
1.  Introduction
The Paleocene-Eocene Thermal Maximum (PETM) was a 190 kyr-long event during which an abrupt input 
of carbon to the ocean and atmosphere increased global average temperatures by 5–8°C (McInerney & 
Wing,  2011; Wing et  al.,  2005), more than doubled atmospheric CO2 concentrations (Gutjahr et  al.,  2017; 
Haynes & Hönisch,  2020, Figure  1a), and profoundly changed marine and terrestrial biomes (McInerney & 
Wing,  2011; Wing et  al.,  2005). Although the conditions that induced and sustained the hyperthermal event 
have been studied extensively (Bowen et al., 2015; Denis et al., 2021; Gutjahr et al., 2017; Inglis et al., 2021; 
Lyons et al., 2019), the processes allowing for climatic recovery remain less well understood. Silicate weathering 
and organic carbon (OC) burial are processes known to promote the withdrawal of carbon from the exosphere 
(i.e., ocean and atmosphere) and are thus posited to have enabled global climate to return to its pre-PETM state 
(Bowen & Zachos, 2010; Komar & Zeebe, 2011; Torfstein et al., 2010). Continental erosion rates increased after 
the onset of the PETM (John et al., 2012; Sharman et al., 2017) which likely enhanced riverine fluxes of OC 

Abstract  Silicate weathering is thought to increase and offset the rapid, massive input of CO2 into the 
atmosphere and ocean during the Paleocene-Eocene Thermal Maximum (PETM), but few nonmarine records 
have been used to quantify this. We probe changes in silicate weathering intensity by measuring Li isotope 
ratios of bedrock and ancient floodplain deposits spanning the PETM in the Bighorn Basin, Wyoming (USA). 
Our results reveal a rapid increase in silicate weathering intensity during the PETM that remained high during 
at least the initial stage of climate recovery. Additionally, we determine that soils that formed farthest from 
ancient river channels underwent larger weathering changes than near-channel soils. Alongside increased 
temperatures and pCO2, the simplest explanation for this response relates to increased seasonal fluctuations in 
water table height in the floodplain that promote dissolution and precipitation reactions. These findings newly 
demonstrate that weathering on floodplains, like mountain hillslopes, responds to climate change.

Plain Language Summary  The chemical breakdown of silicate minerals on continents promotes 
the withdrawal of CO2 from the ocean and atmosphere. This process is thought to be enhanced when CO2 
rapidly enters the ocean and atmosphere, such as during past climate change events like the Paleocene-Eocene 
Thermal Maximum (PETM). Although this enhancement of silicate weathering is found in global carbon 
cycle models and the chemistry of marine rocks, less terrestrial evidence exists for how, where, and to what 
extent silicate minerals weathered during the PETM. In this study, we measured the chemistry of bedrock 
and ancient floodplain sediment that span the PETM in the well-studied Bighorn Basin, Wyoming (USA) to 
quantify changes in silicate weathering intensity. We find that silicate weathering intensity increases rapidly 
(within 7,000 years of the onset of the PETM) and remains elevated even as climate has begun to return to its 
pre-perturbed state. We also determine that soils that formed farthest from ancient river channels underwent 
larger weathering changes than near-channel soils, suggesting active weathering responses on floodplains. 
Alongside high CO2 contents and warmer temperatures, the simplest explanation for this weathering response 
relates to soil hydrology, where increased water flow through soils caused by fluctuating water tables enhanced 
weathering.
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and dissolved weathering products to the ocean (Hilton & West, 2020). The composition of marine sediments 
(Dickson et al., 2015; Komar & Zeebe, 2011; Penman et al., 2016; Pogge von Strandmann et al., 2021; Ravizza 
et al., 2001; Self-Trail et al., 2012) and models of the carbon and silicon cycles (Komar & Zeebe, 2011; Panchuk 
et al., 2008; Penman, 2016) corroborate these increases, but comparatively less is known about how or where 
silicate weathering responded on continents. To improve upon these marine records and model findings, more 
geochemical evidence from nonmarine sedimentary archives needs to be gathered.

