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Executive Summary 

Ann Arbor, Michigan is affectionately called “Tree Town” due to its distinguishable and valued 
urban tree canopy (UTC). The city consists of roughly 18,605 acres with 6,015 acres identified as 
UTC in 2010 (Hanou, 2010). The City of Ann Arbor recognizes the importance and potential 
benefits the UTC can provide in its “Urban and Community Forest Management Plan” and also 
mentions them in the “A2Zero Climate Action Plan”. While the forest remains a priority, the 
management plan was implemented eight years ago, and the last canopy assessment occurred twelve 
years ago. Furthermore, this assessment delineates where the canopy is but does not provide details 
about canopy composition. Additionally, data is available regarding the City’s street trees, but certain 
locations, such as parks and private land, have little available canopy data. Like many city 
governments working to elevate positive UTC contributions to the community at large, Ann Arbor 
is in need of descriptive analyses to enhance current data.  
 
Our goals were to identify turfgrass, delineate native forest fragments, and classify trees by genus. By 
emphasizing these three areas, we sought to elevate the role of UTC as an ecosystem service, 
mitigator of climate change, and guiding factor in stewardship actions.  
 
Turfgrass was identified to inform residents and decision-makers about its spatial extent. This would 
highlight locations that could receive greater ecosystem service benefits by reducing turfgrass to 
expand the urban tree canopy. To complete this analysis, aerial imagery was clipped using a Canopy 
Height Model, Normalized Difference Vegetation Index (NDVI) thresholds indicating live green 
vegetation, and an Unsupervised Classification was performed. From our assessment, turfgrass 
accounts for 50% of the total canopy.  
 
Native forest fragments were delineated both manually and with an unsupervised classification. 
Manual delineation was based on historic imagery dating back to the 1940s and refined using a 
Canopy Height Model. The unsupervised classification aided in identifying smaller forest fragments. 
Our manual delineation accounts for 14% of the total canopy, with two-thirds located outside of 
City-owned property. The classification results indicated native forest fragments comprising 28% of 
the total canopy, with three-fourths located outside of City-owned property. 
 
Genus classification was attempted to allow one to easily characterize the types of forest 
communities at a large scale and to aid in identifying invasive species. Tree data was collected to 
utilize as training/testing data, various predictor layers were associated with tree points, and machine 
learning models were assessed. Overall, LiDAR segmentation and the Random Forest model 
performed the best with the highest accuracy genus classification at 54%.  
 
While we were able to provide descriptive analyses of the UTC to enhance the City’s current dataset, 
the accuracy and reproducibility of our methods should be improved with future work. All three 
areas of focus could benefit from a better spatio-temporal alignment of imagery and tree data along 
with collecting ground truth data to test accuracy.
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Chapter 1: Urban Tree Canopy of Ann Arbor, Michigan 

Introduction 

The City of Ann Arbor is home to a rich canopy of nearly 1.5 million trees that provide an estimated 
$4.6 million in annual benefits (i-Tree Ecosystem Analysis: Ann Arbor, 2013; The Urban Forest, n.d.). 
These urban tree canopy (UTC) benefits include removing air pollution, lowering energy costs, 
reducing carbon dioxide levels, increasing property values, and reducing stormwater run-off. Much 
of the information the city has available comes from a 2014 management plan and 2010 canopy 
analysis. And the latest digitized natural features inventory only includes street trees, a relatively 
small part of the overall urban canopy. Moreover, there exists no publicly available data 
distinguishing undisturbed native forest fragments from newer stands on recently disturbed land. 
This lack of descriptive analyses is the main problem the City of Ann Arbor faces.  
 
To address this problem with a comprehensive census of all of Ann Arbor’s million-plus trees would 
be prohibitively time-consuming and expensive. However, recent advances in machine learning 
make it possible to study UTC using widely available remote sensing data. In broad terms, leveraging 
machine learning algorithms will automate the task of analyzing specific aspects of the UTC. 
 

In our project, we focused on identifying turfgrass, delineating native forest fragments, and 
classifying trees by genus. By emphasizing these three areas, we sought to elevate the role of UTC as 
an ecosystem service, a mitigator of climate change, a guiding factor in stewardship actions, and an 
ensurer of environmental equity.  

Client and Site 

The City of Ann Arbor Office of Sustainability and Innovations (OSI) is tasked with developing 
environmental policies to improve the natural and built environment while protecting and enhancing 
air, water, land, and public health. They are guided by the “A2Zero Climate Action Plan” to ensure 
sustainability and equity throughout the city based on four main areas: 1) climate and energy, 2) 
community, 3) land use and access; and 4) resource management (Office of Sustainability and 
Innovations). The city recognizes the potential benefits the UTC can provide in its “Urban and 
Community Forest Management Plan” and also mentions them in the “A2Zero Climate Action 
Plan”. In the “A2Zero Climate Action Plan”, the main goal is to “preserve and enhance the local tree 
canopy” with the goal of planting 10,000 new trees on private property and 10,000 new trees on city 
property by 2030 (City of Ann Arbor, 2020). OSI emphasized understanding and learning more 
about the canopy details of privately owned land. This was directly taken into consideration in the 
analyses we performed. Our study area, Ann Arbor, Michigan (Figure 1.1), is roughly 18,605 acres 
with 6,015 acres identified as UTC in 2010 (Hanou, 2010). Additionally, 15% of property within 
Ann Arbor’s city boundary is City-owned. 
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Figure 1.1.: Study area of Ann Arbor, Michigan located in Washtenaw County with City-owned property overlaid. 

