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Abstract

Input images are the main source of information for vision-based algorithms. The presence
of raindrops in input images degrades their quality and, consequently, reduces the quality of
the target vision-based algorithm that consumes them. Many image restoration algorithms
were proposed in the literature to remove rain presence in images to improve the input
image quality. These algorithms, however, cannot remove all the raindrop presence and
sometimes introduce undesirable side-effects, such as the blurring rain-occluded sections
of the image and incorrectly de-raining areas in the image that are clear. It is hypothesized
that a comparable performance improvement can be achieved by decreasing the sensitiv-
ity of vision-based algorithms to noisy input images, rather than denoising these images,
through the process of de-raining. To test this hypothesis, the performance of state-of-
the-art object detection and semantic segmentation models was evaluated, with de-rained
image datasets used as input, and compared it to that performance of the same models,
retrained with rained image sets. Results showed that the performance of the retrained
models was better than that of the baseline detector with de-rained images used as input.

when applied to image sets containing adherent raindrops. Test
results showed the drop in performance of the tested object

Automotive systems including vision-based applications are
highly regulated and are required to meet high performance and
safety standards. This means that these systems must operate
under all conditions, favourable or adverse. The quality of the
system inputs has a direct impact on its performance, in the
sense that noisy inputs result in degradation in system perfor-
mance.

Two approaches are usually implemented to reduce the effect
of noisy inputs on system performance, denoising the inputs,
or reducing system sensitivity to noise. Filtering analogue sig-
nals and debouncing digital ones are two examples of common
input signal denoising techniques. Predictive modelling and sen-
sor fusion are system design techniques that lead to reduced sys-
tem sensitivity to noisy inputs.

Rain is a type of adverse weather condition that degrades the
quality of images and the performance of vision-based algo-
rithms that consume them. In a previous research work [1], we
showed that the performance of state-of-the-art object detec-
tors (including YOLOv3, RCNN, and SSD) greatly degrades

detectors was as high as 77%, as measured by the total number
of objects detected and the recall metric [1].

Most of the research work (see, for example, [2—4]) is focused
on image restoration of rained images, by applying a de-raining
process on them. As we have shown in our survey paper on
adherent raindrop removal techniques [5], none of the reviewed
de-raining algorithms could perfectly restore the rained images
to resemble the clear ones. The improvements in deep-learning
and convolution neural networks (CNN) opened the door for
a new set of de-raining techniques that, generally, achieved
better performance levels compared with classical machine
learning algorithms. Classical de-raining techniques use some
set of features, such as raindrop shape, size, intensity, chro-
matic, and optical properties, to create the raindrop detection
model [6, 7].

CNN models, require large sets of data for training. For
de-raining algorithms, an accurate mask of raindrops is
needed to train the CNN model. This requires a large set of
matched clear and rained images to generate such a mask.
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TABLE 1

approaches f()r 1mprov1ng vision systern perf()rmance

Differences between input denoising and network retraining

Performance boost  De-raining of input Retraining model with

approach images rained images

Comparison points

Training type Training from scratch Transfer learning

Training dataset size ~ Large Relatively small

Input type (Clear, Rained) pair dataset  (Clear, Rained) pair

plus raindrop mask dataset
and/or structure or

texture maps

Objects of interest Natural raindrops with Man-made objects with

weak borders and strong boundaries and
variable shapes, sizes, uniform shapes (e.g,
and orientations Vehicles, traffic signs,

road marks)

Constructing such a dataset of paired images is not an easy task,
due to the unpredictability of rain and the background objects,
and due to the variations of the raindrop sizes, shapes, and
orientations.

We propose a different approach to improving vision-
based system performance under rainy conditions. Rather than
denoising (de-raining) the input images, we propose to reduce
the system’s sensitivity to noisy inputs. This can be achieved by
retraining models that are already trained with clear image sets,
with matching sets of rained images. This approach eliminates
the need for developing and training the de-raining network.
Furthermore, retraining networks designed for common auto-
motive vision applications (e.g, traffic sign recognition, object
detection, lane detection) is efficient and fast, since it employs
transfer learning, whereas training a de-raining network may
need to be done from scratch.! Table 1 shows some differences
between the input denoising approach and the network retrain-
ing one.

To test our hypothesis, we trained state-of-the-art object
detector and semantic segmentation models with a clear image
set, then retrained it with generated raindrops dataset. A com-
parison of the models’ performance with clear, rained, and de-
rained images showed that the retraining approach showed bet-
ter performance improvement than the de-raining approach.
Our contributions can be summarized as follows.

* We are proposing and demonstrating the feasibility of
transfer-learning and relearning methods as an alternative
means of improving DNN vision models against degrada-
tions caused by the presence of adherent raindrops in the
input images.

* We are demonstrating the limitations of a state-of-the-art
de-raining process on rained images. In particular, we are
demonstrating that the target vision models that are repre-

!'In practice, system developers employ both input denoising and system desensitizing to
outside noise, in order to achieve optimal system robustness. We studied the two approaches
separately, since our goal is to evaluate their individual contribution to the robustness of
vision-based systems, and compare these contributions quantitatively.

sented by object detection and image segmentation DNN
models are prone to degradation under the state-of-the-art
de-raining process.

* As an alternative to the limitations of the state-of-the-art
method for de-raining, we are synthesizing proper raindrops
as the training sets for object detection and image segmenta-
tion DNN models.

The remainder of this paper is arranged as follows. Section 2
is a summary of some research work related to ours. In Sec-
tion 3, we describe the data collection process, and in Section 4
we describe the model training process and the test cases we
have developed for our research work. Section 5 is a summary
of the test results with a detailed analysis. The research conclu-
sion and a discussion of future work are presented in Section 6.

