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Abstract
Groundwater systems are intrinsically heterogeneous with dynamic spatio-temporal patterns,

which cause significant challenges in quantifying and mapping their complex processes.

However, accurate forecasting of regional groundwater contamination is commonly needed to

identify its spatio-temporal dynamic that helps the public anticipate the timing and severity of

potential groundwater quality issues and possibly serve as an early warning system. This study

focuses on modeling a plume of 1,4-dioxane originating from the Gelman site beneath the city of

Ann Arbor, Michigan. It proposed a novel methodology to consider the spatially and temporally

irregular and uncertain nature of groundwater contamination data to analyze the historical trends

of dioxane concentration and predict its transportation:

1. A random forest interpolation model was deployed to fill in or extend fragmented time series

data gaps among all the monitoring wells;

2. Mann-Kendall test was applied to evaluate the trend of dioxane concentrations at various

wells;

3. An automated time series machine learning (AutoTS) package was utilized to predict the best

future values forecasts; and

4. An R-based Shiny web application was designed to allow visualization and quantification of

dioxane contamination analytical data.

This research introduced a novel framework for filling spatial and temporal data sampling gaps

in groundwater contamination to offer an effective and promising way to predict future plume

concentration and spatial distribution.
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Introduction
Groundwater, which is in aquifers below the surface of the Earth, is one of the most important

natural resources, serving as a major source for agricultural irrigation, industrial processes,

mining, and drinking water. Of the world's total water supply of about 332.5 million cubic miles

of water, 30.1% of the earth's freshwater consists of groundwater, while only 1.2% consists of

surface water in lakes, rivers, and streams (Gleick 1993).

Unfortunately, groundwater is susceptible to pollutants. Groundwater contamination occurs when

man-made products such as gasoline, oil, road salts, and chemicals get into the groundwater and

cause it to become unsafe for human use. Nowadays, groundwater pollution threatens human and

ecosystem health in many regions around the globe. The rapid flow of the groundwater through

focused recharge is known to transmit short-lived pollutants into carbonate aquifers endangering

the quality of groundwaters where one-quarter of the world’s population lives (Hartmann et al.

2021). Therefore, it is difficult and expensive to clean up when groundwater becomes

contaminated. At the Gelman Sciences Inc. (now Pall Life Sciences) site in Ann Arbor,

Michigan, wastewater containing 1,4-dioxane was discharged into unlined seepage lagoons and

spray irrigated across a 15-acre field from 1966 to 1986. Efforts to remediate 1,4-dioxane

emanating from the Gelman Site in Washtenaw County, Michigan, have been underway for the

past 35 years. Although substantial quantities of dioxane have been removed from the aquifer

system through pump-and-treat operations, numerous factors make complete aquifer restoration

technically infeasible at the Gelman Site.

1,4-dioxane is classified as a Group B2 probable human carcinogen and causes kidney and liver

damage and respiratory issues (USEPA 2006). When released into groundwater, its high

miscibility and low retardation factor limit the ability of processes such as sorption to attenuate

its concentrations as plumes migrate downward and outward from their source (USEPA 2017).

1,4-dioxane is readily soluble in water but resistant to microbial degradation and adsorption to

soil particles (USEPA 2006). Therefore, its widespread use, high water solubility and mobility,

and presence in numerous groundwater plumes have become an increasing concern for

groundwater use in homes and businesses. Moreover, the glacial aquifer system affected by the

plume contamination is highly heterogeneous. Consequently, contaminated plumes of
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groundwater have moved in various directions and at different depths, making it challenging to

predict contaminant movement.

