully infer that the observed tipping point is the 

optimal staffing point for benchmarking unit staffing levels; nor does our study imply that 

relatively well-staffed units, those on the upward sloping part of the U-shaped pattern, should 

be cutting back on nurse staffing. Firstly, our observational study design limits causal 
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interpretation of our findings. More importantly, even if our findings truly reflect a causal 

diminishing returns relationship, the tipping point would occur, theoretically, only when the 

organization fails to deploy other structural resources to support a larger nursing staff, thus 

effectively resulting in an inefficient substitution of nurse staffing for other hospital inputs 

(commonly known as ‘plugging a hole’). Therefore, to derive continuing productivity gains from 

nurse staffing, well-staffed organizations should be not reducing nursing staff, but instead 

increasing investments in other structural variables (factors of production and technology) that 

enable nurses to deliver high-quality discharge care. Depending on the context of each specific 

organization, these may include an increased supply of labor (e.g., shift managers or discharge 

coordinators, planners, flow coordinators, expeditors), capital (e.g., an EHR system with 

capacity for real-time aggregation of discharge-relevant information from multiple entry 

points), or technology (e.g., implementation of new organizational processes to improve 

communication and care coordination, such as interdisciplinary team discharge rounds). 

Currently, little is known about various organizational approaches to preventing and reversing 

diminishing returns; this area of future research presents an exciting new opportunity for 

informing continued outcomes improvement in already well-performing organizations. 

Our study was one of the first to examine the importance of nurse staffing with other 

structural and patient variables interacting in a complex non-parametric model. Not 

surprisingly, patient characteristics were the most important predictors of patient readmission 

risk in our study. However, nurse hours per patient day had the highest predictive association 

among most other structural factors, including nurse skill mix, education, experience and 

expertise, and hospital- and unit-specific discharge care variables. While a patient’s risk of 
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readmission attributable to patient-specific factors may be difficult to identify and modify, 

nurse staffing strategies are well within an organization’s domain of influence and should 

continue to be a focus of organizational outcomes improvement efforts.  

Our study was the first to apply ML methods to study nurse staffing and readmissions. 

To date, empirical studies of the relationship between nurse staffing and patient outcomes 

(including readmissions) have been performed using a parametric regression analysis approach, 

which requires the regression equation to be chosen by the researcher prior to estimation 

process. Parametric regression binds the data to a pre-conceived (by the researcher) notion of 

the relationship, then finds the coefficients, or parameter estimates, that best support the 

chosen equation in a given set of data. Previous studies that reported diminishing returns to 

nurse staffing were designed a priori to look for particular non-linear shapes using either a 

piece-wise linear regression (i.e., a “V”)[13] or a higher-order polynomial for staffing (i.e., a 

“U”) [7, 12, 14]. Once chosen, the parametric methods in each of these studies were only able 

to confirm or reject the shape specified a priori by the researchers, and therefore unable to 

reveal any other data patterns. By not constraining our data to any functional form prior to 

estimation, our findings provide further credence to the idea that the previously reported U-

shapes were likely real and not an artifact of the previously selected parametrizations. 

Interestingly, when we attempted to replicate the previously used parametric approaches in 

our data, (Supplemental File: Figures F1-F3.) there was little agreement regarding the shape of 

the pattern between methods and types of nurse staffing. One explanation is the possibility 

that the underlying empirical pattern in our data was not consistent with either a cubic or a 

linear spline model, resulting in poor fit. The other possibility lies in the different ways that 
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parametric regression and ML methods form predictions—while traditional regression models 

calculate predictions by setting all over covariates at their means, ML predictions are simulated 

while keeping other covariates at their observed values. [21] The relative performance of ML 

methods versus parametric and semi-parametric (e.g. quantile, fixed effects) regression should 

be examined in future studies. 

