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Abstract 
Input images are the main source of information for vision-based algorithms. The presence of 

raindrops in input images degrades their quality and, consequently, reduces the quality of the target 

vision-based algorithm that consumes them.  Many image restoration algorithms were proposed in 

the literature to remove rain presence in images to improve the input image quality. These 

algorithms, however, cannot remove all the raindrop presence and sometimes introduce 

undesirable side-effects, such as the blurring rain-occluded sections of the image and incorrectly de-

raining areas in the image that are clear.  We hypothesize that a comparable performance 

improvement can be achieved by decreasing the sensitivity of vision-based algorithms to noisy input 

images, rather than denoising these images, through the process of de-raining. To test this 

hypothesis, we evaluated the performance of state-of-the-art object detection and semantic 

segmentation models, with de-rained image datasets used as input, and compared it to that 

performance of the same models, retrained with rained image sets. Results showed that the 

performance of the retrained models was better than that of the baseline detector with de-rained 

images used as input.  
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1 Introduction 

Automotive systems including vision-based applications are highly regulated and are required to 

meet high performance and safety standards. This means that these systems must operate under all 

conditions, favorable or adverse. The quality of the system inputs has a direct impact on its 

performance, in the sense that noisy inputs result in degradation in system performance.   
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Two approaches are usually implemented to reduce the effect of noisy inputs on system 

performance, denoising the inputs, or reducing system sensitivity to noise.  Filtering analog signals 

and debouncing digital ones are two examples of common input signal denoising techniques. 

Predictive modeling and sensor fusion are system design techniques that lead to reduced system 

sensitivity to noisy inputs.  

Rain is a type of adverse weather condition that degrades the quality of images and the performance 

of vision-based algorithms that consume them. In a previous research work [1], we showed that the 

performance of state-of-the-art object detectors (including YOLOv3, RCNN, and SSD) greatly 

degrades when applied to image sets containing adherent raindrops. Test results showed the drop in 

performance of the tested object detectors was as high as 77%, as measured by the total number of 

objects detected and the recall metric [1].  

Most of the research work (see, for example, [2, 3, 4]) is focused on image restoration of rained 

images, by applying a de-raining process on them. As we have shown in our survey paper on 

adherent raindrop removal techniques [5] , none of the reviewed de-raining algorithms could 

perfectly restore the rained images to resemble the clear ones. The improvements in deep-learning 

and convolution neural networks (CNN) opened the door for a new set of de-raining techniques that, 

generally, achieved better performance levels compared with classical machine learning algorithms. 

Classical de-raining techniques use some set of features, such as raindrop shape, size, intensity, 

chromatic, and optical properties, to create the raindrop detection model [6, 7]. 

CNN models, require large sets of data for training. For de-raining algorithms, an accurate mask of 

raindrops is needed to train the CNN model. This requires a large set of matched clear and rained 

images to generate such a mask. Constructing such a dataset of paired images is not an easy task, 

due to the unpredictability of rain and the background objects, and due to the variations of the 

raindrop sizes, shapes, and orientations.  

We propose a different approach to improving vision-based system performance under rainy 

conditions. Rather than denoising (de-raining) the input images, we propose to reduce the system’s 

sensitivity to noisy inputs. This can be achieved by retraining models that are already trained with 

clear image sets, with matching sets of rained images. This approach eliminates the need for 

developing and training the de-raining network. Furthermore, retraining networks designed for 

common automotive vision applications (e.g., traffic sign recognition, object detection, lane 

detection) is efficient and fast, since it employs transfer learning, whereas training a de-raining 

network may need to be done from scratch.1 Table 1 shows some differences between the input 

denoising approach and the network retraining one. 

                                                           

1
 In practice, system developers employ both input denoising and system desensitizing to outside noise, in 

order to achieve optimal system robustness. We studied the two approaches separately, since our goal is to 
evaluate their individual contribution to the robustness of vision-based systems, and compare these 
contributions quantitatively. 
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Table 1: differences between input denoising and network retraining approaches for improving vision system 
performance 

Performance boost approach De-raining of input images Retraining model with rained 

images 
Comparison points 

Training type Training from scratch  Transfer learning  

Training dataset size Large Relatively small  

Input type (Clear, Rained) pair dataset 

plus raindrop mask and/or 

structure or texture maps  

(Clear, Rained) pair dataset 

Objects of interest Natural raindrops with weak 

borders and variable shapes, 

sizes, and orientations 

Man-made objects with 

strong boundaries and 

uniform shapes (e.g., 

Vehicles, traffic signs, road 

marks) 

 

To test our hypothesis, we trained state-of-the-art object detector and semantic segmentation 

models with a clear image set, then retrained it with generated raindrops dataset. A comparison of 

the models’ performance with clear, rained, and de-rained images showed that the retraining 

approach showed better performance improvement than the de-raining approach. Our 

contributions can be summarized as follows.  

- We are proposing and demonstrating the feasibility of transfer-learning and relearning methods as 

an alternative means of improving DNN vision models against degradations caused by the 

presence of adherent raindrops in the input images.  

- We are demonstrating the limitations of a state-of-the-art de-raining process on rained images.  In 

particular, we are demonstrating that the target vision models that are represented by object 

detection and image segmentation DNN models are prone to degradation under the state-of-the-art 

de-raining process. 

- As an alternative to the limitations of the state-of-the-art method for de-raining, we are 

synthesizing proper raindrops as the training sets for object detection and image segmentation DNN 

models. 