Nevertheless, groundwater aquifers are intrinsically complex and heterogeneous systems with

dynamic spatio-temporal patterns, which cause great difficulty in accurately characterizing their

changing status over time (Alley and Taylor 2001). Although fresh groundwater is often

abundant and extensively used, it is difficult and expensive to accurately quantify and map its

complex processes compared to surface water resources. However, reliable regional groundwater

contamination concentration predictions are commonly needed to ensure proper groundwater

resource management strategies are implemented within a region. Even when data on

groundwater properties are available from monitoring wells, these irregularly spaced data are

hence referred to as "data points." Point data from monitoring wells are typically sparse and give

only a limited sampling of the aquifer's spatial distribution of water levels. It is difficult to piece

these segments of data together into a complete picture of the region (Marchant and Bloomfield

2018, Oikonomou et al. 2018).   Thus, they are generally not harnessed to their full potential to aid

decision-making. Temporarily, these data collected from monitoring wells are often available

only at irregular and infrequent intervals, leading to significant gaps in the time series data. Their

locations and groundwater-surface levels may also vary significantly throughout an aquifer

giving only a limited sampling of the spatial distribution.

Groundwater resources are always impacted by external factors such as pollution, climate

change, agricultural irrigation, and other land-management practices. Long-term forecasting is a

tool to demonstrate future sustainable water resources planning and management. However, a

predictive analysis of spatial and temporal changes in groundwater contamination demands a

deep understanding of past trends in contaminant concentration levels in aquifers.

Several techniques have also been developed and used for the temporal interpolation of limited

well time-series observations in groundwater studies. The Autoregressive Integrated Moving

Average (ARIMA) family of models includes auto-regressive (AR), moving average (MA),

auto-regressive moving-average (ARMA), auto-regressive integrated moving-average (ARIMA),

seasonal autoregressive integrated moving average (SARIMA), and periodic autoregressive
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(PAR). And it has been extensively and repeatedly used for the analysis and forecasting in a wide

range of groundwater-related studies (Box and Pierce 1970). For example, a SARIMA model

was developed and tested to forecast the groundwater anomalies within the Colorado River Basin

(Rahaman et al. 2019). Regression techniques such as linear or logistic regression have also been

widely applied in groundwater modeling. For instance, a multiple linear regression (MLR) model

was developed for the Osona, Spain, to determine aquifer vulnerability to nitrate pollution in

groundwater (Boy-Roura et al. 2013). Rupert (2003) implemented a logistic regression technique

to predict the probability of detecting atrazine and desethyl-atrazine in groundwater in Colorado.

A wide range of geostatistical modeling approaches has been implemented to analyze spatial

variability and interpolation for groundwater data. At the same time, their purposes, emphases,

and capabilities could also be very different. Kriging is a local estimation technique of the best

linear unbiased estimator for the unknown values of both spatial and temporal variables. Rouhani

and Wackernagel (1990) used intrinsic random functions for space-time kriging to perform

temporal interpolation of monthly piezometric data in the Seine River basin in France. It reduces

to a spatial estimation problem of interest for variables with observations rich in time but poor in

space. Besides, process-based methods that either simulate or take into account physical

processes of groundwater movement and pollutant transportation can be used to predict the

concentrations of surface-derived solutes in groundwater (Barbash and Voss 2016).

This study aimed to provide an in-depth understanding of contamination level and its

spatio-temporal distribution and took account of the spatially and temporally irregular and

uncertain nature of groundwater contamination. Based on the historical trends analysis of

dioxane concentration, we predicted its future transportation, then identified the areas that need

additional attention and provided decision support for the administration of drinking water

safety, water environment protection, and emergency response. First, a Mann-Kendall trend test

was performed to evaluate the trend of dioxane concentrations at various wells. A random forest

model was developed to fill in or extend fragmented time series data gaps among all the

monitoring wells. Then, the automated time series machine learning (AutoTS) package was

applied for predicting time series values based on comparing thousands of combinations of data

preprocessing steps and algorithms to assess which best forecasts future values. Finally, an
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R-based web application was designed to allow visualization and quantification of dioxane

contamination analytical data. This methodology workflow (Figure 1) separately addresses

spatial and temporal variation of groundwater contamination data and produces spatio-temporal

forecasting of future plume concentration.