Landscapes respond unevenly to climatic perturbations (Romans et al., 2016; Whipple, 2009), yet a key variable 
that underpins silicate weathering responses across continents is the supply of fresh, un-weathered minerals 
to near-surface weathering zones. Mountain hillslopes are a dominant locus for silicate weathering in modern 

Figure 1.  Atmospheric and soil chemistry across the Paleocene-Eocene Thermal Maximum. Gray vertical bands represent 
key time intervals across the event (McInerney & Wing, 2011; Kraus et al., 2015) and time is presented relative to the onset 
of the carbon isotope excursion. (a) Compilation of pedogenic carbonate δ 13C values from the Bighorn Basin (van der Meulen 
et al., 2020) and model-derived atmospheric pCO2 partial pressures (Haynes & Hönisch, 2020). The black line corresponds 
to locally weighted mean carbonate δ 13C values with a 2.5% averaging window. (b) Mixing model-determined fractions of 
primary shale sediments (fshale) from which secondary clays formed. The horizontal black dashed lines are mean values over 
pre-onset, onset + main body, and recovery time intervals, and the black curve corresponds to locally weighted mean values 
with a 2.5% averaging window. (c) Measured paleosol clay (<2 μm size fraction) δ 7Li values and mixing model-determined, 
weighted average source rock δ 7Li values for each paleosol. The red error bar corresponds to a maximum, conservative 
error for each datum (0.5‰, 2 s.d.). (d) Δ 7Liclay-source values (i.e., δ 7Liclay − δ 7Lisource) for each paleosol (error is propagated 
from conservative error for δ 7Liclay and δ 7Lisource values). The horizontal black dashed lines are mean values over pre-onset, 
onset + main body, and recovery time intervals, and the black curve corresponds to locally weighted mean values with a 2.5% 
averaging window.
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environments (Larsen et  al.,  2014) because incising rivers generate relief that enhances the supply of fresh 
bedrock to the Earth's surface. The responsiveness of river incision to climate (Murphy et al., 2016) suggests 
that silicate weathering in mountain hillslopes may be the primary mechanism by which CO2 is sequestered after 
hyperthermal events. However, these eroding landscapes are poorly preserved in the geologic record.

In contrast, floodplains are readily preserved in sedimentary records and serve as significant repositories of past 
Earth surfaces. Yet, the controls of silicate weathering in floodplains are less well understood than in mountain 
hillslopes. Generally, river-borne sediments, having already undergone weathering in the upper reaches of catch-
ments (Dosseto et al., 2006), are delivered to adjacent floodplains during avulsions and overbank deposition. Low 
supply of fresh sediments and long fluid-rock interaction time, characteristic of floodplains, favor high silicate 
weathering intensities (Bouchez et al., 2014; Dellinger et al., 2014, 2017). Globally, however, the resultant sili-
cate weathering flux from floodplains is variable, amounting to as little as 10% of the net catchment weathering 
flux in some drainages (e.g., Amazon floodplain; Bouchez et al., 2014) to upwards of 70% in others (e.g., Ganges 
floodplain; Bickle et  al.,  2018). Moreover, in ancient floodplain deposits, conflicting evidence exists regard-
ing the silicate weathering response to changes in climate across Paleogene hyperthermal events. Despite the 
similarity in magnitude and direction of change in climate during these global events, some ancient floodplains 
contain evidence of marked increases in weathering intensity (Clechenko et al., 2007), whereas others show little 
change (Wang et al., 2017). The disparate responses may be attributed to differences in regional hydroclimate 
during the body of the event (Carmichael et al., 2018; Rush et al., 2021) or other autogenic controls (e.g., Hajek 
& Straub, 2017) that modulate water-rock interactions. At a minimum, further efforts to refine controls of silicate 
weathering in floodplains are necessary to evaluate their role in climate modulation.

In this study, we unravel the silicate weathering response to the PETM in a well-studied, ancient floodplain in 
the Bighorn Basin, Wyoming, USA. The difference between the Li isotope compositions of river suspended 
sediments (δ 7Lisuspended) and bedrock (δ 7Lisource), notated as Δ 7Lisuspended-source, have been shown to relate to silicate 
weathering intensity (Dellinger et al., 2017); herein, we instead characterize weathering intensities by comparing 
the isotopic compositions of bedrock units in the basin with the clay-size fraction in paleosols developed in flood-
plain sediment (i.e., Δ 7Liclay-source). We document the variability of silicate weathering intensity within a flood-
plain and underscore the important roles of landscape position and hydroclimate in driving weathering trends.

