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Abstract24

This second paper of the two-part series focuses on demonstrating the impact of assim-25

ilating satellite-based snow cover and freeze/thaw observations into the hyper-resolution,26

offline terrestrial modeling system used for the High Mountain Asia (HMA) region from27

2003 to 2016. To this end, this study systematically evaluates a total of six sets of 0.01◦28

(∼ 1-km) model simulations forced by different precipitation forcings, with and without29

the dual assimilation scheme enabled, at point-scale, basin-scale, and domain-scale. The30

key variables of interest include surface net shortwave radiation, surface net longwave31

radiation, skin temperature, near-surface soil temperature, snow depth, snow water equiv-32

alent (SWE), and total runoff. First, the point-scale assessment is mainly conducted via33

evaluating against ground-based measurements. In general, the assimilation enabled es-34

timates are better than no-assimilation counterparts. Second, the basin-scale runoff as-35

sessment demonstrates that across three snow-dominated basins, the assimilation enabled36

experiment yields systematic improvements in all goodness-of-fit statistics through mit-37

igating the negative effects brought by the fixed long-term precipitation correction fac-38

tors. For example, when forced by the bias-corrected precipitation, the assimilation-enabled39

experiment improves the bias by 69%, the root-mean-squared error by 30%, and the un-40

biased root-mean-squared error by 18% (relative to the no-assimilation counterpart). Fi-41

nally, the domain-scale assessment is conducted via evaluating against satellite-based SWE42

and skin temperature products. Both set of domain-scale analysis further corroborate43

the findings in the point-scale evaluations. Overall, this study suggests the benefits of44

the proposed multi-variate assimilation system in improving the cryospheric-hydrological45

process within a land surface model for use in HMA.46

1 Introduction47

The first part of the study presented the importance of using a hyper-resolution48

modeling configuration to characterize the cryospheric-hydrological process across the49

complex High Mountain Asia (HMA) region. It is acknowledged that, although we im-50

prove the spatial resolution of the model input and output, model estimates are inevitably51

imperfect mainly due to limitations such as imperfect model parameterizations and at-52

mospheric boundary conditions (Nandakumar & Mein, 1997; Mendoza et al., 2015; Zheng53

et al., 2017). Among the surface meteorological data used to drive the hyper-resolution54

modeling unit, precipitation is the most important mass input variable (Guo et al., 2006;55
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Yoon et al., 2019). However, all precipitation estimates contain errors and uncertainty,56

especially in complex terrain (Yilmaz et al., 2005; Maggioni et al., 2017). Land surface57

modelers seek to use a precipitation estimate closest to the “truth” in their own study58

domains. However, there is often no clear answer to this question (Kidd & Huffman, 2011;59

Gehne et al., 2016; Xue et al., 2021).60

To overcome the aforementioned model deficiencies, data assimilation (DA) is of-61

ten used – which is referred to as an approach to constrain physical land surface model62

derived estimates through the input of the observation. It is assumed that the dynam-63

ics that are responsible for a particular process are inherent in the observations (Hofmann64

& Friedrichs, 2001). By constraining the model with various observations, model esti-65

mates can be improved. Xue et al. (2019) successfully demonstrates the efficacy of as-66

similating the satellite-based freeze/thaw as well as the snow cover product independently67

into the hyper-resolution land surface model to improve model estimates across HMA68

for a sample water year via simplistic rule-based direct insertion algorithms. Based on69

the encouraging results seen in Xue et al. (2019), we want to demonstrate the effect of70

dual assimilation (i.e., joint assimilation of snow cover and freeze/thaw) in this study.71

To our best knowledge, there exists no published study performing rule-based dual as-72

similation for the entire HMA for a relatively long period (e.g., more than 10 years) at73

a fine spatial resolution (e.g., finer than 5-km).74

Using Xue et al. (2021) as a benchmark, in this study, we attempt to address the75

following science questions: 1) To what extent does assimilation of satellite-based prod-76

ucts improve or worsen land surface modeling, compared to ground-based observations77

or satellite-derived reference products? 2) Can the dual assimilation scheme be benefi-78

cial at mitigating systematic biases possibly caused by overly-corrected precipitation?79

To this end, this study systematically evaluates six sets of 0.01◦ (∼ 1-km) model sim-80

ulations at point-scale, basin-scale, and domain-scale. The key variables of interest in-81

clude surface net shortwave radiation, surface net longwave radiation, skin temperature,82

near-surface soil temperature, snow depth, snow water equivalent (SWE), and total runoff.83

The ultimate goal of this research is to evaluate the newly-developed, hyper-resolution84

High Mountain Asia - Land Data Assimilation System (HMA-LDAS; version 1) from 200385

to 2016. As mentioned in Xue et al. (2021), HMA-LDAS is intended to provide spatially86

and temporally continuous land surface estimates which are essential for capturing the87

spatio-temporal evolution of hydrometeorological conditions and their associated pro-88
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cesses across HMA characterized by complex terrain. Part II, presented in this manuscript,89

focuses on demonstrating the impact of simultaneously assimilating satellite-based snow90

cover and freeze/thaw observations into a hyper-resolution (at ∼ 1-km spatial resolu-91

tion) terrestrial modeling system forced by different precipitation forcings.92

2 Data and Methods93

2.1 Snow cover and freeze/thaw assimilation94

In DA enabled experiments, we assimilate satellite-based snow cover and freeze/thaw95

observations into the model simultaneously. The forward model used here is the Noah-96

Multiparameterization Land Surface Model (Noah-MP; version 3.6: i.e., without the glacier97

modeling routine). The satellite-based snow cover products are obtained from the Mod-98

erate Resolution Imaging Spectroradiometer (MODIS) Snow Cover Daily L3 Global 500-99

m Grid (MOD10A1, version 6; Hall and Riggs (2016)). Following Rodell and Houser (2004),100

Arsenault, Houser, De Lannoy, and Dirmeyer (2013), and Xue et al. (2019), direct up-101

dates in SWE and snow depth take place daily at 00:00 (UTC) through the DA update102

analysis step. The rule-based (a.k.a., direct insertion based) snow cover assimilation scheme103

assimilates daily, binary 0.01◦ (i.e., same model grid) snow cover maps post-processed104

from the MOD10A1 product, with ones (i.e., representing snow covered conditions) and105

zeros (i.e., representing snow-free conditions) for land pixels. Figure 1 shows the spatial106

map of the total percentage of days with valid MODIS snow cover observations from 01107

February 2003 to 30 November 2016 as well as its variability across different seasons for108

the entire period. Overall, the spatially averaged mean is 56.08% across the entire anal-109

ysis period. The relatively low spatially averaged coverage of 41.55% occurs during June-110

July-August (JJA) possibly due to more significant presence of the cloud cover during111

the summer monsoon.112

The modeled grid cells are categorized into snow-covered, and snow-free conditions113

based on the simulated snow cover fraction and SWE amount. If the model derived and114

the corresponding MODIS derived snow cover observations agree with each other, no up-115

dates occur. If the model indicates a snow-covered grid cell, but the observation indi-116

cates snow-free condition, both SWE and snow depth states are reduced to zeros. If the117

model indicates a snow-free grid cell, but the observation indicates snow-covered con-118

dition, the modeled SWE during the analysis update step is increased to 5 mm, the snow119
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depth is increased to 0.02 m accordingly, and one layer of snowpack is created to initi-120

ate the snowpack growth. The selection of initial SWE and snow depth values in this121

study is completely based on Rodell and Houser (2004) and Arsenault et al. (2013). How-122

ever, it is believed that a more careful sensitivity analysis should be conducted in the123

future to determine the optimal value to initiate the snow pack growth because adding124

even a thin layer of snow can have important consequences for the simulated energy bal-125

ance (Rodell & Houser, 2004). In general, snow cover DA occurs more often in December-126

January-February (DJF) and March-April-May (MAM) (relative to JJA and September-127

