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Key Points 

 We implemented distributions of leaf economic spectrum traits in a land surface 

model in 15 diverse landscapes 

 Trait variation has a substantial influence on gross primary production (GPP) 

 Phenology plays a key role in guiding where traits fall within the global trait 

distribution and hence trait-GPP relationships  A
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Abstract 

Simulations of the land surface carbon cycle typically compress functional diversity into a small 

set of plant functional types (PFT), with parameters defined by the average value of 

measurements of functional traits. In most earth system models, all wild plant life is represented 

by between five and fourteen plant functional types and a typical grid cell (≈100 km × 100 km) 

may contain a single PFT. Model logic applied to this coarse representation of ecological 

functional diversity provides a reasonable proxy for the carbon cycle, but does not capture the 

non-linear influence of functional traits on productivity. Here we show through simulations using 

the Energy Exascale Land Surface Model (ELM) in fifteen diverse terrestrial landscapes, that 

better accounting for functional diversity markedly alters predicted total carbon uptake. The shift 

in carbon uptake is as great as 30% and 10% in boreal and tropical regions, respectively, when 

compared to a single PFT parameterized with the trait means. The traits that best predict gross 

primary production vary based on vegetation phenology, which broadly determines where traits 

fall within the global distribution. Carbon uptake is more closely associated with specific leaf 

area for evergreen PFTs and the leaf carbon to nitrogen ratio in deciduous PFTs. 

Plain Language Summary 

Plants play a critical role in the global carbon cycle, and diversity has been shown to influence 

vegetation productivity. However, when the land surface is simulated in a global model all wild 

plant life is reduced to a small number of plant functional types. Here we estimate how 

incorporating diversity influences ecosystem carbon uptake in fifteen globe spanning landscapes. 

We find that diversity has a strong influence on modeled productivity, particularly in the arctic 

and tropics. Further, we find that whether plants shed their leaves annually has a strong influence 

on where traits fall within the global distribution and thus how traits and productivity interact. 

1 Introduction 

The representation of the land surface in an earth system model (ESM) differs from other key 

components of the Earth system (e.g. atmosphere, ocean) in that biological processes play an 

equal, or even dominant, role which interacts with physical processes to determine the function-

ing of the system. Early representations of the land surface (Sellers et al., 1986) primarily pro-

vided a meaningful boundary condition with appropriate physical properties for the rest of the 
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physical Earth System. However, as the importance of the carbon cycle in these models has 

grown, so too has the physiological sophistication of the biologically driven land surface, partic-

ularly photosynthesis (Albritton et al., 2001; Bonan et al., 2011; Oleson et al., 2013). Despite the 

increasing complexity of plant physiology in land surface models, the representation of vegeta-

tion as plant functional types (PFTs) compresses functional diversity into fewer than twenty ag-

gregate types (Harrison et al., 2010; Oleson et al., 2013; Quillet et al., 2010; Wullschleger et al., 

2014). Moreover, many grid cells (on the order of 100 × 100km) are occupied by a single PFT, 

and thus have no diversity. While the quality of plant biochemistry in ESMs has provided a good 

first order approximation of the carbon state and fluxes of the land surface, it does not capture 

how plant functional diversity – known from experiments and observations (Isbell et al., 2018; 

Liang et al., 2016; Oehri et al., 2017; Reich, 2012; Tilman et al., 2012) to have a substantial in-

fluence on productivity – affects ESM predictions of gross primary productivity (GPP).  

 

Representing plant life as PFTs essentially transforms diverse organisms, e.g. different plant spe-

cies, each with potentially contrasting traits and growth rates, adapted to varied micro-environ-

ments, into a single aggregate organism (Sellers et al., 1986). Historically, the simplistic repre-

sentation of terrestrial plants at global scale was due to a lack of available data. Now, the exist-

ence of large aggregate databases (Iversen et al., 2017; Kattge et al., 2011; Kattge et al., 2020) 

has allowed for the estimation of functional diversity across the global land surface (van 

Bodegom et al., 2014; Butler et al., 2017; Harper et al., 2016).  