The remainder of this paper is arranged as follows. Section 2 is a summary of some research work 

related to ours. In section 3, we describe the data collection process, and in section 4 we describe 

the model training process and the test cases we have developed for our research work. Section 5 is 

a summary of the test results with a detailed analysis.  The research conclusion and a discussion of 

future work are presented in Section 6. 
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2 Related work 

In this section, we provide an overview of some of the recent DNN-based models, which represent 

the state-of-the-art in the de-raining algorithms. To the best of our knowledge, model retraining and 

transfer-learning were not presented in any published work, as a viable alternative to the de-raining 

process, to improve overall vision-based system performance. Retraining and transfer learning were 

proposed as a viable solution to DNN models for other applications, as we will describe in this 

section. 

Qian et al. [8] developed an adherent rain de-raining model, based on the Generative Adversarial 

Network (GAN) architecture. To prove the usefulness of their model for vision-based applications, 

they used the Google Vision API (https://cloud.google.com/vision/) to test if the de-rained output of 

their model provided any improvement on the object recognition performance. The results showed 

an average of 10% performance improvement over the same tests done with rained images. The use 

of Google Vision API provides an independent validation method for the applicability and usefulness 

of the de-raining approach in vision-based applications. One drawback was that for smaller objects, 

such as fences and cottages, the recognition algorithm performed worse with the de-rained image 

set, as compared to the rained one.  

Peng et al. [9] developed a de-raining model based on the encoder-decoder architecture. The Google 

Vision API, like Qian et al. [8], to evaluate the usefulness of the de-rained images that were 

synthesized by their model for real vision-based applications. The results showed that their images 

performed better with the Google Vision API as compared to Qian’s reported test results. It was not 

clear from their paper, however, if they had encountered the same degradation in performance on 

small objects, as what had been reported by Qian et al. [8].  

Alletto et al. [10] developed a self-supervised de-raining model, based on the GAN architecture with 

Spatio-temporal augmentations. To test their model’s visual and temporal consistency, they used 

the I3D network [11] as the inception network, and calculated the "Fréchet Inception Distance" (FID) 

[12], for clear versus de-rained video sequences. Test results showed that the FID score for their 

model was smaller (better) than that of Qian et al. [8], and Wang et al. [13] models. The FID is a good 

indicator of the similarity of the statistics of synthetic (de-rained) images to real (clear) ones. The 

main drawback of this process was that, like Qian et al. [8], the rained data set used for training and 

testing was not of real adherent raindrops but rather of images with synthetic raindrops, created by 

spraying water of a tilted glass surface. As we will show in our experiments, the quality of de-rained 

images from our true rain dataset using the model by Alletto et al. [10] was lower than the quality 

scores they reported using their synthetic raindrop dataset. 

Talukdar et al. [14] trained TensorFlow implementation of some state-of-the-art object 

detectors, including SSD, Faster-RCNN, and R-FCN using synthetic images of packed food 

products in a refrigerator. They developed different datasets and retrained the detectors using 

these datasets. Using Precision, Recall and mean Average Precision (mAP) as performance 

evaluation metrics, they concluded that the selection of retraining datasets was of great 

importance in the successful transfer-learning from the original to the desired models. A 

dataset that is balanced in terms of scene diversity, variance, and noise is desirable for 

transfer learning. Our image datasets were extracted from video recordings of different drive 

https://cloud.google.com/vision/
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cycles on highways and local roads. These datasets were naturally balanced in terms of noise 

and the variety of objects commonly encountered on the road. 

Nguyen et al. [15] used transfer learning to solve the problem of the lack of large facial 

expression datasets. Their approach was based on transfer learning and proved successful in 

transferring the emotional facial expression from one dataset to another, without discarding 

prior learned information. In our work, the retrained models with rained images also retained 

the prior learned information from the baseline models that were trained with rain-free 

images and even showed some improved performance when tested with the same rain-free 

images.     

Tabik et al. [16] used the MNIST handwritten digits classification problem as a case study to evaluate 
the effect of data preprocessing on the accuracy and training speeds of three CNN models, LeNet, 
Network3, and DropConnect. They applied a combination of different preprocessing techniques, 
including centering, elastic deformation, translation, rotation, cropping, and resizing. They reported 
an average of 0.74% accuracy improvements of networks trained with preprocessed datasets versus 
the original non-preprocessed ones.  

Nemade et al. [17] studied the effect of geometric transformation on the annotation performance of 

various CNNs such as Alexnet, GoogleNet, ResNet50, and DenseNet201 on the Corel dataset. 

Different preprocessing techniques were investigated including cropping, horizontal flipping, vertical 

flipping, rotation by 45°, rotation by 90°, and rotation by 180°. Results showed that the contribution 

of data preprocessing to the enhancement of network performance was related to the network 

structure and the type of classes in the dataset. The ResNet50 model, for example, was more 

powerful for cropping, vertical flipping, and rotation 180° operations versus the rest of 

preprocessing operations. The classification of the “Cat” class benefited most from the rotation by 

90°, using the ResNet50 network. In general, DenseNet201 outperformed other models, when 

trained with preprocessed datasets.  

MATLAB provides a slew of data preprocessing functions that can be used in machine learning and 

deep-convolutional learning applications [18].  In our work, we used some preprocessing operations 

on the training datasets that included cropping, rotation, flipping, and intensity remapping, as 

described in the data preprocessing section of this paper.  

