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Abstract 

Intra-specific population genetic differentiation is an important predictor of speciation. 

Understanding how geographic barriers impact the cohesion of populations is therefore critical in 

explaining diversification. However, quantifying barrier permeability at broad scales is difficult, 

as permeability is determined by a host of factors including the attributes of the barrier, 

ecological constraints on dispersal, and species-level differences in dispersal ability; as a result, 

large scale comparative empirical studies that examine the relationship between barrier 

permeability and population divergence are limited. We test whether river and mountain 

permeability predict intra-specific genetic divergence for 30 species of birds spanning 17 

families across both passerines (90%) and non-passerines (10%). Using 141 cross-barrier 

populations, we model mitochondrial divergence as a function of barrier permeability (river 

width, and least-cost-distance across mountains), dispersal ability, average population size, diet, 

habitat, and territoriality. Surprisingly, we find no relationship between dispersal ability and 

divergence, and no evidence that dispersal ability mediates the effects of barrier permeability on 

divergence. Similarly, we find no evidence of a strong role for any of our ecological variables on 

divergence. Variation in mountain permeability does not predict differentiation, suggesting 

mountains can largely be considered similar in their effects on population genetic structure. We 

do find that variation in river permeability predicts genetic differentiation, suggesting that rivers 

vary in their impacts on gene flow, and that width may be a good indicator of river permeability 

despite its dynamic nature. 
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Introduction 

 Understanding the variation of diversification rates across lineages remains a 

fundamental goal of evolutionary biology. In birds, allopatric speciation is likely the main engine 

of diversification (Barraclough & Vogler, 2000; Phillimore et al., 2008), and rates of population 

divergence are broadly correlated with speciation rates, suggesting that the drivers of population 

genetic divergence are also associated with diversification (Harvey et al., 2017). The importance 

of population divergence has long been appreciated, and as a result, the drivers are well known, 

with natural selection (Price, 1998), ecological opportunity (Wellborn & Langerhans, 2015), 

geological dynamism (Hoorn et al., 2010; Qu et al., 2011), and dispersal ability (Claramunt et al., 

2012; Weeks & Claramunt, 2014) all known to play critical roles in facilitating or inhibiting 

population divergence. To date, however, comparative empirical analyses of the impacts of 

variation in barrier permeability on population-level divergence have been limited. 

 The importance of major geographic barriers in driving speciation is widely recognized in 

birds. For rivers, the riverine barrier hypothesis suggests that large rivers act as geographical 

barriers to gene flow (Wallace, 1854). This hypothesis has extensive empirical support in birds 

(Ribas et al., 2012; Smith et al., 2014; Voelker et al., 2013), and the role of rivers in structuring 

bird diversity in diversity hotspots has been apparent for decades (Cracraft, 1985; Cracraft & 

Prum, 1988; Oliveira et al., 2017; Voelker et al., 2013). Similarly, mountains are important 

barriers to gene flow and can also promote genetic differentiation (Davies et al., 2007; Fjeldså et 

al., 2012; Machado et al., 2018).  

Better understanding the effects of rivers and mountains on the degree of genetic 

differentiation between cross-barrier populations may provide further insights on the origins of 

speciation. However, the permeability of rivers is expected to be highly variable given that their 
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width, shape, and location change over time (Harvey et al., 2017; Willett et al., 2014). Each of 

these types of variation are likely to impact their effect on gene flow across the river, 

complicating efforts to understand the historical influences of river barriers on divergence 

(Hayes & Sewlal, 2004; Naka & Brumfield, 2018). High-altitude mountain systems have also 

been acknowledged to shape patterns of biodiversity through isolation (Moritz et al., 2000), and 

many global diversity hot spots are in montane regions (Kohler et al., 2010). However, 

population connectivity across mountains is complex, with important effects of small-scale 

topographic features (Winger & Bates, 2015) and large-scale variation on the impacts of 

mountain characteristics on gene flow (Janzen, 1967). 

To study the effects of these major geographic barriers on the structuring of avian 

populations, we use river width and least-cost-distance as metrics of permeability. Although river 

permeability is difficult to capture in a single metric due to its dynamic nature, evidence suggests 

river width to be predictive of bird distributions and population structure (Hayes & Sewlal, 2004; 

Smith et al., 2014). Due to the difficulty in determining which part of a river’s width was most 

relevant in affecting each cross-barrier population’s genetic structure, we created a metric of 

permeability based on the relative location of each half of a population pair. For mountain 

barriers, we focused on the relationship between topography-driven isolation (Igea & Tanentzap, 

2021; Steinbauer et al., 2016). Following White’s (2016) method, we calculated least-cost 

distance between mountain-separated populations over an elevational raster.  

While barrier permeability is expected to impact rates of gene flow, the extent to which 

any major barrier limits dispersal is determined by a species’ vagility (Tobias et al., 2020). 

However, current methods of quantifying dispersal are expensive, time-consuming, and 

infeasible to implement at a broad scale. To overcome this challenge, ornithologists have relied 



3 

 

on the physics of flight to develop morphological predictors of flight capacity. A critical 

determinant of the efficiency of long distance flight is the aspect ratio of bird wings, with higher 

aspect ratio wings resulting in more efficient long distance flight (Norberg, 1995). A related 

index, the hand-wing index (HWI), is similarly associated with flight efficiency and can be 

measured on museum specimens. HWI is correlated with natal dispersal distance and has been 

used in a wide range of macroevolutionary studies exploring the effects of dispersal on 

diversification (Chua et al., 2017; Claramunt et al., 2012; Weeks & Claramunt, 2014; Sheard et 

al. 2020). While dispersal has long been thought to impact rates of population divergence and 

speciation, it has also been hypothesized that the relationship between dispersal capacity and 

barrier permeability may mediate this relationship (Weeks and Claramunt, 2014). When 

dispersal capacity is high relative to landscape connectivity, dispersal is thought to inhibit 

divergence, while in systems with low dispersal abilities relative to connectivity, dispersal might 

be predicted to increase rates of divergence as a result of increased colonization of new areas 

(Weeks and Claramunt 2014).  