 

One of the outcomes of the simplified representation of functional diversity in PFTs is a re-

striction in the ways different plant life responds to both environmental variation and a direction-

ally changing climate (Funk et al., 2017; Oehri et al., 2017; Pennekamp et al., 2018). The single 

PFT representation limits the phenotypic response to environmental variation to that of a single 

organism rather than the broader envelope of responses that a plant community will inhabit 

(Nicotra et al., 2010; Sakschewski et al., 2015, 2016; Scheiter et al., 2013). Ultimately, incorpo-

rating plant diversity into model analyses will enable a broader range of responses to a changing 

environment than the single organism response of a PFT (Sakschewski et al., 2016). Previous ef-

forts to account for plant diversity in global vegetation models have built on community assem-

bly theory (Pavlick et al., 2013), but had limited data to compare their results against. Other work 
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has produced detailed regional studies of diversity’s influence on carbon and water cycles 

(Pappas et al., 2014).  A detailed study of the Amazon rainforest (Sakschewski et al., 2015, 

2016) used a large database (Kattge et al., 2011) to build tightly constrained trait distributions; 

however, the trait distributions were ultimately constrained by theoretical competitive dynamics, 

and in global scale models this region may have as few as two PFTs and is thus an incomplete 

test of how a broader range of landscapes will be affected by the shift to trait distributions. 

 

Here, we use an updated selection of plant traits central to the leaf economic spectrum, i.e. to in-

terspecific variation in traits related to carbon and nutrient uptake, processing and conservation 

(Wright et al., 2004), to estimate the influence of this diversity on carbon cycle simulations from 

the Energy Exascale Earth System Land Model (ELM) across a diverse array of regions spanning 

tropical to boreal ecosystems (Fig. 1, Table 1). We demonstrate that the modeled response to 

identical environmental fluctuations can vary dramatically for different trait combinations, even 

within the range of values associated with a single PFT. Further, we evaluate how modeling a 

PFT as a distribution of trait values, as opposed to a single mean value, changes estimates of 

gross primary production (GPP). This is equivalent to envisioning extant PFTs as comprising a 

set of representative vegetation types across a region as opposed to being a single aggregate en-

tity. This distinguishes the analysis presented here from a sensitivity study of the model to the 

distribution of trait values. 

 

Figure 1. Site Locations and dominant PFT. Each circle is a site in the analysis, a white ring in-

dicates a single PFT and a black ring indicates two PFTs co-dominating (Mixed). The size of the 

circle scales with the number of trait observations at each site. Background colors correspond to 

regions dominated by the corresponding PFTs. Note that Shrub-Ar in the Southwestern United 

States has been jittered slightly to distinguish it from Grass-Ar. 

 

Table 1. Site Summaries. This table contains detailed information for each FLUXNET tower site 

in the analysis according to the following categories: Name, the given name of the site in the 

FLUXNET Database; Country, the country that hosts the site; ID, the identification value de-

fined by the dominant growth form (Tree, Shrub, Grass) with an asterisk (*) indicating a mixed 

site, and a two letter abbreviation for one of four climate types: Tr (tropical), Te (temperate), Bo 
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(boreal), and Ar (arid), numerical suffixes are used to distinguish sites with repeated characteris-

tics. Site climate was picked based on PFT, except for arid sites which are distinguished by being 

both hot (T[C]>15C) and dry (P[mm]<500); T[C]: The mean annual temperature of the site in 

degree Celsius; P[mm]: The mean annual precipitation at the site in millimeters; PFT: The 

PFT(s) present at the site as defined by ELM. 

Name Country ID T[C] P[mm] PFT 

Chokurdakh Russia Shrub-

Bo1 

-12.4 163 Broadleaf Deciduous Boreal Shrub 

Samoylov Russia Shrub-

Bo2 

-12.1 135 Broadleaf Deciduous Boreal Shrub 

Hyytiala Finland Tree-Bo1 3.6 507 Needleleaf Evergreen Boreal Tree 

Fyodorovskoye Russia Tree-Bo2 4.0 488 Needleleaf Evergreen Boreal Tree 

U. of Michigan 

Bio. Station 

USA Tree-Te1 7.1 574 Broadleaf Deciduous Temperate 

Tree 

Tumbarumba Australia Tree-Te2 7.5 856 Broadleaf Evergreen Temp. Tree 

Blodgett USA Tree-Te3 8.8 1159 Needleleaf Evergreen Temp. Tree 

Park Falls USA Tree*-

Te1 

4.6 540 Bro. Deciduous Temp. Tree (50%), 

Nee. Evergreen Temp. Tree (50%) 

Harvard Forest USA Tree*-

Te2 

5.1 980 Bro. Deciduous Temp. Tree (85%), 

Nee. Evergreen Temp. Tree (15%) 

Puechabon France Tree*-

Te3 

13.3 901 Bro. Deciduous Temp. Tree (80%), 

Nee. Evergreen Temp. Tree (20%) 

Kendall Grass-

land 

USA Grass-Ar 17.3 256 C4 Grass 

Santa Rita 

Mesquite 

USA Shrub-Ar 19.6 320 Broadleaf Deciduous Temperate 

Shrub 

Kruger Park South Af-

rica 

Grass*-

Ar 

22.5 490 C4 Grass (70%), Broadleaf Decidu-

ous Tropical Tree (30%) 

Guyaflux French 

Guiana 

Tree-Tr1 24.6 3158 Broadleaf Evergreen Tropical Tree 

Santarem, km 

67 

Brazil Tree-Tr2 24.7 2670 Broadleaf Evergreen Tropical Tree 

 

We take a three-step approach within and across 15 globally distributed grid cells, each of which 

includes a FLUXNET site (Falge et al., 2016), to assess whether and how increasing the func-

tional diversity of model parameterization can lead to substantial differences in model output. 

