
1. Introduction
The first part of the study presented the importance of using a hyper-resolution modeling configuration to char-
acterize the cryospheric-hydrological process across the complex High Mountain Asia (HMA) region. It is 
acknowledged that, although we improve the spatial resolution of the model input and output, model estimates 
are inevitably imperfect mainly due to limitations such as imperfect model parameterizations and atmospheric 
boundary conditions (Mendoza et al., 2015; Nandakumar & Mein, 1997; Zheng et al., 2017). Among the surface 
meteorological data used to drive the hyper-resolution modeling unit, precipitation is the most important mass 
input variable (Guo et al., 2006; Yoon et al., 2019). However, all precipitation estimates contain errors and uncer-
tainty, especially in complex terrain (Maggioni et al., 2017; Yilmaz et al., 2005). Land surface modelers seek to 
use a precipitation estimate closest to the “truth” in their own study domains. However, there is often no clear 
answer to this question (Gehne et al., 2016; Kidd & Huffman, 2011; Xue et al., 2021).

To overcome the aforementioned model deficiencies, data assimilation (DA) is often used—which is referred to 
as an approach to constrain physical land surface model derived estimates through the input of the observation. 
It is assumed that the dynamics that are responsible for a particular process are inherent in the observations 
(Hofmann & Friedrichs, 2001). By constraining the model with various observations, model estimates can be 
improved. Xue et al. (2019) successfully demonstrate the efficacy of assimilating the satellite-based freeze/thaw 
as well as the snow cover product independently into the hyper-resolution land surface model to improve model 

Abstract This second paper of the two-part series focuses on demonstrating the impact of assimilating 
satellite-based snow cover and freeze/thaw observations into the hyper-resolution, offline terrestrial 
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systematically evaluates a total of six sets of 0.01° (∼1 km) model simulations forced by different precipitation 
forcings, with and without the dual assimilation scheme enabled, at point-scale, basin-scale, and domain-scale. 
The key variables of interest include surface net shortwave radiation, surface net longwave radiation, skin 
temperature, near-surface soil temperature, snow depth, snow water equivalent (SWE), and total runoff. First, 
the point-scale assessment is mainly conducted via evaluating against ground-based measurements. In general, 
the assimilation enabled estimates are better than no-assimilation counterparts. Second, the basin-scale runoff 
assessment demonstrates that across three snow-dominated basins, the assimilation enabled experiment yields 
systematic improvements in all goodness-of-fit statistics through mitigating the negative effects brought by the 
fixed long-term precipitation correction factors. For example, when forced by the bias-corrected precipitation, 
the assimilation-enabled experiment improves the bias by 69%, the root-mean-squared error by 30%, and the 
unbiased root-mean-squared error by 18% (relative to the no-assimilation counterpart). Finally, the domain-
scale assessment is conducted via evaluating against satellite-based SWE and skin temperature products. Both 
sets of domain-scale analysis further corroborate the findings in the point-scale evaluations. Overall, this 
study suggests the benefits of the proposed multi-variate assimilation system in improving the cryospheric-
hydrological process within a land surface model for use in HMA.
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estimates across HMA for a sample water year via simplistic rule-based direct insertion algorithms. Based on the 
encouraging results seen in Xue et al. (2019), we want to demonstrate the effect of dual assimilation (i.e., joint 
assimilation of snow cover and freeze/thaw) in this study. To our best knowledge, there exists no published study 
performing rule-based dual assimilation for the entire HMA for a relatively long period (e.g., more than 10 yr) at 
a fine spatial resolution (e.g., finer than 5 km).

Using Xue et al. (2021) as a benchmark, in this study, we attempt to address the following science questions: (a) 
To what extent does assimilation of satellite-based products improve or worsen land surface modeling, compared 
to ground-based observations or satellite-derived reference products? (b) Can the dual assimilation scheme 
be beneficial at mitigating systematic biases possibly caused by overly corrected precipitation? To this end, 
this study systematically evaluates six sets of 0.01° (∼1 km) model simulations at point-scale, basin-scale, and 
domain-scale. The key variables of interest include surface net shortwave radiation, surface net longwave radia-
tion, skin temperature, near-surface soil temperature, snow depth, snow water equivalent (SWE), and total runoff. 
The ultimate goal of this research is to evaluate the newly developed, hyper-resolution High Mountain Asia-Land 
Data Assimilation System (HMA-LDAS; version 1) from 2003 to 2016. As mentioned in Xue et  al.  (2021), 
HMA-LDAS is intended to provide spatially and temporally continuous land surface estimates which are essen-
tial for capturing the spatio-temporal evolution of hydrometeorological conditions and their associated processes 
across HMA characterized by complex terrain. Part II, presented in this manuscript, focuses on demonstrating the 
impact of simultaneously assimilating satellite-based snow cover and freeze/thaw observations into a hyper-reso-
lution (at ∼1 km spatial resolution) terrestrial modeling system forced by different precipitation forcings.

2. Data and Methods
2.1. Snow Cover and Freeze/Thaw Assimilation

In DA enabled experiments, we assimilate satellite-based snow cover and freeze/thaw observations into the model 
simultaneously. The forward model used here is the Noah-Multiparameterization land surface model (Noah-MP; 
version 3.6: i.e., without the glacier modeling routine). The satellite-based snow cover products are obtained 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) Snow Cover Daily L3 Global 500 m Grid 
(MOD10A1, version 6; Hall & Riggs, 2016). Following Arsenault et al. (2013), Rodell and Houser (2004), and 
Xue et al. (2019), direct updates in SWE and snow depth take place daily at 00:00 (UTC) through the DA update 
analysis step. The rule-based (a.k.a., direct insertion based) snow cover assimilation scheme assimilates daily, 
binary 0.01° (i.e., same model grid) snow cover maps post-processed from the MOD10A1 product, with ones 
(i.e., representing snow-covered conditions) and zeros (i.e., representing snow-free conditions) for land pixels. 
Figure 1 shows the spatial map of the total percentage of days with valid MODIS snow cover observations from 1 
February 2003 to 30 November 2016 as well as its variability across different seasons for the entire period. Over-
all, the spatially averaged mean is 56.08% across the entire analysis period. The relatively low spatially averaged 
coverage of 41.55% occurs during June-July-August (JJA) possibly due to more significant presence of the cloud 
cover during the summer monsoon.

The modeled grid cells are categorized into snow-covered, and snow-free conditions based on the simulated snow 
cover fraction and SWE amount. If the model derived and the corresponding MODIS derived snow cover obser-
vations agree with each other, no updates occur. If the model indicates a snow-covered grid cell, but the observa-
tion indicates snow-free condition, both SWE and snow depth states are reduced to zeros. If the model indicates a 
snow-free grid cell, but the observation indicates snow-covered condition, the modeled SWE during the analysis 
update step is increased to 5 mm, the snow depth is increased to 0.02 m accordingly, and one layer of snowpack 
is created to initiate the snowpack growth. The selection of initial SWE and snow depth values in this study is 
completely based on Arsenault et al. (2013) and Rodell and Houser (2004). However, it is believed that a more 
careful sensitivity analysis should be conducted in the future to determine the optimal value to initiate the snow 
pack growth because adding even a thin layer of snow can have important consequences for the simulated energy 
balance (Rodell & Houser, 2004). In general, snow cover DA occurs more often in December-January-February 
(DJF) and March-April-May (MAM; relative to JJA and September-October-November (SON)) during the major 
snow seasons (not shown). Details regarding Noah-MP snow parameterization, snow cover assimilation proce-
dure, MOD10A1 preprocessing procedures, and sample snow cover DA results are described in detail in Xue 
et al. (2019). Details regarding how the rule-based snow cover DA could impact hydrological and energy budgets 
can be seen from Arsenault et al. (2013).
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Xue et al. (2019) also present the freeze/thaw assimilation procedure and sample results based on previous studies 
carried out by Farhadi et al. (2015) and Reichle et al. (2010). Similarly, the satellite-based freeze/thaw product 
used in this study is obtained from the Making Earth System Data Records for Use in Research Environments 
(MEaSUREs) Northern Hemisphere Polar Equal-Area Scalable Earth Grid 2.0 Daily 6 km Land Freeze/Thaw 
Status from the AMSR-E and the AMSR-2 (version 1; Kim et al., 2017, 2018). Both mornings (AM) and after-
noon (PM), binary freeze/thaw states reprocessed from MEaSUREs, are employed in this study. Zeros repre-
senting the frozen landscape, and ones representing the non-frozen (or thawed) landscape. Direct updates in the 
top-layer soil temperature state take place twice a day at 01:30 and 13:30, which corresponds to the AM and PM 
MEaSUREs freeze/thaw observations, respectively, through the DA update step. The rule-based freeze/thaw 