October-November (SON)) during the major snow seasons (not shown). Details regard-128

ing Noah-MP snow parameterization, snow cover assimilation procedure, MOD10A1 pre-129

processing procedures, and sample snow cover DA results are described in detail in Xue130

et al. (2019). Details regarding how the rule-based snow cover DA could impact hydro-131

logical and energy budgets can be seen from Arsenault et al. (2013).132

Xue et al. (2019) also presents the freeze/thaw assimilation procedure and sam-133

ple results based on previous studies carried out by Reichle, Kumar, Mahanama, Koster,134

and Liu (2010) and Farhadi, Reichle, De Lannoy, and Kimball (2015). Similarly, the satellite-135

based freeze/thaw product used in this study is obtained from the Making Earth Sys-136

tem Data Records for Use in Research Environments (MEaSUREs) Northern Hemisphere137

Polar Equal-Area Scalable Earth Grid 2.0 Daily 6 km Land Freeze/Thaw Status from138

the AMSR-E and the AMSR-2 (version 1; Kim, Kimball, Glassy, and Du (2017); Kim,139

Kimball, Glassy, and McDonald (2018)). Both morning (AM) and afternoon (PM), bi-140

nary freeze/thaw states reprocessed from MEaSUREs, are employed in this study. Ze-141

ros representing the frozen landscape, and ones representing the non-frozen (or thawed)142

landscape. Direct updates in the top-layer soil temperature state take place twice a day143

at 01:30 and 13:30, which corresponds to the AM and PM MEaSUREs freeze/thaw ob-144

servations, respectively, through the DA update step. The rule-based freeze/thaw assim-145

ilation scheme is conducted via comparing the agreement (or disagreement) between Noah-146

MP model derived and satellite-derived freeze/thaw states. To be more specific, if the147

model derived and the corresponding freeze/thaw observations agree with each other,148

no updates occur. On the other hand, if the model derived and the corresponding freeze/thaw149

observations do not agree, increments are computed from the surface temperature state150

relative to the lower surface temperature boundary and the upper surface temperature151

boundary of the freeze/thaw state accordingly. These increments are applied directly onto152
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the top-layer of soil temperature. The energy budget is mostly maintained throughout153

the simulation with minimal errors (not shown). Details regarding Noah-MP temper-154

ature parameterization, freeze/thaw assimilation procedure, uncertainty associated with155

the freeze/thaw DA procedure, and sample freeze/thaw DA results can be referred to156

in Xue et al. (2019).157

The snow cover and freeze/thaw DA are integrated simultaneously within the dual158

DA scheme on a daily basis. These two updates take place individually at different time159

points as mentioned above. We prefer performing the snow cover DA prior to the freeze/thaw160

DA mainly because we expect the snow cover DA derived estimate can provide a more161

accurate characterization of the current snow conditions. The follow-up freeze/thaw DA162

can take advantage of the more accurate snow estimates, and perform temperature re-163

lated updates when necessary. It is worth noting that model grid cells covered with sig-164

nificant amount of snowpack (i.e., greater than 50% of the snow cover fraction or greater165

than 5 cm of the snow depth as simulated by the Noah-MP model) are not being updated166

during the freeze/thaw DA due to the limited penetration depth of the 36 GHz bright-167

ness temperature channel used in the MEaSUREs detection algorithm. Therefore, freeze/thaw168

DA occurs much less frequently in DJF (not shown).169

2.2 Study domain and models170

As in Xue et al. (2021), the analysis of Part II are carried out across the HMA re-171

gion bounded between 20◦N and 41◦N and 66◦E and 101◦E for a 14-year time period172

(2003–2016). Three sets of Noah-MP derived model simulations driven by different me-173

teorological inputs, with and without dual assimilation scheme enabled are conducted174

at a spatial resolution of 0.01◦ (∼ 1-km). Thus, a total of six sets of model simulations175

are evaluated in this study, which are summarized in Table 1. For example, the “HMA-176

GMU” experiment denotes the simulation without DA, forced by all meteorological in-177

puts downscaled via physically-based and statistically-based George Mason University178

(GMU) developed algorithms onto the 0.01◦ grid (see Xue et al. (2021)). The ”DA-HMA-179

GMU” (i.e., with the “DA” prefix) is the experiment forced by the same meteorologi-180

cal forcings as “HMA-GMU” but with both snow cover and freeze/thaw assimilation schemes181

enabled. Same rules applies to other four experiments, including “HMA-CHIRPS” along182

with its DA counterpart of “DA-HMA-CHIRPS” experiment, as well as “HMA-corr-CHIRPS”183

along with its DA counterpart of “DA-HMA-corr-CHIRPS” experiment.184
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2.3 Evaluation methods and statistics185

All six experiments listed in Table 1 are integrated forward in time at a time step186

of 15 minutes, and the daily-averaged model output are generated. The evaluation pe-187

riod is from 01 February 2003 to 30 November 2016. Evaluations are conducted at three188

different spatial scales (i.e., point-scale, basin-scale, and domain-scale). All ground-based189

stations, basins, and domain extent can be seen from Xue et al. (2021). Same quality190

control procedures are conducted to optimize the quality of the dataset, e.g., stations191

(or grid cells) with records less than 200 days are excluded from the evaluation. Further,192

if the relative elevation difference between the 1-km scale grid cell and colocated station193

is greater than 50% (with the ground-based station being the baseline), we deem that194

the station is unrepresentative of the large-scale model estimates, and thus such stations195

are removed from the evaluation. It is worth noting here that although we tried some196

first-order criteria mentioned above to alleviate stations’ under-representativeness issue,197

the significant disparity in horizontal resolution between model estimates and ground-198

based observations should not be ignored.199

2.3.1 Point-scale evaluations200

The performance of surface net shortwave radiation, surface net longwave radia-201

tion, skin temperature, snow depth, and near-surface soil temperatures are evaluated at202

daily time scales via comparisons against in-situ measurements taken by the closest colo-203

cated ground-based stations. These ground-based stations are obtained from the Coor-204

dinated Enhanced Observing Period (CEOP) Asia Monsoon project (https://www.eol205

.ucar.edu/projects/ceop/dm/insitu/sites/ceop ap/), the Contribution to High Asia206

Runoff from Ice and Snow (CHARIS) project (http://himatmap.apps.nsidc.org/hma207

insitu.html), the Global Summary of the Day (GSOD; https://data.noaa.gov/dataset/208

dataset/global-surface-summary-of-the-day-gsod), the Chinese Meteorological Ad-209

ministration (CMA), namely the Dataset of Daily Climate Data From Chinese Surface210

Stations for Global Exchange (V3.0) (http://101.200.76.197/en/?r=data/detail&dataCode=211

SURF CLI CHN MUL DAY CES V3.0), the Central Tibetan Plateau Soil Moisture and Tem-212

perature Monitoring Network (CTP-SMTMN; Yang et al. (2013)), and the Southeast-213

ern Tibet Observation and Research Station for the Alpine Environment (SETORS; https://214

data.tpdc.ac.cn/en/data/49ac37ac-0fc3-460f-83c4-c44744205474/).215
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Goodness-of-fit statistics, which include bias, root mean squared error (RMSE),216

unbiased root mean squared error (ubRMSE), and correlation coefficient (R), are com-217

puted. Further, the level of improvement (or degradation) in DA enabled simulations218

is also computed to demonstrate to what extent does DA improve or degrade non-DA219

derived estimates in terms of all goodness-of-fit statistics. The level of improvement (or220

degradation) is calculated as the relative change in the absolute values of the metric ob-221

tained from the experiment and its DA counterpart. Using the bias as an example, the222

level of improvement (degradation), LEVEL, is calculated as:223

LEV EL =
|biasnon−DA| − |biasDA|

|biasnon−DA|
, (1)224

where the |·| denotes taking the absolute value of each corresponding bias value obtained225

from the experiment (i.e., with the “non-DA” subscript) and its DA-enabled counter-226

part (i.e., with the “DA” subscript). Positive LEVEL values indicate that DA-derived227

estimates are better, and negative values indicate that DA derived estimates are worse228

than non-DA derived estimates.229

2.3.2 Basin-scale evaluations230

The basin-scale evaluations are conducted for modeled runoff (i.e., not the routed231

streamflow) through comparisons against ground-based discharge measurements at the232

monthly scale. We do not implement any routing modules because routing related pa-233

rameters at 1-km are not available at the time. Same as Xue et al. (2021), for each of234

the model simulation, the modeled basin-scale total runoff is computed by integrating235

the runoff output at each grid cell across each of the drainage basin. Figure 2 shows the236

five gauged basins in the study area. The ground-based runoff measurements are obtained237

from the Contribution to High Asia Runoff from Ice and Snow (CHARIS) project, the238