Based on the trait records compiled in the TRY database (Kattge et al., 2020) we generate site-

specific three-dimensional distributions of trait values for specific leaf area (leaf area per dry 

mass, SLA), leaf carbon-nitrogen (mass) ratio (LCN), and leaf lifespan (LLS), accounting for the 

well-known trait-trait covariance structure (joint distributions) (Wright et al., 2004). In the ELM 
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model, each of these traits has a substantial influence on model output: LCN is a major control of 

canopy nitrogen content, which influences photosynthesis rates (Thornton & Zimmermann, 

2007); SLA determines carbon investment in leaf area; LLS controls the time over which a leaf 

will fix carbon. These three traits together describe the main carbon and nutrient economy, and 

growth strategy (from inherently “fast to slow”), of different plant species and types; and thereby 

for productivity (Reich, 2014). Further, SLA and LCN directly influence Vcmax, (the maximum 

velocity of carboxylation) a key parameter in photosynthesis. Using the joint distributions, we 

first evaluate the ranges of modeled GPP with a focus on generalizable characteristics between 

traits and GPP. Second, we evaluate how updating trait values changes GPP estimates relative to 

GPP based on FLUXNET measurements using three sets of model runs (Fig. 2): (i) default pa-

rameterization; (ii) updated mean trait parameterization, and (iii) multiple model runs using the 

joint trait distributions. Third, we evaluate the non-linear relationship between traits and modeled 

GPP and summarize this using the updated mean trait values (ii above) to the mean of GPP using 

the joint trait distributions (iii above). Lastly, we analyze a subset of sites to better interpret how 

the trait-GPP relationship influences these differences. These approaches demonstrate the many 

ways that trait distributions drive differences in modeled GPP relative to a single trait value. 

 

Figure 2. The three types of model simulations. There are three distinct model configurations an-

alyzed in this study: two single runs with trait means, (i) the model default based on old species 

trait values (black vertical dashed line); (ii) an updated mean based on the trait distributions gen-

erated here (green vertical dashed line) and (iii) the distribution of traits (green solid line). These 

three model runs generate corresponding output from ELM as indicated by the black arrow and 

the grey distributions and vertical lines, where the line-style of the trait input corresponds to the 

line-style of the GPP output. 

2 Materials and Methods 

The model used throughout this analysis is the Energy Land Model (ELM, v1), the land compo-

nent of the U.S. Department of Energy’s Energy Exascale Earth System Model (E3SM), which 

may be run as a fully coupled Earth System Model with atmosphere, land, ocean, sea ice, and 

land ice components. ELM is based on the Community Land Model version 4.5 (CLM4.5) 

(Oleson et al., 2013), including canopy integrated leaf photosynthesis (Bonan et al., 2011, 2012), 
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dynamically coupled carbon and nitrogen in vegetation and soil (Thornton et al., 2007), soil bio-

geochemistry resolved across vertical layers (Koven et al., 2013), and permafrost hydrology 

(Swenson et al., 2012). Further, it uses temperature revised Rubisco kinetics (Bernacchi et al., 

2001; Bernacchi et al., 2003) as well as a high temperature adjustment to photosynthesis 

(Leuning, 2002). More recently a prognostic phosphorus cycle has been added (Yang et al., 

2014, 2019). 

 

We modify the model by including a wider range of trait values based on observed functional di-

versity. Leveraging the global scale trait database, TRY (Kattge et al., 2011; Kattge et al., 2020), 

the subset used for this analysis includes 83,585 measurements from 7,489 species across the 14 

PFTs in ELM. Each trait measurement from TRY was assigned to one of the 14 natural PFTs in 

ELM based on its species and location. We estimate trait distributions from observations associ-

ated with the extant PFTs of ELM to explore how three key traits, specific leaf area (SLA), leaf 

nitrogen concentration (LCN), and leaf lifespan (LLS), influence ELM’s carbon cycle estimates 

as summarized by gross primary production (GPP). For consistency with ELM, mass based leaf 

nitrogen is converted to leaf carbon nitrogen ratio (LCN) and SLA is converted to units of area 

per carbon mass by a simplifying assumption of 50% carbon content for each leaf. 