Background 

Urban Tree Canopy (UTC) cover contributes to environmental, economic, social, and health 
benefits to communities worldwide. It provides ecosystem services of carbon storage and 
sequestration (Nowak & Crane, 2002), energy conservation (McPherson & Simpson, 2003), air 
quality improvement (Nowak et al., 2006; Livesley c., 2016), stormwater runoff and watershed health 
(Berland et al., 2017; Decina et al., 2020), habitat preservation (Alvey, 2006; Ossola et al., 2019), and 
the amelioration of microclimate (Georgi & Zafiriadis, 2006). Economic benefits can include 
increasing property value and reducing building heating and cooling costs (Jones et al., 2012; Berry 
et al., 2013). Furthermore, UTC mitigates urban heat island effect (Loughner et al., 2012), offers 
aesthetic beauty and psychological benefits (Smardon, 1988), reduces stress (Hartig et al., 2014), 
creates a connection to nature or “biophilia” (Beatley, 2011), and increases a sense of safety and 
place (Kuo et al., 1998; Hausmann et al., 2015). While benefits may vary across time and space, 
overall, they persist. 
 
Recognizing that UTC is a crucial aspect of urban landscapes and ecosystems, it is vital that UTC 
distribution is equitable and not a disservice. Several studies have found that low-income 
neighborhoods and metropolitan areas with higher percentages of Black, Indigenous, and People of 
Color tend to have low tree canopy cover compared to white neighborhoods (Landry & 
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Chakraborty, 2009; Schwarz et al., 2015; Locke et al., 2021). Furthermore, tree planting efforts can 
create community disservices due to fear of economic strain for the city to plant and maintain, and 
increased water consumption (Roy et al., 2012). 

Project Aims 

In this project we characterized the urban tree canopy of Ann Arbor, MI to elevate its role in 
mitigating climate change and creating a healthy and vibrant community. Identifying, describing, and 
quantifying the UTC was carried out with particular interest in fragments of old-growth forest and 
turfgrass on privately-owned land where it is difficult for conservation planners to document.  
 
We developed three data layers to support decision-makers in Ann Arbor’s Environmental 
Commission and Office of Sustainability and Innovations. First, we created a map of native forest 
fragment locations. Second, we developed a map of turfgrass to aid in identifying tree planting sites 
and focus areas for incentivizing sustainable lawns. Third, we developed a map of Ann Arbor’s 
urban canopy classified by tree genus.  
 
As final deliverables, we created quality-tested data layers from native forest fragments and turfgrass 
analysis along with a detailed writeup of the genus classification process for future research to build 
on. We also assembled an ArcGIS StoryMap to convey our findings to stakeholders.  

Chapter Organization 

This report is organized in three main sections: Native Forest Fragment Delineation, Turfgrass 

Estimation, and Genus Classification. Within each section, an introduction/background, methods, 

results, and discussion will describe the objective and relevant research pertaining to the topic, 

including a detailed workflow of parameters and spatial analyses explored, ending with the results, 

main takeaways, and potential future directions. 
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Chapter 2: Native Forest Fragment Delineation 

Introduction 

One of the objectives we were tasked with was the identification of native forest fragments within 
the city limits. Native forest land, also known as primary, old-growth, or virgin forest, is an 
important ecological resource. The difference between old-growth and second-growth forests is 
primarily found in the amount of disturbance the woodland has experienced, which greatly affects 
forest composition (White & Lloyd, 1994). 

Background 

The City of Ann Arbor utilizes three chief categories to classify woodlands: pioneer woodlands, 
urban woodlands, and native forest fragment woodlands. These three categories have different 
values assigned to them, and their level of protection varies accordingly. Native forest fragment 
woodlands, or primary forest fragments, are awarded the greatest value for several reasons. Native 
forest woodlands are locations in which the original native trees have largely avoided disturbance, 
surviving Michigan’s logging era. This means that native forest fragments are composed chiefly of 
mature, indigenous trees, fostering richer biodiversity and providing greater ecosystem services than 
that of second-growth woodlands. These services include the provision of habitat for native species, 
regulation and filtration of stormwater runoff, and a greater degree of carbon sequestration. 
 
Due to the value represented by these native forest fragments, they are considered a priority for 
conservation efforts. While the City of Ann Arbor’s Natural Features Working Group is aware of 
many native fragments on public land within the city, they did not have a consolidated inventory of 
these fragments and requested that we identify these fragments within the city. Of particular interest 
were those located on private property, as we were informed of the Natural Features Working 
Group’s objective to reach out to private landowners about conserving the native forest fragments 
on their properties.  