 To assess the interactive effects of avian dispersal ability with our two categories of 

major barriers, we gathered genetic data and geographic coordinates from published studies that 

evaluated differentiation in areas that were delineated by mountains or rivers. Specimens 

sampled across rivers are grouped into populations using areas of endemism as sampling units, 

while the population classification of specimens sampled across mountains are defined by the 

side of the mountain on which they are found. For a proxy of dispersal ability, HWI 

measurements were obtained through the comprehensive dataset from (Sheard et al., 2020). 

Using these data, we test the hypotheses that river and mountain permeability predict differences 

in GST, with more permeable barriers resulting in higher rates of gene exchange and lower rates 
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of population divergence. We also test the hypotheses that the permeability of river and 

mountain barriers is contingent on HWI, as barrier permeability will restrict gene flow more in 

species with low dispersal abilities.  

 

Methods 

Literature review 

To identify papers containing mitochondrial DNA data for cross-barrier bird populations, 

we conducted a systematic review of the literature on Google Scholar using the key search terms 

“comparative phylogeography birds mitochondria”. Of the papers returned from 2011 to 2016, 

we reviewed the top 200 per year to identify all papers meeting our criteria of having at least one 

species with mitochondrial DNA data sampled across a geographic or biogeographic barrier. 

Papers that used either the cytochrome b (Cytb) or NADH dehydrogenase 2 (ND2) genes were 

read in detail to see if they sampled across one of two major barrier types: mountains and rivers. 

Papers that met these criteria and had accessioned specimen data in GenBank were added to a 

preliminary dataset. For each taxon, all specimens were then plotted in ArcGIS Pro 2.8.0 and 

assigned to population pairs depending on their locations relative to major river or mountain 

barriers. Specimens in the Amazon basin were also sampled based on their locations within 

Amazonian areas of endemism, following Silva et al. (2017).  

 

Calculating population differentiation 

 We obtained the Cytb or ND2 gene sequences for all specimens using R package ape 

(Paradis & Schliep, 2019) and grouped them into cross-barrier population pairs. For each pair of 

populations, sequences were then converted into DNAStringSet objects using the R package 
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Biostrings (Pagès et al., 2021) and aligned using the ClustalW algorithm (Thompson et al., 1994) 

as implemented through R package msa (Bodenhofer et al., 2015). The resultant 141 sets of 

multiple sequence alignments were written into aligned FASTA files using the bios2mds 

package (Pelé et al., 2012). Each of our aligned FASTA files was loaded into DnaSP 6 (Rozas et 

al., 2017) where we assigned individuals to populations and calculated population differentiation 

using GST (Nei, 1982). 

 

Quantifying barrier permeability 

 For rivers, populations were defined as all specimens occurring within the same area of 

endemism (Silva et al., 2017) To calculate river width for each population pair, we drew a line 

connecting the centroids of the sampling localities of each population on either side of the river 

and estimated the width of the river where it was crossed by this line. To obtain estimates of 

river width, we downloaded 30-meter spatial resolution rasters from the Global River Widths 

from Landsat Database (Allen & Pavelsky, 2018) and subset them to tiles which contained the 

rivers separating our populations. We created river network mosaics from these rasters using 

ArcGIS Pro 2.8.0 and exported extracted rivers as shapefiles per cross-river population pair. To 

prepare these river polygons for analysis, we stripped them down into simpler structures by 

converting them into valid geometry objects using the sf package (Pebesma et al., 2021). Line 

objects were created to link each population-pair using the sp package (Pebesma et al., 2021), 

and the widths of the intersections between lines and river objects were considered the estimate 

of river permeability.  

For mountains, populations were defined based on the side of a mountain where they 

occurred. Similar to the river barrier populations, we used the geographic coordinates of the 
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specimens from each population to identify a central point of the population. For each of our 

cross-mountain population pairs, a measure of least cost path was used as a proxy for mountain 

barrier effects. These least cost paths are the routes with the least accumulated elevational cost 

between two points. Following White (2016), an elevational raster from WorldClim 2 (Fick & 

Hijmans, 2017) with a spatial resolution of 30 arc-seconds was used to represent the cost per 

pixel of mountain barriers separating our cross-mountain centroids. The gdistance package (van 

Etten, 2017) in R was used to calculate the least cost path between each centroid pair. Using the 

WorldClim 2 elevational raster, we created a transition object based on Moore’s neighborhood, 

which consisted of the eight pixels surrounding a target pixel. A geographic correction was then 

applied to each transition object to account for both the large extent of each mountain barrier and 

our use of Moore’s neighborhood. We then calculated our least cost distance based on Dijkstra’s 

algorithm, which uses an iterative process to accumulate the minimum amount of elevational 

resistance between centroids (Dijkstra, 1959). 

 

Morphological and ecological predictors 

 We extracted HWI, average population size, diet classification, habitat classification, and 

territoriality from a comprehensive dataset for all birds (Sheard et al., 2020). Population size was 

averaged between specimens sampled on both sides of a barrier. We control for the impacts of 

ecology by including diet, habitat, and territoriality in our models. Diet classifications were 

assigned depending on the primary food types eaten per species and categorized as frugivore, 

omnivore, or carnivore (Pigot et al., 2020). Species habitat was classified as either dense or semi-

open, and territoriality was classified as strong, weak, or none. Both habitat and territoriality 

were based on scores from Tobias et al. (2016).  
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Statistical analyses 

We modeled the relationships between GST and combinations of barrier permeability, 

average population size, and ecological variables using Bayesian phylogenetic mixed models as 

implemented in the R package MCMCglmm (Hadfield, 2010). To characterize phylogenetic 

relationships, a variance-covariance matrix was created using a comprehensive phylogeny of all 

birds (Jetz et al., 2012). 1,000 of the most likely trees form the posterior distribution were 

summarized into a 50% maximum clade credibility tree using DendroPy (Sukumaran & Holder, 

2010) following Rubolini et al. (2015). To account for the difference in resolution and methods 

used in calculating barrier costs, species pairs that were separated by mountains were modeled 

separately from those separated by rivers. Prior to model fitting, both categories of barrier costs 

were scaled to have a mean of 0 and SD of 1. An uninformative prior was specified for all fixed 

effects where V = 1 and nu = 0.002 for R and G. Models were run for 100,000 iterations, with 

the first 10,000 iterations discarded as burn-in. Six models were fit for each barrier type, and 

from each barrier type’s set of models, the first included barrier cost, HWI, and an interaction 

between the two while the second included only barrier cost and HWI as predictors. Each barrier 

type’s other four models included HWI, barrier cost, average population size, diet type, habitat 

type, or territoriality classification without interactions. We then compared each barrier type’s set 

of models using the deviance information criterion (DIC). The best river and mountain models 

were run an additional two times each and tested for convergence using the Gelman-Rubin 

(Gelman & Rubin, 1992) and Geweke’s convergence diagnostics (Geweke, 1991) using the R 

package coda (Plummer et al., 2006). We also examined trace and density plots to confirm model 

convergence visually. For each best performing model, we calculated marginal and conditional 
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R2 (Nakagawa & Schielzeth, 2013) as metrics of the variance explained by the fixed effects only 

and by the entire model, respectively.  