Department of Hydrology and Meteorology in Nepal, and the Global Runoff Data Cen-239

tre, 56068 Koblenz, Germany (https://www.bafg.de/GRDC/EN/01 GRDC/grdc node.html).240

The goodness-of-fit statistics plus the Nash–Sutcliffe model efficiency coefficient (NSE)241

are computed to evaluate the modeled runoff performance. Further, we compute flow du-242

ration curves for all experiments. The flow duration curve is a plot of total runoff (at243

the basin outlet) vs. percent of time that a particular runoff value is equaled or exceeded.244

In the assessment of flow duration curve agreement, following Yilmaz, Gupta, and Wa-245

gener (2008), three relative bias related statistics are computed to characterize the rel-246

ative differences in the curves obtained from the model simulations and the measurements.247
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First, rbiasFMS is computed to measure the relative bias in the slope of the curve for248

mid-flow segment (with exceedance probability between 20% and 70%), written as:249

rbiasFMS =
[log(xmodel,20%)− log(xmodel,70%)]− [log(xmeas,20%)− log(xmeas,70%)]

log(xmeas,20%)− log(xmeas,70%)
, (2)250

where log(·) denotes the logarithm operator, xmodel,20% is the model simulated flow at251

20% exceedance probability, xmodel,70% is the model simulated flow at 70% exceedance252

probability, xmeas,20% is the gauge measured flow at 20% exceedance probability, and xmeas,70%253

is the gauge measured flow at 70% exceedance probability. Second, rbiasFHV is computed254

to measure the relative bias in the volume of the curve for high-flow segment (with ex-255

ceedance probability between 0% and 2%), written as:256

rbiasFHV =

∑H
h=1(xmodel,h − xmeas,h)∑H

h=1 xmeas,h

, (3)257

where h = 1,2, · · · , H are the flow indices for flows with exceedance probabilities lower258

than 2%. The high-flow segment can be deemed as a measure of the basin’s response to259

heavy precipitation/snowmelt events. Third, rbiasFMM is computed to measure the rel-260

ative bias in the median value of the flow, which can also be deemed as a measure for261

mid-flow segment behavior, written as:262

rbiasFMM =
log(xmodel,med)− log(xmeas,med)

log(xmeas,med)
, (4)263

where xmodel,med is the median value of the model simulated flow, and xmeas,med is the me-264

dian value of the gauge measured flow.265

2.3.3 Domain-scale evaluations266

The domain-scale evaluations are conducted between model estimates and refer-267

ence satellite-based products. That is, the performance of regional model output of skin268

temperature, and SWE are evaluated at daily time scales via comparisons against ref-269

erence remotely-sensed products using the goodness-of-fit statistics. In terms of the SWE270

related evaluation, the satellite-based product utilized here is the Copernicus Global Land271

Service (CGLS) SWE product (v1.0.2; https://land.copernicus.eu/global/products/272

swe) at a spatial resolution of 5-km (Pulliainen, 2006; Takala et al., 2011) available from273

01 January 2006. It provides SWE estimates between latitudes 35◦N and 85◦N. All model274

derived SWE estimates are aggregated from 0.01◦ onto the same 5-km CGLS SWE grid275

in this set of evaluation. SWE estimates in June, July, and August are excluded from276

evaluation due to minimized coverage of snow in summertime. Note that the CGLS SWE277
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product only covers about 16.3% of the entire HMA study domain, and further, moun-278

tainous regions and glaciers are excluded from the production stage.279

In terms of the skin temperature related domain-scale evaluation, the reference satellite-280

based surface temperature products utilized here are the MODIS/Terra Land Surface281

Temperature Daily L3 Global 1-km Grid (MOD11A1, version 6; Wan, Hook, and Hul-282

ley (2015)) and the MODIS/Aqua Land Surface Temperature Daily L3 Global 1-km Grid283

(MYD11A1, version 6; Wan et al. (2015)) from 2003 to 2016. All model derived skin tem-284

perature estimates are re-gridded onto the same 1-km MODIS grid in this set of eval-285

uation. The simple arithmetic mean of both nighttime and daytime land surface maps286

generated by MOD11A1 and MYD11A1 are computed as the reference satellite-based287

skin temperature measurements.288

3 Results289

3.1 Point-scale evaluations290

Figure 3 shows the box plots of goodness-of-fit statistics computed from all exper-291

iments in the point-scale evaluation against ground-based measurements. In the eval-292

uation against eight ground-based CEOP stations measuring net shortwave radiation,293

calculated as incoming-minus-outgoing shortwave fluxes, DA-HMA-corr-CHIRPS yields294

the best performance in general. In terms of median of each set of the goodness-of-fit295

statistics, the improvements due to DA are mostly marginal (i.e., being less than 5%).296

On the other hand, all experiments with dual DA enabled perform slightly better than297

their non-DA counterparts in terms of average RMSE, ubRMSE, and R statistics, but298

less so with respect to average bias. For example, compared with HMA-corr-CHIRPS,299

the average RMSE in DA-HMA-corr-CHIRPS improves by 13% from 64.41 W/m2 to 56.34300

W/m2, the average ubRMSE in DA-HMA-corr-CHIRPS improves by 8% from 55.37 W/m2
301

to 51.02 W/m2, and the average R in DA-HMA-corr-CHIRPS improves by 9% from 0.55302

to 0.60. It is worth noting that the statistical significance in each set of the metric dif-303

ference is also tested. Unfortunately, due to the relatively small sample size and the rel-304

atively large sample variance, no statistical significance in metric difference can be claimed305

here. The most notable difference among DA and their non-DA counterparts can be seen306

from the interquartile range (IQR), calculated as the difference between the third quar-307

tile and the first quartile for each set of the goodness-of-fit statistics. The lower the IQR308
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is, the lower the spread is, and the higher the precision is achieved by the correspond-309

ing experiment. For example, compared with HMA-corr-CHIRPS, IQR in DA-HMA-corr-310

CHIRPS is reduced by 38%, 23%, 42%, and 66% for bias, RMSE, ubMRSE, and R. In311

addition, the improvements seen in all DA derived net shortwave radiation mostly at-312

tribute to the adjustment of snow amount during the snow cover DA. Using the HMA-313

corr-CHIRPS and DA-HMA-corr-CHIRPS pair as an example, the average biases are -314

7.44 W/m2 and 4.33 W/m2, respectively. The negative bias seen in HMA-corr-CHIRPS315

is likely due to the introduction of more precipitation, and hence more snow formation,316

which yields an increase in surface albedo leading to a slight increase in the outgoing short-317

wave radiation. The reverse in the sign of the average bias between HMA-corr-CHIRPS318

and DA-HMA-corr-CHIRPS pair is likely due to the reduction in the DA derived snow319

mass, which results in a decrease in the surface albedo, and further a slight decrease in320

the outgoing portion of the shortwave radiation.321

In the evaluation against seven ground-based CEOP stations measuring net long-322

wave radiation, calculated as incoming-minus-outgoing longwave fluxes, all experiments323

present similar performance in terms of average RMSE (∼ 42 W/m2), ubRMSE (∼ 28324

W/m2), and R (∼ 0.63), as well as in terms of the median of each set of the goodness-325

of-fit statistics. Comparatively, the performance in terms of average bias is slightly dif-326

ferent among models where experiments forced by bias-corrected precipitation (e.g., HMA-327

corr-CHIRPS) tends to yield a less negative average bias (= -21.38 W/m2) given all model328

derived average biases are negative values. This can be explained by the fact that more329

precipitation is associated with more chances of evapotranspiration, which may lead to330

reduction in the land surface temperature, and further result in a reduction in the out-331

going portion of the longwave radiation. In addition, the IQR of bias is notably differ-332

ent among all DA and their non-DA counterparts. That is, in general, the reduction in333

IQR of bias for the experiment with dual-DA enabled is between 17% and 20%, which334

means DA-enabled experiments yield higher precision relative to their non-DA counter-335

parts in terms of bias.336

The snow depth evaluations shown in Figure 3 are conducted by comparing against337

three CHARIS stations, six CEOP stations, and eight GSOD stations. Overall, DA-HMA-338