 

These traits were selected for the central role they play in photosynthesis within ELM. A central 

parameter in the photosynthesis model used in ELM is the maximum velocity of carboxylation 

(Vcmax), which was modified in (Thornton & Zimmermann, 2007) to dynamically respond to 

changes in leaf SLA and LCN through the following relationship: 

 

𝑉𝑐𝑚𝑎𝑥 = 𝑁𝑎𝐹𝐿𝑁𝑅

1

𝐹𝑁𝑅
𝛼𝑅 (1), 

In eqn. (1) Na is area based leaf nitrogen content (gN m-2 one-sided leaf area), FLNR is the fraction 

of leaf nitrogen in Rubisco (unitless), FNR is the mass ratio of nitrogen in a Rubisco molecule to 

total molecular mass (unitless) and αR is the specific activity of Rubisco (µmol CO2 gRubisco-1 s-

1). The area based leaf nitrogen, Na, may then be defined as: 

𝑁𝑎 =
1

𝑆𝐿𝐴 ×  𝐿𝐶𝑁
 (2), 
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with SLA and LCN being, specific leaf area (m2 one-sided leaf area gC-1) and leaf carbon nitro-

gen ratio (gC gN-1). Thus, the inverse value of SLA and LCN exert a linear control on Vcmax, 

whose components have been shown to be key parameters in controlling GPP (Ricciuto et al., 

2018). The relationship between the inverse trait values and GPP is roughly consistent among 

sites; but, however, somewhat variable (Fig. S1). For LLS, its inclusion in the model is critical 

due to its covariance with these traits and its importance to evergreen PFTs (Reich et al., 2014), 

as deciduous PFTs are governed by a separate phenology module. 

 

To determine an appropriate size for the distributions to simulate we conducted an extensive 

analysis using 1000 simulations at two sites, one temperate deciduous (Tree-Te1) and one tropi-

cal evergreen (Tree-Tr2) to determine the requisite size of trait distribution. We expanded this 

pool of 1000 simulations up to 100,000 using a simulation analysis (Castruccio et al., 2014), and 

tested subsets of simulations including between 20 and 1000 samples in the distribution against 

the simulation with 100,000 samples. From this we determined that 100 samples, or subPFTs, 

were a sufficient balance between computational efficiency and accuracy. Please see Supple-

mental Text S1: Supplemental Methods and Figures S2 and S3 in the Supplemental material for 

a complete description of the simulation analysis conducted to reach this conclusion. 

 

Lastly, the distributions we report in the manuscript are from a screened subset of the original 

100 trait values (Fig. S4) because some trait combinations, generally with low leaf lifespan, gen-

erated no carbon uptake at some of these sites (GPP values of 0) and others, with high LLS, pro-

duced highly unrealistic model output (e.g. Leaf Area Index (LAI) values > 1000, Fig. S5), this 

issue has been reported in other analyses where leaf life span was modified from model defaults 

(Reich et al., 2014). This screening reduced the included simulations to between 45 and 99% of 

the original 100 draws, with a mean of 68%. This leads to a unique set of trait values for each 

site from a previously identical distribution for each PFT. 

 

We estimate formal non-linear trait-GPP relationships with the following form: 

 

𝐺𝑃𝑃𝑠 = 𝛽0 ∗ 𝑇𝑅𝑠
𝛽1 , (3) 
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here GPPs is the annual average gross primary production at a site, s, for a given trait value, TRs. 

All trait-GPP relationships are evaluated at each site, but generally a single trait shows a clear 

non-linear relationship. The β values are empirically fit constants using the Levenberg-Mar-

quardt algorithm in SciPy (Virtanen et al., 2020). 

3 Data Screening and Model Protocol 

The data were screened for outliers after log transformation by removing entries greater than the 

95th percentile, but only if the 95th percentile was more than three times (i.e. three orders of 

magnitude) the value of the 5th percentile. This criterion filtered entries that were outliers while 

leaving large trait values intact. Then, within each of the 14 PFTs each trait was summarized into 

a mean value (Table S1) and a pairwise covariance matrix was calculated across all PFTs (Table 

S2) (Reich, 2014; Wright et al., 2004). In other words, we assume the distribution of traits to be a 

multi-variate log-normal for each PFT and that each PFT is, initially, identical at every site, per 

the current model logic. Trait values were then screened at each site based on leaf life span and 

producing non-zero GPP output, as noted above. This produces a set of trait values with a higher 

Pearson’s correlation than a pairwise estimate from the raw data, but preserves the general covar-

iance structure. Independent of this analysis PFTs have been assigned a percentage presence at 

each site (Table 1) and regardless of the size of the presence each PFT is assigned a unique draw 

from the trait distribution for each model run. 