3 Data Collection and Data Preprocessing 

We used different datasets for training and testing the object detection network and for training and 

testing the image semantic segmentation network. Figure 1 depicts the main process steps for data 

collection and generation. 
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(a)  Process flow for creating Image datasets for object detection models training and testing 

 

(b) Process flow for creating Image datasets for semantic image segmentation models training and testing 

Figure 1: Process flows for generation of training and testing Datasets for the object detection and semantic 
segmentation models 

3.1 Data Preprocessing 

We employed the following image preprocessing techniques to prepare raw images for utilization in 

the training and testing of the models. 

3.1.1 Image Cropping 

Due to the utilized method of onboard camera attachment, the captured images included a part of 

the trunk of the ego vehicle. This image section occupied the lower 20% section of the image and 

carried no useful information. We used image cropping to eliminate the trunk section from the 

captured images. 
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We also used image cropping to select a Region of Interest (ROI) from the rained imagers that were 

used as inputs to the de-raining algorithm. The ROI was selected as a 500x500 pixel area from the 

center of the original images. This size provided optimal de-raining results. We selected through 

image cropping the same ROI from the rain-free images that matched the rained ones, to be used 

for performance comparison analysis.  

3.1.2 Image Intensity Adjustments 

The KITTI dataset included images captured under clear weather conditions. We used intensity 

adjustment to add an overcast effect to synthesized rained image datasets that used the KITTI 

datasets as their baselines. To create the overcast effect, the intensity range of each baseline image 

was remapped into a tighter intensity range around its average intensity. This has the effects of 

lowering overall image intensity, and reducing the image color content, producing a less vivid image. 

3.1.3 Dataset Augmentation Techniques 

As part of the model training process, we enabled the automatic augmentation in the two models 

which allowed for the application of arbitrary image preprocessing techniques, including the 

cropping, rotating, flipping, and resizing of original images from the training datasets. This is a widely 

used process in DNN model training since it allows for increasing the size of the training dataset, 

without adding actual new training samples.  

3.2 Object Detection Datasets 

We used the 2d “Object Detection Evaluation” from the KITTI Vision Benchmark Suite [19] to train 

the baseline Yolo3 for detecting objects under rain-free conditions. We used this dataset with 

labeled objects for the training and testing tasks. This dataset consisted of 7482 color images of 

different drive-cycles and showed objects commonly encountered on the road.  We modified the 

format of the label text files to be compatible with MathWorks’s deep-learning object label format.  

The five object classes we chose for the baseline were 'Pedestrian', 'Truck', 'Car', 'Cyclist', and 'Van'. 

We collected our own dataset of paired clear and rained images, captured under different driving 

and weather conditions. We used the (ELP-960P2CAM-V90-VC) dual-lens stereo camera that was 

positioned approximately 10 cm away from the windshield. The windshield wiping event was used as 

a trigger to capture rained and clear image pairs where the frame before the wipe event was 

captured as the rained image and the frame after it as the clear image. We selected 1162 images 

with the maximum number of objects per image to construct the ‘Clear_Objects’ and the 

‘RealRain_Objects’ datasets. The ‘GeneratedRain_Objects’ was constructed by adding generated 

raindrops to the ‘Clear_Objects’ dataset, using our previously-developed raindrop simulation model 

[20]. We chose 'Pedestrian', 'Truck', 'Car', and 'None' as the classes for the retrained Yolo3 model, 

and used MATLAB’s ‘Image Labeler’ app to label objects in the datasets.  The new classes were 

intentionally different from the ones used in the baseline model. In transfer learning, the new model 

is retrained to detect different classes of objects than the ones the baseline model is trained to 

detect.  

We applied a state-of-the-art de-raining algorithm developed by Quan et al. [21] [22] on the 

‘RealRain_Objects’ dataset, to create the ‘Derained_Objects’ dataset.  Figure 2 shows image samples 

from the different datasets we used in the object detection training and testing.  
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There are other publically available implementations of other DNN-based algorithms, including the 

implementation of Qian et al [8] [23], and Yasarla and Patel [24] [25]. We chose Quan et al. [22] 

implementation2 since, first, it was an improvement over Qian’s algorithm for image de-raining, 

given that Qian’s algorithm [8] is becoming the new standard of adherent raindrop deraining. Quin 

et al. also reported de-raining results that surpassed other DNN-based algorithms, including Eigen et 

al. [4] and Isola et al. [26]. Yasarl and Patel’s algorithm was developed for de-raining of falling rain 

streaks from images. As shown by Peng et al. [9], these rain streak removal algorithms do not yield 

satisfactory results compared to the ones designed for adherent raindrop removal, even when they 

retrained those algorithms on the same adherent raindrop datasets3. 

 

 

(a)  KITTI Object Dataset (b)  Our Dataset - Clear 

  

(c)  Our Dataset – Rained (d)  Our Dataset – De-rained 

Figure 2: Image samples from the different datasets we used in our research work. The KITTI dataset was captured under 
clear weather conditions, whereas our dataset was captured under rainy conditions. 

                                                           

2 To avoid any issue that may stem from inaccurate implementation the de-raining algorithm Proposed by 

Quan et al. [21], we used their implementation of that algorithm [22] with no modifications. 