CHIRPS shows slightly better performance in snow depth estimates among all exper-339

iments. Since Figure 3 is too small to visualize, using the CEOP snow depth evaluation340

as an example, we summarize all statistics into Table 2. It is expected that more evi-341
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dent differences are witnessed in HMA-corr-CHIRPS and DA-HMA-corr-CHIRPS pairs342

in terms of both mean and median. For example, relative to HMA-corr-CHIRPS, the me-343

dian of bias in DA-HMA-corr-CHIRPS is reduced by 33% from 0.003 m to 0.002 m, the344

median of RMSE (ubRMSE) is reduced by 50% from 0.02 m to 0.01 m, and the median345

of R is improved by 65% from 0.17 to 0.28. In terms of the mean of each goodness-of-346

fit statistics, improvements seen with DA-enabled experiments are even higher. Although347

we see improvements in DA-derived snow depth estimates, again, no statistical signif-348

icance of the difference can be claimed here due to the small sample size and large sam-349

ple variance. In general, the agreement between model estimates and ground-based snow350

measurements is relatively low. For example, in the evaluation against CEOP snow depth351

measurements, the average correlation coefficients computed from HMA-GMU, HMA-352

CHIRPS, HMA-corr-CHIRPS, DA-HMA-GMU, DA-HMA-CHIRPS, and DA-HMA-corr-353

CHIRPS are 0.27, 0.31, 0.24, 0.29, 0.31, and 0.30. The relatively poor agreement can be354

attributed to erroneous model estimate itself or under-representative, erroneous, or in-355

termittent low-quality ground-based snow measurements.356

The skin temperature evaluations shown in Figure 3 are conducted by comparing357

against 24 CMA stations, and 11 CEOP stations. All model derived estimates show rel-358

atively low absolute bias (< 0.15 K) and high correlation coefficient (∼ 0.97), especially359

in the evaluation against CMA skin temperature measurements. In general, DA-HMA-360

GMU and DA-HMA-CHIRPS demonstrate slightly better performance in skin temper-361

ature estimates among all experiments, especially in RMSE, ubRMSE, and R statistics,362

but less so with respect to the bias. It is encouraging to see that all DA-derived estimates363

tend to improve the estimates relative to their non-DA counterparts, notably in HMA-364

corr-CHIRPS and DA-HMA-corr-CHIRPS pairs. For example, in the evaluation against365

CMA skin temperature measurements, relative to HMA-corr-CHIRPS, DA-HMA-corr-366

CHIRPS improves the average RMSE (ubRMSE) by 9% (10%) from 3.71 K (2.85 K) to367

3.36 K (2.57 K).368

Figure 4 further summarizes the relative improvement computed from each set of369

DA derived estimate relative to non-DA derived ones in the evaluation against ground-370

based measurements as a function of seasonality in terms of all goodness-of-fit statistics.371

As stated above, the majority of the improvements seen in DA are mostly for random372

errors reductions, such as RMSE and ubRMSE across all seasons. The magnitudes of373

the improvement in RMSE and ubRMSE are typically smaller during June-July-August-374
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September due to least amounts of disagreement seen between model derived estimates375

and satellite-based observations for both snow cover and freeze/thaw states. In terms376

of bias, the results are mixed across different seasons. For example, in the evaluation against377

CEOP net shortwave radiation, all DA-derived estimates perform slightly better through378

June and November, whereas perform worse through December and May relative to non-379

DA counterparts. Using the HMA-CHIRPS and DA-HMA-CHIRPS pair as an exam-380

ple, HMA-CHIRPS yields average biases of -14.05 W/m2 during JJA and -6.33 W/m2
381

during SON, which are both negative. DA-HMA-CHIRPS improves the negative bias382

slightly, and yields average biases of -12.90 W/m2 during JJA and -3.85 W/m2 during383

SON. However, during DJF and MAM, the average biases computed from HMA-CHIRPS384

(DA-HMA-CHIRPS) are positive, i.e., 5.17 W/m2 (18.42 W/m2) during DJF and 18.62385

W/m2 (23.20 W/m2) during MAM. The exact reason for the average bias sign change386

issue across different seasons remain unclear. The errors may arise from many sources,387

e.g., 1) relatively large in-situ measurement errors during wintertime when snow is present,388

and/or 2) inaccurate representation of Noah-MP model physics during wintertime. Fur-389

ther, during DJF and MAM, we see DA-HMA-CHIRPS exacerbates the positive bias seen390

from HMA-CHIRPS. Without accurate ground-based snow measurements at all colo-391

cated stations, it is difficult to discern the reasons clearly. It is plausible that during JJA392

and SON, which likely contain the time periods of the end and start of the snow seasons,393

the rule-based snow cover DA is beneficial at capturing quick transitions between snow-394

on and snow-off conditions. However, during DJF and MAM, sometimes, the Noah-MP395

modeled snow melts too slowly without DA but being removed too quickly when using396

rule-based DA (see Figure 7, CEOP Station#2 for an example)). As discussed above,397

the surface net shortwave radiation is more dictated by the surface property. The over-398

all reduction in the snow cover due to DA tends to decrease outgoing shortwave radi-399

ation, and hence, results in an increase in the net shortwave radiation, which leads to400

an exacerbation of the positive biases seen between December and May and an improve-401

ment of the negative biases seen between June and November.402

In terms of R, the improvements/degradations are typically negligible across all sea-403

sons except for snow depth evaluations. For example, we see relatively high level of im-404

provements in DA-HMA-corr-CHIPRS derived snow depth in terms of R as well as the405

other three goodness-of-fit statistics across all seasons (i.e., excluding summer seasons).406

These improvements (i.e., reduction in snow depth) mostly benefit from the systematic407
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reduction of the over-correction issue seen in the bias-corrected CHIRPS through the snow408

cover DA, which directly adjusts the inter-annual variability of the snow cover, and hence409

mitigate the negative effects brought by the fixed long-term precipitation correction fac-410

tors.411

Figure 5 shows the box plots of goodness-of-fit statistics computed from all exper-412

iments in the point-scale evaluation against ground-based soil temperature measurements.413

All model derived soil temperature estimates generally present relatively good agreement414

with all sources of soil temperature measurements, e.g., the average Rs are all greater415

than 0.9. In the evaluation against 63 CTP-SMTMN 0-5 cm soil temperature stations,416

although all DA-derived estimates tend to improve the estimates obtained from their non-417

DA counterparts in terms of all goodness-of-fit statistics, the improvements are marginal418

(i.e., less than 1%). The marginal improvements are expected partly because of the rel-419

atively good agreement seen between satellite-based freeze/thaw observations and Noah-420

MP simulated estimates outside the Hindu-Kush Karakoram Himalaya region. Hence,421

a relatively small number of analysis updates in the freeze/thaw DA is not expected to422

impact the overall magnitude of improvements/degradations significantly (Xue et al., 2019).423

In addition, the non-significant improvements seen in the evaluation against CTP-SMTMN424

may be partly attributed to the relatively low spatial variability in soil temperature mea-425

surements in spite of the relatively large number of ground-based stations as discussed426

in Xue et al. (2021). Similar marginal improvements in DA-derived estimates in terms427

of the mean of each goodness-of-fit statistics are also seen in the evaluation against CEOP428

4 cm soil temperature, SETORS 4 cm soil temperature, and CEOP 5 cm soil temper-429

ature.430

On the other hand, we see marginal degradations in the DA-derived 3 cm soil tem-431

perature estimates relative to non-DA counterparts in the evaluation against one CEOP432

station. Using the bias as an example, except for HMA-corr-CHIRPS, the other two sets433

of DA derived estimates move to the wrong direction which further exacerbate the pos-434

itive bias seen in the non-DA derived estimates. We do not see the same issue in 4 cm435

and 5 cm soil temperature evaluations because the non-DA derived estimates all yield436

negative biases. However, in HMA-corr-CHIRPS with an overly-corrected precipitation437