2.  Geologic Setting and Samples
All samples were collected in the Bighorn Basin in northern Wyoming, USA: an alluvial, intermontane basin 
(Dickinson et al., 1988) that formed and filled during the Laramide orogeny, 66–50 Ma (Figure S1 in Supporting 
Information S1). PETM stratigraphic sections in the Bighorn Basin have been described from multiple outcrops 
and are typically 20–45 m thick and are composed of well-preserved alluvial channel sandstones and floodplain 
siltstones and mudstones that have undergone variable degrees of pedogenesis (Baczynski et al., 2017; Bowen 
et al., 2001, 2015; Koch et al., 1992; Kraus & Riggins, 2007). Before and after the PETM, Bighorn Basin flood-
plains supported mixed broad-leaved deciduous and evergreen forests composed of angiosperms and conifers 
whose living relatives are most diverse in humid, subtropical climates; leaf physiognomic proxies also suggest 
a warm, humid paleoclimate (Peppe et  al.,  2011; Wing & Greenwood,  1993; Wing & Currano,  2013; Wing 
et al., 1995). In contrast, fossil plants from the body of the negative carbon isotope excursion (CIE) associated 
with the PETM have living relatives that are most diverse in tropical dry climates; leaf physiognomic analyses, 
paleosol features, basin stratigraphy, and climate models support an increase of ∼5°C in mean annual tempera-
ture (MAT), a decrease in water availability (Currano et al., 2008; Kraus et al., 2013; Peppe et al., 2011; Wing 
& Currano, 2013; Wing et al., 2005), and enhanced seasonality of precipitation (Carmichael et al., 2018; Fore-
man, 2014; Kraus et al., 2015; Rush et al., 2021; Shellito et al., 2003). Fossil plants from the recovery phase of 
the CIE indicate a return to a cooler, wetter climate (Wing & Currano, 2013).

For this study, paleosols were sampled at Polecat Bench in Powell, WY, which is a well-characterized outcrop 
positioned near the basin axis in the northern part of the basin (Kraus et al., 2015 and references therein; see 
Section S1 in Supporting Information S1 for expanded description of the site). Stratigraphic elevations were 
converted to time with respect to the CIE using a newly refined, high-resolution age model (van der Meulen 
et  al., 2020). In accordance with sedimentological features, all paleosols were classified as either composite, 
crevasse splay, or cumulative soils (Kraus, 1999), which are facies characterizations of paleosols that describe 



Geophysical Research Letters

RAMOS ET AL.

10.1029/2021GL097436

4 of 10

soil formation in response to episodic (composite, crevasse splay) or quasi-continuous (cumulative) sedimenta-
tion. These soil facies qualitatively indicate the paleo-landscape position of the soil in the floodplain at the time of 
formation (i.e., composite and crevasse splay are channel proximal whereas cumulative is more distal). Bedrock 
samples, which are thought of as potential source rocks for Paleogene floodplain deposits and include Precam-
brian basement through Cretaceous shales (Baczynski et al., 2016), were retrieved from outcrops on the flanks of 
the basin (Figure S1 in Supporting Information S1; Table S1).

3.  Deducing Paleogene Silicate Weathering Intensity
The clay-sized fraction (<2 μm) of paleosols and whole rock powders of possible source rocks were analyzed 
for major and trace element concentrations and Li isotope ratios. Because  6Li is preferentially incorporated into 
authigenic clays during weathering, the comparison of δ 7Li values of sediment with the δ 7Li values of their 
source indicates the intensity of weathering (Dellinger et al., 2017). Floodplains typically contain sediment from 
multiple types of bedrock, making such comparisons difficult. We measure immobile element concentrations to 
overcome this complexity. The abundances of these elements, such as Ti, Zr, Al, and Cs (Bouchez et al., 2011; 
Dellinger et al., 2017), and their ratios to one another do not change during weathering, allowing us to deter-
mine the provenance of clays (detrital and authigenic) in floodplain paleosols. Critically, authigenic clays that 
form from the chemical weathering of primary silicate sediment will have an immobile element composition 
that reflects a mixture of parent materials (see Supporting Information S1 for detailed explanation of methods). 
Using an immobile element mixing model, two primary endmembers were identified: a Cretaceous shale unit 
(Cody Fm.) and feldspar-bearing igneous rock characteristic of regional basement (Figure S5 in Supporting 
Information S1). Here we are interested in the “reweathering” of the shale that occurred during the Paleogene and 
therefore, although the shale contains weathering products that formed during the Cretaceous, we treat the shale 
as a source and compare paleosol clays to it. We express proportions of the shale and igneous rock endmembers 
in the paleosols as