Our study had a number of limitations. First, like all observational studies, our study is 

subject to confounding from unobserved variables and potential reverse causality. Although our 

study used one of the largest, richest sources of data collected specifically for analysis of 

readmissions in a structure-process-outcomes framework, and although the findings are robust 

across samples and in models with different sets of features in sensitivity analyses, our study 

design does not allow for causal interpretation. Second, although the READI intervention was 

modeled in our analysis as a unit-specific technology variable (similarly to how we accounted 

for all other hospital and unit discharge practices), and although our findings are robust in a 

subsample of patients discharged from control units in sensitivity analyses, it is difficult to know 

for sure to what extent our results apply to an intervention-independent sample. Third, 

although our sample has similar nurse staffing levels[32, 33] and readmission rates[34] to 

national studies of US hospitals (including Magnet hospitals [33]), in general Magnet hospitals 

tend to be larger, have higher levels of nurse staffing, invest more in nurse staff development 

and education, and deliver higher-quality care including discharge care [33, 35-37], further 

limiting the generalizability of our findings. Fourth, we estimated the overall association of 

staffing with readmissions across 31 hospitals. Even though the actual tipping points in HPPD 

are likely context and patient-population specific, the ML method we demonstrated can be 
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applied across contexts. Fifth, we only examined a single patient outcome - readmission; 

further research is needed to test whether these findings are equally true for other outcomes. 

Last, we studied 3 nurse staffing variables (RN non-OT HPPD and RN OT HPPD, and non-RN 

HPPD) separately, and the association of each with readmissions was obtained holding the 

other two constant. Future studies should examine nurse staffing variables as dynamic and 

interdependent to fully understand the optimal staffing strategy to produce desired patient 

outcomes.  

CONCLUSION 

While the idea of diminishing returns to labor is intuitive to most economists, it has not 

yet influenced the current mental models of healthcare policy makers or administrators who 

tend to subscribe to linear 'more is better' thinking. Our findings suggest that increasing nurse 

staffing alone may not always yield continuing improvements in readmissions; after a point, 

accompanying investments in infrastructure and human resources may be needed to support 

further performance improvement and outcome gains. In complex health care delivery systems 

where relationships among staffing variables and patient outcomes are interdependent, subject 

to organization-specific factors, and are not directly observed, ML methods may offer an 

advantage of exposing the tipping point and informing proactive organizational action to 

support continued high returns from nurse staffing to patient outcomes.  
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Table 1. Theoretical Framework and Empirical Measures. 

Donabedian 
Structure-Process- 
Outcome Model a 

Structural characteristics  
 

Patient 
Characteristicsb 

Process  Outcome 

Economic Theory 
of Productionc  

Factors of production & Technology 
                                      

[Not included] Production 
Function  

Output 

Definitions The setting in which care is provided and the instrumentalities 
of which the process of care is the outcome.a 

 

Factors of production are inputs (labor, capital) that are used 
to produce an output. Technology is the organizational rules and 
norms prescribing how the labor and capital inputs ought to 
interact during the care delivery processc 

 Patient-level risk 
factors prior to care 
delivery that may 
guide how care is 
delivered and directly 
impact the outcome. 

The process 
of execution of 
clinical care 
delivery  

 
 

The outcome of 
medical care, in 
terms of 
recovery, 
restoration of 
function and of 
survival. 

Labor Inputs: 
the quantity 
(e.g., number of 
working hours, 
number of full-
time 
equivalents) and 
quality (e.g., 
education, 
experience, 
expertise) of the 
human 
resources 
employed by the 
organization 
(nurses, 
physicians, etc.)  

 

Capital Inputs:  the 
hospital built 
environment and 
equipment, 
administrative and 
other support 
systems, type and 
organization of the 
electronic health 
records, and other 
non-labor resources 
than enable its 
employees to deliver 
care. 