Data 

For this portion of the project, we utilized historic aerial imagery hosted by Washtenaw County, 
NAIP imagery, and LiDAR data.  
 

Name  Year Format or Resolution 

National Agriculture Imagery 
Program (NAIP) 

2018 2 feet 

Historical Aerial Imagery 1940 Webmap layer (unknown 
resolution) 

Light Detection and Ranging 
(LiDAR) 

2018 1,101,733,871 points, 1.246-1.9 
feet point-spacing 

Table 2.1. Data used to delineate and classify native forest fragments. 
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Methods 

The process we undertook to identify Ann Arbor’s native forest fragments can be divided into two 
separate major processes: manual delineation and unsupervised classification. The first step we 
worked on was the manual delineation of native forest fragments. We began the identification 
process using Esri’s basemap hybrid as a guide. Local native forest fragments are composed in large 
part of oak and hickory trees, which seem to change color slightly faster in the fall than many other 
species. This slight difference in coloration made it easier to spot possible fragment locations, which 
would be classified as either possible or likely fragments based on whether we could find any 
information supporting their existence as fragments, primarily based on information posted by the 
city’s parks and recreation department. If a forested location was described as having seen little 
disturbance in the department’s description, we would create a polygon representing that location 
and label it as a likely native fragment location. 
 
After meeting and discussing with two of our clients, Jason Tallant and Christopher Graham, we 
altered and refined this methodology. Jason recommended we utilize historic aerial imagery from 
1940 hosted by Washtenaw County. We agreed that any mature forest fragments displayed within 
this historic imagery could be considered a native fragment. We created a shapefile outlining the 
general location and area of mature forest fragments from 1940, and used this data, along with our 
canopy height model, to revise our native fragment location layer (Figure 2.1) 
 
The second major process we undertook to delineate Ann Arbor’s native forest fragments was an 
unsupervised classification. This was necessary due to the presence of many smaller fragments 
within the city – it had been expressed to us that it would be highly beneficial to be able to locate 
even the smallest of fragments, even down to the scale of a cluster of several trees. It was not 
feasible to manually locate and delineate every minor native fragment within the city, but with 
clustering we hoped to automate fragment identification. 
 
We opted to perform an unsupervised classification rather than supervised. The three major land 
cover classes of interest (native forest, secondary forest, and shrubs) each encompass a diverse range 
of forest communities. We had no a priori reason to assume that these classes could be cleanly 
delineated based on the data we had access to and did not have the time or expertise to assemble 
adequate samples of each community type to train a classifier. Unsupervised classification elided 
these issues by identifying easily distinguished variations in the data, allowing us to manually 
consolidate and define the resulting clusters. 
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(A)           (B)  

Figure 2.1. (A) Native forest fragment location, based on historic imagery; (B) Native forest fragment location, refined 
using our Canopy Height Model. Note the careful exclusion of developed features (buildings, roads) 

The predictor layers we used for the classification were: canopy height model, LiDAR PCA classes 
1-4 (Appendix E), an NDVI layer calculated from NAIP imagery, a texture raster calculated from 
our CHM, and 4-band NAIP imagery. All layers were limited to a mask area calculated from canopy 
height and NDVI in order to only perform clustering on areas of tree canopy. For more information 
on how these layers were compiled, see Appendix A. After some preliminary testing, we settled on 
the following parameters: 20 individual land cover classes, with a resolution of five-by-five feet.  

Results 

After examining the resulting land cover raster, we consolidated the original twenty land cover 
classes into twelve. As previously mentioned, there is a high degree of variance found within Ann 
Arbor’s forested land, even between native fragments. This prevented us from being able to assign a 
single class to native forest fragments, although we identified two main classes. Class 4: mature 
emergent trees, and class 6: medium trees/under canopy, were found to be strong indicators for 
native fragments, especially when found together. We compared these results to the manually 
delineated fragments and observed that the majority of manually-delineated native fragment 
polygons were composed chiefly of these two land cover classes. 
 
To label the pixel classes resulting from our unsupervised classification, several inputs were used for 
reference. Our manually delineated fragment data was the chief reference layer, as it assisted in 
determining what pixel values were more prevalent in locations we had previously determined were 
native forest fragments, second-growth forest, and shrubland. We also used our CHM layer to 
determine the relative height of features represented by different pixel values, and our ground truth 
data to approximate species composition within the classes. We found that native fragments were 
chiefly composed of mature oak, hickory, and maple, while some of the more common species in 
our manually-delineated second-growth forest polygons were black walnut, buckthorn, and black 
cherry. 
 
Some of the pixel classes resulting from our unsupervised classification received labels involving 
forest canopy structure. The LiDAR data utilized during our classification played a major role in 
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making this possible, as spectral signature alone was not a valid option for determining the elevation 
of features and feature elevation is an important determinant for classification of forest canopy 
structure. 
 