3
 The falling rain streaks and adherent raindrops are two different problems in terms of type of degradation 

they cause to input images. The characteristics (features) of rain streaks and adherent raindrops which the 
DNN system uses for learning are also different. it is not surprising based on the above that retraining a rain 
streak removal DNN on adherent raindrop datasets does not yield satisfactory results. 
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3.3 Image Segmentation Datasets 
For the image segmentation, we used the “Semantic and Instance Segmentation Evaluation” dataset 

from the KITTI Vision Benchmark Suite [19], to train the baseline image segmentation network. The 

dataset consists of 200 images of street scenes, taken under clear weather conditions. Pixel-level 

color and gray-scale segmented images and instance-level segmented images are also included in 

the dataset. We grouped the 35 segmentation labels that the KITTI dataset provided, into six labels, 

‘Sky’, ‘Vehicle’, ‘Person’, ‘Background’, ‘Road’, and ‘Unlabeled’ to construct the ‘KITTI_Segmentation’ 

dataset.  We used the clear images and the color pixel-level segmented images to train the baseline 

segmentation model. For the retraining process, we used our raindrop simulator model to add 

generated rain at different intensity levels to the ‘KITTI_Segmentation’ dataset and created the 

‘GeneratedRain_Segmentation_Train’ and ‘GeneratedRain_Segmentation_Test’ datasets. Structural 

Similarity Index (SSIM) was used as an indicator of the rain intensity for each image in the datasets. A 

smaller SSIM score indicates more raindrop content in an image and vice versa. An overcast effect 

was added to simulate real rain lighting conditions, as follows. The color image was first split into its 

red, green, and blue channels. The mean intensity for each color channel was then calculated, and 

the pixel intensities were remapped into a tighter intensity range around the mean intensity. This 

effectively reduced the color content for each channel, a natural consequence of reduced 

illumination under overcast conditions. The final recombined image looked darker and less colorful 

than the rain-free one.  

Figure 3 shows examples of the image datasets we used to train and test the segmentation network.  

  
(a) KITTI clear image DataSet (b) Color pixel-level segmented image 

  

(c) Training image dataset with low-medium 

raindrops content 

(d) Testing image dataset, with High raindrops 

content 

Figure 3: Datasets used for training and testing the image segmentation network. KITTI Semantic and Instance 
Segmentation Evaluation dataset, (a) and (b) is used to train the baseline segmentation network. We added an overcast 
effect and generated rain to the image sets in (c) and (d) to train and test the segmentation network under rainy 
conditions. 
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Table 2 shows a summary of the datasets we used in the object detection and image segmentation 

networks.  

Table 2: A List of the datasets used in our research for training and testing the object detection and segmentation 
networks 

Set ID Usage 

KITTI_Objects 
Train the baseline detector using the KITTI 

dataset.  

Clear_Objects 
Retrain the baseline detector using our 

rain-free dataset 

GeneratedRain_Objects 
Retrain the baseline detector using our 

generated rain dataset 

RealRain_Objects 
Test the baseline and retrained detector 

under real-rain conditions. 

Derained_Objects Test the baseline detector using de-rained. 

KITTI_Segmentation 
Train the baseline segmentation model 

using the KITTI dataset. 

GeneratedRain_Segmentation_Tr

ain 

Retrain the baseline segmentation model 

using the generated-rain dataset  

GeneratedRain_Segmentation_T

est 

Test the retrain segmentation model using 

the generated-rain dataset 

Derained_Segmentation 
Test the baseline segmentation model 

using de-rained images 

 

4 Models Training Process and Testing 

In this section, we will describe the training process and test cases we conducted for the object 

detection and semantic image segmentation models. 

4.1 The Object Detection Model 

4.1.1 Baseline Model Setup and Training 

We used MathWorks’s Yolov3 object detector example [27] as our starting model. The detector was 

based on SqueezeNet [28] Deep Neural Network (DNN with a relatively small architecture That 

allowed us to conduct all our training and testing on a desktop with outdated specifications (AMD 

FX-8350 with 16 GB of DDR3 RAM and an Nvidia 1050Ti GPU). Figure 4 shows the training stages and 

datasets used in each stage for the YOLOv3 object detector model.  
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Figure 4: A Flow diagram showing the different YOLOv3 model training stages and the training dataset used in each 
stage. 

The training process is described below. 

4.1.2 Train the Automotive-specific Object Detector 

We trained the starting model using the “KITTI_Objects” dataset, split as 70% training and 30% 

testing to establish an automotive-specific object detector. The number of epochs was set to 200, 

with a minimum batch size of 8 and a maximum learning rate of 0.001. We used image 

augmentation to increase input dataset size, without adding more images to the training dataset. 

We used six anchors to improve image object fitting.  

Two common metrics used to evaluate the detection performance are the Average Precision (AP) 

and Log-Average Miss Rate (LAMR). The AP is calculated as the area under the curve the Precision-

to-Recall curve. Similarly, the LAMR is calculated as the area under the curves representing the 

mapping between Miss Rate (MR) and False Positive Per Image (FFPI) metrics. We used MATLAB’s 

“evaluateDetectionPrecision” function to calculate the AP score, and the 

“evaluateDetectionMissRate” function to calculate the LAMR score. Table 3 shows the statistical 

results of testing the resultant object detector using the remaining 30% of the “KITTI_Objects” 

dataset. Figure 5 shows an example image from the test dataset with detected objects annotated. 

Table 3: The Average Precision and Log-Average Miss Rate scores, as calculated for the five object classes in the 
Automotive-Domain Object detector. Larger Average Precision scores and smaller Log-Average Miss Rate scores are 
desirable for better detection performance. 

Object Class AP LAMR 

Pedestrian 0.59 0.45 

Truck 0.90 0.08 

Car 0.81 0.37 

Cyclist 0.64 0.34 

Van 0.81 0.19 
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Figure 5: An example of the output of the Yolov3 detector that was trained in stage 1. The objects are identified with a 
bounding box, with a class tag and detection confidence level shown for each object. 