Figure 1. (a) The spatial map of the total percentage of days with valid MODIS snow cover observations from 1 February 
2003 to 30 November 2016. Seasonal MODIS data availability maps are shown in (b–e). DJF, December, January, February; 
MAM, March, April, May; JJA, June, July, August; SON, September, October, November.
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assimilation scheme is conducted via comparing the agreement (or disagreement) between Noah-MP model 
derived and satellite-derived freeze/thaw states. To be more specific, if the model derived and the corresponding 
freeze/thaw observations agree with each other, no updates occur. On the other hand, if the model derived and 
the corresponding freeze/thaw observations do not agree, increments are computed from the surface tempera-
ture state relative to the lower surface temperature boundary and the upper surface temperature boundary of the 
freeze/thaw state accordingly. These increments are applied directly onto the top-layer of soil temperature. The 
energy budget is mostly maintained throughout the simulation with minimal errors (not shown). Details regard-
ing Noah-MP temperature parameterization, freeze/thaw assimilation procedure, uncertainty associated with the 
freeze/thaw DA procedure, and sample freeze/thaw DA results can be referred to in Xue et al. (2019).

The snow cover and freeze/thaw DA are integrated simultaneously within the dual DA scheme on a daily basis. 
These two updates take place individually at different time points as mentioned above. We prefer performing the 
snow cover DA prior to the freeze/thaw DA mainly because we expect the snow cover DA derived estimate can 
provide a more accurate characterization of the current snow conditions. The follow-up freeze/thaw DA can take 
advantage of the more accurate snow estimates, and perform temperature related updates when necessary. It is 
worth noting that model grid cells covered with significant amount of snowpack (i.e., greater than 50% of the 
snow cover fraction or greater than 5 cm of the snow depth as simulated by the Noah-MP model) are not being 
updated during the freeze/thaw DA due to the limited penetration depth of the 36 GHz brightness temperature 
channel used in the MEaSUREs detection algorithm. Therefore, freeze/thaw DA occurs much less frequently in 
DJF (not shown).

2.2. Study Domain and Models

As in Xue et al. (2021), the analysis of Part II are carried out across the HMA region bounded between 20°N and 
41°N and 66°E and 101°E for a 14 yr time period (2003–2016). Three sets of Noah-MP derived model simula-
tions driven by different meteorological inputs, with and without dual assimilation scheme enabled are conducted 
at a spatial resolution of 0.01° (∼1 km). Thus, a total of six sets of model simulations are evaluated in this study, 
which are summarized in Table 1. For example, the “HMA-GMU” experiment denotes the simulation without 
DA, forced by all meteorological inputs downscaled via physically based and statistically based George Mason 
University (GMU) developed algorithms onto the 0.01° grid (see Xue et  al.,  2021). The “DA-HMA-GMU” 
(i.e., with the “DA” prefix) is the experiment forced by the same meteorological forcings as “HMA-GMU” but 
with both snow cover and freeze/thaw assimilation schemes enabled. Same rules apply to other four experi-
ments, including “HMA-CHIRPS” along with its DA counterpart of “DA-HMA-CHIRPS” experiment, as well 
as “HMA-corr-CHIRPS” along with its DA counterpart of “DA-HMA-corr-CHIRPS” experiment.

2.3. Evaluation Methods and Statistics

All six experiments listed in Table 1 are integrated forward in time at a time step of 15 min, and the daily averaged 
model output are generated. The evaluation period is from 1 February 2003 to 30 November 2016. Evaluations 
are conducted at three different spatial scales (i.e., point-scale, basin-scale, and domain-scale). All ground-based 
stations, basins, and domain extent can be seen from Xue et  al.  (2021). Same quality control procedures are 
conducted to optimize the quality of the data set, for example, stations (or grid cells) with records less than 
200 days are excluded from the evaluation. Further, if the relative elevation difference between the 1 km scale 
grid cell and colocated station is greater than 50% (with the ground-based station being the baseline), we deem 
that the station is unrepresentative of the large-scale model estimates, and thus such stations are removed from 
the evaluation. It is worth noting here that although we tried some first-order criteria mentioned above to alle-
viate stations' under-representativeness issue, the significant disparity in horizontal resolution between model 
estimates and ground-based observations should not be ignored.

2.3.1. Point-Scale Evaluations

The performance of surface net shortwave radiation, surface net longwave radiation, skin temperature, snow 
depth, and near-surface soil temperatures are evaluated at daily time scales via comparisons against in situ 
measurements taken by the closest colocated ground-based stations. These ground-based stations are obtained 
from the Coordinated Enhanced Observing Period (CEOP) Asia Monsoon project (https://www.eol.ucar.edu/
projects/ceop/dm/insitu/sites/ceop_ap/), the Contribution to High Asia Runoff from Ice and Snow (CHARIS) 

https://www.eol.ucar.edu/projects/ceop/dm/insitu/sites/ceop_ap/
https://www.eol.ucar.edu/projects/ceop/dm/insitu/sites/ceop_ap/


Journal of Geophysical Research: Atmospheres

XUE ET AL.

10.1029/2021JD035992

5 of 24

project (http://himatmap.apps.nsidc.org/hma_insitu.html), the Global Summary of the Day (GSOD; https://data.
noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod), the Chinese Meteorological Administration 
(CMA), namely the Data set of Daily Climate Data From Chinese Surface Stations for Global Exchange (V3.0; 
http://101.200.76.197/en/?r=data/detail&dataCode=SURF_CLI_CHN_MUL_DAY_CES_V3.0), the Central 
Tibetan Plateau Soil Moisture and Temperature Monitoring Network (CTP-SMTMN; Yang et al., 2013), and the 
Southeastern Tibet Observation and Research Station for the Alpine Environment (SETORS; https://data.tpdc.
ac.cn/en/data/49ac37ac-0fc3-460f-83c4-c44744205474/).

Goodness-of-fit statistics, which include bias, root mean squared error (RMSE), unbiased root mean squared 
error (ubRMSE), and correlation coefficient (R), are computed. Further, the level of improvement (or degrada-
tion) in DA enabled simulations is also computed to demonstrate to what extent does DA improve or degrade 
non-DA derived estimates in terms of all goodness-of-fit statistics. The level of improvement (or degradation) 
is calculated as the relative change in the absolute values of the metric obtained from the experiment and its DA 
counterpart. Using the bias as an example, the level of improvement (degradation), LEVEL, is calculated as:

𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿 =

|𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛−𝐷𝐷𝐷𝐷| − |𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐷𝐷𝐷𝐷|

|𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛−𝐷𝐷𝐷𝐷|
, (1)

where the |⋅| denotes taking the absolute value of each corresponding bias value obtained from the experiment 
(i.e., with the “non-DA” subscript) and its DA-enabled counterpart (i.e., with the “DA” subscript). Positive 
LEVEL values indicate that DA-derived estimates are better, and negative values indicate that DA derived esti-
mates are worse than non-DA derived estimates.

2.3.2. Basin-Scale Evaluations

The basin-scale evaluations are conducted for modeled runoff (i.e., not the routed streamflow) through compar-
isons against ground-based discharge measurements at the monthly scale. We do not implement any routing 
modules because routing related parameters at 1 km are not available at the time. Same as Xue et al. (2021), for 
each of the model simulation, the modeled basin-scale total runoff is computed by integrating the runoff output 
at each grid cell across each of the drainage basin. Figure 2 shows the five gauged basins in the study area. The 
ground-based runoff measurements are obtained from the Contribution to High Asia Runoff from Ice and Snow 
(CHARIS) project, the Department of Hydrology and Meteorology in Nepal, and the Global Runoff Data Centre, 
56068 Koblenz, Germany (https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html). The goodness-of-fit 
statistics plus the Nash-Sutcliffe model efficiency coefficient (NSE) are computed to evaluate the modeled runoff 
performance. Further, we compute flow duration curves for all experiments. The flow duration curve is a plot of 
total runoff (at the basin outlet) vs. percent of time that a particular runoff value is equaled or exceeded. In the 
assessment of flow duration curve agreement, following Yilmaz et al. (2008), three relative bias related statistics 
are computed to characterize the relative differences in the curves obtained from the model simulations and the 
measurements. First, rbiasFMS is computed to measure the relative bias in the slope of the curve for mid-flow 
segment (with exceedance probability between 20% and 70%), written as:

Experiment Model output Precipitation input source Other meteorological forcings source

Name Spatial resolution/temporal resolution (Spatial resolution/temporal resolution) (Spatial resolution/temporal resolution)

HMA-GMU 0.01°/daily Downscaled CHIRPS (0.01°/6-hourly) Downscaled ECMWF (0.01°/6-hourly)

HMA-CHIRPS 0.01°/daily CHIRPS (0.05°/daily) Downscaled ECMWF (0.01°/6-hourly)

HMA-corr-CHIRPS 0.01°/daily Bias-corrected CHIRPS (0.05°/daily) Downscaled ECMWF (0.01°/6-hourly)

DA-HMA-GMU 0.01°/daily Downscaled CHIRPS (0.01°/6-hourly) Downscaled ECMWF (0.01°/6-hourly)

DA-HMA-CHIRPS 0.01°/daily CHIRPS (0.05°/daily) Downscaled ECMWF (0.01°/6-hourly)

DA-HMA-corr-CHIRPS 0.01°/daily Bias-corrected CHIRPS (0.05°/daily) Downscaled ECMWF (0.01°/6-hourly)

Note. The experiment with the “DA” prefix denotes the model run with snow cover and freeze/thaw assimilation enabled.