Figure 1: Research methodology workflow

Methods
Description of the study site and data source
The site for this study is located in Washtenaw County, Michigan. The dioxane contamination

originated from Gelman Sciences Inc., a former medical filter manufacturer located on Wagner

Road across Second Sister Lake (Figure 2). Between 1966 and 1986, Gelman Sciences used

1,4-dioxane in their filter manufacturing process and disposed of wastewater onsite. It was first

discovered in Third Sister Lake and nearby water wells in 1985, and then a comprehensive site

investigation started later in 1986 (MDEQ 2004). Since then, the plume has continued to migrate

west in Scio Township and northeast then east into Ann Arbor, moving towards the Huron River,

contaminating local lakes and private drinking water wells. The topography of this area ranges

from 940 feet above mean sea level in the vicinity of the Gelman property to the lower area of

approximately 850 feet at the Honey Creek. There are currently over 250 monitoring and

extraction wells located in and around the plume used to track water levels and dioxane

concentrations, which are being used in this study.
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Figure 2: 2020 Gelman site groundwater contamination map (EGLE 2021)

Cleanup of dioxane-contaminated sites is difficult because of its resistance to natural

biodegradation and high mobility (Adams et al. 1994). Remediation usually relies on ex-situ

pump-and-treat approaches with advanced oxidation processes, the primary methods employed

to treat dioxane-contaminated aquifers. Extracted water containing dioxane is mixed with

hydrogen peroxide and ozone, or exposed to ultraviolet light, to break the carbon bonds (Zenker

et al. 2003). Despite varying levels of cleanup efforts since the early 1990s, the groundwater

contamination has continued to spread into a plume that is now roughly four miles long and one

mile wide in a densely populated area and is in some cases venting to surface water. In addition,

treated water containing low levels of dioxane and bromate produced in the treatment process is

also being discharged to surface water in Scio Township.

Monitoring wells are used to sample the groundwater elevations to help determine groundwater

flow direction and monitor the dioxane levels in the water. The monitoring wells at the Gelman

site are tested monthly, quarterly, twice a year, or once a year, depending on their location.

Gelman conducts the sampling and testing of over 250 monitoring wells following Michigan
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Department of Environment, Great Lakes and Energy (EGLE) approved sampling plans. EGLE

samples selected wells with Gelman quarterly and submitted the samples to the laboratory for

analysis. All data used in this study are available in table format or for download at Scio

Residents for Safe Water website: https://sites.google.com/site/srsworg/srsw-org/data or EGLE

Gelman Sciences Recent Analytical Data Monitoring Well Results:

https://www.michigan.gov/egle/0,9429,7-135-3311_4109_9846_30022-71616--,00.html. Please

see EGLE Gelman Sciences, Inc. Site of Contamination Information Page for more information

related to this project:

https://www.michigan.gov/egle/0,9429,7-135-3311_4109_9846-71595--,00.html.

Mann-Kendall trend analysis
The Mann-Kendall test is a nonparametric test used to identify whether a time series has a

monotonic upward or downward trend (Mann 1945, Kendall 1975). The Mann-Kendall test is

applied to data for dioxane concentration at each monitoring well located in the plume area for

this research. According to the test, H0 (null hypothesis) assumes that observations do not show

any monotonic trend or serial correlation over time, and H1 (alternative hypothesis) assumes that

there exists a consistent increasing or decreasing trend in time series observations. Here, a

rejected null hypothesis reveals that “there is a trend in the time series of 1,4-dioxane

concentrations in the groundwater”. Since it is a nonparametric method, it does not require any

assumptions regarding the underlying statistical distribution of the data. This test is also not

sensitive to the sampling time interval over which the data are collected. For these reasons, the

method is well suited for evaluating concentration trends over time.

Random forest interpolation
In order to fill in or extend fragmented spatial and temporal data gaps, a random forest model

was developed to define a continuous function fitting the given values. Random forest regression

is an ensemble machine learning method for classification and regression that operates by

constructing a multitude of decision trees (Breiman 2001). It is nonparametric, and thus there are

no underlying assumptions about the distribution of the errors or the data. Furthermore, it can

identify linear and nonlinear statistical relationships between variables for classification and

regression objectives (Breiman 2001). It works well with large numbers of predictors to
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distinguish observed data from synthetic data (Cutler et al. 2007). Random forest predictors can

deal with model selection uncertainty, as predictions are based upon a consensus of many models

and not simply a single model selected with some measure of goodness of fit. This study used

predictors typically found in ecological classification applications, such as geographic variables

(e.g., water table depth, elevation, latitude, and longitude), time-series data, and field

measurements of 1,4-dioxane concentration.