2 | RELATED WORK

In this section, we provide an overview of some of the recent
DNN-based models, which represent the state-of-the-art in the
de-raining algorithms. To the best of our knowledge, model
retraining and transfer-learning were not presented in any pub-
lished work, as a viable alternative to the de-raining process,
to improve overall vision-based system performance. Retrain-
ing and transfer learning were proposed as a viable solution to
DNN models for other applications, as we will describe in this
section.

Qian et al. [8] developed an adherent rain de-raining model,
based on the generative adversarial network (GAN) archi-
tecture. To prove the usefulness of their model for vision-
based applications, they used the Google Vision API (https:
//cloud.google.com/vision/) to test if the de-rained output of
their model provided any improvement on the object recog-
nition performance. The results showed an average of 10%
performance improvement over the same tests done with
rained images. The use of Google Vision API provides an
independent validation method for the applicability and use-
fulness of the de-raining approach in vision-based applica-
tions. One drawback was that for smaller objects, such as
fences and cottages, the recognition algorithm performed worse
with the de-rained image set, as compared to the rained
one.

Peng et al. [9] developed a de-raining model based on the
encoder-decoder architecture. The Google Vision API, like
Qian et al. [8], to evaluate the usefulness of the de-rained
images that were synthesized by their model for real vision-
based applications. The results showed that their images per-
formed better with the Google Vision API as compared to
Qian’s reported test results. It was not clear from their paper,
however, if they had encountered the same degradation in per-
formance on small objects, as what had been reported by Qian
etal. [8].

Alletto et al. [10] developed a self-supervised de-raining
model, based on the GAN architecture with Spatio-temporal
augmentations. To test their model’s visual and temporal
consistency, they used the I3D network [11] as the inception
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network, and calculated the “Fréchet Inception Distance”
(FID) [12], for clear versus de-rained video sequences. Test
results showed that the FID score for their model was smaller
(better) than that of Qian et al. [8], and Wang et al. [13] models.
The FID is a good indicator of the similarity of the statistics
of synthetic (de-rained) images to real (clear) ones. The main
drawback of this process was that, like Qian et al. [8], the rained
data set used for training and testing was not of real adherent
raindrops but rather of images with synthetic raindrops, created
by spraying water of a tilted glass surface. As we will show in
out experiments, the quality of de-rained images from our true
rain dataset using the model by Alletto et al. [10] was lower than
the quality scores they reported using their synthetic raindrop
dataset.

Talukdar et al. [14] trained TensorFlow implementation of
some state-of-the-art object detectors, including SSD, Faster-
RCNN, and R-FCN using synthetic images of packed food
products in a refrigerator. They developed different datasets
and retrained the detectors using these datasets. Using preci-
sion, recall and mean average precision (mAP) as performance
evaluation metrics, they concluded that the selection of retrain-
ing datasets was of great importance in the successful transfer-
learning from the original to the desired models. A dataset thatis
balanced in terms of scene diversity, variance, and noise is desit-
able for transfer learning, Our image datasets were extracted
from video recordings of different drive cycles on highways and
local roads. These datasets were naturally balanced in terms of
noise and the variety of objects commonly encountered on the
road.

Nguyen et al. [15] used transfer learning to solve the problem
of the lack of large facial expression datasets. Their approach
was based on transfer learning and proved successful in trans-
ferring the emotional facial expression from one dataset to
another, without discarding prior learned information. In our
work, the retrained models with rained images also retained the
prior learned information from the baseline models that were
trained with rain-free images and even showed some improved
performance when tested with the same rain-free images.

Tabik et al. [16] used the MNIST handwritten digits classifi-
cation problem as a case study to evaluate the effect of data pre-
processing on the accuracy and training speeds of three CNN
models, LeNet, Network3, and DropConnect. They applied
a combination of different preprocessing techniques, includ-
ing centring, elastic deformation, translation, rotation, crop-
ping, and resizing, They reported an average of 0.74% accuracy
improvements of networks trained with preprocessed datasets
versus the original non-preprocessed ones.

Nemade et al. [17] studied the effect of geometric trans-
formation on the annotation performance of various CNNs
such as Alexnet, GoogleNet, ResNet50, and DenseNet201 on
the Corel dataset. Different preprocessing techniques were
investigated including cropping, horizontal flipping, vertical
flipping, rotation by 45°, rotaton by 90°, and rotaton by
180°. Results showed that the contribution of data prepro-
cessing to the enhancement of network performance was
related to the network structure and the type of classes in the
dataset. The ResNet50 model, for example, was more pow-

erful for cropping, vertical flipping, and rotation 180° opera-
tions versus the rest of preprocessing operations. The classi-
fication of the “Cat” class benefited most from the rotation
by 90°, using the ResNet50 network. In general, DenseNet201
outperformed other models, when trained with preprocessed
datasets.

MATLAB provides a slew of data preprocessing functions
that can be used in machine learning and deep-convolutional
learning applications [18]. In our work, we used some prepro-
cessing operations on the training datasets that included crop-
ping, rotation, flipping, and intensity remapping, as described in
the data preprocessing section of this paper.

3 | DATA COLLECTION AND DATA
PREPROCESSING

We used different datasets for training and testing the object
detection network and for training and testing the image seman-
tic segmentation network. Figure 1 depicts the main process
steps for data collection and generation.

3.1 | Data preprocessing

We employed the following image preprocessing techniques to
prepate raw images for utilization in the training and testing of
the models.

3.1.1 | Image cropping

Due to the utilized method of onboard camera attachment, the
captured images included a part of the trunk of the ego vehicle.
This image section occupied the lower 20% section of the image
and carried no useful information. We used image cropping to
eliminate the trunk section from the captured images.