4.1.3 Train the Rain-free Object Detector 

In this stage, we used the “Clear_Objects” dataset to retrain the Yolov3 network from the previous 

stage, to detect three different object classes, ‘Pedestrian’, ‘Truck’ and ‘Car’. We retrained the object 

detector with very little change to the actual DNN structure. Since the dataset size in this stage is 

smaller than the one used in the previous stage, we increased the number of epochs to but we kept 

all other training parameters the same. We then tested the retrained detector using the 

“RealRain_Objects” dataset, to evaluate the amount of performance degradation due to the 

presence of raindrops. We also tested the retrained object detector on the “Derained_Objects” 

dataset, to evaluate if there were any performance improvements using de-rained images versus 

rained ones. Figure 6 shows the process flows for evaluating the Clear Weather object detector 

model from this stage using rain-free, real rained, and de-rained image datasets.   

As expected, the detection performance of the detector retrained with the rain-free dataset 

degraded considerably, when tested using the rained image dataset. This is indicated in both 

decreased AP scores and increased LAMR scores for all three object classes. In addition, the 

performance of the retrained detector was worse with the de-rained dataset than with the original 

rained one. Table 4 shows a summary of the AP and LAMR performance metrics for the three object 

classes using rain-free, rained, and de-rained images. Figure 7 shows an example image of object 

detection at this stage. 

Table 4: The Average Precision and Log-Average Miss Rate scores, as calculated for the three object classes in the rain-
free Object detector. As shown in the table, there is a big degradation in detection performance when using rained 
images, and an even larger degradation when de-rained images are used. 

 Rain-free Rained De-rained 

AP LAMR AP LAMR AP LAMR 

Car 0.92 0.09 0.36 0.63 0.18 .81 

Truck 0.94 0.11 0.73 0.46 0.57 0.65 

Pedestrian 0.64 0.36 0 1 0 1 
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(a) Process flow for comparing the performance of the clear weather object detection model with rain-free and rained 

image inputs 

 

(b) Process flow for comparing the performance of the clear weather object detection model with rain-free and de-

rained image inputs 

Figure 6: Comparing the performance of clear weather object detectors with rain-free, rained, and de-rained image 
datasets. 

 

 

(a) Object Detection on a clear image 
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(b) Object Detection on rained image 

 

(c) Object Detection on de-rained image 

Figure 7: An example of the output of the Yolov3 detector that was trained in stage 2 using clear, rained, and de-rained 
datasets. The objects are identified with a bounding box, with a class tag and detection confidence level shown for each 
object. Not much rain content was removed by the de-raining algorithm and no detection performance improvement in 
the de-rained image compared to the rained one.  

4.1.4 Train the Rained Object Detector 

For this stage, we used the “GeneratedRain_Objects” dataset to retrain the YOLOv3 object detector 

that we had trained in the previous stage. We then tested the retrained detector using the 

“RealRain_Objects” real rainy image set. Table 5 shows the AP and LAMR performance metrics for 

the three object classes under rained conditions. The detection performances for the ‘Car’ and 

‘Truck’ classes were on-bar with those obtained with the detector from the previous stage that was 

trained with a Rain-free image dataset. Retraining the detector model with simulated rained images 

allowed it to overcome the raindrop-related image degradation, and perform at levels comparable 

to those under rain-free conditions. The detection performance for the Pedestrian class is still very 

low (AP0, LAMR1). This is because there are much fewer instances of Pedestrians in the dataset 

than cars and trucks.  

The AP metric is calculated as the area under the curve that represents the Precision-to-Recall 

relation. Similarly, the LAMR is calculated as the area under the curves that represent the mapping 

between Miss Rate (MR) and False Positive Per Image (FFPI) metrics. This type of calculation is useful 

since it represents the entire curve (Precision/ Recall or MR/FPPI) by a single reference [29]. It does 

seem, however, to penalize classes with low-occurring instances in the form of very low AP and very 

high LAMR scores.  
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Table 5:  The Average Precision and Log-Average Miss Rate scores, as calculated for the three object classes in the rained 
Object detector.  

Object Class AP LAMR 

Car 0.91 0.06 

Truck 0.95 0.08 

Pedestrian 0 1 

To verify that the retrained detector with simulated rain retained the information learned by the 

original rain-free-trained detector model, we tested its performance with the rain-free 

“Clear_Objects “dataset. The results shown in Table 6 are identical to those shown in Table 4 for the 

rain-free dataset, which proves that the retrained model has retained the information it has learned 

from the original model. 

 

Table 6:  The Average Precision and Log-Average Miss Rate scores, as calculated for the three object classes in the rained 
Object detector 

Object Class AP LAMR 

Car 0.92 0.09 

Truck 0.94 0.11 

Pedestrian 0.64 0.36 

 

Figure 8 shows the process flow for comparing the performance of the Clear and Rainy object 

detection model (trained in this stage), using real rained (a) and rain-free (b) image datasets. 

 

(a) Process flow for comparing the performance of the clear weather versus clear and rainy object detection models 

with real rained image inputs 
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(b) Process flow for comparing the performance of the clear weather versus clear and rainy object detection models 

with rain-free image inputs. 

Figure 8: Testing the detection models with real rained and rain-free images, to verify detection performance boost (a), and 

the retention of previously learned detection knowledge (b). 

4.2 The Image Segmentation Model 

4.2.1 Baseline Model Setup and Training 

We used MathWorks’s semantic segmentation example [30] as our starting model. The example 

describes the process to train Deeplab v3+ [31]. Figure 9 shows the process flow for training the 

semantic segmentation model.  