 
Figure 2.2. Map of Ann Arbor Forests Unsupervised Classification results, compared to our manually delineated 
fragments. Parts of the city have a higher density of native fragments, frequently interspersed with larger, delineated 
fragments. For a larger version of this map, see Appendix B. 

Discussion 

The two major processes we ran to identify native fragments served to identify different aspects of 
Ann Arbor’s native forest land. The manual delineation served to identify and confirm the largest 
native fragment locations, most of which our clients were already aware of. The unsupervised 
classification served to find much smaller native fragments, which is especially useful in areas that 
have seen a higher degree of development and fragmentation. Both methods had their benefits and 
faults- the manual delineation process was verified by Christopher and Jason, our CHM layer, and 
often by information posted by Ann Arbor’s Parks and Recreation Department, but was highly 
time-consuming. It was also an important source when consolidating and labeling the land cover 
classes created by our unsupervised assessment. For example, class five pixels were often found near 
the perimeter of delineated native fragments and mixed within secondary forest land. This allowed 
us to tentatively determine that class five pixels represented small to medium trees, as well as forest 
perimeter. The unsupervised classification served to identify much smaller native fragments that 
were more frequently located on private property but was not as readily verifiable. Utilizing these 
two outputs together serves to mitigate much of these faults.   
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Figure 2.3. The forest land around Pioneer High School is composed of a mix of native and second-growth forest. The 
most common species found during ground truth data collection in this area were Shagbark Hickory, White Oak, and 
Shellbark Hickory within the native forest fragment, and Eastern White Pine, mixed shrubs, and Red Pine within the 
second-growth forest areas. Additional summaries of ground truth trees by cluster can be found in Appendix I.  

Overall, our efforts have shown that the LiDAR and aerial imagery available to the city of Ann 
Arbor is able to capture subtle differences in canopy composition and structure. Future classification 
processes could benefit from the inclusion of a biologist to aid in interpreting and verifying those 
differences. Further refinement of urban canopy classes could be attained by collecting additional 
field data within manually delineated native and second-growth fragments, to aid in predicting 
species composition depending on forest type.  
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Chapter 3: Turfgrass Estimation 

Introduction 

We aimed to identify areas of turfgrass within the City of Ann Arbor as a way to inform residents 
and decision-makers about its extent on both public and private property. The hope is that citizens 
and the City can use this to further investigate and evaluate if there are areas that would receive 
greater benefits from vegetation that provides more diverse ecosystem services. This could include 
vegetation that is more beneficial to pollinators or trees that could expand the urban canopy of Ann 
Arbor. 

Background 

Turfgrass is common in many urban and suburban communities, typically present in residential 
yards, parks, and other green spaces. It provides important space for outdoor recreation and 
contributes to aesthetics on private and public property alike. In addition, turf provides ecosystem 
services, and is in fact better suited than most vegetation for filtering pollution, protecting land from 
erosion, and decreasing runoff (Monteiro, 2017). Despite these benefits, urban forests in 
conjunction with turf provide stronger air cooling than turf alone, which would reduce urban heat 
island effects (Fung & Jim, 2019). There are also environmental risks associated with turfgrass 
connected to care and management. Lawn maintenance can result in increased water usage, 
emissions from motorized tools, and overuse of fertilizers (Runfola et al., 2013). Given the services 
and disservices for turfgrass and lawns, it is important for cities and communities to be aware of its 
extent and assess its role while planning for the future. 

Data 

This analysis relied on multispectral imagery from the National Agriculture Imagery Program 
(NAIP) captured in July 2018 as well as light detection and ranging (LiDAR) with complete coverage 
of the city collected in 2017. We created a canopy height model (CHM) with a pixel resolution of 3 
square feet and resampled the NAIP imagery so the resolutions would match, and the grids aligned.  

Methods 

Using the red and near-infrared bands of the imagery, we calculated the normalized difference 
vegetation index (NDVI) and identified a lower bound for vegetation in this image where, generally, 
values lower than it would represent non-photosynthesizing pixels, and higher would capture pixels 
representing photosynthesizing vegetation. Then, three different binary layers were created from the 
CHM to identify areas above and below 1, 2, and 3 feet. There was not much difference between 
them, so we proceeded using only the 3-foot threshold on the CHM. Multiplying the binary NDVI 
and CHM layers resulted in another binary layer that distinguished between vegetation below 3-feet 
and all other pixels, seen in Figure 3.1. This was used as a mask to extract NAIP pixels that ideally 
depicted vegetation below 3 feet, which largely included areas of turfgrass.  
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(A)  (B)  

(C)  (D)  

Figure 3.1. (A) Binary height layer, with a 3ft threshold; (B) Binary NDVI layer; (C) Product of the binary NDVI and 
height layers, depicting pixels that represent vegetation below 3ft in green; (D) Extracted NAIP imagery using (C) as the 
mask feature. 