(i.e., without considering the inter-annual variability in precipitation correction factors),438

which yields a slight negative bias in the 3 cm soil temperature likely due to the evap-439

orative cooling effect, DA-corr-CHIRPS moves towards the right direction and yields a440
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close to zero bias. It is difficult to discern exactly which factor may result in such dis-441

crepancies in DA performance as well as the bias sign change issue among different lay-442

ers of the soil. Since there is only one CEOP station measuring the 3 cm soil temper-443

ature, the measurement errors are difficult to avoid. It is also possible that the relatively444

simple linear interpolation method used to apply with the modeled soil temperature es-445

timates to match with the measurement depth may not be appropriate in this case be-446

cause the temperature gradient may not be linear. Similarly, we further summarizes the447

relative improvement computed from each set of DA derived estimate relative to non-448

DA derived ones in the evaluation against ground-based soil temperature measurements449

as a function of seasonality in terms of all goodness-of-fit statistics in Figure 6. In gen-450

eral, we see relatively high magnitude of DA improvements/degradations across DJF and451

MAM seasons, rather than in JJA and SON. Although the majority of improvements452

are seen in DA-derived estimates (i.e., the maximum level of improvements are ∼ 40%),453

not surprisingly, we still see degradations mainly taking place in the evaluation against454

CEOP 3 cm soil temperature especially in terms of bias. Therefore, Figure 6 further cor-455

roborates the findings concluded in Figure 5.456

Figure 7 shows example time series of several model output for CEOP station#1457

at 31.37◦N, 91.90◦E from 01 August 2003 to 01 October 2003, and for CEOP station#2458

at 31.93◦N, 91.71◦E from 01 February 2007 to 01 April 2007. The two stations are se-459

lected because they are among the very few stations measuring multiple variables at the460

same time. The two time periods are selected to highlight the impact of dual DA across461

different seasons. In addition, the benefits of the GMU developed downscaling scheme462

can also been seen from this Figure. For example, in between 01 August 2003 and 01 Oc-463

tober 2003, when snow starts to accumulate, experiments with GMU downscaled pre-464

cipitation, relative to other two CHIRPS precipitation variants, are more capable of catch-465

ing the snow depth spike shown in the CEOP measurement on 04 September 2003. With466

a more accurate snow accumulation, both HMA-GMU and DA-HMA-GMU derived skin467

temperature estimates on 04 September 2003 align more closely with the CEOP mea-468

surement.469

Between 01 August 2003 and 01 September 2003, no snow is present. Satellite-derived470

snow cover generally agrees with model derived snow cover for this location as snow-free.471

Therefore, snow cover DA has almost zero effect in net shortwave radiation and snow472

depth estimates. In this case, freeze/thaw DA mainly controls the DA-derived estimates473
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in terms of net longwave radiation (i.e., partly modulated by skin temperature), skin tem-474

perature, and soil temperature profile. The maximum difference seen in all DA-derived475

4 cm soil temperature relative to their non-DA counterparts are ∼ -1.2K. As all non-DA476

derived soil temperature already yields relatively high negative biases as compared with477

CEOP measurements, a further decrease in the soil temperature as a result of the freeze/thaw478

DA implementation moves the estimate to the wrong direction in terms of bias. How-479

ever, it is encouraging to see the temporal variability in the estimates are better picked480

up by the DA-derived estimates. Using the HMA-GMU and DA-HMA-GMU as an ex-481

ample, between 18 August 2003 and 19 August 2003, CEOP measured 4 cm soil tem-482

perature witnesses a daily temperature drop of ∼ 3K (from 287.94 K to 284.93 K). With-483

out DA, HMA-GMU is only able to model the drop as ∼ 0.6 K (from 281.17 K to 280.55484

K). With freeze/thaw DA, DA-HMA-GMU models the drop as ∼ 1.5 K (from 281.10 K485

to 279.59 K). Similar improvements in the temporal variability agreement are also wit-486

nessed in the other DA-derived experiments as well as during other time periods. We487

acknowledge that such improvements in modeling soil temperature temporal variabil-488

ity are still far from being accurate as compared with the ground-based measurements.489

These discrepancies may be attributed to the errors in the ground-based measurement490

itself or in the model errors, e.g., from the relatively simple and conservative strategy491

that we used in applying the temperature increments during the freeze/thaw DA anal-492

ysis step (see Xue et al. (2019) for discussions).493

Between 01 February 2007 and 01 April 2007, we see a typical and complete snow494

accumulation and ablation time series measured by CEOP in Figure 7h. During the snow495

accumulation phase from 01 February 2007 to 14 March 2007, it is not surprising to see496

that snow depth estimates derived by HMA-corr-CHIRPS are almost three to four times497

greater than the measurement. With the rule-based snow cover DA, DA-HMA-corr-CHIRPS498

is able to get rid of approximately half of the snow mass. Comparatively, DA-HMA-CHIRPS499

yield the best agreement with all ground-based measurements during the accumulation500

phase. After 14 March 2007, all DA derived estimates tend to melt down all snow pack501

within two days to match with the satellite-based snow cover flag, while all non-DA ex-502

periments take a longer period to melt down all snow pack, especially for HMA-GMU503

and HMA-CHIRPS experiments. The difference in the snow melting speed significantly504

affects surface energy budget as snow cover dramatically regulate the amount of energy505

being reflected from the surface. With more snow accumulating on the ground during506
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the melting phase, HMA-GMU and HMA-CHIRPS yield higher outgoing shortwave ra-507

diation, which results in lower net shortwave radiation values. Further, due to the de-508

crease in the snow surface temperature, HMA-GMU and HMA-CHIRPS yield relatively509

low outgoing longwave radiation, which result in less negative net longwave radiation.510

Overall, HMA-CHIRPS yields the best agreement with all ground-based measurements511

during the ablation phase. DA derived estimates are not superior during the snow melt512

phase probably because they melt the snow pack more quickly than it should be. This513

phenomenon is caused by the simple snow mass reduction rule given by the snow cover514

DA algorithm (see Section 2.1).515

3.2 Basin-scale evaluations516

Figure 8 shows the flow duration curves calculated from all model simulations as517

well as ground-based measurements for the five gauged basins from 2003 to 2016. We518

partition each of the curves into high-flow segment (with exceedance probability between519

0% and 2%), high-to-mid flow segment (with exceedance probability between 2% and520

20%), mid-flow segment (with exceedance probability between 20% and 70%), and low-521

flow segment (with exceedance probability between 70% and 100%), following Yilmaz522

et al. (2008). We choose to show flow duration curves on the log scale rather than the523

total runoff time series on the normal scale because it is rather difficult to clearly visu-524

alize different model simulations using the total runoff time series on the normal scale.525

Overall, it is not surprising that none of the experiments can perfectly reproduce the flow526

duration curve calculated from ground-based measurements, possibly due to 1) measure-527

ment errors related to human impacts, and/or 2) model errors arising from imperfect forc-528

ings and model structures.529

According to the glacier map obtained from the Global Land Ice Measurements from530

Space (GLIMS) project (GLIMS & NSIDC, 2005) at a spatial resolution of 0.01◦, Basins531

#1 and #5 are both with glaciated fraction of 0% and experience negligible seasonal snow532

cover (i.e., maximum snow coverage being less than 10% in the evaluation period accord-533

ing to the MOD10A1 snow cover product). It is expected that relatively small differences534

exist between different model simulations. In other words, model simulations with and535

without the dual DA assimilation scheme present comparable performance in reproduc-536

ing the flow duration curves derived from ground-based measurements as shown in Fig-537

ure 8. On the other hand, Basins #2 through #4 are snowmelt fed (or snow-glacier-melt538
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fed) basins. As discussed above, snow cover DA significantly impacts snow melt timing,539

which further impacts the runoff modeling performance. For example, HMA-corr-CHIRPS540

yields significantly higher magnitude in the high-flow segment mainly due to the overly-541

corrected precipitation forcings, which is likely limited by the fixed long-term correction542

factors without considering the inter-annual variability of the total precipitation. With543

snow cover DA, DA-HMA-corr-CHIRPS improves the rbiasFHV significantly across all544

three basins, especially for Basin #4 (see Table 3). Improvements in the high-flow seg-545

ments as well as in the high-to-mid flow segments are also seen in other DA-derived es-546

timates across all three basins. Further, we compute both rbiasFMS and rbiasFMM statis-547

tics to quantify the systematic errors in the model simulated flow at mid-flow segment.548

rbiasFMS focuses on the slope of the curve whereas rbiasFMM focuses on the magnitude549

of the median value. Although the majority of the DA-derived estimates show improve-550

ments in the mid-flow segment, slight degradations notably in the rbiasFMS are witnessed.551