 
Figure 9: The process for training the rained semantic segmentation model. Starting with a pretrained DeepLapv3+ 
network, we train the model on a dataset that is more specific to automotive domain applications. We then retrain the 
segmentation model with simulated-rain images, to improve system robustness to rain-induced image degradation.  

 

To create a baseline segmentation model for the automotive domain applications, we train the 

Deeplab v3+ with the “KITTI_Segmentation” dataset. We split the dataset as 75% training, 10% 

validation, and 15% testing, and set the maximum epochs to 300 and the minimum batch size to 8. 

The initial learning rate was set to 0.001 and was reduced after each concluded epoch. Data 

augmentation is used to increase the “effective” training dataset size without adding more images. 
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 As a common solution to mismatched representations of segmentation classes in the training 

dataset, where some classes were represented more often than others, the training weights were 

adjusted to be inversely proportional to the frequency of occurrence of any given class. The output 

of this stage is the Baseline_Segmentation_DNN model which we tested using the test part of 

“KITTI_Segmentation”.  

We used the Intersection over Union (IoU), Accuracy, and MeanBFScore quality metrics to evaluate 

the quality of segmentation provided by the model. Accuracy is the ratio of correctly classified pixels 

in each class to the total actual pixel in that class. Using the True Positive (TP), and False Negative 

(FN) numbers, Accuracy can be given as, 

          
  

     
 (1) 

“IoU for a given class can be given using TP, FN, and False Positive (FP) numbers as, 

    
  

        
 (2) 

MeanBFScore is a measure of the mean Boundary F1 (BF) which indicates how well aligned the 

predicted boundary of a given class is aligned with the actual boundary of that class.  

The MATLAB function “evaluateSemanticSegmentation” can be used to calculate these three metrics 

in image segmentation applications. Table 7 shows a summary of model performance using the 

above-described metrics. The table shows that the segmentation model performed well for all 

classes, except the “person” class because this class was much smaller in terms of pixels count than 

the others, which made it more sensitive to any mismatches between the predicted and actual 

segmentation. The confusion matrix in Figure 10 shows a high rate of correct segmentation per class 

(diagonal cells) versus a low rate of incorrect classifications (off-diagonal cells). 

Table 7: The Accuracy, IoU, and MeanBFScore segmentation quality metrics are shown for the classes that are 
identifiable by the baseline model across all images in the rain-free test dataset 

Metric Accuracy IoU MeanBFScore 

Label 

unlabeled 0.724 0.266 0.417 

sky 0.983 0.964 0.929 

vehicle 0.967 0.828 0.837 

person 0.328 0.153 0.400 

background 0.940 0.924 0.923 

road 0.958 0.923 0.868 
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Figure 10: The confusion matrix shows the percentage of correct and incorrect segmentation of all classes supported by the 

segmentation model. The diagonal cells represent the percentage of correct class segmentation, and the off-diagonal cells 

represent the percentage of incorrect segmentation of the pixels of a given class as belonging to another class.  

4.2.2 Testing the Baseline_Segmentation_DNN Model with Rained and De-Rained Datasets 

To evaluate the effect of rain on the semantic segmentation process, we tested the 

Baseline_Segmentation_DNN model using the “GeneratedRain_Segmentation_Test” dataset. Table 8 

shows noticeable degradations in segmentation quality for the rained dataset compared to the rain-

free one. The confusion matrix in Figure 11 shows that for the rained dataset, the correct 

segmentation percentage is still larger than the incorrect one, except for the “person” class. We also 

observe that the highest segmentation mismatch occurred in the “background” class. Unlike the 

other classes, the “background” class was made of many small and disconnected segments that 

were adjacent to other class segments in the image. This caused the segmentation model to 

misclassify objects to be of the “background” class more often than the other segmentation classes. 

Table 8. Segmentation quality of the baseline model when tested with the rained image set.  

 Accuracy IoU MeanBFScore 

sky 0.840 0.809 0.740 

vehicle 0.750 0.463 0.482 

person 0.075 0.046 0.060 

background 0.920 0.813 0.825 

road 0.812 0.772 0.677 
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Figure 11. The confusion matrix shows a drop in the correct segmentation percentage and an increase in incorrect 

segmentation percentage across all classes.  

We then tested the model using the “Derained_Segmentation”. Table 9 shows a noticeable 

degradation in segmentation quality when using a de-rained dataset over the original rained one, 

which was summarized in Table 8 from the previous stage. The largest drop in segmentation quality 

is observed in the “sky” and “vehicle” classes, as indicated by the quality metrics. The confusion 

matrix in Figure 12 shows that only “road” and “background” classes have a higher correct 

segmentation percentage than incorrect ones. Another interesting observation is that most incorrect 

observations are classified as “background” class. The same phenomenon was observed under rain-

free and rained segmentation testing which indicates a possible segmentation bias towards the 

“background” class, even though we used the wights reverse-frequency technique in our design and 

training.  

Table 9: The segmentation quality metrics show lower performance of the rain-free (baseline) segmentation model with 
the de-rained dataset than that under rained dataset. Performance drop was highest for “sky” and “vehicle” classes and 
the least drop was observed for the “road” class 

Metric Accura

cy 

IoU MeanBFScore 

Label 

sky 0.374 0.244 0.419 

vehicle 0.215 0.105 0.242 

person 0.000 0.000 0.002 

background 0.701 0.525 0.687 

road 0.714 0.570 0.598 
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Figure 12: the confusion matrix for class segmentation results shows that only "background" and "road" classes still 
show more correct than incorrect segmentation under de-rained dataset and rain-free segmentation model mix. It also 
shows that the “background” class contributed to the most percentage of incorrect classifications.  