We also used image cropping to select a Region of Interest
(ROI) from the rained imagers that were used as inputs to the
de-raining algorithm. The ROI was selected as a 500 X 500 pixel
area from the centre of the original images. This size provided
optimal de-raining results. We selected through image cropping
the same ROI from the rain-free images that matched the rained
ones, to be used for performance compatison analysis.

3.1.2 | Image intensity adjustments

The KITTI dataset included images captured under clear
weather conditions. We used intensity adjustment to add an
overcast effect to synthesized rained image datasets that used
the KITTI datasets as their baselines. To create the over-
cast effect, the intensity range of each baseline image was
remapped into a tighter intensity range around its average inten-
sity. This has the effects of lowering overall image intensity,
and reducing the image colour content, producing a less vivid
image.
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FIGURE 1

Process flows for generation of training and testing datasets for the object detection and semantic segmentation models (a) Process flow for

creating image datasets for object detection models training and testing. (b) Process flow for creating image datasets for semantic image segmentation models

training and testing

3.1.3 | Dataset augmentation techniques

As part of the model training process, we enabled the automatic
augmentation in the two models which allowed for the appli-
cation of arbitrary image preprocessing techniques, including
the cropping, rotating, flipping, and resizing of original images
from the training datasets. This is a widely used process in DNN
model training since it allows for increasing the size of the train-
ing dataset, without adding actual new training samples.

3.2 | Object detection datasets

We used the 2d “Object Detection Evaluation” from the
KITTI Vision Benchmark Suite [19] to train the baseline Yolo3
for detecting objects under rain-free conditions. We used this
dataset with labelled objects for the training and testing tasks.
This dataset consisted of 7482 colour images of different drive-
cycles and showed objects commonly encountered on the road.

We modified the format of the label text files to be compat-
ible with MathWorks’s deep-learning object label format. The
five object classes we chose for the baseline were ‘Pedestrian’,
“Truck’, ‘Cat’, ‘Cyclist’, and “Van’.

We collected our own dataset of paired clear and rained
images, captured under different driving and weather condi-
tions. We used the (ELP-960P2CAM-V90-VC) dual-lens steteo
camera that was positioned approximately 10 cm away from the
windshield. The windshield wiping event was used as a trig-
ger to capture rained and clear image pairs where the frame
before the wipe event was captured as the rained image and
the frame after it as the clear image. We selected 1162 images
with the maximum number of objects per image to construct
the ‘Clear_Objects’ and the ‘RealRain_Objects’ datasets. The
‘GeneratedRain_Objects’ was constructed by adding generated
raindrops to the ‘Clear_Objects’ dataset, using our previously-
developed raindrop simulation model [20]. We chose ‘Pedes-
trian’, “Truck’, ‘Car’, and ‘None’ as the classes for the retrained
Yolo3 model, and used MATLAB’s ‘Image Labelet’ app to label
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FIGURE 2

Image samples from the different datasets we used in our research work. The KITTI dataset was captured under clear weather conditions, whereas

our dataset was captured under rainy conditions. (a) KITTT object dataset (b) Our dataset—Clear (c) Our dataset—Rained (d) Our dataset—De-rained

objects in the datasets. The new classes were intentionally dif-
ferent from the ones used in the baseline model. In transfer
learning, the new model is retrained to detect different classes
of objects than the ones the baseline model is trained to detect.

We applied a state-of-the-art de-raining algorithm developed
by Quan et al. [21, 22] on the ‘RealRain_Objects’ dataset, to cre-
ate the ‘Derained_Objects’ dataset. Figure 2 shows image sam-
ples from the different datasets we used in the object detection
training and testing.

There are other publicly available implementations of other
DNN:-based algorithms, including the implementation of Qian
etal. [8, 23], and Yasarla and Patel [24, 25]. We chose Quan et al.
[22] implementation” since, first, it was an improvement over
Qian’s algorithm for image de-raining, given that Qian’s algo-
rithm [8] is becoming the new standard of adherent raindrop
deraining, Quin et al. also reported de-raining results that sur-
passed other DNN-based algorithms, including Eigen et al. [4]
and Isola et al. [26]. Yasatl and Patel’s algorithm was developed
for de-raining of falling rain streaks from images. As shown by
Peng et al. [9], these rain streak removal algorithms do not yield
satisfactory results compared to the ones designed for adherent
raindrop removal, even when they retrained those algorithms on
the same adherent raindrop datasets’.

2To avoid any issue that may stem from inaccurate implementation the de-raining algorithm
Proposed by Quan et al. [21], we used their implementation of that algorithm [22] with no
modifications.

3 The falling rain streaks and adherent raindrops are two different problems in terms of
type of degradation they cause to input images. The characteristics (features) of rain streaks

3.3 | Image segmentation datasets

For the image segmentation, we used the “Semantic and
Instance Segmentation Evaluation” dataset from the KITTI
Vision Benchmark Suite [19], to train the baseline image seg-
mentation network. The dataset consists of 200 images of street
scenes, taken under clear weather conditions. Pixel-level colour
and grey-scale segmented images and instance-level segmented
images are also included in the dataset. We grouped the 35
segmentation labels that the KITTT dataset provided, into six
labels, ‘Sky’, “Vehicle’, ‘Person’, ‘Background’, ‘Road’, and ‘Unla-
belled’ to construct the ‘KITTI_Segmentation’ dataset. We used
the clear images and the colour pixel-level segmented images to
train the baseline segmentation model. For the retraining pro-
cess, we used our raindrop simulator model to add generated
rain at different intensity levels to the ‘KITTI_Segmentation’
dataset and created the ‘GeneratedRain_Segmentation_Train’
and ‘GeneratedRain_Segmentation_Test’ datasets. Structural
Similarity Index (SSIM) was used as an indicator of the rain
intensity for each image in the datasets. A smaller SSIM score
indicates more raindrop content in an image and vice versa.
An overcast effect was added to simulate real rain lighting con-
ditions, as follows. The colour image was first split into its
red, green, and blue channels. The mean intensity for each
colour channel was then calculated, and the pixel intensities

and adherent raindrops which the DNN system uses for learning are also different. it is
not surprising based on the above that retraining a rain streak removal DNN on adherent
raindrop datasets does not yield satisfactory results.
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FIGURE 3