After visual inspection and image interpretation, we deemed that there were still areas included 
within this extracted imagery that did not represent turfgrass. These non-turf areas included bunkers 
on golf courses, bare earth, and edges of canopy. These slivers of canopy were likely included due to 
off-nadir LiDAR points and/or temporal differences between the 2017 LiDAR and 2018 NAIP 
imagery failing to capture a year’s worth of canopy growth. An unsupervised classification with 6 
classes managed to capture that variation in the extracted imagery, and we interpreted the six classes 
as the following: (1) shadows, (2) canopy, (3) very dry grass, (4) moderately dry grass, (5) healthy 
grass, and (6) dirt/sand. The three classes representing grass were merged resulting in a final 
classification with four classes. The merged grass class was extracted to create the final turfgrass 
layer within the extent of the city.  
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(A)  (B)  

(C)   

Figure 3.2. (A) Subset of the city showing the 6-classes of the first classification; (B) Resulting classification after 
merging the three grass classes, which is our final turfgrass layer; (C) The final turfgrass layer shown in green, which is an 
improvement from the initial layer shown in red. 

Results 

To assess the accuracy of the unsupervised classification, we took a stratified random sample across 
the four classes and classified each point based on interpretations of the NAIP imagery. The 
resulting confusion matrix is shown in Figure 3.3 below. The turfgrass class has the second highest 
user’s accuracy at 79 percent however it also has the lowest producer’s accuracy of only 49 percent. 
The classification confuses turfgrass for many of the other classes, but mostly canopy.   
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  Reference Data User’s 
Accuracy 

  Shadows Canopy Turfgrass Dirt/Sand 
 

 

Shadows 76 18 6 0 76% 

Canopy 6 28 61 5 28% 

Turfgrass 0 6 79 15 79% 

Dirt/Sand 0 0 14 86 86% 

Producer’s Accuracy 92.68% 53.85% 49.38% 81.13%  

Overall Accuracy = 67.25% 
Kappa = 43.67% 

Figure 3.3. Confusion matrix that shows how well our classification performed on a set of reference data - a stratified 
random sample across all 4 classes, as well as the overall accuracy of the classification (67.25%) and kappa statistic 
(43.67%). 

Discussion 

Ultimately, we found that the turfgrass class extracted from the classification was an improvement 
compared to the first attempt using only the NDVI and height thresholds product. The classification 
did help to filter out non-turf features such as some dirt paths, sand, driveways, and most canopy. 
However, it still includes areas of water vegetation, wetlands, and some old fields which could be 
further classified and filtered out.  
 
Though the turfgrass extracted from the final classification has high user’s accuracy, the overall 
performance of the classification is not very accurate or precise. Finer resolutions of both the 
imagery and CHM could improve our turfgrass identification. Initially, the NAIP imagery had a finer 
resolution of 0.66 meters but was resampled to 3-feet pixels in order to align with the CHM grid. 
Additionally, the reference data was collected based on interpretations of the NAIP imagery. The 
improved resolutions could lead to higher precision in the reference data if interpreted from 
imagery, as well as more accurate classifications performed to filter out features that are not 
turfgrass.  
 
Accuracy of reference data could be increased by gathering ground truth data to include or use 
exclusively to test the accuracy of the classification. This could, however, lead to greater confusion if 
the ground truth data is not collected around the same time as the data used since there could be 
changes in the land between the time that imagery or LiDAR was collected and ground truth 
collection. Better temporal alignment between imagery and LiDAR could also improve our turfgrass 
identification. In our case, there is only one year between when the LiDAR was collected and the 

Classification 
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NAIP imagery. However, either dataset–whichever was taken later–could fail to capture events that 
result in a change of land cover like tree removal, canopy growth, or development. Additionally, 
performing this analysis over many years could be more helpful to managers so they have an idea of 
the rate that turfgrass is expanding in the city.  
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Chapter 4: Genus Classification 

Introduction and Background 

Classifying an urban tree canopy to the genus or species level from remotely sensed data would offer 
a variety of benefits to decision-makers tasked with preserving and enhancing the canopy. Such a 
classification would, for instance, allow one to easily characterize types of forest communities at a 
large scale. In the case of Ann Arbor, this would aid in definitively separating undisturbed forest 
fragments from “pioneer” woodlands. It could also aid in the control of invasive shrubs such as 
honeysuckle and buckthorn. Furthermore, in combination with allometric equations published by 
the U.S. Forestry Service (Chojnacky et al., 2014), an accurately classified canopy can aid in the 
estimation of above-ground biomass and the quantification of associated ecosystem services.  

In general, the process of classifying trees from remotely sensed data entails three steps, each with a 
variety of possible approaches. First, training and testing data must be collected, typically in the form 
of geolocated and manually identified tree stems or crowns. Second, remotely sensed data must be 
assembled for use as predictor variables and a value corresponding to each layer must be calculated 
for each tree. Finally, the resulting dataset pairing tree genus or species labels with predictor 
variables must be fed into a classification algorithm. 