 

For each simulation ELM was fully spun-up under pre-industrial conditions using a 250 year ac-

celerated decomposition spin-up (Koven et al., 2013; Thornton & Rosenbloom, 2005) followed 

by a 600 year final spin-up. The spin-ups are followed by a transient simulation from 1850-pre-

sent forced by historically varying CO2, nitrogen deposition (Lamarque et al., 2010), and site 

based meteorological observations. The observed meteorology at each site is recycled in a loop 

for the spin-ups and the period preceding observation, with the exact time frame rounded up to 

make an even multiple of the observed meteorological forcing. Site specific data are also used to 

update the soil texture and PFT presence. In total, we produce 102 model simulations at each of 

the sites. As each of the model runs is conducted independently, the subPFT simulations do not 

interact with each other and there is no competition between subPFTs. Thus, the modeling proto-

col assumes that the estimated subPFTs are present at each site and will remain static. This is in 



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

keeping with the logic that assigns the spatial location of PFTs across the land surface in most 

land surface models. This analysis is a simulation of how diversity influences the carbon cycle, 

not how that diversity arose in the first instance, as pioneered by community ecologists 

(Sakschewski et al., 2015, 2016; Scheiter et al., 2013). 

 

Flux tower data are from the FLUXNET network, and we used mean annual GPP estimates 

(Falge et al., 2016). The flux towers were selected to cover a wide range of plant functional types 

at sites with at least ten years of data collected. We evaluated model output relative to flux tower 

data through a Kruskal-Wallis test in SciPy (Virtanen et al., 2020), by calculating the root mean 

square error and standard deviation across all sites, and the absolute difference between each 

model configuration and the flux tower estimated GPP. 

4 Results and Discussion 

4.1 Carbon cycle simulations from the distribution of traits.  

The individual runs within the distribution of traits generate GPP estimates that vary up to over 

an order of magnitude within a site (Fig. 3). We find the greatest influence of functional trait var-

iation on simulated productivity in the boreal zone. At one boreal shrub site in Russia (Shrub-

Bo2), the extreme trait combinations for GPP range from ≈100 to ≈1300 gC m-2 yr-1. There are 

suites of traits that produce much lower and much higher GPP in this environment than other 

suites, and use of a single ‘mean organism’ in the model parameterization misses this heteroge-

neity. Other boreal sites show a similar range of GPP values; e.g., a Finnish evergreen tree site 

(Tree-Bo1) varies from ≈300-1600 gC m-2 yr-1. At another climatic extreme, the magnitude of 

simulated GPP variation within tropical sites is also large, approximately a factor of five at both 

tropical evergreen sites. At both sites the least productive trait combination has a GPP of ≈1,000 

gC m-2 yr-1 and the most productive trait combination yields ≈5,000 gC m-2 yr-1.  

 

By contrast, environmentally constrained arid sites tend to show little influence on GPP from bi-

ological variation, with one arid grassland site in the US Southwest (Grass-Ar) varying as little 

as ≈200-300 gC m-2 yr-1, only a factor of 1.5, across the trait distribution. Despite a comparable 

range of input trait values (Fig. S4) the arid sites produce a narrower GPP distribution than other 
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locations. In the environmentally constrained arid sites there is little room for greater productiv-

ity with the leaf economic spectrum traits selected for this analysis, but in highly productive trop-

ical sites and environmentally variable boreal sites distinct trait combinations can yield vastly 

different outcomes.  

 

These simulations are distinct from a parameter sensitivity analysis because all three traits are 

varied together and constrained by their trait-trait covariances (Table S2). In essence, these GPP 

distributions may be thought of as each representing a set of patches within the simulated grid 

cell. Each simulation and its estimated GPP is equivalent to the productivity of different coexist-

ing species or individuals with varying trait values. 

 

Most of the GPP distributions are approximately normal by both visual inspection and a  

D’Agostino K2 normality test (p<0.05, at 13 sites, Fig. S6). However, the near normality of most 

of the GPP distributions is contrasted by net primary production (NPP, Fig. S7) which fails the 

test at six sites (p<0.05). Three sites fail the normality test for leaf maintenance respiration (Fig. 