 

Results 

 After removing specimens that did not meet our criteria, our final dataset included 141 

populations for 30 bird species across 17 families of passerines (90%) and non-passerines (10%). 

Our final dataset showed a strong bias towards species in the Amazon basin. Of these 141 

populations, 106 were sampled across rivers; 35 were sampled across mountains. From our pool 

of 30 total species, 25 species were sampled across rivers for an average population size of 17.4. 

18 species were sampled across mountains for an average population size was 6.4. GST was 

calculated using the cytochrome b gene, except for our three mountain populations that were 

sampled in Australia and used the ND2 gene. Most specimens sampled were not classified by 

sub-species. 

 Based on the DIC score (Table 1), the best river model only included barrier cost and 

HWI without an interaction (marginal R2 = 0.02, conditional R2 = 0.48). The Gelman-Rubin 

diagnostic was performed on the three independent runs of this model and produced potential 

scale reduction factors approaching 1, suggesting the model had converged. The Geweke’s 

convergence diagnostic was also performed on this river model, with output values being within 

the 95% confidence interval of the standard normal (i.e., |x|<1.96). We also confirmed 

convergence by visually inspecting parameter density and trace plots. The scaled width of the 

river barriers had a significant positive association with genetic differentiation (estimate = 

0.0218; 95% CI: 0.0013, 0.043; PMCMC < 0.05), supporting our hypothesis that river 

permeability had a significant effect on population differentiation. HWI did not predict genetic 
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differentiation (PMCMC = 0.95). River width was a positive and significant predictor of genetic 

differentiation throughout all six models, while morphology, habitat, diet, territoriality, and 

average population size were consistently insignificant. 

 

Table 1. Model fit comparison using Deviance Information Criterion (DIC). Model selection 

was categorized by river or barrier type, and lowest DIC scores indicate best fit. 

 

 The mountain model with the lowest DIC score (Table 1) included barrier cost, HWI, and 

average population size without an interaction between HWI and barrier cost (marginal R2 = 0.1, 

conditional R2 = 0.48). The Gelman-Rubin diagnostic was performed on three independent runs 

of this model, and scale reduction factors approached 1. Geweke’s convergence diagnostic was 

also performed and output values within the 95% confidence interval of the standard normal. 

These outputs confirmed convergence, as did our visual analyses of parameter density and trace 

plots. However, unlike the rivers model, our metric of mountain permeability was not predictive 
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of genetic differentiation of cross-barrier populations (estimate = 0.0118; 95% CI: -0.0571, 

0.0809; PMCMC = 0.726), and the effects of diet, habitat, and territoriality were also 

insignificant across all mountain barrier models (Table S3). 

 

Discussion 

 Rates of intraspecific population divergence are correlated with speciation rates, 

suggesting the processes that impact population differentiation may be important determinants of 

macroevolutionary processes (Harvey et al., 2017). Identifying the factors that facilitate or hinder 

population differentiation is therefore not only important to understanding population dynamics, 

but in furthering our understanding of speciation. While geographic barriers have long been 

recognized as having an important role in structuring populations, developing a nuanced 

understanding of the impacts of barrier variation on divergence is challenging.  

 We find river barrier cost to have a significant positive association with genetic 

differentiation (PMCMC < 0.05), suggesting that rivers that are narrower are more permeable, 

allowing for higher rates of dispersal and gene flow. However, rivers as barriers to gene flow are 

complex given that their location and permeability are dynamic over time and biogeographic 

space. The inability to account for this complexity imposes limitations on the interpretations of 

our results. For example, headwaters present less of an obstacle to gene exchange among 

populations (Sandoval-H et al., 2017; Weir et al., 2015), while the drainage network of lowland 

rivers is more dynamic than those from the upland (Bicudo et al., 2019; Cremon et al., 2016). In 

these instances, our metric of river width may not reflect rates of dispersal at the point at which 

river width is measured but may instead be correlated with distance to headwaters or elevation 

and slope. 
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Our data are also strongly biased towards tropical regions (Figure 1), where rivers have 

long been known to be important to diversification (Aleixo, 2004; Ribas et al., 2012). Because 

tropical birds tend to have lower flight capacity (Sheard et al., 2020), and population 

differentiation in tropical regions may be more strongly associated with speciation rates (Cutter 

& Gray, 2016; Harvey et al., 2017; Smith et al., 2017), our findings on the significance of rivers 

as barriers may be less reflective of their effects on gene flow in temperate regions. More 

empirical work is therefore needed to understand the generality and implications of our findings 

on speciation. Conversely, we do not find that the cost to travel between populations separated 

by mountains to be predictive of population structure. Mountains are known to be significant 

barriers to gene exchange in the tropics (Janzen, 1967), and there is also some evidence that 

largescale variation in cost-distance can drive differences in genetic divergence (White, 2016). 

Our results suggest that for some taxa, mountains may all be similarly insurmountable, with 

either unpredictable long-distance dispersal events, or dynamic histories of changing 

connectivity driving inter-population dynamics (Weeks et al., 2016).  