In terms of input predictors, several studies have utilized both LiDAR and aerial imagery to identify 
tree crowns (Weinstein et al., 2019; Katz et al., 2020). While others utilize just LiDAR data to detect 
and segment individual trees based on crown shapes, height, and/or diameter at breast height 
(DBH) (Lu et al., 2014; Matasci et al., 2018; Oono & Tsuyuki, 2018; Hastings et al., 2020). 
Furthermore, Onishi & Ise (2021) used aerial imagery and machine vision systems to identify tree 
crowns and species from color, three-dimensional information, and a slope model. Breidenbach et 
al. (2009) highlight the use of ground-truth data and airborne laser scanning data to identify 
individual tree crowns.  

Machine learning algorithms exhibit a similar variety of approaches, Katz et. al. (2020) used random 
forest, a decision tree algorithm available as a free R package, to classify the urban canopy in Detroit. 
Other researchers have used methods like support vector regression and k-nearest neighbor 
clustering (Zhang & Qiu, 2012). Finally, some researchers have successfully used neural networks 
for tree identification (Onishi et al. 2021, Weinstein et al., 2019).  

Methods 

We used a combination of field-collected and available data of the urban tree canopy to leverage as 
training/testing data in our machine learning algorithms. Both object-based and pixel-based 
classification methods were implemented. 

Tree Data Description 

In order to ensure a robust sample of trees growing in native forest fragments, our team field-
collected training data from natural areas. We established plots within Ann Arbor focusing on City-
owned or University of Michigan-owned land to sample and survey the UTC. With guidance from 
our advisor and clients, we chose areas that gave us as close to a representative sample of the city’s 
different tree and forest types as possible. Figure 4.1 depicts the sixteen locations we surveyed.  
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Figure 4.1. Natural areas and golf courses surveyed. 

Between all potential survey locations, we created 1,000 random points using ArcGIS Create Random 
Points tool to randomly select possible plot locations. In the field, a random point was selected and 
assessed for accessibility in regards to terrain and land features. Once at a feasible location, we used 
a Trimble R1 to locate and monument the southwest corner of the plot. Then a measuring tape was 
laid out to the east and north from the initial plot corner generating a 100 x 100 feet plot. Living 
canopy trees were recorded using ArcGIS Collector. We identified the tree to genus and species, 
measured the diameter at breast height (DBH), and recorded an X, Y value along with the measuring 
tape of the tree location (Figure 4.2). Tree identification was carried out using Barnes & Wagner 
(2004), iNaturalist app, PictureThis app, and direct assistance from our advisor and clients. 
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Figure 4.2. Comparing plot collection methods to single-point data collection. 

At non-forested locations such as parks and golf courses, or areas where dense undergrowth made 
laying out a measuring tape difficult, we used the Trimble R1 unit to record single points for each 
tree stem in ArcGIS FieldMaps. As with plot collection, we recorded genus, species, and DBH for 
each tree. 

Figure 4.3 compares the output of field collection methods at three locations: Bird Hills Nature 
Area, Huron Hills Golf Course, and Lillie Park. At Bird Hills, we used the 100 x 100 feet plot 
collection method. At Huron Hills Golf Course, we only used the single-point method since trees 
were typically open-grown. Lastly, at Lillie Park, we used both the plot and single-point collection 
method to allow us to capture the variety of tree composition.  
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Figure 4.3. Plot and single-point data collection output at Bird Hills Nature Area, Huron Hills Golf Course, and Lillie 
Park.  

Data was collected May 05, 2021 - August 17, 2021 at thirteen natural areas and three golf courses. 
1,542 trees and/or 2 x 2-meter shrubs were surveyed. Table 4.1 depicts the thirty-one genera 
recorded and the respective DBH.  

Genus Count of Genus Mean DBH (cm) Minimum DBH 
(cm) 

Maximum DBH 
(cm) 

Acer 220 32.07 8 200 

Aesculus 2 65.5 58 73 

Carya 172 37.25 11.5 91 

Castanea 3 14.5 11.5 18.5 

Catalpa 1 19.5 19.5 19.5 

Celtis 7 21.57 9.5 34 

Cornus 1 10 10 10 

Crataegus 15 23.53 12 34.5 

Elaeagnus 3 N/A N/A N/A 
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Fraxinus 13 20.08 6 44.5 

Gleditsia  16 55.56 23 131 

Juglans 63 41.46 11 124 

Juniperus 1 16 16 16 

Liriodendron 13 34.12 16.5 68 

Malus 8 34 18 104 

Mixed-Shrub 23 N/A N/A N/A 

Morus 3 50.67 23 74 

Picea 27 52.57 17.5 94.5 

Pinus 170 31.67 15 64 

Platanus 2 20.5 17 24 

Populus 53 44.37 5 200 

Prunus 145 36.45 9.5 132 

Pyrus 7 42.86 25 72 

Quercus 344 49.49 9 137 

Rhamnus 27 N/A N/A N/A 

Rhus 6 151.33 38 200 

Salix 4 60.25 32 118 

Sassafras 4 31.63 20.5 39.5 

Taxodium 10 105.7 74 139 

Tilia 116 27.66 10 114 

Ulmus 57 26.98 7 131 

Zelkova 1 32 32 32 

Unknown Living 
Tree 

5 46.6 36 53.5 

Table 4.1. Summary of genera collected in the field with respective DBH values. Note: values of N/A represent shrubs 
with many stems for which measuring DBH would be prohibitively difficult. 
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After all plots were collected, an R script was used to adjust for magnetic declination and transform 
the X and Y plot locations into Easting and Northing coordinates in the Michigan State Plane South 
system (U.S. Feet) (EPSG 2253).  