Table 1 
Experiments Used for Evaluation

http://himatmap.apps.nsidc.org/hma_insitu.html
https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod
https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod
http://101.200.76.197/en/?r=data/detail%26dataCode=SURF_CLI_CHN_MUL_DAY_CES_V3.0
https://data.tpdc.ac.cn/en/data/49ac37ac-0fc3-460f-83c4-c44744205474/
https://data.tpdc.ac.cn/en/data/49ac37ac-0fc3-460f-83c4-c44744205474/
https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html
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𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹 =

[
log

[
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚20%

]
− log

[
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚70%

]]
−

[
log

[
𝑥𝑥𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚20%

]
− log

[
𝑥𝑥𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚70%

]]

log

[
𝑥𝑥𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚20%

]
− log

[
𝑥𝑥𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚70%

] 𝑚 (2)

where log(⋅) denotes the logarithm operator, xmodel,20% is the model simulated flow at 20% exceedance probability, 
xmodel,70% is the model simulated flow at 70% exceedance probability, xmeas,20% is the gauge measured flow at 20% 
exceedance probability, and xmeas,70% is the gauge measured flow at 70% exceedance probability. Second, rbiasFHV 
is computed to measure the relative bias in the volume of the curve for high-flow segment (with exceedance 
probability between 0% and 2%), written as:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹 =

∑𝐹𝐹

ℎ=1

[
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ − 𝑥𝑥𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚ℎ

]

∑𝐹𝐹

ℎ=1
𝑥𝑥𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚ℎ

𝑚 (3)

where h = 1,2, ⋯ , H are the flow indices for flows with exceedance probabilities lower than 2%. The high-flow 
segment can be deemed as a measure of the basin's response to heavy precipitation/snowmelt events. Third, 
rbiasFMM is computed to measure the relative bias in the median value of the flow, which can also be deemed as 
a measure for mid-flow segment behavior, written as:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹 =

log

[
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

]
− log

[
𝑥𝑥𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚

]

log

[
𝑥𝑥𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚

] 𝑚 (4)

where xmodel,med is the median value of the model simulated flow, and xmeas,med is the median value of the gauge 
measured flow.

2.3.3. Domain-Scale Evaluations

The domain-scale evaluations are conducted between model estimates and reference satellite-based products. 
That is, the performance of regional model output of skin temperature, and SWE are evaluated at daily time 
scales via comparisons against reference remotely sensed products using the goodness-of-fit statistics. In terms 
of the SWE-related evaluation, the satellite-based product utilized here is the Copernicus Global Land Service 
(CGLS) SWE product (v1.0.2; https://land.copernicus.eu/global/products/swe) at a spatial resolution of 5 km 
(Pulliainen, 2006; Takala et al., 2011) available from 1 January 2006. It provides SWE estimates between lati-
tudes 35°N and 85°N. All model derived SWE estimates are aggregated from 0.01° onto the same 5 km CGLS 
SWE grid in this set of evaluation. SWE estimates in June, July, and August are excluded from evaluation due to 
minimized coverage of snow in summertime. Note that the CGLS SWE product only covers about 16.3% of the 
entire HMA study domain, and further, mountainous regions and glaciers are excluded from the production stage.

In terms of the skin temperature-related domain-scale evaluation, the reference satellite-based surface temper-
ature products utilized here are the MODIS/Terra Land Surface Temperature Daily L3 Global 1 km Grid 
(MOD11A1, version 6; Wan et al., 2015) and the MODIS/Aqua Land Surface Temperature Daily L3 Global 1 km 
Grid (MYD11A1, version 6; Wan et al., 2015) from 2003 to 2016. All model derived skin temperature estimates 
are re-gridded onto the same 1 km MODIS grid in this set of evaluation. The simple arithmetic mean of both 
nighttime and daytime land surface maps generated by MOD11A1 and MYD11A1 are computed as the reference 
satellite-based skin temperature measurements.

3. Results
3.1. Point-Scale Evaluations

Figure 3 shows the box plots of goodness-of-fit statistics computed from all experiments in the point-scale eval-
uation against ground-based measurements. In the evaluation against eight ground-based CEOP stations measur-
ing net shortwave radiation, calculated as incoming-minus-outgoing shortwave fluxes, DA-HMA-corr-CHIRPS 
yields the best performance in general. In terms of median of each set of the goodness-of-fit statistics, the improve-
ments due to DA are mostly marginal (i.e., being less than 5%). On the other hand, all experiments with dual 
DA enabled perform slightly better than their non-DA counterparts in terms of average RMSE, ubRMSE, and R 
statistics, but less so with respect to average bias. For example, compared with HMA-corr-CHIRPS, the average 

https://land.copernicus.eu/global/products/swe
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Figure 2. (a) HMA study domain with gauged basin outlines in black. Gauged Basin #1 through Basin #5 are shown in (b–f) with elevation information and basin 
outlet locations.
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RMSE in DA-HMA-corr-CHIRPS improves by 13% from 64.41 W/m 2 to 56.34 W/m 2, the average ubRMSE 
in DA-HMA-corr-CHIRPS improves by 8% from 55.37 W/m 2 to 51.02 W/m 2, and the average R in DA-HMA-
corr-CHIRPS improves by 9% from 0.55 to 0.60. It is worth noting that the statistical significance in each set of 
the metric difference is also tested. Unfortunately, due to the relatively small sample size and the relatively large 
sample variance, no statistical significance in metric difference can be claimed here. The most notable differ-
ence among DA and their non-DA counterparts can be seen from the interquartile range (IQR), calculated as the 
difference between the third quartile and the first quartile for each set of the goodness-of-fit statistics. The lower 
the IQR is, the lower the spread is, and the higher the precision is achieved by the corresponding experiment. For 
example, compared with HMA-corr-CHIRPS, IQR in DA-HMA-corr-CHIRPS is reduced by 38%, 23%, 42%, and 
66% for bias, RMSE, ubMRSE, and R. In addition, the improvements seen in all DA derived net shortwave radia-
tion mostly attribute to the adjustment of snow amount during the snow cover DA. Using the HMA-corr-CHIRPS 
and DA-HMA-corr-CHIRPS pair as an example, the average biases are −7.44 and 4.33 W/m 2, respectively. The 
negative bias seen in HMA-corr-CHIRPS is likely due to the introduction of more precipitation, and hence more 
snow formation, which yields an increase in surface albedo leading to a slight increase in the outgoing shortwave 
radiation. The reverse in the sign of the average bias between HMA-corr-CHIRPS and DA-HMA-corr-CHIRPS 
pair is likely due to the reduction in the DA derived snow mass, which results in a decrease in the surface albedo, 
and further a slight decrease in the outgoing portion of the shortwave radiation.

In the evaluation against seven ground-based CEOP stations measuring net longwave radiation, calculated as 
incoming-minus-outgoing longwave fluxes, all experiments present similar performance in terms of average 
RMSE (∼42 W/m 2), ubRMSE (∼28 W/m 2), and R (∼0.63), as well as in terms of the median of each set of the 
goodness-of-fit statistics. Comparatively, the performance in terms of average bias is slightly different among 
models where experiments forced by bias-corrected precipitation (e.g., HMA-corr-CHIRPS) tends to yield a less 
negative average bias (= −21.38 W/m 2) given all model derived average biases are negative values. This can be 
explained by the fact that more precipitation is associated with more chances of evapotranspiration, which may 
lead to reduction in the land surface temperature, and further result in a reduction in the outgoing portion of the 
longwave radiation. In addition, the IQR of bias is notably different among all DA and their non-DA counterparts. 
That is, in general, the reduction in IQR of bias for the experiment with dual-DA enabled is between 17% and 
20%, which means DA-enabled experiments yield higher precision relative to their non-DA counterparts in terms 
of bias.