 
 

Technology:  
established care 
delivery 
components that 
form the hospital or 
unit standard of 
care (such as 
protocols, 
programs, practice 
guidelines) that 
prescribe how care 
is supposed to be 
delivered. 
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Select variables 

available in the 
READI database d 

Unit-specific: 

RN hours per 
patient day 
(HPPD)  

RN overtime 
HPPD 

Non-RN HPPD 
(nurse aides, 
licensed 
practical 
nurses, 
medical 
assistants)  

%BSN 

% Specialty-
certified RNs 

RN Experience 

% Full/Part-Time 

Hospital: 

RN full-time 
equivalents 
(FTEs) 

Non-RN FTE’se 

 

Unit-specific:  

Bed size 

Patient days 

Average Daily Census 

Case-Mix Index 

Unit Type (e.g., 
cardiac, medical, 
surgical) 

Hospital: 

Geographic region 
(East, West, 
Midwest, South) 

Bed size  

Number of med., 
surg., or med-surg 
units 

Hospital Type 
(community/urban; 
non-
teaching/teaching) 

Type of the EHR 
system 

 

Unit-specific: 
READI discharge 

intervention 
RN case manager/ 

social worker/ 
discharge 
planner/ 
coordinator/ 
expeditor 
involved in 
discharge 
transition care 

Prescriptions filled 
prior to 
discharge 

Hospital: 
Discharge Care 

Modelf 
Formal readmission 

risk screening 
imbedded in the 
EHR. 

Interdisciplinary 
care 
coordination 
rounds 

Guidelines include 
interdisciplinary 
discharge rounds 

 

Demographic: 

Sex 

Age  

Race 

Ethnicity 

Marital Status 

Clinical: 

Admission type 

Admission from 
(source) 

Service Type 
(medical/surgical) 

Payment type 

Severity of Illness 

Mortality Risk 

Prior hospitalization 
(30 and 90 days) 

Elixhauser 
Comobidity Index 

Cormorbidities 

Length of Stay 

ICU Stay 

 

[Unobserved, 
not measured 
in this study] 

Patient 
readmission 
within 30 days 

 a Donabedian, 1966.[17] 
b Mitchell, 1998.[18] 
c Adapted from Craig, 1973.[19]  
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d During the random forest recursive model selection process, some of these variables were eliminated from the final model. See Digital 

Supplement Figure A for the full list of variables included in the final model. 
e All hospital employees (physicians, pharmacists, therapists, administrative, laboratory, house-keeping, etc.) on hospital payroll, per the 

American Hospital Association Annual Survey definition.[38] 
f Established programs of discharge care based on local, state, or national discharge transition improvement initiatives.[39] 
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Table 2. Predictive Accuracy of the Model in the Learning Sample (n=96,444) and the Test 
Sample (n=41,334) 
  Learning Sample Test Sample 
Kappa 0.23 0.13 
Specificity 1.00 0.99 
Sensitivity 0.15 0.08 
Positive predictive value 1.00 0.86 
Negative predictive value 0.89 0.89 
Area under Receiver Operating Characteristics curve 0.99 0.71 

 

Table 3. Select1 Descriptive Characteristics of Patients in the Learning Sample (n=96,444) 
and Test Sample (n=41,334) 

Characteristic  
Learning Sample Test Sample 
n (%) or mean (SD) n (%) or mean (SD) 

Primary Outcome: 30-Day Readmission     
No Readmission 84,585 (87.70%) 36,333 (87.90%) 
Readmission 11,859 (12.30%) 5,001 (12.10%) 

Patient Characteristics     
Patient Sex     

Male 47,265 (49.01%) 20,168 (48.79%) 
Female 49,179 (50.99%) 21,166 (51.21%) 

Patient Age 60.10 (17.38) 60.09 (17.36) 
Patient Race     

American Indian Or Alaska Native 858 (0.89%) 348 (0.84%) 
Asian 3,320 (3.44%) 1,416 (3.43%) 
Black or African American 14,717 (15.26%) 6,288 (15.21%) 
Native Hawaiian Or Other Pacific Islander 305 (0.32%) 146 (0.35%) 
White 65,847 (68.27%) 28,318 (68.51%) 
Unknown 11,397 (11.82%) 4,818 (11.66%) 