Additional sources of tree data came from the City of Ann Arbor’s Street Trees, University of 
Michigan's Campus Trees, Nichols Arboretum, and a study at Radrick Forest by Dr. Inés Ibáñez. All 
sources were cleaned as described below (Table 4.2). To ensure fully consistent coding by species, a 
table was manually compiled to act as a join key for relating tree common names with species codes. 
The datasets were merged into a single master dataset with columns for common name, DBH, 
species code, genus code (USDA), and source dataset. 

Name Location Date of Creation Cleaning Steps 

City of Ann 

Arbor Street 

Trees 

Ann Arbor, 

Michigan 

February 10, 2021 Elimination of trees with no 

recorded DBH, conversion 

of DBH range into single 

median value, elimination of 

trees listed as “Stump” or 

“Vacant” 

University of 

Michigan 

Campus Trees 

Ann Arbor, 

Michigan 

2014 Elimination of trees with 

unknown species, elimination 

of trees marked as removed 

Radrick Forest 

Stem Map 

Radrick Farms 

Golf Course, 

Ann Arbor, 

Michigan 

June 1, 2016 to July 31, 2018 None 

Nichols 

Arboretum 

Nichols 

Arboretum, 

Ann Arbor, 

Michigan 

2018  Elimination of trees listed as 

“Dead” or “Remove”, 

elimination of all trees not 

specified as canopy trees 

Survey  Ann Arbor, 

Michigan 

May 05, 2021 to August 17, 

2021 

Manual typo correction 

Table 4.2. Tree data sources and cleaning steps. 

Overall, our training data consisted of 69,000+ tree points representing 97 genera. Figure 4.4 
displays tree points with a count greater than or equal to 200 per genus. Genera with less than 200 
were lumped into an “Other” category.  
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Figure 4.4. Genera with more than 200 representative samples in relation to our survey locations. 

Predictor Rasters 

 

Name  Year Format or Resolution 

Color-Infrared (CIR) 2020 0.5 feet 

Color-Infrared (CIR) 2018 0.5 feet 

National Agriculture Imagery 
Program (NAIP) 

2018 2 feet 

NearMap July 17, 2018 3.918 feet 

Light Detection and Ranging 
(LiDAR) 

2018 1,101,733,871 points, 1.246-1.9 
feet point-spacing 

Soils September 16, 2019 N/A (vector shapefile) 

Table 4.3. Predictor Raster datasets. 
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We gathered six raster datasets (Table 4.3) to use as predictor variables in the genus and native 
fragment classification processes. 
 
From these initial layers, we created an NDVI layer, texture layers from the near-infrared (NIR) and 
Green bands of the NAIP imagery, a canopy height model and canopy texture layer, and six 
principal component layers from the LiDAR data.  
 
For a full summary of how these layers were prepared, see Appendices A and E. 

Segmentation 

 

Relating the representation of trees in the training/testing dataset (single points in a vector dataset) 
with their representation in the predictor layers (amorphous collections of pixels associated with 
each tree crown) posed a challenging problem. 
 
We explored three ways of associating training data with predictor variables. First, we used single-
pixel extraction as an easily implemented baseline. For this method, we used the Extract Multi-values 
to Points tool in ArcGIS Pro to turn the individual pixel values from each predictor layer overlaying 
each tree stem point into attributes of the tree point feature class. This approach was simple and 
easy to implement but leveraged relatively little of each dataset. 
 
Second, we implemented a buffered pixel-based classification approach to group pixels based on a 
tree’s diameter at breast height (DBH). A buffer for each tree was created in ArcGIS Pro and pixel 
values within the buffer were summarized using Zonal Statistics. Pixel values were summarized from 
both multi-temporal aerial imagery and satellite imagery using the individual bands of each image 
source.  
 
Third, we used the locate_trees and segment_trees functions in the lidR package for R to delineate entire 
tree crowns. First, to locate trees we used a subset of Ann Arbor’s LiDAR to test three moving 
window parameters for the locate_trees function and three variations on the input canopy height 
model. For the moving window, we tested a fixed 20-foot window, a fixed 30-foot window, and a 
variable-sized window following the example in Roussel et al. (2021). We ran these on the raw 
canopy height model and canopy height models smoothed by a 3 x 3 pixel and 5 x 5 pixel median 
filter. The combination of three moving window parameters and three input CHMs resulted in nine 
different treetop identifications. 
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(A) (B) (C) 

Figure 4.5. Comparison of three different segmentation methods: single-pixel (A), buffered pixel (B), and via the Silva 
(2016) algorithm as implemented in the lidR package for R (C). 