The snow depth evaluations shown in Figure 3 are conducted by comparing against three CHARIS stations, six 
CEOP stations, and eight GSOD stations. Overall, DA-HMA-CHIRPS shows slightly better performance in snow 
depth estimates among all experiments. Since Figure 3 is too small to visualize, using the CEOP snow depth 
evaluation as an example, we summarize all statistics into Table 2. It is expected that more evident differences 
are witnessed in HMA-corr-CHIRPS and DA-HMA-corr-CHIRPS pairs in terms of both mean and median. For 
example, relative to HMA-corr-CHIRPS, the median of bias in DA-HMA-corr-CHIRPS is reduced by 33% from 
0.003 to 0.002 m, the median of RMSE (ubRMSE) is reduced by 50% from 0.02 to 0.01 m, and the median of 
R is improved by 65% from 0.17 to 0.28. In terms of the mean of each goodness-of-fit statistics, improvements 
seen with DA-enabled experiments are even higher. Although we see improvements in DA-derived snow depth 
estimates, again, no statistical significance of the difference can be claimed here due to the small sample size and 
large sample variance. In general, the agreement between model estimates and ground-based snow measurements 
is relatively low. For example, in the evaluation against CEOP snow depth measurements, the average correlation 
coefficients computed from HMA-GMU, HMA-CHIRPS, HMA-corr-CHIRPS, DA-HMA-GMU, DA-HMA-
CHIRPS, and DA-HMA-corr-CHIRPS are 0.27, 0.31, 0.24, 0.29, 0.31, and 0.30. The relatively poor agreement 
can be attributed to erroneous model estimate itself or under-representative, erroneous, or intermittent low-qual-
ity ground-based snow measurements.

The skin temperature evaluations shown in Figure 3 are conducted by comparing against 24 CMA stations, and 
11 CEOP stations. All model derived estimates show relatively low absolute bias (<0.15 K) and high correla-
tion coefficient (∼0.97), especially in the evaluation against CMA skin temperature measurements. In general, 
DA-HMA-GMU and DA-HMA-CHIRPS demonstrate slightly better performance in skin temperature estimates 
among all experiments, especially in RMSE, ubRMSE, and R statistics, but less so with respect to the bias. 
It is encouraging to see that all DA-derived estimates tend to improve the estimates relative to their non-DA 
counterparts, notably in HMA-corr-CHIRPS and DA-HMA-corr-CHIRPS pairs. For example, in the evaluation  
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Figure 3. Box plots of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column 4) computed from HMA-GMU, HMA-CHIRPS, HMA-corr-CHIRPS, 
DA-HMA-GMU, DA-HMA-CHIRPS, and DA-HMA-corr-CHIRPS in the evaluation against ground-based CEOP net shortwave radiation (row 1), CEOP net longwave 
radiation (row 2), CHARIS snow depth (row 3), CEOP snow depth (row 4), GSOD snow depth (row 5), CMA skin temperature (row 6), and CEOP skin temperature 
(row 7). The common experimental name of “HMA” is omitted for clarity. The plus signs and red lines in the box plots are shown as outliers and medians, respectively. 
The bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
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against CMA skin temperature measurements, relative to HMA-corr-
CHIRPS, DA-HMA-corr-CHIRPS improves the average RMSE (ubRMSE) 
by 9% (10%) from 3.71 K (2.85 K) to 3.36 K (2.57 K).

Figure 4 further summarizes the relative improvement computed from each 
set of DA derived estimate relative to non-DA derived ones in the evaluation 
against ground-based measurements as a function of seasonality in terms of 
all goodness-of-fit statistics. As stated above, the majority of the improve-
ments seen in DA are mostly for random errors reductions, such as RMSE and 
ubRMSE across all seasons. The magnitudes of the improvement in RMSE 
and ubRMSE are typically smaller during June-July-August-September due 
to least amounts of disagreement seen between model derived estimates and 
satellite-based observations for both snow cover and freeze/thaw states. In 
terms of bias, the results are mixed across different seasons. For example, 
in the evaluation against CEOP net shortwave radiation, all DA-derived esti-
mates perform slightly better through June and November, whereas perform 
worse through December and May relative to non-DA counterparts. Using the 
HMA-CHIRPS and DA-HMA-CHIRPS pair as an example, HMA-CHIRPS 
yields average biases of −14.05 W/m 2 during JJA and −6.33 W/m 2 during 
SON, which are both negative. DA-HMA-CHIRPS improves the negative 
bias slightly, and yields average biases of −12.90  W/m 2 during JJA and 
−3.85  W/m 2 during SON. However, during DJF and MAM, the average 
biases computed from HMA-CHIRPS (DA-HMA-CHIRPS) are positive, 
that is, 5.17 W/m 2 (18.42 W/m 2) during DJF and 18.62 W/m 2 (23.20 W/m 2) 
during MAM. The exact reason for the average bias sign change issue across 
different seasons remain unclear. The errors may arise from many sources, 
for example, (a) relatively large in situ measurement errors during winter-
time when snow is present, and/or (b) inaccurate representation of Noah-MP 
model physics during wintertime. Further, during DJF and MAM, we see 
DA-HMA-CHIRPS exacerbates the positive bias seen from HMA-CHIRPS. 
Without accurate ground-based snow measurements at all colocated stations, 
it is difficult to discern the reasons clearly. It is plausible that during JJA and 
SON, which likely contain the time periods of the end and start of the snow 
seasons, the rule-based snow cover DA is beneficial at capturing quick tran-
sitions between snow-on and snow-off conditions. However, during DJF and 
MAM, sometimes, the Noah-MP modeled snow melts too slowly without DA 

but being removed too quickly when using rule-based DA (see Figure 7, CEOP Station#2 for an example). As 
discussed above, the surface net shortwave radiation is more dictated by the surface property. The overall reduc-
tion in the snow cover due to DA tends to decrease outgoing shortwave radiation, and hence, results in an increase 
in the net shortwave radiation, which leads to an exacerbation of the positive biases seen between December and 
May and an improvement of the negative biases seen between June and November.

In terms of R, the improvements/degradations are typically negligible across all seasons except for snow depth 
evaluations. For example, we see relatively high level of improvements in DA-HMA-corr-CHIPRS derived snow 
depth in terms of R as well as the other three goodness-of-fit statistics across all seasons (i.e., excluding summer 
seasons). These improvements (i.e., reduction in snow depth) mostly benefit from the systematic reduction of the 
over-correction issue seen in the bias-corrected CHIRPS through the snow cover DA, which directly adjusts the 
inter-annual variability of the snow cover, and hence mitigate the negative effects brought by the fixed long-term 
precipitation correction factors.

Figure 5 shows the box plots of goodness-of-fit statistics computed from all experiments in the point-scale evalua-
tion against ground-based soil temperature measurements. All model derived soil temperature estimates generally 
present relatively good agreement with all sources of soil temperature measurements, for example, the average 
Rs are all greater than 0.9. In the evaluation against 63 CTP-SMTMN 0–5 cm soil temperature stations, although 
all DA-derived estimates tend to improve the estimates obtained from their non-DA counterparts in terms of all  

Experiment name Statistics Mean Median

HMA-GMU Bias (m) 0.02 0.001

RMSE (m) 0.05 0.01

ubRMSE (m) 0.05 0.01

R (−) 0.27 0.22

HMA-CHIRPS Bias (m) 0.003 0.001

RMSE (m) 0.03 0.01

ubRMSE (m) 0.03 0.01

R (−) 0.31 0.28

HMA-corr-CHIRPS Bias (m) 0.12 0.003

RMSE (m) 0.19 0.02

ubRMSE (m) 0.14 0.02

R (−) 0.24 0.17

DA-HMA-GMU Bias (m) 0.0004 0.0006

RMSE (m) 0.03 0.01

ubRMSE (m) 0.03 0.01

R (−) 0.29 0.22

DA-HMA-CHIRPS Bias (m) −0.003 −0.0003

RMSE (m) 0.02 0.01

ubRMSE (m) 0.02 0.01

R (−) 0.31 0.25

DA-HMA-corr-CHIRPS Bias (m) 0.006 0.002

RMSE (m) 0.04 0.01

ubRMSE (m) 0.04 0.01

R (−) 0.30 0.28

Table 2 
The Computed Means and Medians of Each Goodness-of-Fit Statistics 
Metric in the Evaluation Against CEOP Snow Depth Measurements Across 
All Experiments (See Figure 3 [Row 4])
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Figure 4.
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goodness-of-fit statistics, the improvements are marginal (i.e., less than 1%). The marginal improvements are 
expected partly because of the relatively good agreement seen between satellite-based freeze/thaw observations 
and Noah-MP simulated estimates outside the Hindu-Kush Karakoram Himalaya region. Hence, a relatively 
small number of analysis updates in the freeze/thaw DA is not expected to impact the overall magnitude of 
improvements/degradations significantly (Xue et al., 2019). In addition, the non-significant improvements seen 
in the evaluation against CTP-SMTMN may be partly attributed to the relatively low spatial variability in soil 
temperature measurements in spite of the relatively large number of ground-based stations as discussed in Xue 
et al. (2021). Similar marginal improvements in DA-derived estimates in terms of the mean of each goodness-of-fit 
statistics are also seen in the evaluation against CEOP 4 cm soil temperature, SETORS 4 cm soil temperature, and 
CEOP 5 cm soil temperature.