Patient Ethnicity     
Not Hispanic 84,517 (87.63%) 36,129 (87.41%) 
Hispanic 10,407 (10.79%) 4,554 (11.02%) 
Unknown 1,520 (1.58%) 651 (1.57%) 

Patient Marital Status     
Not Married 41,988 (43.54%) 18,197 (44.02%) 
Married 43,968 (45.59%) 18,566 (44.92%) 
Unknown 10,488 (10.87%) 4,571 (11.06%) 
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Admission Type     

Emergency 52,613 (54.55%) 22,582 (54.63%) 
Urgent 17,626 (18.28%) 7,536 (18.23%) 
Elective 17,451 (18.09%) 7,543 (18.25%) 
Unknown 8,754 (9.08%) 3,673 (8.89%) 

Admission Source     
Physician Referral 36,540 (37.89%) 15,822 (38.28%) 
Clinic Referral 6,247 (6.48%) 2,662 (6.44%) 
HMO Referral 185 (0.19%) 79 (0.19%) 
Transfer from Hospital 3,022 (3.13%) 1,271 (3.07%) 
Transfer from Another Health Care Facility 2,199 (2.28%) 966 (2.34%) 
Emergency Department 19,605 (20.33%) 8,356 (20.22%) 
Unknown 28,646 (29.70%) 12,177 (29.46%) 

Service Type     
Medical 69,385 (71.94%) 29,770 (72.02%) 
Surgical 25,748 (26.70%) 11,025 (26.67%) 
Unknown 1,311 (1.36%) 539 (1.30%) 

Payment Type     
Private Insurance 29,763 (30.86%) 12,730 (30.80%) 
Medicare 40,820 (42.33%) 17,485 (42.30%) 
Medicaid 13,993 (14.51%) 6,012 (14.54%) 
Uninsured/ Unknown 11,868 (12.31%) 5,107 (12.36%) 

Severity of Illness Score     
Minor 11,564 (11.99%) 5,033 (12.18%) 
Moderate 27,244 (28.25%) 11,657 (28.20%) 
Major 25,287 (26.22%) 10,878 (26.32%) 
Extreme 4,883 (5.06%) 2,052 (4.96%) 
Unknown 27,466 (28.48%) 11,714 (28.34%) 

Mortality Risk Score     
Minor 23,559 (24.43%) 10,063 (24.35%) 
Moderate 19,894 (20.63%) 8,672 (20.98%) 
Major 14,841 (15.39%) 6,323 (15.30%) 
Extreme 3,441 (3.57%) 1,464 (3.54%) 
Unknown 27,466 (28.48%) 11,714 (28.34%) 

Prior Hospitalization Within 30 Days 11,907 (12.35%) 5,009 (12.12%) 
Elixhauser Comorbidity Index 7.04 (8.39) 7.08 (8.36) 
Total Length of Stay, days 4.22 (4.22) 4.24 (4.26) 
ICU Stay  17,376 (18.02%) 7,355 (17.79%) 
Discharge Disposition     

Discharged to Home/Self-Care 77,120 (79.96%) 33,029 (79.91%) 
Discharged to Home/Home Health Service  16,851 (17.47%) 7,197 (17.41%) 
Discharged to Hospice Care 1,184 (1.23%) 535 (1.29%) 
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Left Against Medical Advice 1,289 (1.34%) 573 (1.39%) 

Comorbidities     
Renal Failure 7,691 (7.97%) 3,344 (8.09%) 
Weight Loss 3,171 (3.29%) 1,310 (3.17%) 
Hypertension 21,861 (22.67%) 9,464 (22.90%) 
Metastatic Tumor 2,406 (2.49%) 1,035 (2.50%) 
Electrolyte Disorders 15,786 (16.37%) 6,812 (16.48%) 
Congestive Heart Failure 4,796 (4.97%) 2,146 (5.19%) 

READI Study Status2     
Patient from an Intervention Unit 49,195 (51.01%) 21,224 (51.35%) 
Patient Treated Per Protocol3 25,365 (51.56%) 10,934 (51.52%) 

1 See Supplement Table A for the full set of descriptive statistics. 
2 Study month not shown, see Supplement Table A 
3 Patients from intervention units only; the percentage includes the baseline period, see 
Supplement Table B. 