 

Figure 1. The geographic distributions of 30 species sampled across river or mountain 

barriers with a strong bias towards South America. 
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While geographic features may be the basal drivers of differentiation in birds, the impacts 

of these features are expected to be mediated by species ecologies. There is considerable 

evidence that flight efficiency (i.e., HWI) is associated with dispersal at small scales (e.g., natal 

dispersal distances; Weeks et al. 2022) and is associated with population differentiation (Chua et 

al., 2017) and diversification rates (Claramunt et al., 2012; Weeks & Claramunt, 2014). Given 

this, we expected that HWI would predict population differentiation and that species with higher 

HWI would show lower rates of population divergence across barriers given their elevated 

abilities to maintain gene flow. However, we find no evidence of this relationship, with HWI 

consistently not significantly associated with GST in our models. We are cautious in interpreting 

this result, as our models have limited statistical power, but the failure to find a relationship 

between HWI and GST does suggest that more work is necessary to understand the link between 

flight efficiency and dispersal at scales that are intermediate between ecological dispersal events 

(e.g., natal dispersal) and macroevolutionary processes playing out in deep time. 

An outstanding question related to the importance of dispersal ability to evolutionary 

processes is how the relationship between dispersal ability and dispersal changes across scales. 

For example, while subtle differences in HWI may predict dispersal rates across small barriers 

(e.g., roads), they become less important in predicting dispersal rates across larger barriers (e.g., 

oceans). Given this, we expected that the impacts of HWI on GST would be determined in part 

by HWI. However, we find no evidence of this, as the interaction between HWI and barrier 

permeability was not significant and not included in the best model. However, we do not know if 

our measurements of genetic differentiation reflected rates of exchange in genetic material rather 

than reproductive isolation, as most specimens comprising our cross-barrier populations did not 

have sub-species classifications assigned. The scale of our analyses and the relatively limited 
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differences in barrier permeability may also have been insufficient in revealing an interaction 

between these variables. Future work including a broader range of barriers with greater variation 

in permeability is needed.   

Furthermore, although morphological, ecological, and life history variables affect species 

interactions with the landscape, we find no evidence for a relationship between any of the tested 

variables and GST. Previous models exploring the determinants of dispersal distance in birds 

have found that differences in diet and habitat explain little variation in dispersal beyond what is 

captured by morphological metrics of dispersal ability (Claramunt, 2021; Dawideit et al., 2009; 

Weeks et al. 2022). However, it is possible that our metrics of ecological differences are too 

coarse to recover inter-specific differences at this scale, and our model is only able to explain a 

small proportion of the variance in GST, suggesting a potential role for ecology that we are 

unable to capture. 

 

Conclusion 

River width was the only predictor found to have a significant effect on population 

structure, with lower levels of population genetic differentiation across less permeable rivers. 

Although our metric of permeability did not account for the complexity of rivers as barriers to 

gene flow, our results suggest that the width of rivers may be an informative indicator of barrier 

cost. And while we find no evidence that dispersal ability predicts population structure in our 

study, we interpret this finding cautiously given the breadth of empirical work linking HWI to a 

range of ecological and evolutionary processes. The results of this study suggest that more work 

on the relationship between dispersal ability, landscape connectivity, and population divergence 

is warranted. 



14 

 

References 

Aleixo, A. (2004). Historical Diversification of a Terra-Firme Forest Bird Superspecies: A 

Phylogeographic Perspective on the Role of Different Hypotheses of Amazonian 

Diversification. Evolution, 58(6), 1303–1317. https://doi.org/10.1111/j.0014-

3820.2004.tb01709.x 

Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. Science, 361(6402), 

585–588. https://doi.org/10.1126/science.aat0636 

Barraclough, T. G., & Vogler, A. P. (2000). Detecting the Geographical Pattern of Speciation 

from Species‐Level Phylogenies. 16. 

Bicudo, T. C., Sacek, V., de Almeida, R. P., Bates, J. M., & Ribas, C. C. (2019). Andean 

Tectonics and Mantle Dynamics as a Pervasive Influence on Amazonian Ecosystem. 

Scientific Reports, 9(1), 16879. https://doi.org/10.1038/s41598-019-53465-y 

Bodenhofer, U., Bonatesta, E., Horejš-Kainrath, C., & Hochreiter, S. (2015). msa: An R package 

for multiple sequence alignment. Bioinformatics, btv494. 

https://doi.org/10.1093/bioinformatics/btv494 

Burney, C. W., & Brumfield, R. T. (2009). Ecology Predicts Levels of Genetic Differentiation in 

Neotropical Birds. The American Naturalist, 174(3), 358–368. 

https://doi.org/10.1086/603613 

Chua, V. L., Smith, B. T., Burner, R. C., Rahman, M. A., Lakim, M., Prawiradilaga, D. M., 

Moyle, R. G., & Sheldon, F. H. (2017). Evolutionary and ecological forces influencing 

population diversification in Bornean montane passerines. Molecular Phylogenetics and 

Evolution, 113, 139–149. https://doi.org/10.1016/j.ympev.2017.05.016 



15 

 

Claramunt, S. (2021). Flight efficiency explains differences in natal dispersal distances in birds. 

Ecology, 102(9), e03442. https://doi.org/10.1002/ecy.3442 

Claramunt, S., Derryberry, E. P., Remsen, J. V., & Brumfield, R. T. (2012). High dispersal 

ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the 

Royal Society B: Biological Sciences, 279(1733), 1567–1574. 

https://doi.org/10.1098/rspb.2011.1922 

Cracraft, J. (1985). Historical Biogeography and Patterns of Differentiation within the South 

American Avifauna: Areas of Endemism. Ornithological Monographs, 36, 49–84. 

https://doi.org/10.2307/40168278 

Cracraft, J., & Prum, R. O. (1988). Patterns and Processes of Diversification: Speciation and 

Historical Congruence in Some Neotropical Birds. Evolution, 42(3), 603–620. 

https://doi.org/10.1111/j.1558-5646.1988.tb04164.x 

Cremon, É. H., Rossetti, D. de F., Sawakuchi, A. de O., & Cohen, M. C. L. (2016). The role of 

tectonics and climate in the late Quaternary evolution of a northern Amazonian River. 

Geomorphology, 271, 22–39. https://doi.org/10.1016/j.geomorph.2016.07.030 

Cutter, A. D., & Gray, J. C. (2016). Ephemeral ecological speciation and the latitudinal 

biodiversity gradient. Evolution, 70(10), 2171–2185. https://doi.org/10.1111/evo.13030 

Davies, R. G., Orme, C. D. L., Storch, D., Olson, V. A., Thomas, G. H., Ross, S. G., Ding, T.-S., 

Rasmussen, P. C., Bennett, P. M., Owens, I. P. F., Blackburn, T. M., & Gaston, K. J. 