𝑓𝑓shale + 𝑓𝑓igneous = 1� (1)

where 𝐴𝐴 𝐴𝐴shale and 𝐴𝐴 𝐴𝐴igneous correspond to the fractions of shale and igneous rocks, respectively. These fractions, along 
with measured endmember δ 7Li values and Li concentrations, were used to compute weighted average δ 7Lisource 
values for each paleosol (descriptions of analytical and computational methods can be found in Supporting Infor-
mation S1). With this, we compute Δ 7Liclay-source values as an indicator of weathering intensity, where more nega-
tive Δ 7Liclay-source values indicate more intense weathering (Dellinger et al., 2017).

The measured δ 7Liclay values range from −2.3 to +0.6‰. Potential parent materials span a much wider range of 
δ 7Li values (−4.1 to +25.1‰; Li/Al-weighted average value of 0.8 ± 1.3‰ (1 s.d., n = 12); see Table S1). Given 
our determination of endmembers, we find δ 7Lishale = +0.3‰ (measured δ 7Li value of Cody Fm. sample) and 
δ 7Liigneous = +5.1‰ (average δ 7Li value of two igneous rock samples), effectively narrowing the range of poten-
tial δ 7Lisource values. With these values, δ 7Lisource values are computed and their range is from +1.1 to +2.4‰ 
(see Supporting Information  S1 for δ 7Lisource calculation methods; Table  S1). Because all δ 7Liclay values are 
smaller than the endmember δ 7Li values, clay-sized fractions are likely composed of primarily authigenic clays. 
Importantly, in contrast to the δ 7Lisource values that are roughly constant across the PETM due to relatively steady 

𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (Figure 1b), δ 7Liclay values steadily decrease through the main body and into the recovery phase of the event 
(Figure 1c). We therefore infer that weathering intensities increase during the main body of the event and remain 
high into the recovery phase (Figure 1d).

When samples are grouped in accordance with their soil facies (composite, crevasse splay, or cumulative soils; 
see Figure S2 in Supporting Information S1), Δ 7Liclay-source values show consistent direct correlations with the 
fraction of primary shale (𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ) (Figure 2; Figure S5 in Supporting Information S1), where higher 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 corre-
lates with lower weathering intensities. If we detrend each sample grouping (Figure 2) to account for variations 
in 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (see Section S4 in Supporting Information S1) and consider the average change in weathering intensities 
among a soil facies during the PETM, we determine that crevasse splay soils undergo an average Δ 7Liclay-source 
excursion of −1.3‰ whereas cumulative soils undergo a −2.2‰ excursion (Figure 3).
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4.  Influence of Climate and Landscape Position on Floodplain Weathering
The Li isotope data indicate a rapid and substantial increase in silicate weathering intensity in response to the 
climatic perturbation. This stepwise increase in weathering intensity during the PETM coincides with major shifts 
in atmospheric pCO2 (Gutjahr et al., 2017; Haynes & Hönisch, 2020), hydroclimate (Kraus et al., 2013, 2015), 
floral composition (Wing & Currano,  2013; Wing et  al.,  2005), and floodplain architecture (Abdul Aziz 
et al., 2008; Foreman, 2014) in the Bighorn Basin. The >3‰ negative excursion in δ 7Liclay values in this study is 
likely driven by changes in weathering resulting from these environmental changes because long-term sediment 
aggradation rates (van der Meulen et al., 2020), provenance (May et al., 2013), and δ 7Lisource values remained 
constant across the PETM (Figure 1b; see Section S1 in Supporting Information S1). Notably, the magnitude 
of this excursion agrees with others from marine shale and carbonate transects that span the PETM (Pogge von 
Strandmann et al., 2021).