 

Table 4. Select1 Descriptive Structural Input Characteristics of Units (n=62) and 
Hospitals (n=31) 

Input variable n (%) or mean (IQR) 

Labor inputs:  
Unit-specific nursing labor inputs:   
  Quantity: nursing hours per patient day:1  

RN non-overtime 6.77 (5.98, 7.42) 
RN overtime 0.20 (0.13, 0.25) 
Non-RN total HPPD 3.35 (2.47, 3.68) 

  Quality: education, expertise, experience, flexibility:  
% BSN-Prepared RNs 67.65 (55.66, 80.78) 
% Certified RNs  29.35 (10.98, 40.98) 
Average RN Experience (on the unit) 6.18 (4.50, 8.00) 
% Full-Time RNs2  78.28 (71.25, 93.18) 

Hospital-wide labor inputs:  
RN full-time equivalents 1,101.84 (486.91, 1,271.35) 
Non-RN full-time equivalents (all combined)3 2,774.88 (570.91, 3,259.22) 

Capital inputs:  
Hospital facility and resources:  
 Hospital bed size  540.87 (315.00, 607.50) 
 Hospital Type:    

    Rural, non-teaching 1 (3.23%) 
    Community, non-teaching 11 (35.48%) 
    Community, teaching 7 (22.58%) 
    Urban, non-teaching 4 (12.90%) 
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    Urban, teaching 3 (9.68%) 
    Academic medical center 5 (16.13%) 

Unit-specific facility and resources:   
Unit type:  

Cardiac Care 11 (17.74%) 
Medical 8 (12.90%) 
Surgical  2 (3.23%) 
Medical/Surgical 17 (27.42%) 
Medical with Telemetry 17 (27.42%) 
Surgical with Telemetry 3 (4.84%) 
Neurology/Neurosurgery 2 (3.23%) 
Orthopedics 1 (1.61%) 
Respiratory  1 (1.61%) 

 Average daily patient census2 26.49 (22.19, 28.70) 
 Patient case-mix index2 1.76 (1.42, 1.80) 

Technology for readmission avoidance:  
Discharge Care Models4   

Transitional Care Model  1 (3.23%) 
Care Transitions Model 6 (19.35%) 
Re-Engineered Discharge  2 (6.45%) 
 Institute for Healthcare Improvement/ 
    State Action on Avoidable Readmissions 2 (6.45%) 

Centers for Medicare/Medicaid Services   3 (9.68%) 
State hospital association initiative   3 (9.68%) 
Local/regional collaborative initiative 4 (12.90%) 
None of the above/other 18 (58.06%) 

1 See Supplement Figure A and Table A for the full set of structural input variables. 
2 Measured monthly (19 data points); otherwise measured annually (2 data points). 
3 All hospital employees (physicians, pharmacists, therapists, administrative, laboratory, 
house-keeping, etc.) on hospital payroll, per the American Hospital Association Annual 
Survey definition.[38] 
4 Categories are not mutually exclusive. 
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FIGURES 

 

Figure 1: Partial Dependence Plots of the Relationship between Nurse Staffing and 

Readmissions, the Learning Sample (n=96,444) 

 

Notes: For each of the staffing variables, the figure shows: 1) the partial dependence plot for 

the relationship between the corresponding staffing hours variable and the predicted 

probability of readmission (PDP, solid black curve), and the 95% confidence interval (pink 

sleeve); 2) the relative frequency distribution of the patient sample by nursing hours per 

patient day in 25 increments (grey shaded bars); and 3) the 1st and 3rd quartile of the unit-level 

distribution of nursing hours per patient day (dashed vertical lines).  
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