These degradations in DA derived rbiasFMS may arise from 1) the lack of river routing552

scheme in the model, and 2) the inaccuracy in updating snow melt rate within the sim-553

ple rule-based DA (see Figure 7 as an example).554

In terms of the low-flow segment, which is a measure of the long-term base flow,555

it is encouraging to see that all DA derived estimates tend to move towards the ground-556

based measurements due to snow cover DA. It is worthy of noting that we still see dis-557

crepancies between measured and modeled duration curves in the low-flow segment. Ac-558

cording to GLIMS, the glaciated fraction is 15.45% (Basin #2), 5.53% (Basin #3), and559

17.8% (Basin #4). As the low-flow segment can be deemed as a measure of the long-term560

base flow, it is postulated that the lack of the glacier modeling routine may negatively561

impact the runoff simulation accuracy. This explanation is based on a separate study562

(not shown) during which we study the impact of including a relatively simplistic glacier563

modeling routine (i.e., using a relatively simple glacier land cover representation to mod-564

ify the energy balance and water balance associated with the glaciated grid cells) into565

the Noah-MP model. It is found that the the inclusion of a simplistic glacier model could566

contribute to a more accurate representation of model simulated base flow component567

originating from snow and glacier melt. Since the Part I manuscript did not include any568

glacier modelings, and further, current Noah-MP does not support a full glacier mass569

balance model yet, all glacier related analysis are not shown here. Instead, we will demon-570
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strate the effect of glacier routines in streamflow modelings in a separate study in the571

future.572

Figure 9 further summarizes the goodness-of-fit plus NSE statistics for all exper-573

iments across three snow-dominated basins, i.e., Basin #2, Basin #3, and Basin #4, in574

the evaluation against ground-based monthly runoff measurements from 2003 to 2016.575

It is encouraging to see that DA-derived estimates improve all goodness-of-fit statistics576

across all three basins relative to non-DA derived counterparts. In general, DA-HMA-577

corr-CHIRPS shows its superiority in runoff simulations over snowmelt fed (or snow-glacier-578

melt fed) basins relative to other experiments. For example, in Basin #2, relative to HMA-579

corr-CHIRPS, DA-HMA-corr-CHIRPS reduces the bias by 69% (from 88.23 m3/s to 26.92580

m3/s), RMSE by 30% (from 154.73 m3/s to 107.79 m3/s), and ubRMSE by 18% (from581

127.11 m3/s to 104.37 m3/s). DA-HMA-corr-CHIRPS also improves the R (NSE) from582

0.87 (0.43) to 0.90 (0.72). These findings suggest that the improvements in snow esti-583

mates due to snow cover DA can translate into improved runoff estimates.584

3.3 Domain-scale evaluations585

Figure 10 shows the goodness-of-fit statistics computed for HMA-GMU and DA-586

HMA-GMU in the evaluation against the MODIS skin temperature product from 2003587

to 2016 across HMA at a spatial resolution of 1-km. We only show the evaluation of HMA-588

GMU and DA-HMA-GMU in Figure 10 because the other two experiment pairs demon-589

strate similar patterns and findings. Although both HMA-GMU and DA-HMA-GMU590

present relatively good agreement with MODIS skin temperature in terms of the tem-591

poral variability (i.e., with the spatially-averaged R = 0.94), it is not too surprising to592

see that skin temperature magnitudes vary significantly among model estimates as well593

as satellite-derived reference because neither the model nor the satellite derived estimate594

should be treated as “truth”. The worst agreement (i.e., relatively high magnitudes of595

bias, RMSE, ubRMSE, and low R) occurs along the Hindu-Kush Karakoram Himalaya596

region as discussed in Xue et al. (2021) mainly due to the complicated cryospheric-hydrological597

process compounded by the complex terrain. With dual DA enabled, DA-HMA-GMU598

tends to improve all goodness-of-fit statistics except for R, which generally results in a599

better agreement with the reference measurement, especially notable along the Karakoram-600

Himalaya region. The spatially-averaged improvements seen in DA-derived bias, RMSE,601

and ubRMSE are between 6% to 7% relative to the non-DA counterpart. The range of602
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the change (i.e., DA-HMA-GMU minus HMA-GMU) in the spatially- and temporally-603

averaged mean in the skin temperature is from 9.1 K per day to -4.5 K per day across604

all grid cells (not shown). Compared with HMA-GMU, DA-HMA-GMU increases the605

skin temperature estimates mainly across the Tibetan Plateau, which are likely due to606

the more frequent presences of freeze/thaw and snow cover status discrepancies between607

model estimates and satellite observations. Figure 11 further corroborates what is ob-608

served in Figure 10. It shows the box plot of change in the ubRMSE (∆ubRMSE) com-609

puted between HMA-GMU and DA-HMA-GMU. Note that we do not show box plots610

for other computed metrics because they are similar to what shown in Figure 11. Fig-611

ure 11 is binned as a function of the elevation per grid cell. The spatially-distributed el-612

evation per grid cell (Elev; meters) throughout the assessment period are binned into613

eight categories, including (1) 0 ≤ Elev ≤ 1000, (2) 1000 < Elev ≤ 2000, (3) 2000 < Elev614

≤ 3000, (4) 3000 < Elev ≤ 4000, (5) 4000 < Elev ≤ 5000, (6) 5000 < Elev ≤ 6000, (7)615

6000 < Elev ≤ 7000, and (8) Elev > 7000. The sample sizes (number of grid cells) for616

the six bins are 3216572, 1003864, 505946, 556549, 1362142, 669144, 12317, and 278, re-617

spectively. The positive ∆ubRMSE indicate skill improvements in the DA-HMA-GMU618

relative to HMA-GMU. Therefore, it is seen that the majority of the skin temperature619

improvements in terms of ubRMSE take place at grid cells with elevations between 2000620

m and 7000 m. We also see slight degradations in skin temperature estimates for grid621

cells with elevations above 7000 m. This is expected because 94% of the grid cells with622

elevations above 7000 m are glacierized according to GLIMS. The degradation in DA could623

be attributed to 1) inaccurate retrievals of MODIS land surface temperature, and/or 2)624

inaccurate physical representations of snow accumulation and melt processes on top of625

glaciers within the model itself. In general, DA-HMA-GMU and DA-HMA-CHIRPS demon-626

strate the best agreement with MODIS skin temperature estimates, which corroborates627

the results in the ground-based skin temperature analysis.628

Figure 12 shows the goodness-of-fit statistics computed for HMA-GMU and DA-629

HMA-GMU in the evaluation against the CGLS SWE product from 2006 to 2016 above630

latitude 35◦N at a spatial resolution of 5-km. Again, we only show the evaluation of HMA-631

GMU and DA-HMA-GMU in Figure 12 because the other two experiment pairs demon-632

strate similar patterns and findings. Similar to the evaluations above, it is expected that633

SWE estimates vary significantly among model estimates as well as satellite-derived ref-634

erence because neither the model nor the satellite derived estimate should be treated as635
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“truth”. Although DA-HMA-GMU improves R slightly relative to HMA-GMU in the636

evaluation against the reference product, the agreement in the temporal variability is gen-637

erally low (i.e., R < 0.4), which emphasizes that the snow estimation across such com-638

plex terrain remains a challenging task. The worst agreements (i.e., relatively high mag-639

nitudes of bias, RMSE, ubRMSE, and low R) are mostly colocated with relatively high640

elevation regions inside the Tibetan Plateau relative to the Taklamakan desert mainly641

due to the difference in climate regions as discussed in Xue et al. (2021). With dual DA642

enabled, DA-HMA-GMU tends to improve all goodness-of-fit statistics, which results in643

a better agreement with the reference measurement. Within the CGLS covered domain644

(i.e., above latitude 35◦N, excluding mountainous regions), the range of the change (i.e.,645