S8) (p<0.05). Temperate and arid sites most frequently show varying distribution shapes across 

these different components of the carbon cycle. The variation in shape of these distributions 

highlights the non-linear influence of leaf economic spectrum traits on the carbon cycle, and 

challenges reducing the distribution down to a single value as is currently done (Oleson et al., 

2013). 

 

Figure 3. The distribution of GPP estimates at each site. The distribution of GPP from the joint 

distribution of trait values is in gray, the green arrow indicates the mean of the distribution. Sites 

are ordered from coldest to hottest within rows which are determined by their climatic region, 

border colors display the annual average temperature per the color bar in the right column. The 

range of GPP values displayed on the x-axis is determined by the climatic region: boreal/temper-

ate, arid, or tropical, the three are displayed on a common axis in the lower right corner. 

 

4.2 Phenology, trait distributions, and GPP  

We focus on the divergence between deciduous and evergreen phenology in terms of the influence 

of traits on GPP within the model. Phenology is a convenient division between SLA and LCN 
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because these two groups, evergreen and deciduous, occupy markedly different components of the 

global trait distribution for these two traits, Fig. 4. Deciduous PFTs cluster around the mean of 

both groups for SLA (Fig. 4a), while evergreen PFTs occupy the low valued tail of the SLA dis-

tribution. For LCN it is the reverse, evergreen PFTs are more strongly clustered around the mean 

of the two groups while deciduous PFTs skew into the tail. Because of the relationship between 

these traits and Vcmax (Eqn. 1-2), and therefore GPP, we expect these traits to have variable influ-

ence on model behavior for these two groups. 

 

Figure 4: Distributions of inverse traits broken down by phenology. In both panels the inverse of 

SLA and LCN is shown to more easily visualize the impact on Vcmax (Eqns. 1-2), similarly both 

panels are centered on the mean value of both groups combined, this emphasizes deviation from a 

common value. Evergreen counts are shown in green, while deciduous values are in brown. In a) 

the evergreen PFTs skew towards high values of SLA-1, while in b) the deciduous PFTs skew 

towards high values of LCN-1. 

 

As expected from the position of these phenological groups within the trait distributions, the trait-

GPP relationships are quite different. The deciduous sites show a close coupling between LCN 

and GPP while the evergreen sites show a tighter relationship between SLA and GPP; to simplify 

across sites, GPP and traits are normalized across sites into z-scores (Fig. 5). We focus on SLA 

and LCN because LLS covaries closely with SLA (Table S2) and thus the relationship between 

LLS and GPP is largely redundant (Fig. S9). Further, SLA and LCN are directly coupled with 

Vcmax, as noted earlier. Further, LLS is only used with evergreen species as leaf lifespan is governed 

by a separate phenology module for deciduous PFTs. However, the inclusion of LLS is still critical 

for constraining model output for evergreen PFTs. Within ELM, phenological habit sorts PFTs 

into different portions of trait space, which then drives which trait will have a more predictable 

influence on GPP. However, as discussed below, apparent phenological habit is only a guide and 

not fully predictive of the model relationship between traits, environment, and productivity (see 

section 4.4). 

 

Figure 5: Relationships between traits and GPP. Panels a) and b) are for deciduous sites and 

panels c) and d) are for the evergreen sites. Within each 2D histrogram lighter colors indicate 
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more site-trait combinations that fall within the GPP-trait pixel, after normalization to z-scores. 

At the deciduous sites the relationship between LCN and GPP is constrained while SLA is more 

diffuse. The evergreen sites are the opposite, with a tight relationship between SLA and GPP and 

a more diffuse relationship with LCN. 

 

4.3 Comparing model GPP against flux data. We compare three estimates of model GPP to eval-

uate how the representation of functional diversity influences the prediction of GPP and how 

those compare to an external benchmark. The first used unmodified trait values from the prior 

version of the model (default). Second, we updated the default values to the mean of the draws 

from the trait distribution (updated mean). Third, we produced an estimate using the distribution 

of traits as input (distribution mean). Across all sites, the difference between flux tower GPP and 

any of the three estimates (Fig. 6) were comparable.  Formally, a Kruskal-Wallis test could not 

distinguish between the median differences of the flux tower GPP and all three GPP model esti-

mates (p<0.05). The default mean had a root mean squared error (± standard deviation, across 

sites) of 538 ± 928 gC m-2 yr-1 versus 624 ± 950 gC m-2 yr-1 using the updated mean. The mean 

of all runs from the trait distribution, the distribution mean, is intermediate to the default and up-

dated mean simulations with a root mean squared error of 609 ± 985 gC m-2 yr-1. As is clear from 

the difference at each site (Table S3), all three configurations have comparable differences (on 

average) relative to the flux tower data, so we consider these results to be inconclusive regarding 

which of these methods is the best match to a flux tower benchmark. We further note that flux 

tower footprints cover only a tiny proportion of any (roughly 100 x 100 km) grid cell, and thus 

the vegetation in the flux footprint and the flux data are unlikely to represent the full diversity of 

the grid cell, so one should not necessarily expect a close match between tower flux data and grid 

cell model output. Despite this, we believe that comparisons with the flux tower data serve as a 

useful contextual framing, but not as validation of the models.  