Several lines of evidence suggest that a combination of environmental variables is necessary to explain these 
weathering trends. First, a simple control by temperature/pCO2 on observed trends can be ruled out because 
silicate weathering intensity (a) fluctuates during the main body of the PETM when temperature/pCO2 are rela-

tively steady and (b) remains high in the recovery phase as temperature/pCO2 
have returned to pre-PETM levels. Second, neither variations in the litho-
logic composition of soils (i.e., 𝐴𝐴 𝐴𝐴shale ) nor changes in soil facies across the 
PETM can fully explain the secular trend in weathering intensity; stepwise 
decreases in Δ 7Liclay-source values during the PETM remain after each sample 
is detrended to average 𝐴𝐴 𝐴𝐴shale (Figure S7 in Supporting Information S1) and 
decreases in average Δ 7Liclay-source values are found among each soil facies 
(Figure 3). Instead, distinct weathering relationships are best discerned when 

𝐴𝐴 𝐴𝐴shale , climate, and soil facies are considered together (Figure  2). Shales, 
which are lithified byproducts of past continental weathering, weather less 
readily at Earth's surface than primary igneous rock-derived minerals like 
plagioclase or biotite (White & Buss, 2014), explaining the consistent inverse 
relationships between weathering intensity and 𝐴𝐴 𝐴𝐴shale . This lithologic control 
is then modulated by climate and landscape position. Higher temperatures 
and pCO2 enable more intense silicate weathering (Winnick & Maher, 2018) 
whether the samples have high or low values of 𝐴𝐴 𝐴𝐴shale (Figure 2). Importantly, 
the difference in weathering trends between varying climate states is most 
pronounced in soils that formed far from the channel (Figure 3). Compos-
ite and crevasse splay soils, which are coarser grained, better drained, and 

Figure 2.  Δ 7Liclay-source values as a function of fshale (error bars are 2 s.d.). Data are grouped according to soil facies and time 
intervals of the Paleocene-Eocene Thermal Maximum, and lines correspond to linear fits through corresponding data groups. 
There is a consistent relationship between Δ 7Liclay-source values and fshale.

Figure 3.  fshale-detrended Δ 7Liclay-source values of crevasse splay and cumulative 
soils. Each soil Δ 7Liclay-source value was detrended to account for lithologic 
differences (see Section S4 in Supporting Information S1 for detrending 
method description and rationale). Mean detrended Δ 7Liclay-source values and 
their standard deviations are presented for each data group; the number of 
samples in each group is listed beneath the means; the magnitude of the 
Li isotope excursion between pre-Paleocene-Eocene Thermal Maximum 
(pre-PETM) and PETM paleosols is listed to the right each soil facies.
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topographically high within floodplains (Kraus, 1999), form in oxidizing conditions that more readily facilitate 
silicate weathering reactions. Cumulative soils, in contrast, tend to be finer grained and more poorly drained, 
favoring reducing conditions and slow water movement that keep silicate minerals from chemically weathering. 
Therefore, in this alluvial system, when the floodplain soils become better drained during the body of the hyper-
thermal event, more limitations of silicate weathering are removed in cumulative soils than their near-channel 
counterparts, yielding a stronger silicate weathering response despite reduced availability of water (Wing & 
Currano, 2013).

The simplest explanation for these weathering trends is the fluctuation of the water table in response to increased 
seasonality during the PETM (Figure 4). In addition to increases in MAT and pCO2 during the main body, mean 
annual precipitation (MAP) in the Bighorn Basin decreased and became more seasonal. Large rainfall events and 