On the other hand, we see marginal degradations in the DA-derived 3 cm soil temperature estimates relative 
to non-DA counterparts in the evaluation against one CEOP station. Using the bias as an example, except for 
HMA-corr-CHIRPS, the other two sets of DA derived estimates move to the wrong direction which further 
exacerbate the positive bias seen in the non-DA derived estimates. We do not see the same issue in 4 and 5 cm 
soil temperature evaluations because the non-DA derived estimates all yield negative biases. However, in 
HMA-corr-CHIRPS with an overly corrected precipitation (i.e., without considering the inter-annual variabil-
ity in precipitation correction factors), which yields a slight negative bias in the 3 cm soil temperature likely 
due to the evaporative cooling effect, DA-corr-CHIRPS moves toward the right direction and yields a close to 
zero bias. It is difficult to discern exactly which factor may result in such discrepancies in DA performance 
as well as the bias sign change issue among different layers of the soil. Since there is only one CEOP station 
measuring the 3 cm soil temperature, the measurement errors are difficult to avoid. It is also possible that 
the relatively simple linear interpolation method used to apply with the modeled soil temperature estimates 
to match with the measurement depth may not be appropriate in this case because the temperature gradient 
may not be linear. Similarly, we further summarizes the relative improvement computed from each set of DA 
derived estimate relative to non-DA derived ones in the evaluation against ground-based soil temperature 
measurements as a function of seasonality in terms of all goodness-of-fit statistics in Figure 6. In general, we 
see relatively high magnitude of DA improvements/degradations across DJF and MAM seasons, rather than in 
JJA and SON. Although the majority of improvements are seen in DA-derived estimates (i.e., the maximum 
level of improvements are ∼40%), not surprisingly, we still see degradations mainly taking place in the evalu-
ation against CEOP 3 cm soil temperature especially in terms of bias. Therefore, Figure 6 further corroborates 
the findings concluded in Figure 5.

Figure 7 shows example time series of several model output for CEOP station#1 at 31.37°N, 91.90°E from 1 
August 2003 to 1 October 2003, and for CEOP station#2 at 31.93°N, 91.71°E from 1 February 2007 to 1 April 
2007. The two stations are selected because they are among the very few stations measuring multiple variables at 
the same time. The two time periods are selected to highlight the impact of dual DA across different seasons. In 
addition, the benefits of the GMU developed downscaling scheme can also been seen from this Figure. For exam-
ple, in between 1 August 2003 and 1 October 2003, when snow starts to accumulate, experiments with GMU 
downscaled precipitation, relative to other two CHIRPS precipitation variants, are more capable of catching the 
snow depth spike shown in the CEOP measurement on 4 September 2003. With a more accurate snow accumula-
tion, both HMA-GMU and DA-HMA-GMU derived skin temperature estimates on 4 September 2003 align more 
closely with the CEOP measurement.

Between 1 August 2003 and 1 September 2003, no snow is present. Satellite-derived snow cover generally agrees 
with model derived snow cover for this location as snow-free. Therefore, snow cover DA has almost zero effect 
in net shortwave radiation and snow depth estimates. In this case, freeze/thaw DA mainly controls the DA-de-
rived estimates in terms of net longwave radiation (i.e., partly modulated by skin temperature), skin temperature, 
and soil temperature profile. The maximum difference seen in all DA-derived 4 cm soil temperature relative to 
their non-DA counterparts are ∼−1.2 K. As all non-DA derived soil temperature already yields relatively high 

Figure 4. Level of improvement (red) or degradation (blue) in the DA-HMA-GMU (relative to HMA-GMU), DA-HMA-CHIRPS (relative to HMA-CHIRPS), and 
DA-HMA-corr-CHIRPS (relative to HMA-corr-CHIRPS) in the evaluation against ground-based CEOP net shortwave radiation (row 1), CEOP net longwave radiation 
(row 2), CHARIS snow depth (row 3), CEOP snow depth (row 4), GSOD snow depth (row 5), CMA skin temperature (row 6), and CEOP skin temperature (row 7) 
as a function of seasonality in terms of bias, RMSE, ubRMSE, and R. DJF, December, January, February; MAM, March, April, May; JJA, June, July, August; SON, 
September, October, November. All snow depth box plots during JJA are not provided due to minimized snow coverage, and hence are denoted as “N/A”.
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negative biases as compared with CEOP measurements, a further decrease in the soil temperature as a result of 
the freeze/thaw DA implementation moves the estimate to the wrong direction in terms of bias. However, it is 
encouraging to see the temporal variability in the estimates are better picked up by the DA-derived estimates. 
Using the HMA-GMU and DA-HMA-GMU as an example, between 18 August 2003 and 19 August 2003, CEOP 
measured 4 cm soil temperature witnesses a daily temperature drop of ∼3K (from 287.94 to 284.93 K). Without 
DA, HMA-GMU is only able to model the drop as ∼0.6 K (from 281.17 to 280.55 K). With freeze/thaw DA, 
DA-HMA-GMU models the drop as ∼1.5 K (from 281.10 to 279.59 K). Similar improvements in the temporal 
variability agreement are also witnessed in the other DA-derived experiments as well as during other time peri-
ods. We acknowledge that such improvements in modeling soil temperature temporal variability are still far from 
being accurate as compared with the ground-based measurements. These discrepancies may be attributed to the 
errors in the ground-based measurement itself or in the model errors, for example, from the relatively simple and 

Figure 5. Same as Figure 3, but for the evaluation against ground-based CTP-SMTMN 0–5 cm soil temperature (row 1), CEOP 3 cm soil temperature (row 2), CEOP 
4 cm soil temperature (row 3), SETORS 4 cm soil temperature (row 4), and CEOP 5 cm soil temperature (row 5). Note there is only one CEOP station measuring 3 cm 
soil temperature, and there is only one SETORS station.
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conservative strategy that we used in applying the temperature increments during the freeze/thaw DA analysis 
step (see Xue et al., 2019 for discussions).

Between 1 February 2007 and 1 April 2007, we see a typical and complete snow accumulation and ablation time 
series measured by CEOP in Figure 7h. During the snow accumulation phase from 1 February 2007 to 14 March 
2007, it is not surprising to see that snow depth estimates derived by HMA-corr-CHIRPS are almost three to four 
times greater than the measurement. With the rule-based snow cover DA, DA-HMA-corr-CHIRPS is able to get 

Figure 6. Same as Figure 4, but for the evaluation against ground-based CTP-SMTMN 0–5 cm soil temperature (row 1), CEOP 3 cm soil temperature (row 2), CEOP 
4 cm soil temperature (row 3), SETORS 4 cm soil temperature (row 4), and CEOP 5 cm soil temperature (row 5).
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Figure 7.
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rid of approximately half of the snow mass. Comparatively, DA-HMA-CHIRPS yield the best agreement with all 
ground-based measurements during the accumulation phase. After 14 March 2007, all DA derived estimates tend 
to melt down all snow pack within two days to match with the satellite-based snow cover flag, while all non-DA 
experiments take a longer period to melt down all snow pack, especially for HMA-GMU and HMA-CHIRPS 
experiments. The difference in the snow melting speed significantly affects surface energy budget as snow cover 
dramatically regulate the amount of energy being reflected from the surface. With more snow accumulating on 
the ground during the melting phase, HMA-GMU and HMA-CHIRPS yield higher outgoing shortwave radiation, 
which results in lower net shortwave radiation values. Further, due to the decrease in the snow surface temper-
ature, HMA-GMU and HMA-CHIRPS yield relatively low outgoing longwave radiation, which result in less 
negative net longwave radiation. Overall, HMA-CHIRPS yields the best agreement with all ground-based meas-
urements during the ablation phase. DA derived estimates are not superior during the snow melt phase probably 
because they melt the snow pack more quickly than it should be. This phenomenon is caused by the simple snow 
mass reduction rule given by the snow cover DA algorithm (see Section 2.1).