 

Figure 6. Each site’s temporal mean annual GPP estimated by four different methods. The x-axis 

is labeled with the site ID (Fig. 1, Table 1). The colors of each bar indicate the method used to 

estimate GPP as indicated in the legend. Thin black lines are the temporal standard deviation at 

the site. The solid blue line across all bars at each site is the flux tower estimate of GPP and the 

dashed lines are the temporal standard deviation. 
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4.4 Evaluating the difference between GPP from the trait distribution and the updated mean 

across sites.  A particular challenge to the single PFT representation that motivated this analysis 

is the non-linearity of the relationships between functional traits and carbon fluxes of ecosystems 

(Medvigy et al., 2009; Moorcroft et al., 2001). Jensen’s Inequality (Cover & Thomas, 1991; 

Jensen, 1905) ensures that using the mean of the trait distribution as input to a convex function 

will give a lesser (or equal) result than taking the mean of the output of the function, and the op-

posite for a concave function (Fig. S10). Here, Jensen’s Inequality serves as an entry point to 

evaluate the magnitude of difference that a single extant PFT, the updated mean, compares to a 

diverse set of organisms or subPFTs, the distribution mean. To summarize the influence of the 

trait distribution we used the mean of the model output over the observation period at each site. 

This provides an estimate of the magnitude of Jensen’s inequality at these sites, which we may 

write as: 

 

f(E[x]) ≤ E[f(x)],  (4) 

 

for a convex function f. When a function is concave the less than (or equal to) relationship re-

verses to greater than (or equal to), so f(E[x]) ≥ E[f(x)]. In this equation the function f, represents 

the whole set of algorithms and equations that comprise the vegetation model in ELM, E[] indi-

cates the expected value, and x is the distribution of trait values. In the context of this analysis 

the left-hand side of Eqn. (4) is the updated mean while the right-hand side is the distribution 

mean.   

 

As already noted, using the updated (or for that matter, the default) mean masks considerable 

variation in projected GPP for the individual trait runs (Figs. 2-3,5). Beyond the distribution 

driven variation in model output the comparison of updated and distribution mean values be-

tween these sites reveals substantial differences, varying between a 36% increase and 6% decline 

when comparing the distribution mean of the trait distribution to the single updated mean value 

(Fig. 7). Four of 15 sites show an increase of at least 9% in GPP when using the distribution, 

with the largest percentage increase in one boreal shrub site; whereas on an absolute basis, the 

largest magnitude increase occurred at the two tropical forest sites (Fig. S11).  
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Figure 7. Difference in modeled GPP between the updated mean and the distribution mean. The 

x-axis labels are the corresponding site IDs (Fig. 1, Table 1) ordered from coldest to warmest. 

The largest percentage differences are in more extreme sites, with larger GPP estimates from the 

distribution at one boreal shrub site and both tropical evergreen sites but negligible differences at 

boreal tree sites. Temperate sites are mixed but generally negative. Phenological habit and the 

structure of the trait-GPP relationship provide some further insight into these differences, see 

Figs. 4-5 and 8.  

 

Interestingly, the contrasting results between the distribution mean and the updated mean show 

that incorporating the distribution of functional traits as evaluated here did not have a consistent 

influence on model GPP, and hence the constraint implied by Jensen’s inequality is not a 

straightforward guide to how functional diversity will affect model behavior. In short, the set of 

algorithms denoted by f(x) in Eqn. 4 does not respond consistently, even non-linearly, to trait in-

put values (Fig. 8, S9). However, there is some rough structure to the differences between the up-

dated mean and the distribution mean. The phenological differences (Fig. 4-5) are apparent here 

with a sharp contrast between increases at tropical evergreen sites and decreases in most decidu-

ous angiosperm systems. However, boreal systems show a mixed effect the output at one of the 

very cold deciduous shrub sites had a large increase using trait distributions whereas the other 

boreal shrub site and the two boreal evergreen conifer sites showed almost no effect. One expla-

nation for the deviation between boreal and tropical evergreen systems is that the tropics are pho-

tosynthetically active year-round, but the evergreen conifers have a long dormant season.  