Figure 4.  Conceptual cross-sections of floodplains in the Bighorn Basin spanning the pre-onset (a), onset and main body (b), 
and recovery (c) phases of the Paleocene-Eocene Thermal Maximum. The relative location of each soil facies (composite, 
crevasse splay, and cumulative) is listed beneath cross-section in panel A but applies to each cross-section. Blue lines 
correspond to the elevation(s) of the water table (fluctuating in panels B and C). Red arrows indicate locations of silicate 
weathering fluxes in the floodplain and the sizes are their relative magnitudes (larger = greater).
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increased evapotranspiration in the basin led to better-drained soils and large fluctuations in water table height 
(Kraus et al., 2013). As a result, soil water contents would likely change widely throughout a year, perturbing 
the saturation state of the aqueous solutions in soil and thereby catalyzing mineral dissolution and precipitation 
reactions (e.g., Golla et al., 2021). In contrast to well-drained proximal soils, distal soils retain water due to their 
high clay content (i.e., due to high matric potentials) and therefore require greater changes in hydroclimate and 
water table height to enable oxidative weathering. Periods of poor soil drainage and high MAP, or even low MAP 
and limited water availability, during the body of the PETM may also explain the occurrences of low silicate 
weathering intensity. We postulate that the two likeliest causes of relatively high silicate weathering intensity 
during the recovery phase were either (a) sustained seasonality of rainfall (Kraus et al., 2015) and a return to 
wetter conditions (Wing & Currano, 2013) that promote intense weathering or (b) persistent weathering below 
the water table (Golla et al., 2021) as MAP increased, water tables steadily rose, and weathering environments 
transitioned to a new equilibrium state. Although in need of further evidence, a third possibility was that with the 
return of conifer to the vegetation increased soil root mass that sustained high soil pCO2 and transiently increased 
weathering rates (Algeo & Scheckler, 2010) despite atmospheric pCO2 returning to pre-PETM levels. A fourth 
possibility is that detrital floodplain clays or upstream hillslope clays (i.e., those with low δ 7Li values) compose 
a significant proportion of paleosol clay-sized fractions that mask an undetected decrease in silicate weathering 
intensity during the recovery phase. Evidence of floodplain reworking (e.g., clay rip-up clasts in sandstone depos-
its, crevasse splay deposits), a process that would remobilize sediments and lead to their deposition downstream, 
is found throughout this stratigraphic section (Kraus et al., 2015). Yet, if this reworking pervasively influenced 
weathering trends, one would expect a lagged Δ 7Liclay-source excursion at the onset of the event (Figure 1d). The 
lack of any substantial lag at the onset of the PETM, along with the consistency of weathering trends among soil 
facies and their agreement with principles of floodplain hydrology, suggests that the detrital component in the 
clay-sized fraction is minimal. Ultimately, persistently low Δ 7Liclay-source values in the recovery phase, which are 
not seen in marine shale sections (Pogge von Strandmann et al., 2021), may indicate that while continental-scale 
weathering intensity returned to pre-PETM lows, local conditions within the Bighorn Basin favored a more slug-
gish return to low weathering intensities.

Altogether, these findings demonstrate that floodplain weathering dynamically responds to climate change and 
further illustrate the utility of Li isotope ratios in detecting weathering changes in sedimentary archives (Pogge 
von Strandmann et al., 2021). Unlike weathering on mountain hillslopes, the climatic sensitivity of which is tied 
to the kinetics of silicate mineral dissolution (Bufe et al., 2021), floodplain weathering involves mineral residence 
times long enough to counter these dissolution kinetics (Dosseto et al., 2006; Torres et al., 2017). Instead, we 
conclude that weathering on floodplains is sensitive to climatically driven changes in water flow through soils 
where better soil drainage begets more intense weathering. The rapid and large weathering response to climate 
change in the Bighorn Basin during the PETM might be characteristic of intermontane basins whose steady 
supply of fresh silicate sediment from adjacent uplifts (van der Meulen et al., 2020) enable strong silicate weath-
ering responses. These findings ultimately expand upon recent studies that argue for floodplains as carbon sinks 
(Bufe et al., 2021; Torres et al., 2016) and newly underscore the relevance of floodplain biogeochemical cycling 
in the carbon cycle over much wider timescales than previously thought.

Data Availability Statement
Supporting Information files Table S1 and S2 contain all gathered data and MATLAB codes used to generate 
plots and mixing models calculations are available through Zenodo, which can be accessed through https://doi.
org/10.5281/zenodo.6342274.
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