Datasets used for training and testing the image segmentation network. KITTT semantic and instance segmentation evaluation dataset, (a) and (b)

are used to train the baseline segmentation network. We added an overcast effect and generated rain to the image sets in (c) and (d) to train and test the segmentation

network under rainy conditions. (a) KITTT clear image DataSet (b) Colour pixel-level segmented image (c) Training image dataset with low-medium raindrops

content (d) Testing image dataset, with high raindrops content

were remapped into a tighter intensity range around the mean
intensity. This effectively reduced the colour content for each
channel, a natural consequence of reduced illumination under
overcast conditions. The final recombined image looked darker
and less colourful than the rain-free one.

Figure 3 shows examples of the image datasets we used to
train and test the segmentation network.

Table 2 shows a summary of the datasets we used in the
object detection and image segmentation networks.

4 | MODELS TRAINING PROCESS AND
TESTING

In this section, we will describe the training process and test
cases we conducted for the object detection and semantic image
segmentation models.

4.1 | The object detection model

41.1 | Baseline model setup and training

We used MathWorks’s Yolov3 object detector example [27] as
our starting model. The detector was based on SqueezeNet [28]
Deep Neural Network (DNN with a relatively small architecture
That allowed us to conduct all our training and testing on a desk-
top with outdated specifications (AMD FX-8350 with 16 GB of
DDR3 RAM and an Nvidia 1050Ti GPU). Figure 4 shows the
training stages and datasets used in each stage for the YOLOv3
object detector model.

The training process is described below.

412 |

detector

Train the automotive-specific object

We trained the starting model using the “KITTI_Objects”
dataset, split as 70% training and 30% testing to establish an
automotive-specific object detector. The number of epochs was
set to 200, with 2 minimum batch size of 8 and a maximum

TABLE 2

A list of the datasets used in our research for training and

testing the object detection and segmentation networks

Set ID

Usage

KITTI_Objects

Clear_Objects

GeneratedRain_Objects

RealRain_Objects

Derained_Objects

KITTI_Segmentation

GeneratedRain_Segmentation_Train

GeneratedRain_Segmentation_Test

Derained_Segmentation

Train the baseline detector using the
KITTT dataset

Retrain the baseline detector using
our rain-free dataset

Retrain the baseline detector using
our generated rain dataset

Test the baseline and retrained
detector under real-rain
conditions

Test the baseline detector using
de-rained.

Train the baseline segmentation
model using the KITTI dataset

Retrain the baseline segmentation
model using the generated-rain
dataset

Test the retrain segmentation model
using the generated-rain dataset

Test the baseline segmentation
model using de-rained images
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“Clear_Objects”
(Real Clear Image
Datasets)
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FIGURE 4 A flow diagram showing the different YOLOv3 model training stages and the training dataset used in each stage

learning rate of 0.001. We used image augmentation to increase
input dataset size, without adding more images to the training
dataset. We used six anchors to improve image object fitting,

Two common metrics used to evaluate the detection perfor-
mance are the average precision (AP) and log-average miss rate
(LAMR). The AP is calculated as the area under the curve the
Precision-to-Recall curve. Similarly, the LAMR is calculated as
the area under the curves representing the mapping between
Miss Rate (MR) and False Positive Per Image (FFPI) metrics. We
used MATLAB’s “evaluateDetectionPrecision” function to cal-
culate the AP score, and the “evaluateDetectionMissRate” func-
tion to calculate the LAMR score. Table 3 shows the statistical
results of testing the resultant object detector using the remain-
ing 30% of the “KITTI_Objects” dataset. Figure 5 shows an
example image from the test dataset with detected objects anno-
tated.

4.1.3 | Train the rain-free object detector

In this stage, we used the “Clear_Objects” dataset to retrain the
Yolov3 network from the previous stage, to detect three differ-
ent object classes, Pedestrian’, “Truck’ and ‘Car’. We retrained

TABLE 3
calculated for the five object classes in the automotive-domain object detector.

The average precision and log-average miss rate scores, as

Larger average precision scores and smaller log-average miss rate scores are
desirable for better detection performance

Object class AP LAMR
Pedestrian 0.59 0.45
Truck 0.90 0.08
Car 0.81 0.37
Cyclist 0.64 0.34
Van 0.81 0.19

the object detector with very little change to the actual DNN
structure. Since the dataset size in this stage is smaller than the
one used in the previous stage, we increased the number of
epochs to but we kept all other training parameters the same. We
then tested the retrained detector using the “RealRain_Objects”
dataset, to evaluate the amount of performance degradation due
to the presence of raindrops. We also tested the retrained object
detector on the “Derained_Objects” dataset, to evaluate if there
were any performance improvements using de-rained images
versus rained ones. Figure 6 shows the process flows for eval-
uating the Clear Weather object detector model from this stage
using rain-free, real rained, and de-rained image datasets.

As expected, the detection performance of the detector
retrained with the rain-free dataset degraded considerably, when
tested using the rained image dataset. This is indicated in both
decreased AP scores and increased LAMR scores for all three
object classes. In addition, the performance of the retrained
detector was worse with the de-rained dataset than with the orig-
inal rained one. Table 4 shows a summary of the AP and LAMR
performance metrics for the three object classes using rain-free,
rained, and de-rained images. Figure 7 shows an example image
of object detection at this stage.