Figure 13 shows the process flow for evaluating the performance of the Clear Segmentation Model 

with a clear image dataset against rained image dataset (a) and de-rained image dataset (b). 

 

(a) Process flow for comparing the performance of the clear weather image segmentation model with rain-free and 

rained image inputs 

 

(b) Process flow for comparing the performance of the clear weather image segmentation model with rain-free and de-

rained image inputs 

Figure 13: Comparing the performance of clear weather image segmentation model with rain-free, rained, and de-rained 
image datasets 
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4.3 Retraining the Baseline_Segmentation_DNN 
We retrained the Baseline_Segmentation_DNN model from the previous steps using the 

“GeneratedRain_Segmentation_Train” dataset. The dataset consists of 400 images with low and 

medium intensity of generated raindrops added. We split the dataset 75% training, 10% validation, 

and 15% testing datasets and ran the training process for 200 epochs. All other hyperparameters we 

left intact from the previous training process. As shown in Table 10, there is a big improvement in 

the segmentation with the rained model compared with the rain-free model, both tested with real 

rain image dataset.  The confusion matrix in Figure 14 shows more correct to incorrect segmentation 

for each class recognizable by the segmentation model. We retested the retrained segmentation 

model on the rain-free dataset, to verify that the retrained model retained the learned information 

from the previous model. Comparing the results of the retrained model in Table 11 to those of the 

baseline model in Table 7 shows that the retrained model retained the information learned by the 

baseline model, and even slightly improved on them.   

  Table 10: The segmentation performance metrics show that the retrained segmentation model performs on the rained 
dataset at levels comparable to the performance of the rain-free segmentation model that is tested with the clear 
dataset. 

Metric Accuracy IoU MeanBFScore 

Label 

sky 0.963 0.871 0.812 

vehicle 0.781 0.546 0.572 

person 0.391 0.149 0.150 

background 0.896 0.840 0.845 

road 0.896 0.840 0.763 

 

 
Figure 14: Testing the retrained rained segmentation model with a real rain dataset shows that A higher percentage of 
pixels are correctly segmented for each class than incorrectly segmented. 
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Table 11: Testing the retrained rained segmentation model shows no degradation in performance over the original rain-
free segmentation model, both tested on the same rain-free dataset. 

Metric Accuracy IoU MeanBFScore 

Label 

sky 0.986 0.949 0.901 

vehicle 0.987 0.834 0.807 

person 0.983 0.339 0.650 

background 0.933 0.926 0.915 

road 0.957 0.928 0.888 

Figure 15 shows the process flow for comparing the performance of the Clear and Rainy Image 

Segmentation Models models, using rained (a) and rain-free (b) image datasets. 

 

(a) Process flow for comparing the performance of the clear weather versus clear and rainy image segmentation 

models with rained image inputs 

 

(b) Process flow for comparing the performance of the clear weather versus clear and rainy image segmentation 

models with rain-free image inputs. 
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Figure 15: Testing the image segmentation models with rained and rain-free images, to verify segmentation 
performance boost (a), and the retention of previously learned segmentation knowledge (b). 

5 Results Discussion 

We trained a YOLOv3 model to detect common objects encountered in a common drive cycle and 

tested git using rain-free, rained, and de-rained image sets. The detector performed well on rain-free 

images, but its performance degraded under rained image set input, as expected.  

By analyzing the de-raining algorithm that had been developed by Quan et al. [21], we believe their 

model was too specific to the training and testing dataset they had used. This made it less useful for 

the real rain datasets we used in our research, due to the following two factors: 

1. Quan’s model used a training dataset that used synthetic raindrops for rained images. Real 

raindrops exhibit more variety in shape and size than the simple droplets formed by spraying 

water on a glass surface. This likely made raindrop detection harder with real raindrops than 

synthetic ones.  

2. The synthetic dataset used in Quan’s model was also taken under optimal lighting conditions 

which made it easier for raindrops to be detected. The overcast in the background of the real 

rain dataset, on the other hand, made it harder to identify raindrops by a human observer. This 

overcast in the real rain dataset likely affected the ability to learn raindrops by the de-raining 

DNN in [21] 

The retrained YOLOv3 model with a simulated raindrop dataset showed great improvement of the 

rain-free object detector, both tested with the real-rain dataset.  

The only class that did not show improved detection with the retrained rained detector was the 

“Pedestrian” class. We believe that two factors contributed to this limitation: 

i. The size of the objects representing the “Pedestrian” class were mostly smaller than the other 

two class objects. This meant that these objects were more susceptible to the presence of rain, 

which usually occluded and distorted all or most of the pixels representing this class in the 

image. 

ii. The number of occurrences of the “Pedestrian” object in the dataset we used for training was 

much smaller than the other two. We counted 15 “Pedestrian” object instances in the whole 

training dataset, compared to the thousands of occurrences for the other two classes. Our 

dataset was collected on motorways in Michigan and under rainy conditions, so the presence of 

pedestrians was the exception rather than the norm.  

We also verified that the retrained detector performance did not degrade under rain-free conditions 

by retesting the rained detector with the original rain-free dataset. The retrained rained model 

performance was similar to that of the rain-free detector under the rain-free dataset which made us 

conclude that the retrained detector extended the detection capabilities by adding robustness to 

system input noise caused by the presence of raindrops.  