3.2. Basin-Scale Evaluations

Figure 8 shows the flow duration curves calculated from all model simulations as well as ground-based measure-
ments for the five gauged basins from 2003 to 2016. We partition each of the curves into high-flow segment (with 
exceedance probability between 0% and 2%), high-to-mid flow segment (with exceedance probability between 
2% and 20%), mid-flow segment (with exceedance probability between 20% and 70%), and low-flow segment 
(with exceedance probability between 70% and 100%), following Yilmaz et al. (2008). We choose to show flow 
duration curves on the log scale rather than the total runoff time series on the normal scale because it is rather 
difficult to clearly visualize different model simulations using the total runoff time series on the normal scale. 
Overall, it is not surprising that none of the experiments can perfectly reproduce the flow duration curve calcu-
lated from ground-based measurements, possibly due to (a) measurement errors related to human impacts, and/
or (b) model errors arising from imperfect forcings and model structures.

According to the glacier map obtained from the Global Land Ice Measurements from Space (GLIMS) project 
(GLIMS & NSIDC, 2005) at a spatial resolution of 0.01°, Basins #1 and #5 are both with glaciated fraction of 
0% and experience negligible seasonal snow cover (i.e., maximum snow coverage being less than 10% in the 
evaluation period according to the MOD10A1 snow cover product). It is expected that relatively small differ-
ences exist between different model simulations. In other words, model simulations with and without the dual 
DA assimilation scheme present comparable performance in reproducing the flow duration curves derived from 
ground-based measurements as shown in Figure 8. On the other hand, Basins #2 through #4 are snowmelt fed 
(or snow-glacier-melt fed) basins. As discussed above, snow cover DA significantly impacts snow melt timing, 
which further impacts the runoff modeling performance. For example, HMA-corr-CHIRPS yields significantly 
higher magnitude in the high-flow segment mainly due to the overly corrected precipitation forcings, which is 
likely limited by the fixed long-term correction factors without considering the inter-annual variability of the total 
precipitation. With snow cover DA, DA-HMA-corr-CHIRPS improves the rbiasFHV significantly across all three 
basins, especially for Basin #4 (see Table 3). Improvements in the high-flow segments as well as in the high-
to-mid flow segments are also seen in other DA-derived estimates across all three basins. Further, we compute 
both rbiasFMS and rbiasFMM statistics to quantify the systematic errors in the model simulated flow at mid-flow 
segment. rbiasFMS focuses on the slope of the curve whereas rbiasFMM focuses on the magnitude of the median 
value. Although the majority of the DA-derived estimates show improvements in the mid-flow segment, slight 
degradations notably in the rbiasFMS are witnessed. These degradations in DA derived rbiasFMS may arise from (a) 
the lack of river routing scheme in the model, and (b) the inaccuracy in updating snow melt rate within the simple 
rule-based DA (see Figure 7 as an example).

Figure 7. Example time series of all model simulations in the evaluation against two ground-based CEOP stations, (a–e) are for CEOP station#1 at 31.37°N, 91.90°E 
from 1 August 2003 to 1 October 2003, and (f–h) are for CEOP station#2 at 31.93°N, 91.71°E from 1 February 2007 to 1 April 2007. The 4 cm soil temperature time 
series from 17 August 2003 to 20 August 2003 for CEOP station#1 are highlighted and shown in (i). The CEOP measurements include daily averaged surface net 
shortwave radiation (row 1), surface net longwave radiation (row 2), snow depth (row 3), skin temperature (row 4), and 4 cm soil temperature (row 5). Note: no ground-
based skin and soil temperature measurements were available for CEOP station#2.
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In terms of the low-flow segment, which is a measure of the long-term base flow, it is encouraging to see that all 
DA derived estimates tend to move toward the ground-based measurements due to snow cover DA. It is worthy 
of noting that we still see discrepancies between measured and modeled duration curves in the low-flow segment. 
According to GLIMS, the glaciated fraction is 15.45% (Basin #2), 5.53% (Basin #3), and 17.8% (Basin #4). As 
the low-flow segment can be deemed as a measure of the long-term base flow, it is postulated that the lack of the 
glacier modeling routine may negatively impact the runoff simulation accuracy. This explanation is based on a 
separate study (not shown) during which we study the impact of including a relatively simplistic glacier modeling 
routine (i.e., using a relatively simple glacier land cover representation to modify the energy balance and water 
balance associated with the glaciated grid cells) into the Noah-MP model. It is found that the the inclusion of a 
simplistic glacier model could contribute to a more accurate representation of model simulated base flow compo-
nent originating from snow and glacier melt. Since the Part I manuscript did not include any glacier modelings, 

Figure 8. Flow duration curves calculated from all model simulations as well as ground-based measurements for the five 
gauged basins from 2003 to 2016. Note that the y-axis is plotted on a log scale. The vertical dashed lines are used to partition 
the curve into high-flow segment (with exceedance probability between 0% and 2%), high-to-mid flow segment (with 
exceedance probability between 2% and 20%), mid-flow segment (with exceedance probability between 20% and 70%), and 
low-flow segment (with exceedance probability between 70% and 100%).
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and further, current Noah-MP does not support a full glacier mass balance 
model yet, all glacier related analysis are not shown here. Instead, we will 
demonstrate the effect of glacier routines in streamflow modelings in a sepa-
rate study in the future.

Figure 9 further summarizes the goodness-of-fit plus NSE statistics for all 
experiments across three snow-dominated basins, that is, Basin #2, Basin 
#3, and Basin #4, in the evaluation against ground-based monthly runoff 
measurements from 2003 to 2016. It is encouraging to see that DA-derived 
estimates improve all goodness-of-fit statistics across all three basins relative 
to non-DA derived counterparts. In general, DA-HMA-corr-CHIRPS shows 
its superiority in runoff simulations over snowmelt fed (or snow-glacier-melt 
fed) basins relative to other experiments. For example, in Basin #2, relative to 
HMA-corr-CHIRPS, DA-HMA-corr-CHIRPS reduces the bias by 69% (from 
88.23 m 3/s to 26.92 m 3/s), RMSE by 30% (from 154.73 m 3/s to 107.79 m 3/s), 
and ubRMSE by 18% (from 127.11 m 3/s to 104.37 m 3/s). DA-HMA-corr-
CHIRPS also improves the R (NSE) from 0.87 (0.43) to 0.90 (0.72). These 
findings suggest that the improvements in snow estimates due to snow cover 
DA can translate into improved runoff estimates.

3.3. Domain-Scale Evaluations

Figure  10 shows the goodness-of-fit statistics computed for HMA-GMU 
and DA-HMA-GMU in the evaluation against the MODIS skin temperature 
product from 2003 to 2016 across HMA at a spatial resolution of 1 km. We 
only show the evaluation of HMA-GMU and DA-HMA-GMU in Figure 10 
because the other two experiment pairs demonstrate similar patterns and 
findings. Although both HMA-GMU and DA-HMA-GMU present relatively 
good agreement with MODIS skin temperature in terms of the temporal vari-
ability (i.e., with the spatially averaged R = 0.94), it is not too surprising to 
see that skin temperature magnitudes vary significantly among model esti-