 

The phenological differences noted earlier (Fig. 4-5), coupled with a sub-set of four sites sheds 

some further light on the basis for the widely varying differences between the estimated GPP 

from the distribution mean relative to the updated mean. A suite of factors including how closely 

coupled each trait is with GPP as well as the non-linear structure of the relationship between the 

trait and GPP estimate both appear to influence this result. For example, in Shrub-Bo2 there is a 

tight convex relationship between LCN and GPP (Fig. 8a) and this site has a substantial differ-

ence between the updated and distribution mean. By contrast, Tree*-Te3 (Fig 8b) shows a much 
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looser relationship and the distribution and updated means show notably different results. Criti-

cally the relationship flips to concave, which - as Jensen’s Inequality would predict - induces a 

sign change between these two sites. However, among evergreen sites the tropical site Tree-Tr2 

(Fig. 8c) has only a slightly tighter relationship between SLA and GPP than Tree-Te3 (Fig. 8d). 

Because both have concave SLA-GPP relationships it is now the variation around this relation-

ship that drives a sign change between the updated and distribution mean. The variation of GPP 

for a given trait value occurs because we draw trait combinations from a joint distribution, e.g., 

there is a range of SLA values for a given LCN and vice versa.  Even modest variation around 

the non-linear trait-GPP relationship can drive a substantial shift in the modeled output and in 

this case the trait variation appears to be a more dominant factor than the concavity of the trait-

GPP relationship. The phenology still serves as a guide to the trait-GPP relationship, but Jensen’s 

Inequality alone cannot predict how the distribution mean will vary relative to the updated mean. 

 

Figure 8: Non-linear trait-GPP relationships at four sites. Two deciduous sites a) Shrub-Bo2 

and b) Tree*-Te3 and two evergreen sites c) Tree-Tr2 and d) Tree-Te3 highlight how differences 

in the trait-GPP relationship can drive divergent responses in the updated mean and the distribu-

tion mean depending on how tight the correspondence is between GPP and the trait value as well 

as the nature of the non-linear relationship. Blue lines indicate a non-linear fit of the form de-

scribed in Eqn. 3. 

 

5. Conclusions 

Our analyses show that accounting for leaf functional diversity can have a substantial influence 

on modeled carbon fluxes. We focused our analysis on three approaches. First, we evaluated the 

distribution of modeled GPP when using a distribution of traits as input and found that GPP 

could vary over an order of magnitude at some sites among hypothetical ‘patches’ differing in 

traits. We found that phenological habit was a guide to which trait appears to govern the GPP re-

sponse within the model with a contrast between deciduous and evergreen habits driven by LCN 

and SLA, respectively. This contrast is likely to result from the portion of trait space occupied by 

the PFTs within these phenology groups where deciduous trees have values of LCN more favora-

ble to high Vcmax and the same for evergreen trees and SLA. Second, we compared three different 

modeling schemes against flux tower data, and found that all were generally in rough agreement 
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with tower data (except for one site), which we note represent only one of the myriad possible 

trait distributions within the large grid cells the model parameters are set to describe. Third, we 

evaluated how using updated mean trait values as input in modeling GPP compared to evaluating 

the distribution mean from the output of the distribution of trait values. A boreal shrub site and 

both tropical tree sites showed the greatest influence when modeling the trait distribution, with a 

notable but less pronounced effect at temperate tree sites.  However, further work is needed to 

refine what drives both the non-linear structure and tightness of coupling between traits and 

modeled GPP. Until there is a stronger theoretical basis for these differences, explicitly modeling 

the trait distribution is the only means to ensure how varying traits will influence productivity. 

 

By contrast with previous efforts to incorporate functional diversity into land surface models 

(Pavlick et al., 2013; Sakschewski et al., 2015, 2016), we developed an empirical method to de-

rive representative trait combinations and use them for model ensemble runs, without explicit 

mechanisms for community assembly. This method is closer to the current framework applied in 

global vegetation models and could be implemented in future global simulations. There are com-

peting ideas for both what can and should be improved in terrestrial vegetation models (Fatichi et 

al., 2019). Here, we have pioneered a method to incorporate empirical distributions of plant traits 

into the model structure as a method to simulate the functional diversity that occurs at the scales 

the models simulate (≈100 km x 100km). The impact in tropical regions was consistently sub-

stantial and, while less consistent in boreal regions, the effect was potentially much greater in a 

proportional sense. Accurately simulating these vulnerable and rapidly changing regions is criti-

cal to improving projections of the global carbon cycle, and the magnitude of the response in 

these regions suggests that improving our understanding and modeling of trait diversity impacts 

on carbon cycling processes is of paramount importance. 
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