(2007). Topography, energy and the global distribution of bird species richness. 

Proceedings of the Royal Society B: Biological Sciences, 274(1614), 1189–1197. 

https://doi.org/10.1098/rspb.2006.0061 



16 

 

Dawideit, B. A., Phillimore, A. B., Laube, I., Leisler, B., & Böhning-Gaese, K. (2009). 

Ecomorphological predictors of natal dispersal distances in birds. Journal of Animal 

Ecology, 78(2), 388–395. https://doi.org/10.1111/j.1365-2656.2008.01504.x 

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische 

Mathematik, 1(1), 269–271. https://doi.org/10.1007/BF01386390 

Dynesius, M., & Jansson, R. (2014). Persistence of Within-Species Lineages: A Neglected 

Control of Speciation Rates. Evolution, 68(4), 923–934. 

https://doi.org/10.1111/evo.12316 

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces 

for global land areas. International Journal of Climatology, 37(12), 4302–4315. 

https://doi.org/10.1002/joc.5086 

Fjeldså, J., Bowie, R. C. K., & Rahbek, C. (2012). The Role of Mountain Ranges in the 

Diversification of Birds. Annual Review of Ecology, Evolution, and Systematics, 43(1), 

249–265. https://doi.org/10.1146/annurev-ecolsys-102710-145113 

Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple 

Sequences. Statistical Science, 7(4). https://doi.org/10.1214/ss/1177011136 

Geweke, J. (1991). Evaluating the Accuracy of Sampling-Based Approaches to the Calculation 

of Posterior Moments. Staff Report. https://doi.org/10.21034/sr.148 

Hadfield, J. D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: 

The MCMCglmm R Package. Journal of Statistical Software, 33(2). 

https://doi.org/10.18637/jss.v033.i02 



17 

 

Harvey, M. G., Aleixo, A., Ribas, C. C., & Brumfield, R. T. (2017). Habitat Association Predicts 

Genetic Diversity and Population Divergence in Amazonian Birds. The American 

Naturalist, 190(5), 631–648. https://doi.org/10.1086/693856 

Harvey, M. G., Seeholzer, G. F., Smith, B. T., Rabosky, D. L., Cuervo, A. M., & Brumfield, R. 

T. (2017). Positive association between population genetic differentiation and speciation 

rates in New World birds. Proceedings of the National Academy of Sciences, 114(24), 

6328–6333. https://doi.org/10.1073/pnas.1617397114 

Hayes, F. E., & Sewlal, J.-A. N. (2004). The Amazon River as a dispersal barrier to passerine 

birds: Effects of river width, habitat and taxonomy. Journal of Biogeography, 31(11), 

1809–1818. https://doi.org/10.1111/j.1365-2699.2004.01139.x 

Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, 

I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., 

Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., & Antonelli, A. 

(2010). Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, 

and Biodiversity. Science, 330(6006), 927–931. https://doi.org/10.1126/science.1194585 

Igea, J., & Tanentzap, A. J. (2021). Global topographic uplift has elevated speciation in 

mammals and birds over the last 3 million years. Nature Ecology & Evolution, 5(11), 

1530–1535. https://doi.org/10.1038/s41559-021-01545-6 

Janzen, D. H. (1967). Why Mountain Passes are Higher in the Tropics. The American Naturalist, 

101(919), 233–249. 

Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity 

of birds in space and time. Nature, 491(7424), 444–448. 

https://doi.org/10.1038/nature11631 



18 

 

Kisel, Y., & Barraclough, T. G. (2010). Speciation Has a Spatial Scale That Depends on Levels 

of Gene Flow. The American Naturalist, 175(3), 316–334. 

https://doi.org/10.1086/650369 

Kohler, T., Giger, M., Hurni, H., Ott, C., Wiesmann, U., Wymann von Dach, S., & Maselli, D. 

(2010). Mountains and Climate Change: A Global Concern. Mountain Research and 

Development, 30(1), 53–55. https://doi.org/10.1659/MRD-JOURNAL-D-09-00086.1 

Lester, S. E., Ruttenberg, B. I., Gaines, S. D., & Kinlan, B. P. (2007). The relationship between 

dispersal ability and geographic range size. Ecology Letters, 10(8), 745–758. 

https://doi.org/10.1111/j.1461-0248.2007.01070.x 

Machado, A. P., Clément, L., Uva, V., Goudet, J., & Roulin, A. (2018). The Rocky Mountains as 

a dispersal barrier between barn owl (Tyto alba) populations in North America. Journal of 

Biogeography, 45(6), 1288–1300. https://doi.org/10.1111/jbi.13219 

Mayr, E. (1963). Animal species and evolution. Belknap press. 

Moritz, C., Patton, J. L., Schneider, C. J., & Smith, T. B. (2000). Diversification of Rainforest 

Faunas: An Integrated Molecular Approach. Annual Review of Ecology and Systematics, 

31(1), 533–563. https://doi.org/10.1146/annurev.ecolsys.31.1.533 

Naka, L. N., & Brumfield, R. T. (2018). The dual role of Amazonian rivers in the generation and 

maintenance of avian diversity. Science Advances, 4(8), eaar8575. 

https://doi.org/10.1126/sciadv.aar8575 

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R 2 from 

generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–

142. https://doi.org/10.1111/j.2041-210x.2012.00261.x 



19 

 

Nei, M. (1982). Evolution of human races at the gene level. Progress in Clinical and Biological 

Research, 103 Pt A, 167–181. 