mates as well as satellite-derived reference because neither the model nor the satellite-derived estimate should 
be treated as “truth”. The worst agreement (i.e., relatively high magnitudes of bias, RMSE, ubRMSE, and low 
R) occurs along the Hindu-Kush Karakoram Himalaya region as discussed in Xue et al. (2021) mainly due to 
the complicated cryospheric-hydrological process compounded by the complex terrain. With dual DA enabled, 
DA-HMA-GMU tends to improve all goodness-of-fit statistics except for R, which generally results in a better 
agreement with the reference measurement, especially notable along the Karakoram-Himalaya region. The 
spatially averaged improvements seen in DA-derived bias, RMSE, and ubRMSE are between 6% and 7% relative 
to the non-DA counterpart. The range of the change (i.e., DA-HMA-GMU minus HMA-GMU) in the spatially 
and temporally averaged mean in the skin temperature is from 9.1 K per day to −4.5 K per day across all grid 
cells (not shown). Compared with HMA-GMU, DA-HMA-GMU increases the skin temperature estimates mainly 
across the Tibetan Plateau, which are likely due to the more frequent presences of freeze/thaw and snow cover 
status discrepancies between model estimates and satellite observations. Figure 11 further corroborates what is 
observed in Figure 10. It shows the box plot of change in the RMSE (ΔRMSE) computed between HMA-GMU 
and DA-HMA-GMU. Note that we do not show box plots for other computed metrics because they are similar to 
what shown in Figure 11. Figure 11 is binned as a function of the elevation per grid cell. The spatially distributed 
elevation per grid cell (Elev; meters) throughout the assessment period are binned into eight categories, includ-
ing (a) 0 ≤ Elev ≤ 1,000, (b) 1,000 < Elev ≤ 2,000, (c) 2,000 < Elev ≤ 3,000, (d) 3,000 < Elev ≤ 4,000, (e) 
4,000 < Elev ≤ 5,000, (f) 5,000 < Elev ≤ 6,000, (g) 6,000 < Elev ≤ 7,000, and (h) Elev > 7,000. The sample sizes 
(number of grid cells) for the six bins are 3216572, 1003864, 505946, 556549, 1362142, 669144, 12317, and 278, 
respectively. The positive ΔRMSE indicate skill improvements in the DA-HMA-GMU relative to HMA-GMU. 
Therefore, it is seen that the majority of the skin temperature improvements in terms of RMSE take place at grid 
cells with elevations between 2,000 and 7,000 m. We also see slight degradations in skin temperature estimates 
for grid cells with elevations above 7,000 m. This is expected because 94% of the grid cells with elevations above 

Experiment name Statistics Basin #2 Basin #3 Basin #4

HMA-GMU rbiasFMS −0.08 −0.11 0.61

rbiasFHV −0.47 −0.53 0.09

rbiasFMM −0.05 −0.22 −0.23

HMA-CHIRPS rbiasFMS −0.10 −0.13 0.54

rbiasFHV −0.45 −0.53 0.10

rbiasFMM −0.04 −0.22 −0.22

HMA-corr-CHIRPS rbiasFMS 0.04 0.42 1.11

rbiasFHV 0.10 0.38 1.14

rbiasFMM 0.16 −0.08 −0.08

DA-HMA-GMU rbiasFMS −0.21 −0.27 0.29

rbiasFHV −0.44 −0.45 −0.07

rbiasFMM −0.00 −0.08 −0.16

DA-HMA-CHIRPS rbiasFMS −0.24 −0.26 0.29

rbiasFHV −0.44 −0.44 −0.01

rbiasFMM −0.00 −0.08 −0.16

DA-HMA-corr-CHIRPS rbiasFMS 0.16 0.23 0.50

rbiasFHV 0.03 0.08 0.18

rbiasFMM 0.03 −0.06 −0.11

Note. Statistics obtained from DA-enabled experiments with greater-than-
five-percent improvements relative to the non-DA counterparts are bolded.

Table 3 
Three Relative Bias Related Statistics Computed for All Model Simulations 
in the Evaluation Across Three Snow and Glacier Dominated Gauged 
Basins
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7,000 m are glacierized according to GLIMS. The degradation in DA could be attributed to (a) inaccurate retriev-
als of MODIS land surface temperature, and/or (b) inaccurate physical representations of snow accumulation and 
melt processes on top of glaciers within the model itself. In general, DA-HMA-GMU and DA-HMA-CHIRPS 
demonstrate the best agreement with MODIS skin temperature estimates, which corroborates the results in the 
ground-based skin temperature analysis.

Figure 12 shows the goodness-of-fit statistics computed for HMA-GMU and DA-HMA-GMU in the evaluation 
against the CGLS SWE product from 2006 to 2016 above latitude 35°N at a spatial resolution of 5 km. Again, 
we only show the evaluation of HMA-GMU and DA-HMA-GMU in Figure 12 because the other two experiment 
pairs demonstrate similar patterns and findings. Similar to the evaluations above, it is expected that SWE esti-
mates vary significantly among model estimates as well as satellite-derived reference because neither the model 
nor the satellite-derived estimate should be treated as “truth”. Although DA-HMA-GMU improves R slightly 
relative to HMA-GMU in the evaluation against the reference product, the agreement in the temporal variability 
is generally low (i.e., R < 0.4), which emphasizes that the snow estimation across such complex terrain remains 
a challenging task. The worst agreements (i.e., relatively high magnitudes of bias, RMSE, ubRMSE, and low R) 
are mostly colocated with relatively high elevation regions inside the Tibetan Plateau relative to the Taklamakan 
desert mainly due to the difference in climate regions as discussed in Xue et al. (2021). With dual DA enabled, 
DA-HMA-GMU tends to improve all goodness-of-fit statistics, which results in a better agreement with the refer-
ence measurement. Within the CGLS covered domain (i.e., above latitude 35°N, excluding mountainous regions), 
the range of the change (i.e., DA-HMA-GMU minus HMA-GMU) in the spatially and temporally averaged mean 
in the SWE is from 3 mm per day to −65 mm per day across all grid cells (not shown). It is expected that the 
snow reduction magnitude in DA enabled experiments are generally higher than the snow addition magnitude 

Figure 9. Statistics of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column 4), and NSE (column 5) for all experiments across three snow-dominated 
basins, that is, Basin #2 (row 1), Basin #3 (row 2), and Basin #4 (row 3), in the evaluation against ground-based monthly runoff measurements from 2003 to 2016. Each 
row represents statistics for each basin. In addition, experiments with the best goodness-of-fit statistics for each basin are marked with gray bars.
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because the rule-based snow update algorithm is more promptly at reducing the snowpack at qualified grid cells. 
Overall, within the CGLS covered domain, DA-HMA-GMU adds ∼3% more SWE relative to HMA-GMU (from 
0.88 to 0.91 mm per day). Since CGLS SWE yields the spatially and temporally averaged mean of 2.83 mm per 
day, DA-HMA-GMU tends to move closer to the CGLS SWE estimates, which results in a better agreement 
in terms of all goodness-of-fit statistics. In general, DA-HMA-GMU and DA-HMA-CHIRPS demonstrate the 
best agreement with CGLS SWE estimates, which are consistent with the analysis in the point-scale snow depth 
evaluations.

Figure 10. Spatial distribution of bias, RMSE, ubRMSE, and R computed between daily averaged, 1 km HMA-GMU 
(column 1), DA-HMA-GMU (column 2) surface temperature and MODIS derived surface temperature from 2003 to 2016. 
Spatial distribution of the change in the absolute value of bias, RMSE, ubRMSE, and R between HMA-GMU and DA-HMA-
GMU are shown in column 3. The red colors in (c, f, i, and l) indicate DA-HMA-GMU derived estimates agree better with 
MODIS derived measurements than HMA-GMU. Conversely, blue colors indicate that HMA-GMU agrees better with 
MODIS. The title also demonstrates the spatial mean, m, computed for each map.
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4. Conclusions and Discussions
This second paper of the two-part series focuses on demonstrating the impact of assimilating satellite-based snow 
cover and freeze/thaw observations into the hyper-resolution, offline terrestrial modeling system across HMA 
from 2003 to 2016. To this end, this study systematically evaluates a total of six sets of 0.01° (∼1 km) model 
simulations forced by different precipitation forcings, with and without the dual assimilation scheme enabled, at 
point-scale, basin-scale, and domain-scale. Key conclusions drawn from this study are summarized below:

1.  In the evaluation against ground-based net shortwave radiation measurements, DA-HMA-corr-CHIRPS yields 
the best performance. The DA-enabled experiment tends to yield a lower IQR (i.e., higher precision) than their 
non-DA counterpart in all goodness-of-fit statistics

2.  In the evaluation against ground-based net longwave radiation measurements, all experiments present similar 
performance in terms of average (median) RMSE, ubRMSE, and R. The DA-enabled experiment tends to 
yield a lower IQR (i.e., higher precision) relative to their non-DA counterpart in terms of bias

3.  In the evaluation against ground-based snow depth measurements, DA-HMA-CHIRPS shows slightly better 
performance. Further, DA derived estimates are generally better than non-DA counterparts in terms of all 
goodness-of-fit statistics

4.  In the evaluation against ground-based skin temperature measurements, DA-HMA-GMU and DA-HMA-
CHIRPS demonstrate slightly better performance among all experiments, especially in RMSE, ubRMSE, and 
R statistics, but less so with respect to the bias. All DA-derived estimates tend to improve the estimates relative 
to their non-DA counterparts