AutoTS automated time series forecasting tool
In this study, we deployed a novel automated time series (AutoTS) machine learning package

(Catlin 2022) to predict time series values based on comparing various time series forecasting

techniques with open-source implementations. It is a “black box” which trains multiple time

series forecasting models, including ARIMA, FB Prophet, regression, naive, and smoothing

methods in just one line of code. Model selection is based on accuracy in model performance in

forecasting future values for predictions with the least model error on out-of-sample data. It is to

be noted that the groundwater contamination in different locations varies depending on the

groundwater flows, water table levels, source spreading, soil properties, topographical

characteristics, hydraulic conductivity, etc. And all these factors play an essential role in the

performance of the time-series forecasting method. Since there is no best single method that can

perform well for any given forecasting situation, a model built based on the historical dioxane

concentration data for a particular well location may not provide similar accuracy for other sites.

Due to this reason, selecting a single forecasting method as a proposed approach may not be

realistic. Thus, a set of methods instead of one must be considered so that the best method can be

selected based on their performance on location-specific data. While other statistical model

forecasting studies usually use one model to fit all, the deployed AutoTS platform compared a

multitude of models and allowed the selection of the most accurate one for each well.

The length of the time series can vary. Still, a statistical forecasting methodology is generally not

valid for less than 20 sampling events, and some models even require at least 50 observations for

accurate estimation (McCleary et al. 1980). More data is always preferable, but at the very least,

a time series should be long enough to capture the phenomena of interest. Twenty observations

per well are required as the minimum sample size for time-series forecasting to ensure better
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performance. Annual forecasting results from 2021 to 2025 were generated on the well-level

time series analysis plots and the data summary table.

R Shiny web application
The Gelman Site 1,4-Dioxane Groundwater Contamination Plume Modeling and Forecasting

tool has been developed as an R Shiny web application with a simple user interface to facilitate

easy access for water experts, decision-makers, and the public. This application can be developed

entirely with R code and turns R code into interactive and dynamic displays. In this web

environment, our R Shiny browser-based application can be hosted on a remote server that

multiple users can access simultaneously via a web interface. It eliminates the need for users to

obtain and maintain the high-performance hardware required by the models and deals with

software installation and operating system incompatibility issues. All needed to use the web app

are an internet connection and a web browser. And its interactive nature makes it a well-suited

medium for conveying complex scientific concepts to the general public and creating decision

support tools that harness cutting-edge modeling techniques.

This application depends on functions contained within DWQ wqTools R-package:

https://github.com/utah-dwq/wqTools. Code was adapted from Utah DWQ Lake Profile

Dashboard:

https://gallery.shinyapps.io/lake-profile-dashboard/?_ga=2.214639319.1989981629.1650218987-

410083735.1644383161 developed by Jake Vander Laan from Utah Division of Water Quality.

Application usage
The application can be accessed here: http://50.17.61.223:3838/gelman_shiny/. It consists of two

main inputs: a map and a table. To build plots for any individual sampling well, click on the

desired well in either the map or the table. The map shows all wells with concentration data

available, while the table shows both wells and their associated geographic information. The map

and table inputs are responsive to each other. When users click a well on the map, the table will

automatically associate that well with its geographic attributes. When users click on a row in the

table, the map will spontaneously zoom to its location. Outputs include time-series analysis plots,

plume geospatial movement animation, and a data summary table. The time-series analysis plots
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are responsive to both the map and table input. They will automatically render the plot any time

the user updates one of the input widgets. Several data plotting and review options are available.