Norberg, U. M. (1995). Wing Design and Migratory Flight. Israel Journal of Zoology, 41(3), 

297–305. https://doi.org/10.1080/00212210.1995.10688801 

Oliveira, U., Vasconcelos, M. F., & Santos, A. J. (2017). Biogeography of Amazon birds: Rivers 

limit species composition, but not areas of endemism. Scientific Reports, 7(1), 2992. 

https://doi.org/10.1038/s41598-017-03098-w 

Pagès, H., Aboyoun, P., Gentleman, R., & DebRoy, S. (2021). Biostrings: Efficient manipulation 

of biological strings (2.60.2) [Computer software]. Bioconductor version: Release (3.13). 

https://doi.org/10.18129/B9.bioc.Biostrings 

Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and 

evolutionary analyses in R. Bioinformatics, 35(3), 526–528. 

https://doi.org/10.1093/bioinformatics/bty633 

Pebesma, E., Bivand, R., Racine, E., Sumner, M., Cook, I., Keitt, T., Lovelace, R., Wickham, H., 

Ooms, J., Müller, K., Pedersen, T. L., Baston, D., & Dunnington, D. (2021). sf: Simple 

Features for R (1.0-2) [Computer software]. https://CRAN.R-project.org/package=sf 

Pebesma, E., Bivand, R., Rowlingson, B., Gomez-Rubio, V., Hijmans, R., Sumner, M., 

MacQueen, D., Lemon, J., Lindgren, F., O’Brien, J., & O’Rourke, J. (2021). sp: Classes 

and Methods for Spatial Data (1.4-5) [Computer software]. https://CRAN.R-

project.org/package=sp 

Pelé, J., Bécu, J.-M., Abdi, H., & Chabbert, M. (2012). Bios2mds: An R package for comparing 

orthologous protein families by metric multidimensional scaling. BMC Bioinformatics, 

13(1), 133. https://doi.org/10.1186/1471-2105-13-133 



20 

 

Phillimore, A. B., Orme, C. D. L., Thomas, G. H., Blackburn, T. M., Bennett, P. M., Gaston, K. 

J., & Owens, I. P. F. (2008). Sympatric Speciation in Birds Is Rare: Insights from Range 

Data and Simulations. The American Naturalist, 171(5), 646–657. 

https://doi.org/10.1086/587074 

Pigot, A. L., Sheard, C., Miller, E. T., Bregman, T. P., Freeman, B. G., Roll, U., Seddon, N., 

Trisos, C. H., Weeks, B. C., & Tobias, J. A. (2020). Macroevolutionary convergence 

connects morphological form to ecological function in birds. Nature Ecology & 

Evolution, 4(2), 230–239. https://doi.org/10.1038/s41559-019-1070-4 

Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and 

output analysis for MCMC. R News, 6(1), 7–11. 

Price, T. (1998). Sexual selection and natural selection in bird speciation. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 353(1366), 251–260. 

https://doi.org/10.1098/rstb.1998.0207 

Qu, Y., Luo, X., Zhang, R., Song, G., Zou, F., & Lei, F. (2011). Lineage diversification and 

historical demography of a montane bird Garrulax elliotii—Implications for the 

Pleistocene evolutionary history of the eastern Himalayas. BMC Evolutionary Biology, 

11(1), 174. https://doi.org/10.1186/1471-2148-11-174 

Ribas, C. C., Aleixo, A., Nogueira, A. C. R., Miyaki, C. Y., & Cracraft, J. (2012). A 

palaeobiogeographic model for biotic diversification within Amazonia over the past three 

million years. Proceedings of the Royal Society B: Biological Sciences, 279(1729), 681–

689. https://doi.org/10.1098/rspb.2011.1120 

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-

Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism 



21 

 

Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299–3302. 

https://doi.org/10.1093/molbev/msx248 

Rubolini, D., Liker, A., Garamszegi, L. Z., Møller, A. P., & Saino, N. (2015). Using the 

BirdTree.org website to obtain robust phylogenies for avian comparative studies: A 

primer. Current Zoology, 61(6), 959–965. https://doi.org/10.1093/czoolo/61.6.959 

Sandoval-H, J., Gómez, J. P., & Cadena, C. D. (2017). Is the largest river valley west of the 

Andes a driver of diversification in Neotropical lowland birds? The Auk, 134(1), 168–

180. https://doi.org/10.1642/AUK-16-91.1 

Sexton, J. P., McIntyre, P. J., Angert, A. L., & Rice, K. J. (2009). Evolution and Ecology of 

Species Range Limits. Annual Review of Ecology, Evolution, and Systematics, 40(1), 

415–436. https://doi.org/10.1146/annurev.ecolsys.110308.120317 

Sheard, C., Neate-Clegg, M. H. C., Alioravainen, N., Jones, S. E. I., Vincent, C., MacGregor, H. 

E. A., Bregman, T. P., Claramunt, S., & Tobias, J. A. (2020). Ecological drivers of global 

gradients in avian dispersal inferred from wing morphology. Nature Communications, 

11(1), 2463. https://doi.org/10.1038/s41467-020-16313-6 

Silva, W. O. D., Pieczarka, J. C., Ferguson-Smith, M. A., O’Brien, P. C. M., Mendes-Oliveira, 

A. C., Sampaio, I., Carneiro, J., & Nagamachi, C. Y. (2017). Chromosomal diversity and 

molecular divergence among three undescribed species of Neacomys (Rodentia, 

Sigmodontinae) separated by Amazonian rivers. PLOS ONE, 12(8), e0182218. 

https://doi.org/10.1371/journal.pone.0182218 

Slatkin, M. (1973). Gene Flow and Selection in a Cline. Genetics, 75(4), 733–756. 

https://doi.org/10.1093/genetics/75.4.733 



22 

 

Smith, B. T., McCormack, J. E., Cuervo, A. M., Hickerson, Michael. J., Aleixo, A., Cadena, C. 

D., Pérez-Emán, J., Burney, C. W., Xie, X., Harvey, M. G., Faircloth, B. C., Glenn, T. C., 

Derryberry, E. P., Prejean, J., Fields, S., & Brumfield, R. T. (2014). The drivers of 

tropical speciation. Nature, 515(7527), 406–409. https://doi.org/10.1038/nature13687 

Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M., & Brumfield, R. T. (2017). A 

latitudinal phylogeographic diversity gradient in birds. PLOS Biology, 15(4), e2001073. 

https://doi.org/10.1371/journal.pbio.2001073 

Steinbauer, M. J., Field, R., Grytnes, J.-A., Trigas, P., Ah-Peng, C., Attorre, F., Birks, H. J. B., 

Borges, P. A. V., Cardoso, P., Chou, C.-H., De Sanctis, M., de Sequeira, M. M., Duarte, 

M. C., Elias, R. B., Fernández-Palacios, J. M., Gabriel, R., Gereau, R. E., Gillespie, R. 

G., Greimler, J., … Beierkuhnlein, C. (2016). Topography-driven isolation, speciation 

and a global increase of endemism with elevation: Topographic isolation and endemism. 