4.1.4 | Train the rained object detector

For this stage, we used the “GeneratedRain_Objects” dataset
to retrain the YOLOV3 object detector that we had trained in
the previous stage. We then tested the retrained detector using
the “RealRain_Objects” real rainy image set. Table 5 shows the
AP and LAMR performance metrics for the three object classes
under rained conditions. The detection performances for the
‘Car’ and ‘Truck’ classes were on-bar with those obtained with
the detector from the previous stage that was trained with a
Rain-free image dataset. Retraining the detector model with sim-
ulated rained images allowed it to overcome the raindrop-related



1464 HAMZEH ET AL.

FIGURE 5 An example of the output of the Yolov3 detector that was trained in stage 1. The objects are identified with a bounding box, with a class tag and
detection confidence level shown for each object

“Clear_Objects” 8
(Real Clear Image )
Datasets) Q
Q Performance of
Q < Clear-Weather
Clear Weather Object Detector
YOLOv3 Model Compare with Clear Versus
Rained Images
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@)
“RealRain_Objects” O
(Real Rained Image O
Dataset. -
_ o
®,
Clear Weather
YOLOv3 Model
(a
“Clear. E%
(Real Clear image > 3
Datasets) =
Q Performance of
o Clear-Weather
Clear Weather C:b'l'ecl:,t Detector
Com wit lear Versus
YOLOv3 Model D Ry 2
Dataset
O
O
)
.
C
Y
Clear Weather
YOLOv3 Model
(3)

FIGURE 6 Comparing the performance of clear weather object detectors with rain-free, rained, and de-rained image datasets. (a) Process flow for comparing
the performance of the clear weather object detection model with rain-free and rained image inputs (b) Process flow for comparing the performance of the clear
weather object detection model with rain-free and de-rained image inputs

TABLE 4  The average precision and log-average miss rate scores, as calculated for the three object classes in the rain-free object detector. As shown in the
table, there is a big degradation in detection performance when using rained images, and an even larger degradation when de-rained images are used

Rain-free Rained De-rained

AP LAMR AP LAMR AP LAMR
Car 0.92 0.09 0.36 0.63 0.18 .81
Truck 0.94 0.11 0.73 0.46 0.57 0.65

Pedestrian 0.64 0.36 0 1 0 1
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TABLE 6 The average precision and log-average miss rate scores, as
calculated for the three object classes in the rained object detector
Object class AP LAMR
Car 0.92 0.09
Truck 0.94 0.11
Pedestrian 0.64 0.36

FIGURE 7
trained in stage 2 using clear, rained, and de-rained datasets. The objects ate

An example of the output of the Yolov3 detector that was

identified with a bounding box, with a class tag and detection confidence level
shown for each object. Not much rain content was removed by the de-raining
algorithm and no detection performance improvement in the de-rained image
compated to the rained one. (a) Object detection on a clear image (b) Object
detection on rained image (c) Object detection on de-rained image

TABLE 5
calculated for the three object classes in the rained object detector

The average precision and log-average miss rate scores, as

Object class AP LAMR
Car 0.91 0.06
Truck 0.95 0.08
Pedestrian 0 1

image degradation, and perform at levels comparable to those
under rain-free conditions. The detection performance for the
Pedestrian class is still very low (AP = 0, LAMR = 1). This is
because there are much fewer instances of Pedestrians in the
dataset than cars and trucks.

The AP metric is calculated as the area under the curve that
represents the precision-to-recall relation. Similarly, the LAMR
is calculated as the area under the curves that represent the map-
ping between miss rate (MR) and false positive per image (FFPT)
metrics. This type of calculation is useful since it represents the
entire curve (precision/recall or MR/FPPI) by a single refer-
ence [29]. It does seem, however, to penalize classes with low-

occurring instances in the form of very low AP and very high
LAMR scores.

To verify that the retrained detector with simulated rain
retained the information learned by the original rain-free-
trained detector model, we tested its performance with the rain-
free “Clear_Objects “dataset. The results shown in Table 6 are
identical to those shown in Table 4 for the rain-free dataset,
which proves that the retrained model has retained the infor-
mation it has learned from the original model.

Figure 8 shows the process flow for comparing the perfor-
mance of the Clear and Rainy object detection model (trained in
this stage), using real rained (a) and rain-free (b) image datasets.

4.2 | Theimage segmentation model

421 | Baseline model setup and training

We used MathWorks’s semantic segmentation example [30] as
our starting model. The example describes the process to train
Deeplab v3+ [31]. Figure 9 shows the process flow for training
the semantic segmentation model.

To create a baseline segmentation model for the automo-
tive domain applications, we train the Deeplab v3+ with the
“KITTI_Segmentation” dataset. We split the dataset as 75%
training, 10% validation, and 15% testing, and set the maxi-
mum epochs to 300 and the minimum batch size to 8. The
initial learning rate was set to 0.001 and was reduced after
each concluded epoch. Data augmentation is used to increase
the “effective” training dataset size without adding more
images.

As a common solution to mismatched representations of seg-
mentation classes in the training dataset, where some classes
were represented more often than others, the training weights
were adjusted to be inversely proportional to the frequency of
occurrence of any given class. The output of this stage is the
Baseline_Segmentation_DNN model which we tested using the
test part of “KITTI_Segmentation”.