The plume geospatial movement animation shows how the 1,4-dioxane plume had been

transported from its source Gelman site since 1986 and projects our forecasting movement till

2025. And the summarized data table aggregates all the trend analysis, historical high value, and

2021-2025 five-year forecasting data into one table. Thus we can see if there is any well that will

meet any screening levels or health criteria within the next five years.

Inputs
Map element input

Individual monitoring locations are displayed as circle markers on the map (Figure 3). In

addition to displaying well sites, well labels are also available. Topographic and satellite base

map layers are both available. To turn on any of these layers, hover the mouse over the layers

control box (top left of the map, under zoom buttons) and select one or more layers.

Figure 3: Map element input
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● The Search feature button (represented by a magnifier) lets users search for a street

address or well name. To search for a well, click the magnifying glass (top left of the

map, under the layers control box) and start typing in a street address or well name.

Locations matching the search will appear as they type.

● The Map zoom +/- buttons (represented by a plus sign and a minus sign with a gray

background) at the top left corner can be used to zoom in or out of the map. Alternately,

the mouse wheel also lets users zoom in and out, while left clicking and dragging lets

users pan around the map.

● The Layers control button (represented by a stack of three squares) displays a key of the

symbols used on the map. It also lets users choose which information they want to see.

Click the checkbox for a layer that will turn that layer on or off on the map. A

topographic or satellite base map lets users choose what their background map looks like.

● The Measure button (represented by two horizontally overlapping rulers) at the top right

corner lets users measure distances or areas between features on the map. Click the map

where users want to start the measurement and click once for every vertex of the line/area

they want to measure. Double-click to complete the line/area.

Table input

The Search bar (represented by a white box) at the top lets users search for well name, well type,

or any range of depth, elevation, latitude, and longitude (Figure 4).
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Figure 4: Table input

Description of each variable:

● Well name: Name of wells used for monitoring groundwater contamination.

● Depth: Boring depth measured in feet height below ground level. It means the

distance from the ground surface to the bottom of the well screen or the bottom of the

open hole when a well screen is not used.

● Elevation: Top of Casing elevation measured in feet height above mean sea level. The

casing is a tubular structure placed in the drilled well to maintain the well opening

and determine the groundwater flow direction.

● Latitude/Longitude: geographic Cartesian coordinates for a sampling well location.

● Well type: Includes Monitoring, Residential, Extraction, and Miscellaneous Wells.
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Outputs
Time series plot output

The “well data analysis” tab shows plots summarizing historical patterns and five-year

forecasting in dioxane concentration at the selected well (Figure 5). We labeled the x-axis the

time-axis, and the y-axis is for the 1,4-dioxane concentration in ppb. So, we can see any past

trends and predict future contamination level changes in five years. There are four horizontal

lines of 1, 4, 7.2, and 85 ppb with different shades of gray, which separately represent: the

detectable level; a new response trigger if detected in sentinel wells; the current EGLE generic

residential cleanup criterion, and the Fourth Amended Consent Judgment drinking water

standard; previous Third Amended Consent Judgment drinking water standard.

Figure 5: MW-91 time series plot output

Plume projection animation output

This plume projection animation shows historical and forecasting groundwater pollutant

transportation over time (Figure 6). The 30×30 meter grids were interpolated to calculate the

contaminated groundwater projection and transportation inside the plumes. This grid requires 49

rows and 93 columns for 4,557 total pixels in the active study area where plumes are displayed

and characterized.
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● A time slider is set up to move through each month/year. Once the user hits the Play button

on the bottom right of the time slider (represented by a triangle pointing to the right), the

geospatial distribution will automatically move through time. While playing, the Pause

button (represented by two vertical lines) appears in its place. The value control dot

(represented by a white dot in between) can be dragged along the slider bar to set the map

time interactively.

● The Map zoom +/- buttons (represented by a plus sign and a minus sign with a gray

background) at the top left corner can be used to zoom in or out of the map. Or the mouse

wheel also lets users zoom in and out, while left-clicking and dragging lets users pan around

the map.

● The dark red color represents areas of high plume concentration, and the bright yellow

indicates regions where the dioxane level is relatively low.