Global Ecology and Biogeography, 25(9), 1097–1107. https://doi.org/10.1111/geb.12469 

Sukumaran, J., & Holder, M. T. (2010). DendroPy: A Python library for phylogenetic 

computing. Bioinformatics, 26(12), 1569–1571. 

https://doi.org/10.1093/bioinformatics/btq228 

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the 

sensitivity of progressive multiple sequence alignment through sequence weighting, 

position-specific gap penalties and weight matrix choice. 8. 

Tobias, J. A., Ottenburghs, J., & Pigot, A. L. (2020). Avian Diversity: Speciation, 

Macroevolution, and Ecological Function. Annual Review of Ecology, Evolution, and 

Systematics, 51(1), 533–560. https://doi.org/10.1146/annurev-ecolsys-110218-025023 



23 

 

Tobias, J. A., Sheard, C., Seddon, N., Meade, A., Cotton, A. J., & Nakagawa, S. (2016). 

Territoriality, Social Bonds, and the Evolution of Communal Signaling in Birds. Frontiers 

in Ecology and Evolution, 4, 74. https://doi.org/10.3389/fevo.2016.00074 

van Etten, J. (2017). R Package gdistance: Distances and Routes on Geographical Grids. Journal 

of Statistical Software, 76(13). https://doi.org/10.18637/jss.v076.i13 

Voelker, G., Marks, B. D., Kahindo, C., A’genonga, U., Bapeamoni, F., Duffie, L. E., Huntley, J. 

W., Mulotwa, E., Rosenbaum, S. A., & Light, J. E. (2013). River barriers and cryptic 

biodiversity in an evolutionary museum. Ecology and Evolution, 3(3), 536–545. 

https://doi.org/10.1002/ece3.482 

Wallace, A. R. (1854). On the Monkeys of the Amazon. Annals and Magazine of Natural 

History, 14(84), 451–454. https://doi.org/10.1080/037454809494374 

Weeks, B. C., & Claramunt, S. (2014). Dispersal has inhibited avian diversification in 

Australasian archipelagoes. Proceedings of the Royal Society B: Biological Sciences, 

281(1791), 20141257. https://doi.org/10.1098/rspb.2014.1257 

Weeks, B. C., Claramunt, S., & Cracraft, J. (2016). Integrating systematics and biogeography to 

disentangle the roles of history and ecology in biotic assembly. Journal of Biogeography, 

43(8), 1546–1559. https://doi.org/10.1111/jbi.12747 

Weeks, B.C., O’Brien, B.K., Chu, J.J., Claramunt, S.C., Sheard, C., and Tobias, J.A. In press. 

Morphological adaptations linked to flight efficiency and aerial lifestyle determine natal 

dispersal distance in birds. Functional Ecology. 

Weir, J. T., Faccio, M. S., Pulido-Santacruz, P., Barrera-Guzmán, A. O., & Aleixo, A. (2015). 

Hybridization in headwater regions, and the role of rivers as drivers of speciation in 

Amazonian birds. Evolution, 69(7), 1823–1834. https://doi.org/10.1111/evo.12696 



24 

 

Wellborn, G. A., & Langerhans, R. B. (2015). Ecological opportunity and the adaptive 

diversification of lineages. Ecology and Evolution, 5(1), 176–195. 

https://doi.org/10.1002/ece3.1347 

White, A. E. (2016). Geographical Barriers and Dispersal Propensity Interact to Limit Range 

Expansions of Himalayan Birds. The American Naturalist, 188(1), 99–112. 

https://doi.org/10.1086/686890 

Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L., & Chen, C.-Y. (2014). Dynamic 

Reorganization of River Basins. Science, 343(6175), 1248765. 

https://doi.org/10.1126/science.1248765 

Winger, B. M., & Bates, J. M. (2015). The tempo of trait divergence in geographic isolation: 

Avian speciation across the Marañon Valley of Peru. Evolution, 69(3), 772–787. 

https://doi.org/10.1111/evo.12607 

  



25 

 

Supplemental Materials 

 

  

Table S1. The final dataset included 30 bird species across 17 families of passerines (90%) and 

non-passerines (10%). 
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Table S2. Results of MCMCglmm multivariate river models. 

Model: Cost distance * 

HWI Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.0846 0.0080 0.1613 47375.7330 0.0433 fixed

Cost distance 0.0218 0.0003 0.0430 84233.4475 0.0449 fixed

HWI 0.0014 -0.0389 0.0408 52168.7298 0.9489 fixed

Cost distance:HWI -0.0003 -0.0219 0.0211 86247.0178 0.9746 fixed

Phylogenetic 0.0044 0.0002 0.0131 4893.8811 NA random

Species 0.0045 0.0003 0.0103 10958.4107 NA random

Units 0.0104 0.0074 0.0138 47051.8171 NA residual

Model: Cost distance + 

HWI Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.0844 0.0047 0.1577 52522.5182 0.0420 fixed

Cost distance 0.0218 0.0013 0.0435 79161.1152 0.0441 fixed

HWI 0.0014 -0.0380 0.0412 49622.3230 0.9510 fixed

Phylogenetic 0.0044 0.0002 0.0129 4544.2068 NA random

Species 0.0045 0.0004 0.0104 11095.9877 NA random

Units 0.0103 0.0073 0.0135 48207.0711 NA residual

Model: Cost distance + 

HWI + Avg. Pop. Size Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.0779 -0.0019 0.1528 56898.2709 0.0560 fixed

Cost distance 0.0187 -0.0045 0.0409 74876.3277 0.1084 fixed

HWI 0.0011 -0.0391 0.0400 53191.9147 0.9606 fixed

Avg. pop. size 0.0006 -0.0011 0.0023 67850.6232 0.4687 fixed

Phylogenetic 0.0042 0.0002 0.0126 4581.2138 NA random

Species 0.0046 0.0004 0.0104 10724.8515 NA random

Units 0.0104 0.0073 0.0137 49894.9324 NA residual

Model: Cost distance + 

HWI + Diet Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.0633 -0.0543 0.1756 76902.7085 0.2526 fixed