We used the Intersection over Union (IoU), Accuracy, and
MeanBFScore quality metrics to evaluate the quality of segmen-
tation provided by the model. Accuracy is the ratio of correctly
classified pixels in each class to the total actual pixel in that class.
Using the true positive (ITP), and false negative (FN) numbers,
Accuracy can be given as,

1P
Acenracy = TPTIN )
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FIGURE 8  Testing the detection models with real rained and rain-free images, (a) to verify detection performance boost, and (b) the retention of previously
learned detection knowledge. (a) Process flow for comparing the performance of the clear weather versus clear and rainy object detection models with real rained
image inputs (b) Process flow for comparing the performance of the clear weather versus clear and rainy object detection models with rain-free image inputs
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FIGURE 9  The process for training the rained semantic segmentation model. Starting with a pretrained DeepLapv3+ network, we train the model on a dataset
that is more specific to automotive domain applications. We then retrain the segmentation model with simulated-rain images, to improve system robustness to
rain-induced image degradation
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TABLE 7
metrics are shown for the classes that are identifiable by the baseline model

The accuracy, IoU, and MeanBFScore segmentation quality

across all images in the rain-free test dataset

Mean BF
Metric Accuracy IoU Score
Label
Unlabelled 0.724 0.266 0.417
Sky 0.983 0.964 0.929
Vehicle 0.967 0.828 0.837
Person 0.328 0.153 0.400
Background 0.940 0.924 0.923
Road 0.958 0.923 0.868
Nommalized Confusion Matrix (%)
unlabeled 6 2498 5242 0.4395 18.15 1312 90
80
sky | 1264 98 0.02381 0 0.3158 | 0.05713 7
@\ 60
4 vehicle | 0.6306 |0.004781 8 0.2595 1412 1011
o 150
o
S peson| 2088 | o | 1187 | @27 | 2522 | 9563 40
30
background | 2323 0373 1.198 | 0.06066 JEEZXY 2038
20
road | 0533 | 0.03487 | 1487 0.0944 2011 95.8 10
0
oS 3 O o S S
\;0\""’6\ ¥ & 0°‘$° \@‘&0 &
Predicted Class
FIGURE 10 The confusion matrix shows the percentage of correct and

incorrect segmentation of all classes supported by the segmentation model.
The diagonal cells represent the percentage of correct class segmentation, and
the off-diagonal cells represent the percentage of incorrect segmentation of the
pixels of a given class as belonging to another class

“IoU for a given class can be given using TP, FN, and False
Positive (FP) numbers as,

U = oo @

MeanBFScore is a measure of the mean Boundary F1 (BF)
which indicates how well aligned the predicted boundary of a
given class is aligned with the actual boundary of that class.

The MATLAB function “evaluateSemanticSegmentation”
can be used to calculate these three metrics in image segmen-
tation applications. Table 7 shows a summary of model perfor-
mance using the above-described metrics. The table shows that
the segmentation model performed well for all classes, except
the “person” class because this class was much smaller in terms
of pixels count than the others, which made it more sensitive
to any mismatches between the predicted and actual segmenta-
tion. The confusion matrix in Figure 10 shows a high rate of

TABLE 8
the rained image set

Segmentation quality of the baseline model when tested with

Mean BF
Accuracy IoU Score
Sky 0.840 0.809 0.740
Vehicle 0.750 0.463 0.482
Person 0.075 0.046 0.060
Background 0.920 0.813 0.825
Road 0.812 0.772 0.677
Nommalized Confusion Matrix (%)
90
unlabeled | 10.02 6.187 11.75 | 0.08018 2574
80
sky | 0.5418 84.58 0.6237 0 14.26 |0.001335 70
60
g vehicle | 2.06 0251 0 0.1219 17.89 4675
o 50
Qo
2 40
= person | 11.72 0 39.82
30
background | 1.121 0.7351 3872 20
road | 0.7087 | 0.0601 | 6613 1
0
& 3 O®
\,‘\\a‘d?’\ S
Predicted Class
FIGURE 11 The confusion matrix shows a drop in the correct

segmentation percentage and an increase in incorrect segmentation percentage
across all classes

correct segmentation per class (diagonal cells) versus a low rate
of incorrect classifications (off-diagonal cells).

422 | 'Testing the baseline_segmentation_ DNN
model with rained and de-rained datasets

To evaluate the effect of rain on the semantic segmentation
process, we tested the Baseline_Segmentation. DNN model
using the “GeneratedRain_Segmentation_Test” dataset. Table 8
shows noticeable degradations in segmentation quality for the
rained dataset compated to the rain-free one. The confusion
matrix in Figure 11 shows that for the rained dataset, the cor-
rect segmentation percentage is still larger than the incorrect
one, except for the “person” class. We also observe that the
highest segmentation mismatch occurred in the “background”
class. Unlike the other classes, the “background” class was
made of many small and disconnected segments that were
adjacent to other class segments in the image. This caused
the segmentation model to misclassify objects to be of the
“background” class more often than the other segmentation
classes.

We then tested the model wusing the “Derained_
Segmentation”. Table 9 shows a noticeable degradation in
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TABLE 9
the rain-free (baseline) segmentation model with the de-rained dataset than that

The segmentation quality metrics show lower performance of

under rained dataset. Performance drop was highest for “sky” and “vehicle”
classes and the least drop was observed for the “road” class

TABLE 10
retrained segmentation model performs on the rained dataset at levels

The segmentation performance metrics show that the

comparable to the performance of the rain-free segmentation model that is
tested with the clear dataset

Mean BF Mean BF

Metric Accuracy IoU Score Metric Accuracy IoU Score
Label Label

Sky 0.374 0.244 0.419 Sky 0.963 0.871 0.812
Vehicle 0.215 0.105 0.242 Vehicle 0.781 0.546 0.572
Person 0.000 0.000 0.002 Person 0.391 0.149 0.150
Background 0.701 0.525 0.687 Background 0.896 0.840 0.845
Road 0.714 0.570 0.598 Road 0.896 0.840 0.763

TABLE 11  Testing the retrained rained segmentation model shows no

Nommalized Confusion Matrix (%)