The semantic segmentation test cases provided similar results to the object detection ones. The rain-

free segmentation model performed well under rain-free conditions, but its performance degraded 
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when tested with rained image dataset. The degradation level was not as severe as that observed in 

the object detection application. This can be partially attributed to the fact that in the segmentation 

model, the classes were much larger than those in the object detection application, and thus less 

susceptible to the presence of raindrops in the input images. 

The segmentation model trained on the rain-free dataset performed worse on the de-rained images 

dataset than on the original rained images dataset. The performance of the retrained image 

segmentation model showed considerable improvement in segmenting rained images after the 

baseline rain-free model was trained with the simulated raindrops dataset. Retesting the retrained 

image segmentation model with the rain-free dataset showed a performance improvement over the 

rain-free model. The performance gain can be partially attributed to retraining the rain-free model 

with simulated rained images that were based on the rain-free ones. We argue that the rained 

images acted as a transformed version of the original ones, even if the transformation caused some 

level of image quality degradation. In that sense, the rained images augmented the original rain-free 

dataset, and image augmentation is a standard technique used in the training of the DNN to improve 

performance.  

The performance degraded even further for the de-rained image set test, a result we did not expect 

when we formed our hypothesis. Our results, however, align with the task-driven evaluation results 

reported by Li et al. [32]. Based on their own tests using different object detection algorithms, they 

concluded that “all existing de-raining algorithms will deteriorate the detection performance 

compared to directly using the rainy image” [32]. They hypothesized that the de-raining algorithms 

might need to be optimized to the goal of object detection. This, however, may require a specific de-

raining solution to the target vision-based application and consequently reduces the useability and 

generalizability of the de-raining algorithms. Another study on haze removal done by Pei et al. [33] 

showed similar results. They concluded that “since those deraining algorithms were not 

trained/optimized towards the end goal of object detection, they are unnecessary to help this goal, and 

the deraining process itself might have lost discriminative, semantically meaningful true information” 

[33].   

We believe that there may be no de-raining add-on fix to this problem, in a sense that a general-

purpose de-raining algorithm can be plugged into the specific vision system (e.g., traffic light 

recognition) that would improve the system performance under rainy conditions. We believe it is 

possible to have a hybrid solution, employing both de-raining (denoising) of input images and 

reducing system sensitivity to raindrops through re-learning and transfer learning (system 

desensitization).  This hybrid approach, however, requires further examination of what important 

features are removed in the de-raining process, that a given vision application is looking for, to 

perform its intended functionality.  

Throughout our research work, we used images with synthetic raindrops added to retrain the 

baseline models that were previously trained on rain-free images. This process proved to be feasible 

and the retrained models showed a clear performance boost when tested with real rained images. 

The use of a synthetic dataset solves the problem of requiring large datasets with rained images for 

model retraining since the synthetic datasets (images with added generated raindrops) could be 

readily generated from the original rain-free image datasets. In addition, we observed that the 

retraining required a smaller training dataset and the model converged faster (fewer epochs), as 



 

This article is protected by copyright. All rights reserved. 

compared to the original baseline model training. This fact in the context of retraining DNN models 

to perform under rainy conditions implies that the retraining dataset does not need to be as large as 

the one used for the baseline model training (under rain-free conditions). 

As a final comment on the limitations of our proposed performance enhancement approach through 

transfer-learning and relearning, we observed that in some test images with very heavy rain content, 

the retrained algorithm failed to detect any objects in the image. A human observer could not 

identify objects in these images with good confidence either. This aligns with the fact that, except for 

very special cases, the performance of a DNN classifier cannot surpass that of a human observer. We 

can generalize this observation to include other distortion contributors that would cause excessive 

degradation to the image quality. Heavy rain content and lack of sufficient illumination at night time 

effectively wash off all or most interesting features in an image that the DNN model relies on for 

classification.    

6 Conclusions 

We developed models for two common vision applications, namely object detection, and semantic 

image segmentation. We then showed that the robustness of these models to raindrop-induced 

image degradation could be enhanced utilizing transfer-learning, and retraining them on rained 

image datasets.  

We also showed the benefit of using synthetic datasets for training DNN models. Both our models 

were trained with synthetic rained datasets that were generated through our rain simulator model 

and when tested with real rain datasets, showed clear performance improvements. In addition, the 

synthetic dataset seemed to play a secondary role as an image augmenter to the rain-free dataset 

which contributed to further performance improvements under clear rain conditions.  

In our experiments, the de-raining process caused more performance degradation to both models, 

than by using the original rained images as input. We, therefore, concluded that de-raining may not 

be a viable approach to enhancing vision-based algorithms' performance under rainy conditions. Our 

current results lead us to several future different research avenues including parallelization of the 

discussed network retraining approaches and implementation of these algorithms on mobile GPUs 

and software-programmable FPGAs. Furthermore, for future work, we would like to investigate if a 

hybrid solution, which is based on relearning an image de-raining model, can provide us with better 

solutions, provided that the important features employed in the target system are not distorted by 

the de-raining process. Moreover, to optimize the amount of memory size for weight storage and 

reduce the power consumption in hardware/software-based implementations, we propose as a next 

step the quantization of most of the weights into two bits, by utilizing fixed-point optimization 

techniques, similar to the technique described by Shin et al. [34]. Finally, we would like to study 

some state-of-the-art de-raining models and identify which features were altered through the de-

raining process, that caused the performance degradation in the target vision system. 
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