DA-HMA-GMU minus HMA-GMU) in the spatially- and temporally-averaged mean in646

the SWE is from 3 mm per day to -65 mm per day across all grid cells (not shown). It647

is expected that the snow reduction magnitude in DA enabled experiments are gener-648

ally higher than the snow addition magnitude because the rule-based snow update al-649

gorithm is more promptly at reducing the snowpack at qualified grid cells. Overall, within650

the CGLS covered domain, DA-HMA-GMU adds ∼ 3% more SWE relative to HMA-GMU651

(from 0.88 mm per day to 0.91 mm per day). Since CGLS SWE yields the spatially- and652

temporally-averaged mean of 2.83 mm per day, DA-HMA-GMU tends to move closer to653

the CGLS SWE estimates, which results in a better agreement in terms of all goodness-654

of-fit statistics. In general, DA-HMA-GMU and DA-HMA-CHIRPS demonstrate the best655

agreement with CGLS SWE estimates, which are consistent with the analysis in the point-656

scale snow depth evaluations.657

4 Conclusions and discussions658

This second paper of the two-part series focuses on demonstrating the impact of659

assimilating satellite-based snow cover and freeze/thaw observations into the hyper-resolution,660

offline terrestrial modeling system across HMA from 2003 to 2016. To this end, this study661

systematically evaluates a total of six sets of 0.01◦ (∼ 1-km) model simulations forced662

by different precipitation forcings, with and without the dual assimilation scheme en-663

abled, at point-scale, basin-scale, and domain-scale. Key conclusions drawn from this664

study are summarized below:665

1) In the evaluation against ground-based net shortwave radiation measurements,666

DA-HMA-corr-CHIRPS yields the best performance. The DA-enabled experiment tends667
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to yield a lower IQR (i.e., higher precision) than their non-DA counterpart in all goodness-668

of-fit statistics.669

2) In the evaluation against ground-based net longwave radiation measurements,670

all experiments present similar performance in terms of average (median) RMSE, ubRMSE,671

and R. The DA-enabled experiment tends to yield a lower IQR (i.e., higher precision)672

relative to their non-DA counterpart in terms of bias.673

3) In the evaluation against ground-based snow depth measurements, DA-HMA-674

CHIRPS shows slightly better performance. Further, DA derived estimates are gener-675

ally better than non-DA counterparts in terms of all goodness-of-fit statistics.676

4) In the evaluation against ground-based skin temperature measurements, DA-677

HMA-GMU and DA-HMA-CHIRPS demonstrate slightly better performance among all678

experiments, especially in RMSE, ubRMSE, and R statistics, but less so with respect679

to the bias. All DA-derived estimates tend to improve the estimates relative to their non-680

DA counterparts.681

5) In the evaluation against ground-based near-surface soil temperature profile mea-682

surements, the results are mixed. All DA-derived estimates tend to improve the estimates683

obtained from their non-DA counterparts in terms of all goodness-of-fit statistics, how-684

ever, the improvements are marginal. These marginal improvements are mainly seen in685

the evaluation against CTP-SMTMN 0-5 cm soil temperature, CEOP 4 cm soil temper-686

ature, SETORS 4 cm soil temperature, and CEOP 5 cm soil temperature. On the other687

hand, marginal degradations are seen in the DA-derived 3 cm soil temperature estimates688

relative to non-DA counterparts in the evaluation against one CEOP station.689

6) Across three snowmelt fed (or snow-glacier-melt fed) basins, DA-derived runoff690

estimates demonstrate better performance relative to non-DA derived counterparts across691

low-flow, high-flow, as well as high-to-mid flow segments. Overall, DA-HMA-corr-CHIRPS692

shows its superiority in runoff simulations relative to other experiments. These results693

suggest that the improvements in snow estimates due to snow cover DA can translate694

into improved runoff estimates.695

7) In the evaluation against the MODIS skin temperature product as well as in the696

evaluation against the CGLS SWE product, DA-HMA-GMU and DA-HMA-CHIRPS yield697

the best agreement. The majority of the skin temperature improvements due to DA take698
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place at grid cells with elevations between 2000 m and 7000 m. Slight degradations in699

skin temperature estimates due to DA are witnessed for grid cells with elevations above700

7000 m (i.e., mostly covered with glaciers). In terms of domain-scale SWE evaluation,701

SWE estimates vary significantly among model estimates as well as satellite-derived ref-702

erence. The agreement in the temporal variability among different products/estimates703

is generally low, which emphasizes that the snow estimation across such complex terrain704

remains a challenging task.705

8) In terms of seasonality, in general, the majority of the improvements seen in DA706

are mostly for random errors reductions, such as RMSE and ubRMSE across all seasons707

and the magnitude of improvements are typically smaller during JJA seasons.708

In summary, the proposed dual-assimilation system is beneficial in improving the709

cryospheric-hydrological process within the Noah-MP land surface model for use in HMA.710

When forced with different precipitation forcings, the performance of DA-enabled ex-711

periments differs. In general, DA-HMA-corr-CHIRPS demonstrates its superiority in runoff712

estimates whereas DA-HMA-GMU and DA-HMA-CHIRPS demonstrate superiority in713

other model estimates (e.g., snow depth). The good performance obtained from model714

derived runoff simulations forced by the bias-corrected CHIRPS is partly expected be-715

cause the precipitation input was calibrated using ground-based runoff measurements716

(Beck et al., 2020). It is encouraging to see that the proposed dual DA system success-717

fully mitigates the negative effects brought by the overly-corrected precipitation forcings718

due to the fixed long-term correction factors without considering the inter-annual vari-719

ability of the total precipitation.720

Although we try hard to gather all reference measurements across HMA to eval-721

uate, we acknowledge that the sample size used in the evaluation process is far from be-722

ing adequate. Therefore, with limited evaluation references across HMA, we choose not723

to explicitly refer to the best DA derived experiment among DA-HMA-GMU, DA-HMA-724

CHIRPS, and DA-HMA-corr-CHIRPS as the “HMA-LDAS”. Instead, we focus on em-725

phasizing the effect of the proposed dual DA procedures for use across HMA.726

While we are encouraged with the improvements seen in the proposed HMA-LDASs,727

the limitations of the current study are also worth mentioning here. These limitations728

should be addressed in the future studies in order to further improve HMA-LDASs per-729

formance. These limitations include, but not limited to, 1) the lack of glacier modeling730
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routines, 2) the lack of river routing schemes along with a detailed human land-water731

management representation, 3) the lack of a more accurate representation of the snow732

depletion process used within the simplistic rule-based snow cover DA, 4) the lack of a733

more detailed soil temperature profile within Noah-MP, and 5) the lack of a more ac-734

curate representation of the relationship between skin temperature change and top-layer735

soil temperature change when used within the simplistic rule-based freeze/thaw DA. Fur-736

ther, the snow cover DA mostly dominates the impact on all key variables of interest as737

seen from the analysis. Given the marginal improvements seen within the freeze/thaw738

DA, a more thoughtful rule-based strategy probably should be established to not only739

capture the changes in the soil temperature states, but also to better reveal the updates740

in the water-related variables. We acknowledge that the relatively simplistic rule-based741

multi-variate DA system is not a panacea, more advanced DA techniques may be used742

in order to facilitate the development of the HMA-LDAS as future versions (i.e., version743

2, version 3, etc.). But we believe that the presented study here (i.e., two-part series)744

did point out useful directions towards future studies for modeling such a challenging745

HMA region, e.g., hyper-resolution modeling coupled with multi-variate assimilation strate-746

gies. These HMA-LDASs will be extremely useful for future studies 1) to understand sur-747

face flux, snow/ice storage, and water balance changes in HMA and investigate the causal-748

ity of these changes at the regional to local scale, 2) to develop assessments of signifi-749

cant trends/changes in both observed (e.g. snow) and unobserved (e.g. groundwater stor-750

age change) states of land surface, and 3) to develop better forecasts of hydrological ex-751

tremes such as droughts and floods.752
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a)

b)

c)

d)

e)

Figure 1. a) The spatial map of the total percentage of days with valid MODIS snow cover

observations from 01 February 2003 to 30 November 2016. Seasonal MODIS data availability

maps are shown in b) through e). DJF = December, January, February; MAM = March, April,

May; JJA = June, July, August; SON = September, October, November.
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Figure 2. a) HMA study domain with gauged basin outlines in black. Gauged Basin #1

through Basin #5 are shown in b) through f) with elevation information and basin outlet loca-

tions.
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Figure 3. Box plots of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column

4) computed from HMA-GMU, HMA-CHIRPS, HMA-corr-CHIRPS, DA-HMA-GMU, DA-

HMA-CHIRPS, and DA-HMA-corr-CHIRPS in the evaluation against ground-based CEOP net

shortwave radiation (row 1), CEOP net longwave radiation (row 2), CHARIS snow depth (row

3), CEOP snow depth (row 4), GSOD snow depth (row 5), CMA skin temperature (row 6), and

CEOP skin temperature (row 7). The common experimental name of “HMA” is omitted for clar-

ity. The plus signs and red lines in the box plots are shown as outliers and medians, respectively.

The bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
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Figure 4. Level of improvement (red) or degradation (blue) in the DA-HMA-GMU (relative

to HMA-GMU), DA-HMA-CHIRPS (relative to HMA-CHIRPS), and DA-HMA-corr-CHIRPS

(relative to HMA-corr-CHIRPS) in the evaluation against ground-based CEOP net shortwave

radiation (row 1), CEOP net longwave radiation (row 2), CHARIS snow depth (row 3), CEOP

snow depth (row 4), GSOD snow depth (row 5), CMA skin temperature (row 6), and CEOP skin

temperature (row 7) as a function of seasonality in terms of bias, RMSE, ubRMSE, and R. DJF

= December, January, February; MAM = March, April, May; JJA = June, July, August; SON

= September, October, November. All snow depth box plots during JJA are not provided due to

minimized snow coverage, and hence are denoted as “N/A”.
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Figure 5. Same as Figure 3, but for the evaluation against ground-based CTP-SMTMN 0-5

cm soil temperature (row 1), CEOP 3 cm soil temperature (row 2), CEOP 4 cm soil tempera-

ture (row 3), SETORS 4 cm soil temperature (row 4), and CEOP 5 cm soil temperature (row

5). Note there is only one CEOP station measuring 3 cm soil temperature, and there is only one

SETORS station.
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Figure 6. Same as Figure 4, but for the evaluation against ground-based CTP-SMTMN 0-5

cm soil temperature (row 1), CEOP 3 cm soil temperature (row 2), CEOP 4 cm soil temperature

(row 3), SETORS 4 cm soil temperature (row 4), and CEOP 5 cm soil temperature (row 5).
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Figure 7. Example time series of all model simulations in the evaluation against two ground-

based CEOP stations, a) through e) are for CEOP station#1 at 31.37◦N, 91.90◦E from 01 Au-

gust 2003 to 01 October 2003, and f) through h) are for CEOP station#2 at 31.93◦N, 91.71◦E

from 01 February 2007 to 01 April 2007. The 4 cm soil temperature time series from 17 August

2003 to 20 August 2003 for CEOP station#1 are highlighted and shown in i). The CEOP mea-

surements include daily-averaged surface net shortwave radiation (row 1), surface net longwave

radiation (row 2), snow depth (row 3), skin temperature (row 4), and 4 cm soil temperature (row

5). Note: no ground-based skin and soil temperature measurements were available for CEOP

station#2.
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Figure 8. Flow duration curves calculated from all model simulations as well as ground-based

measurements for the five gauged basins from 2003 to 2016. Note that the y-axis is plotted on a

log scale. The vertical dashed lines are used to partition the curve into high-flow segment (with

exceedance probability between 0% and 2%), high-to-mid flow segment (with exceedance prob-

ability between 2% and 20%), mid-flow segment (with exceedance probability between 20% and

70%), and low-flow segment (with exceedance probability between 70% and 100%).
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Figure 9. Statistics of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (col-

umn 4), and NSE (column 5) for all experiments across three snow-dominated basins, i.e., Basin

#2 (row 1), Basin #3 (row 2), and Basin #4 (row 3), in the evaluation against ground-based

monthly runoff measurements from 2003 to 2016. Each row represents statistics for each basin.

In addition, experiments with the best goodness-of-fit statistics for each basin are marked with

grey bars.
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DA improvesDA degrades

Figure 10. Spatial distribution of bias, RMSE, ubRMSE, and R computed between daily-

averaged, 1-km HMA-GMU (column 1), DA-HMA-GMU (column 2) surface temperature and

MODIS derived surface temperature from 2003 to 2016. Spatial distribution of the change in the

absolute value of bias, RMSE, ubRMSE, and R between HMA-GMU and DA-HMA-GMU are

shown in column 3. The red colors in c), f), i), and l) indicate DA-HMA-GMU derived estimates

agree better with MODIS derived measurements than HMA-GMU. Conversely, blue colors indi-

cate that HMA-GMU agrees better with MODIS. The title also demonstrates the spatial mean,

m, computed for each map.

–34–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Atmospheres

0 - 1
000

1000 - 2
000

2000 - 3
000

3000 - 4
000

4000 - 5
000

5000 - 6
000

6000 - 7
000

> 7000

Elevation (m)

-1

0

1

2

3

4

5

Figure 11. A box plot of ∆ubRMSE computed between HMA-GMU and DA-HMA-GMU

during the comparison against MODIS derived surface temperature, which are binned as a func-

tion of elevation per grid cell. The boxes show the median (marked as the black line in the box)

along with the 25th and 75th percentiles while the whiskers show the 5 and 95th percentiles.

The spatially-averaged skill metrics are marked as dots for each bin. The positive ∆ubRMSE

indicates skill improvements in the DA-HMA-GMU relative to HMA-GMU.
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DA improvesDA degrades

Figure 12. Same as Figure 10, but for the evaluation against daily-averaged, 5-km CGLS

SWE product from 2006 to 2016. Note the domain is truncated because the CGLS SWE product

only covers area above latitude 35◦N, and mountainous regions are excluded from the CGLS

product.
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Table 2. The computed means and medians of each goodness-of-fit statistics metric in the

evaluation against CEOP snow depth measurements across all experiments (see Figure 3 (row

4)).

Experiment name Statistics Mean Median

HMA-GMU Bias (m) 0.02 0.001

RMSE (m) 0.05 0.01

ubRMSE (m) 0.05 0.01

R (-) 0.27 0.22

HMA-CHIRPS Bias (m) 0.003 0.001

RMSE (m) 0.03 0.01

ubRMSE (m) 0.03 0.01

R (-) 0.31 0.28

HMA-corr-CHIRPS Bias (m) 0.12 0.003

RMSE (m) 0.19 0.02

ubRMSE (m) 0.14 0.02

R (-) 0.24 0.17

DA-HMA-GMU Bias (m) 0.0004 0.0006

RMSE (m) 0.03 0.01

ubRMSE (m) 0.03 0.01

R (-) 0.29 0.22

DA-HMA-CHIRPS Bias (m) -0.003 -0.0003

RMSE (m) 0.02 0.01

ubRMSE (m) 0.02 0.01

R (-) 0.31 0.25

DA-HMA-corr-CHIRPS Bias (m) 0.006 0.002

RMSE (m) 0.04 0.01

ubRMSE (m) 0.04 0.01

R (-) 0.30 0.28
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Table 3. Three relative bias related statistics computed for all model simulations in the evalua-

tion across three snow and glacier dominated gauged basins. Statistics obtained from DA-enabled

experiments with greater-than-five-percent improvements relative to the non-DA counterparts are

bolded.

Experiment name Statistics Basin #2 Basin #3 Basin #4

HMA-GMU rbiasFMS -0.08 -0.11 0.61

rbiasFHV -0.47 -0.53 0.09

rbiasFMM -0.05 -0.22 -0.23

HMA-CHIRPS rbiasFMS -0.10 -0.13 0.54

rbiasFHV -0.45 -0.53 0.10

rbiasFMM -0.04 -0.22 -0.22

HMA-corr-CHIRPS rbiasFMS 0.04 0.42 1.11

rbiasFHV 0.10 0.38 1.14

rbiasFMM 0.16 -0.08 -0.08

DA-HMA-GMU rbiasFMS -0.21 -0.27 0.29

rbiasFHV -0.44 -0.45 -0.07

rbiasFMM -0.00 -0.08 -0.16

DA-HMA-CHIRPS rbiasFMS -0.24 -0.26 0.29

rbiasFHV -0.44 -0.44 -0.01

rbiasFMM -0.00 -0.08 -0.16

DA-HMA-corr-CHIRPS rbiasFMS 0.16 0.23 0.50

rbiasFHV 0.03 0.08 0.18

rbiasFMM 0.03 -0.06 -0.11
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