Cost distance 0.0226 0.0017 0.0439 78587.5154 0.0386 fixed

HWI 0.0058 -0.0368 0.0492 72328.0901 0.7837 fixed

Diet (invertebrates) 0.0352 -0.0862 0.1524 82667.9474 0.5394 fixed

Diet (omnivore) -0.0142 -0.1614 0.1292 90000.0000 0.8437 fixed

Phylogenetic 0.0047 0.0002 0.0145 4395.1859 NA random

Species 0.0051 0.0003 0.0117 10504.9685 NA random

Units 0.0103 0.0073 0.0136 45842.8532 NA residual

Model: Cost distance + 

HWI + Habitat Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.1506 -0.0704 0.3750 60062.4962 0.1748 fixed

Cost distance 0.0215 0.0004 0.0428 73291.9830 0.0474 fixed

HWI 0.0061 -0.0364 0.0480 63196.7452 0.7736 fixed

Habitat -0.0634 -0.2634 0.1381 74253.2596 0.5188 fixed

Phylogenetic 0.0043 0.0002 0.0129 4542.8330 NA random

Species 0.0048 0.0003 0.0110 10702.7476 NA random

Units 0.0103 0.0073 0.0137 49225.6912 NA residual

Model: Cost distance + 

HWI + Territoriality Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.0356 -0.0849 0.1495 69437.3327 0.5088 fixed

Cost distance 0.0220 0.0006 0.0429 72632.3921 0.0429 fixed

HWI 0.0069 -0.0331 0.0479 79345.1523 0.7305 fixed

Territoriality (Strong) 0.0378 -0.0776 0.1543 51319.5154 0.5027 fixed

Territoriality (Weak) 0.1082 -0.0210 0.2356 77799.2832 0.0968 fixed

Phylogenetic 0.0051 0.0002 0.0143 4760.0036 NA random

Species 0.0036 0.0002 0.0092 7491.5272 NA random

Units 0.0103 0.0073 0.0136 44531.4001 NA residual
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Table S3. Results of MCMCglmm multivariate mountain models. 

Model: Cost distance * 

HWI Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.1476 0.0108 0.2743 63585.4110 0.0388 fixed

Cost distance 0.0269 -0.0433 0.0975 79894.2007 0.4441 fixed

HWI 0.0062 -0.0755 0.0911 90000.0000 0.8762 fixed

Cost distance:HWI 0.0166 -0.0414 0.0760 85299.5490 0.5696 fixed

Phylogenetic 0.0087 0.0002 0.0303 3555.0780 NA random

Species 0.0085 0.0002 0.0251 7837.3438 NA random

Units 0.0347 0.0168 0.0561 40130.2741 NA residual

Model: Cost distance + 

HWI Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.1450 0.0125 0.2780 75086.8875 0.0427 fixed

Cost distance 0.0279 -0.0406 0.0989 81442.7899 0.4220 fixed

HWI 0.0001 -0.0786 0.0801 90000.0000 0.9977 fixed

Phylogenetic 0.0090 0.0001 0.0310 3395.1804 NA random

Species 0.0081 0.0002 0.0237 7759.0303 NA random

Units 0.0338 0.0168 0.0544 36745.6663 NA residual

Model: Cost distance + 

HWI + Avg. Pop. Size Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.2484 0.0676 0.4288 86170.0389 0.0110 fixed

Cost distance 0.0118 -0.0571 0.0809 82129.9624 0.7261 fixed

HWI -0.0064 -0.0867 0.0725 90000.0000 0.8678 fixed

Avg. pop. size -0.0187 -0.0382 0.0017 41848.7935 0.0662 fixed

Phylogenetic 0.0122 0.0002 0.0410 3693.8390 NA random

Species 0.0092 0.0002 0.0279 7211.1352 NA random

Units 0.0295 0.0136 0.0488 29453.1710 NA residual

Model: Cost distance + 

HWI + Diet Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.1083 -0.1282 0.3579 90000.0000 0.3593 fixed

Cost distance 0.0377 -0.0337 0.1103 86543.9193 0.2888 fixed

HWI -0.0046 -0.0858 0.0737 90000.0000 0.9011 fixed

Diet (invertebrates) 0.0795 -0.1789 0.3406 87894.2912 0.5306 fixed

Diet (omnivore) -0.0979 -0.4105 0.2123 90000.0000 0.5232 fixed

Phylogenetic 0.0090 0.0002 0.0321 3557.7085 NA random

Species 0.0079 0.0002 0.0238 7799.9653 NA random

Units 0.0342 0.0167 0.0551 43625.1886 NA residual

Model: Cost distance + 

HWI + Habitat Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.3298 -0.0846 0.7532 81100.4662 0.1166 fixed

Cost distance 0.0196 -0.0522 0.0924 75242.0548 0.5826 fixed

HWI 0.0144 -0.0707 0.0998 90000.0000 0.7296 fixed

Habitat -0.1701 -0.5367 0.1937 90000.0000 0.3429 fixed

Phylogenetic 0.0086 0.0001 0.0308 3259.1033 NA random

Species 0.0084 0.0002 0.0246 8044.9629 NA random

Units 0.0340 0.0169 0.0552 38499.8128 NA residual

Model: Cost distance + 

HWI + Territoriality Posterior mean Lower 95% CI Upper 95% CI Effective sample pMCMC Effect

(Intercept) 0.0810 -0.1265 0.2849 87461.4132 0.4076 fixed

Cost distance 0.0269 -0.0413 0.0961 84411.1400 0.4331 fixed

HWI 0.0230 -0.0622 0.1038 90000.0000 0.5718 fixed

Territoriality (Strong) 0.1170 -0.1033 0.3329 82431.6387 0.2760 fixed

Territoriality (Weak) -0.0720 -0.3506 0.2027 81157.2313 0.5996 fixed

Phylogenetic 0.0086 0.0001 0.0296 3872.1883 NA random

Species 0.0069 0.0002 0.0213 7996.8299 NA random

Units 0.0333 0.0164 0.0532 47577.5541 NA residual