5.  In the evaluation against ground-based near-surface soil temperature profile measurements, the results are 
mixed. All DA-derived estimates tend to improve the estimates obtained from their non-DA counterparts 
in terms of all goodness-of-fit statistics, however, the improvements are marginal. These marginal improve-
ments are mainly seen in the evaluation against CTP-SMTMN 0–5 cm soil temperature, CEOP 4 cm soil 
temperature, SETORS 4 cm soil temperature, and CEOP 5 cm soil temperature. On the other hand, marginal 

Figure 11. A box plot of ΔRMSE computed between HMA-GMU and DA-HMA-GMU during the comparison against 
MODIS derived surface temperature, which are binned as a function of elevation per grid cell. The boxes show the median 
(marked as the black line in the box) along with the 25th and 75th percentiles while the whiskers show the 5 and 95th 
percentiles. The spatially averaged skill metrics are marked as dots for each bin. The positive ΔRMSE indicates skill 
improvements in the DA-HMA-GMU relative to HMA-GMU.
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degradations are seen in the DA-derived 3 cm soil temperature estimates relative to non-DA counterparts in 
the evaluation against one CEOP station

6.  Across three snowmelt fed (or snow-glacier-melt fed) basins, DA-derived runoff estimates demonstrate better 
performance relative to non-DA derived counterparts across low-flow, high-flow, as well as high-to-mid 
flow segments. Overall, DA-HMA-corr-CHIRPS shows its superiority in runoff simulations relative to other 
experiments. These results suggest that the improvements in snow estimates due to snow cover DA can trans-
late into improved runoff estimates

7.  In the evaluation against, the MODIS skin temperature product as well as in the evaluation against the CGLS 
SWE product, DA-HMA-GMU and DA-HMA-CHIRPS yield the best agreement. The majority of the skin 
temperature improvements due to DA take place at grid cells with elevations between 2,000 and 7,000 m. 
Slight degradations in skin temperature estimates due to DA are witnessed for grid cells with elevations above 
7,000 m (i.e., mostly covered with glaciers). In terms of domain-scale SWE evaluation, SWE estimates vary 
significantly among model estimates as well as satellite-derived reference. The agreement in the temporal 
variability among different products/estimates is generally low, which emphasizes that the snow estimation 
across such complex terrain remains a challenging task

8.  In terms of seasonality, in general, the majority of the improvements seen in DA are mostly for random errors 
reductions, such as RMSE and ubRMSE across all seasons and the magnitude of improvements are typically 
smaller during JJA seasons

In summary, the proposed dual-assimilation system is beneficial in improving the cryospheric-hydrological 
process within the Noah-MP land surface model for use in HMA. When forced with different precipitation forc-
ings, the performance of DA-enabled experiments differs. In general, DA-HMA-corr-CHIRPS demonstrates its 

Figure 12. Same as Figure 10, but for the evaluation against daily averaged, 5 km CGLS SWE product from 2006 to 2016. 
Note the domain is truncated because the CGLS SWE product only covers area above latitude 35°N, and mountainous regions 
are excluded from the CGLS product.
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superiority in runoff estimates whereas DA-HMA-GMU and DA-HMA-CHIRPS demonstrate superiority in 
other model estimates (e.g., snow depth). The good performance obtained from model derived runoff simulations 
forced by the bias-corrected CHIRPS is partly expected because the precipitation input was calibrated using 
ground-based runoff measurements (Beck et al., 2020). It is encouraging to see that the proposed dual DA system 
successfully mitigates the negative effects brought by the overly corrected precipitation forcings due to the fixed 
long-term correction factors without considering the inter-annual variability of the total precipitation.

Although we try hard to gather all reference measurements across HMA to evaluate, we acknowledge that the 
sample size used in the evaluation process is far from being adequate. Therefore, with limited evaluation refer-
ences across HMA, we choose not to explicitly refer to the best DA derived experiment among DA-HMA-GMU, 
DA-HMA-CHIRPS, and DA-HMA-corr-CHIRPS as the “HMA-LDAS”. Instead, we focus on emphasizing the 
effect of the proposed dual DA procedures for use across HMA.

While we are encouraged with the improvements seen in the proposed HMA-LDASs, the limitations of the 
current study are also worth mentioning here. These limitations should be addressed in the future studies in 
order to further improve HMA-LDASs performance. These limitations include, but not limited to, (a) the lack of 
glacier modeling routines, (b) the lack of river routing schemes along with a detailed human land-water manage-
ment representation, (c) the lack of a more accurate representation of the snow depletion process used within the 
simplistic rule-based snow cover DA, (d) the lack of a more detailed soil temperature profile within Noah-MP, and 
(e) the lack of a more accurate representation of the relationship between skin temperature change and top-layer 
soil temperature change when used within the simplistic rule-based freeze/thaw DA. Further, the snow cover 
DA mostly dominates the impact on all key variables of interest as seen from the analysis. Given the marginal 
improvements seen within the freeze/thaw DA, a more thoughtful rule-based strategy probably should be estab-
lished to not only capture the changes in the soil temperature states, but also to better reveal the updates in the 
water-related variables. We acknowledge that the relatively simplistic rule-based multi-variate DA system is not 
a panacea, more advanced DA techniques may be used in order to facilitate the development of the HMA-LDAS 
as future versions (i.e., version 2, version 3, etc.). But we believe that the presented study here (i.e., two-part 
series) did point out useful directions toward future studies for modeling such a challenging HMA region, for 
example, hyper-resolution modeling coupled with multi-variate assimilation strategies. These HMA-LDASs will 
be extremely useful for future studies (a) to understand surface flux, snow/ice storage, and water balance changes 
in HMA and investigate the causality of these changes at the regional to local scale, (b) to develop assessments 
of significant trends/changes in both observed (e.g., snow) and unobserved (e.g., groundwater storage change) 
states of land surface, and (c) to develop better forecasts of hydrological extremes such as droughts and floods.

Data Availability Statement
The CHIPRS precipitation data are available from ftp://ftp.chg.ucsb.edu/pub/org/chg/products/. The bias correc-
tion factors as applied to CHIRPS precipitation product is obtained from http://www.gloh2o.org/pbcor/. The 
CHARIS data were obtained from http://himatmap.apps.nsidc.org/hma_insitu.html. The GRDC data were 
obtained from the Global Runoff Data Centre, 56068 Koblenz, Germany (https://www.bafg.de/GRDC/EN/01_
GRDC/grdc_node.html). The GSOD data were obtained from https://data.noaa.gov/dataset/dataset/global-sur-
face-summary-of-the-day-gsod. The CMA data were obtained from https://data.cma.cn/en/?r=data/detail&-
dataCode=SURF_CLI_CHN_MUL_DAY_CES_V3.0&keywords=daily as indicated in Xue et  al.  (2021). As 
of 02/14/2022, this link is no longer valid. The new link for CMA data is http://101.200.76.197/en/?r=data/
detail&dataCode=SURF_CLI_CHN_MUL_DAY_CES_V3.0. The CEOP data were obtained from https://www.
eol.ucar.edu/projects/ceop/dm/insitu/sites/ceop_ap/. The CTP-SMTMN data were provided by Data Assimila-
tion and Modeling Center for Tibetan Multi-spheres, Institute of Tibetan Plateau Research, Chinese Academy 
of Sciences. The SETORS data were originally obtained from http://en.tpedatabase.cn/portal/MetaDataInfo.
jsp?MetaDataId=197 as indicated in Xue et al. (2021). As of 01/04/2022, this link is no longer valid. The new 
link for SETORS data is https://data.tpdc.ac.cn/en/data/49ac37ac-0fc3-460f-83c4-c44744205474/. All MODIS 
products were obtained from https://earthdata.nasa.gov/. The MEaSUREs landscape freeze/thaw product was 
obtained from https://nsidc.org/data/nsidc-0728. The CGLS SWE product (v1.0.2) was obtained from https://
land.copernicus.eu/global/products/swe. The authors thank the entire NASA HiMAT team for sharing data set  
and providing useful comments to the study. The NASA Land Information System was run on ARGO, a research 
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computing cluster provided by the Office of Research Computing at George Mason University, VA (http://
orc.gmu.edu). The downscaling framework is implemented by functions/codes available via Mei's GitHub at 
https://github.com/YiwenMei/AtmDS and https://github.com/YiwenMei/PrecipDS. Downscaled products 
are available at NASA Distributed Active Archive Center (DAAC) at National Snow and Ice Data Center 
(doi:https://doi.org/10.5067/CRN0E7YPPFGY).
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