70
unlabeled | 4.073 17.74 10.75 | 0.1462
60

sky | 3743 0.8481 0001685
50

@ vehicle| 3869 |00245¢ | 2147 | 0.8281 %

(8]

o

£ peson| 8312 | o | 2186 o 30

20
background | 3.84 11.34 7022 | 0.2294

road | 0.6882 | 0.2239 10.34 | 0.08844
0
e & O° o O el
o> o o o ©
\)0\3 © ° ‘O&Y&
Predicted Class

FIGURE 12  The confusion matrix for class segmentation results shows
that only “background” and “road” classes still show more correct than
incorrect segmentation under de-rained dataset and rain-free segmentation
model mix. It also shows that the “background” class contributed to the most
percentage of incorrect classifications

segmentation quality when using a de-rained dataset over the
original rained one, which was summarized in Table 8 from
the previous stage. The largest drop in segmentation quality is
observed in the “sky” and “vehicle” classes, as indicated by the
quality metrics. The confusion matrix in Figure 12 shows that
only “road” and “background” classes have a higher correct
segmentation percentage than incorrect ones. Another interest-
ing observation is that most incorrect obsetrvations are classified
as “background” class. The same phenomenon was observed
under rain-free and rained segmentation testing which indicates
a possible segmentation bias towards the “background” class,
even though we used the wights reverse-frequency technique in
our design and training.

Figure 13 shows the process flow for evaluating the per-
formance of the clear segmentation model with a clear image
dataset against (a) rained image dataset and (b) de-rained image
dataset.

degradation in performance over the original rain-free segmentation model,
both tested on the same rain-free dataset

Mean BF

Metric Accuracy IoU Score
Label

Sky 0.986 0.949 0.901
Vehicle 0.987 0.834 0.807
Person 0.983 0.339 0.650
Background 0.933 0.926 0.915
Road 0.957 0.928 0.888
4.3 | Retraining the

baseline_segmentation_ DNN

We retrained the Baseline_Segmentation_ DNN model from the
previous steps using the “GeneratedRain_Segmentation_Train”
dataset. The dataset consists of 400 images with low and
medium intensity of generated raindrops added. We split the
dataset 75% training, 10% validation, and 15% testing datasets
and ran the training process for 200 epochs. All other hyper-
parameters we left intact from the previous training process.
As shown in Table 10, there is a big improvement in the seg-
mentation with the rained model compared with the rain-free
model, both tested with real rain image dataset. The confusion
matrix in Figure 14 shows more correct to incorrect segmen-
tation for each class recognizable by the segmentation model.
We retested the retrained segmentation model on the rain-free
dataset, to verify that the retrained model retained the learned
information from the previous model. Comparing the results of
the retrained model in Table 11 to those of the baseline model
in Table 7 shows that the retrained model retained the informa-
tion learned by the baseline model, and even slightly improved
on them.

Figure 15 shows the process flow for comparing the per-
formance of the Clear and Rainy Image Segmentation Models,
using (a) rained and (b) rain-free image datasets.
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FIGURE 13 Comparing the performance of clear
weather image segmentation model with rain-free,
rained, and de-rained image datasets (a) Process flow for
comparing the performance of the clear weather image
segmentation model with rain-free and rained image
inputs (b) Process flow for comparing the performance
of the clear weather image segmentation model with
rain-free and de-rained image inputs
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FIGURE 14  Testing the retrained rained segmentation model with a real
rain dataset shows that A higher percentage of pixels are correctly segmented
for each class than incorrectly segmented

5 | RESULTS DISCUSSION

We trained a YOLOv3 model to detect common objects
encountered in a common drive cycle and tested git using rain-
free, rained, and de-rained image sets. The detector performed
well on rain-free images, but its performance degraded under
rained image set input, as expected.

By analysing the de-raining algorithm that had been devel-
oped by Quan et al. [21], we believe their model was too specific
to the training and testing dataset they had used. This made it

less useful for the real rain datasets we used in our research, due
to the following two factors:

1. Quan’s model used a training dataset that used synthetic rain-
drops for rained images. Real raindrops exhibit more variety
in shape and size than the simple droplets formed by spray-
ing water on a glass surface. This likely made raindrop detec-
tion harder with real raindrops than synthetic ones.

2. The synthetic dataset used in Quan’s model was also taken
under optimal lighting conditions which made it easier for
raindrops to be detected. The overcast in the background of
the real rain dataset, on the other hand, made it harder to
identify raindrops by a human observer. This overcast in the
real rain dataset likely affected the ability to learn raindrops
by the de-raining DNN in [21]

The retrained YOLOvV3 model with a simulated raindrop
dataset showed great improvement of the rain-free object detec-
tot, both tested with the real-rain dataset.

The only class that did not show improved detection with the
retrained rained detector was the “Pedestrian” class. We believe
that two factors contributed to this limitation:

() The size of the objects representing the “Pedestrian” class
were mostly smaller than the other two class objects. This
meant that these objects were more susceptible to the pres-
ence of rain, which usually occluded and distorted all or
most of the pixels representing this class in the image.

(i) The number of occurrences of the “Pedestrian” object in
the dataset we used for training was much smaller than
the other two. We counted 15 “Pedestrian” object instances
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FIGURE 15

Testing the image segmentation models with rained and rain-free images, to verify segmentation performance boost (a), and the retention of

previously learned segmentation knowledge (b). (a) Process flow for comparing the performance of the clear weather versus clear and rainy image segmentation

models with rained image inputs (b) Process flow for comparing the performance of the clear weather versus clear and rainy image segmentation models with

rain-free image inputs

in the whole training dataset, compared to the thousands
of occurrences for the other two classes. Our dataset was
collected on motorways in Michigan and under rainy con-
ditions, so the presence of pedestrians was the exception
rather than the norm.