Figure 6: Plume projection animation output
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Data summary table output

The summary table visualizes all well-level information in table form (Figure 7), including the

trend analysis, historical high value, and five-year forecasting data between 2021 and 2025.

Besides, four columns determine whether the forecasting values of the well will meet any of the

screening levels or health criteria in five years. The Search bar (represented by a white box) lets

users search for a specific well by name.

Figure 7: Data summary table output

Disclaimer
The information contained in this application is for general information purposes only and

should not be used for navigation, regulatory, permitting, or other legal purposes. We have used

our reasonable efforts to ensure that the data analysis we release is complete, accurate, and

useful. However, because we do not create the data and the processing required to make the data
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useful is complex, we cannot be liable for omissions or inaccuracies. Both the time series

forecasting and spatial movement projection are provided ‘as is.’ Furthermore, some uncertainty

and limitations associated with this data analysis will be described in the limitations section.

Results
Historical trend analysis summary
Out of 245 sampling wells, almost half (48.6%) showed decreasing trends from our

Mann-Kendall test (Figure 8). More than a quarter (25.7%) exhibited an increasing trend, despite

over three decades of clean-up and treating contaminated groundwater occurring since the early

1990s. The other 63 wells (25.7%) showed no significant trend.

Figure 8: historical trend analysis pie chart

Five-year forecasting data summary
Our AutoTS forecasting model showed 53 wells (21.6%) forecasting values below the detection

limit of 1 ppb among 245 sampling wells (Figure 9). More than a third of wells (34.3%) with

predicting concentrations lower than 4 ppb of a new response trigger if detected in sentinel wells.

The EPA’s Integrated Risk Information System assessed the 4 ppb water quality criterion for

excess cancer risk of one in 100,000 (USEPA 2013). And only 92 wells (37.6%) will meet the

current MDEQ residential drinking water cleanup criteria in the next five years. 60.8% of the

18



wells will meet the previous third amended Consent Judgment drinking water standard before

2025.

Figure 9: Number of wells that meets screening levels or health criteria bar chart

Limitations
There are several limitations in the current work; hence our findings need to be interpreted

carefully. Below are some possible methodological limitations that were too complex to take into

consideration in this study.

A plume is a three-dimensional distribution of contaminants in groundwater, and its shape and

movement are affected by source spreading, geological complexities, hydrological

characteristics, and biological activities. In this study, the estimated plume boundary on

two-dimensional maps cannot show the depth to contamination or thickness of the contaminated

zone.
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Moreover, not all wells with available data could be analyzed and forecasted in our research.

Studies found that estimation performance increases with increasing time points as the bias of the

standard error of the autoregressive parameter decreases (Krone et al. 2017). Wells with less than

20 observations, which does not reach the minimum number of observations for time-series

analysis, cannot be used for trend analysis and forecasting.

At last, not all wells shown within the plume boundaries have detectable levels of 1,4-dioxane.

All groundwater and treated water samples were analyzed by gas chromatography-mass

spectrometry (GC–MS) with selected ion monitoring (USEPA 2008). This method allows for a

target detection limit of approximately 1 ppb. And all samples not detected 1,4-dioxane were all

labeled as a fixed value of 0.5 ppb. EPA risk assessments indicate that the drinking water

concentration representing a 1 × 10-6 cancer risk level for 1,4-dioxane is 0.35 ppb (USEPA

2013). Therefore, the detection and quantitation limits should be as low as possible so that the

carcinogenicity risk of 1,4-dioxane can be prevented earlier.

Conclusion
The methodology adopted here permits us to analyze the data without masking the important

temporal periodicities and spatial non-stationarity. This framework could serve as a valuable tool

for enhancing groundwater time series for intermittent missing data and continuous data gaps, as

demonstrated in this effort. Overcoming existing data limitations with methodologies that

augment the available groundwater contamination sampling data could improve the quality of

input data for data-driven analysis and groundwater contamination plume modeling and

forecasting. It could provide further insight into groundwater quality restoration and improve

groundwater resources planning and management through efficient conjunctive use of surface

water and groundwater resources.
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