We also verified that the retrained detector performance did
not degrade under rain-free conditions by retesting the rained
detector with the original rain-free dataset. The retrained rained
model performance was similar to that of the rain-free detec-
tor under the rain-free dataset which made us conclude that the
retrained detector extended the detection capabilities by adding
robustness to system input noise caused by the presence of rain-
drops.

The semantic segmentation test cases provided similar results
to the object detection ones. The rain-free segmentation model
performed well under rain-free conditions, but its performance
degraded when tested with rained image dataset. The degrada-
tion level was not as severe as that observed in the object detec-
tion application. This can be partially attributed to the fact that
in the segmentation model, the classes were much larger than
those in the object detection application, and thus less suscepti-
ble to the presence of raindrops in the input images.

The segmentation model trained on the rain-free dataset per-
formed worse on the de-rained images dataset than on the orig-
inal rained images dataset. The performance of the retrained
image segmentation model showed considerable improvement
in segmenting rained images after the baseline rain-free model
was trained with the simulated raindrops dataset. Retesting the
retrained image segmentation model with the rain-free dataset
showed a performance improvement over the rain-free model.
The performance gain can be partially attributed to retrain-
ing the rain-free model with simulated rained images that
were based on the rain-free ones. We argue that the rained
images acted as a transformed version of the original ones,
even if the transformation caused some level of image quality
degradation. In that sense, the rained images augmented the
original rain-free dataset, and image augmentation is a stan-
dard technique used in the training of the DNN to improve
performance.

The performance degraded even further for the de-rained
image set test, a result we did not expect when we formed
our hypothesis. Our results, however, align with the task-
driven evaluation results reported by Li et al. [32]. Based on
their own tests using different object detection algorithms,
they concluded that “all existing de-raining algorithms will
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deteriorate the detection performance compared to directly
using the rainy image” [32]. They hypothesized that the de-
raining algorithms might need to be optimized to the goal
of object detection. This, however, may require a specific de-
raining solution to the target vision-based application and con-
sequently reduces the useability and generalizability of the de-
raining algorithms. Another study on haze removal done by
Pei et al. [33] showed similar results. They concluded that
“since those deraining algorithms were not trained /optimized
towards the end goal of object detection, they are unnec-
essaty to help this goal, and the deraining process itself
might have lost discriminative, semantically meaningful true
information” [33].

We believe that there may be no de-raining add-on fix to
this problem, in a sense that a general-purpose de-raining algo-
rithm can be plugged into the specific vision system (e.g,, traf-
fic light recognition) that would improve the system perfor-
mance under rainy conditions. We believe it is possible to have a
hybrid solution, employing both de-raining (denoising) of input
images and reducing system sensitivity to raindrops through
re-learning and transfer learning (system desensitization). This
hybrid approach, however, requires further examination of what
important features are removed in the de-raining process, that a
given vision application is looking for, to perform its intended
functionality.

Throughout our research work, we used images with syn-
thetic raindrops added to retrain the baseline models that were
previously trained on rain-free images. This process proved to
be feasible and the retrained models showed a clear perfor-
mance boost when tested with real rained images. The use of a
synthetic dataset solves the problem of requiring large datasets
with rained images for model retraining since the synthetic
datasets (images with added generated raindrops) could be read-
ily generated from the original rain-free image datasets. In addi-
tion, we observed that the retraining required a smaller training
dataset and the model converged faster (fewer epochs), as com-
pared to the original baseline model training. This fact in the
context of retraining DNN models to perform under rainy con-
ditions implies that the retraining dataset does not need to be
as large as the one used for the baseline model training (under
rain-free conditions).

As a final comment on the limitations of our proposed per-
formance enhancement approach through transfer-learning and
relearning, we observed that in some test images with very
heavy rain content, the retrained algorithm failed to detect any
objects in the image. A human observer could not identify
objects in these images with good confidence either. This aligns
with the fact that, except for very special cases, the perfor-
mance of a DNN classifier cannot surpass that of a human
observer. We can generalize this observation to include other
distortion contributors that would cause excessive degradation
to the image quality. Heavy rain content and lack of sufficient
illumination at night time effectively wash off all or most inter-
esting features in an image that the DNN model relies on for
classification.

6 | CONCLUSIONS

We developed models for two common vision applications,
namely object detection, and semantic image segmentation. We
then showed that the robustness of these models to raindrop-
induced image degradation could be enhanced utilizing transfer-
learning, and retraining them on rained image datasets.

We also showed the benefit of using synthetic datasets for
training DNN models. Both our models were trained with syn-
thetic rained datasets that were generated through our rain simu-
lator model and when tested with real rain datasets, showed clear
performance improvements. In addition, the synthetic dataset
seemed to play a secondary role as an image augmenter to
the rain-free dataset which contributed to further performance
improvements under clear rain conditions.

In our experiments, the de-raining process caused more per-
formance degradation to both models, than by using the orig-
inal rained images as input. We, therefore, concluded that de-
raining may not be a viable approach to enhancing vision-
based algorithms’ performance under rainy conditions. Our cur-
rent results lead us to several future different research avenues
including parallelization of the discussed network retraining
approaches and implementation of these algorithms on mobile
GPUs and software-programmable FPGAs. Furthermore, for
future work, we would like to investigate if a hybrid solution,
which is based on relearning an image de-raining model, can
provide us with better solutions, provided that the important
features employed in the target system are not distorted by the
de-raining process. Moreover, to optimize the amount of mem-
ory size for weight storage and reduce the power consumption
in hardware/software-based implementations, we propose as a
next step the quantization of most of the weights into two bits,
by utilizing fixed-point optimization techniques, similar to the
technique described by Shin et al. [34]. Finally, we would like
to study some state-of-the-art de-raining models and identify
which features were altered through the de-raining process, that
caused the performance degradation in the target vision system.
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