Each treetop map was used as a basis for segmentation with the segment_trees function. Early testing 
indicated that of the segmentation algorithms provided in the package, Silva et al. (2016) was by far 
the most effective at delineating trees in Ann Arbor’s mostly deciduous canopy. Comparison 
between segmentations was evaluated with visual inspection against NAIP and Nearmap imagery, 
comparison to manually delineated tree crowns, by comparing the number of oversized segments 
(tree crowns with multiple recorded tree stems within them) to the total number of crowns found in 
the testing area, and by testing their performance directly in initial machine learning models run on 
the testing area. 
 
We found that segmentation based on a 30-foot window over a CHM smoothed by a 3 x 3 pixel 
kernel resulted in the highest performance on our test models and also performed well relative to 
our other assessments. This segmentation was scaled up to the entire city using the LasCatalog 
functionality in the lidR package. Predictor variables were associated with it by using the Zonal 
Statistics as Table tool in ArcGIS Pro to record the mean value of each input band as well as the 
minimum, maximum, standard deviation, 70th percentile, 80th percentile, and 90th percentile 
statistics for the canopy height model. For more details on the calculated variables and some 
exploratory data analysis, see Appendix F. 
 
Genus labels were assigned to delineated crowns using a modified spatial join operation wherein a 
crown overlapping multiple stems was assigned the genus of the stem with the highest DBH.  

Machine Learning 

Each segmentation method (pixel, buffered pixel, and lidR) resulted in a table of labeled tree 
stems/crowns with associated predictor variables taken from each input band. These tables were fed 
into a standardized R script that took a random stratified 50% sample from each genus to serve as 
training data (with the remainder set aside as testing data). For consistency, a random seed of 1 was 
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used for all sampling. We implemented a “genus threshold” parameter that grouped genera with 
fewer instances than the threshold into an “Other” category. 
 
Training data were then used to train a Random Forest model, a Support Vector Machine, and a 
Multinomial Regression model. Model accuracy was assessed by using the caret package (Kuhn, 2022) 
to record confusion matrices, overall error, and kappa statistics. 
 
The random forest model was run using the randomForest command from the randomForest package 
(Liaw & Weiner, 2022). Default parameters were used, and xtest and ytest were provided in order to 
generate immediate predictions on the testing dataset. 
 
The support vector machine model was run using the svm command in the e1071 package (Meyer et 
al., 2021). All default settings were preserved. 
 
The multinomial model was run using the multinom command from the nnet package (Ripley, 2022). 
The limit on the number of weights (the maxnwts parameter) was removed, and the model was 
allowed to attempt to converge for 2000 iterations (the maxit parameter). All other settings were kept 
at default. 

Results 

LidR segmentation achieved a maximum accuracy of 54.3%. Buffered pixel segmentation achieved a 
maximum accuracy of 38.3%. Single-pixel achieved a maximum of 47%. In each case, these maximal 
accuracies were achieved with the random forest classifier and the use of all available data layers. 
Additional model runs and accuracy metrics for the SVM and multinomial models are recorded in 
Appendix D. 
 
Our highest-performing model was a random forest model run on lidR segmented trees and using 
all available predictors. (These were the canopy height model, NDVI, all four bands of 2018 NAIP, 
all four bands of 2018 CIR, all three bands of 2018 Nearmap, texture rasters of NAIP Green and 
NIR bands, CHM texture, soils, and LiDAR PCs 1-6. For more information on the dataset, see 
Appendix F). This run achieved an overall accuracy of 54.3% with a Kappa statistic of 0.37. The 
model used a genus threshold of 100 resulting in 29 genera: Acer, Amelanchier, Betula, Carya, Catalpa, 
Celtis, Cercis, Cratagea, Gleditsia, Gymnocarpium, Juglans, Liriodendron, Malus, Morus, Picea, Pinus, Platanus, 
Populus, Prunus, Pseudotsuga, Pyrus, Quercus, Robinia, Sophora, Thuja, Tilia, Ulmus, and Zelkova, with 
remaining trees grouped into an “Other” category. The full confusion matrix for this run can be 
viewed in Appendix C.  
 
With the use of the randomForestExplainer package (Paluszynska et al., 2020) for R, metrics of relative 
importance were calculated for each variable in the highest-performing model. The mean of the 
texture raster calculated from the NAIP NIR band leads for both the mean decrease in accuracy and 
mean decrease in GINI metrics. The green NAIP texture raster, the mean of the NAIP NIR band, 
and the first LiDAR principal component also rank highly for both.  
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Figure 4.6. Predictor variables in the highest-performing random forest model ranked according to mean decrease in 
accuracy and mean decrease in GINI coefficient. 

The randomForestExplainer package also computes variable rankings based on combined metrics 
(Figure 4.7). We can see that green and NIR texture, the first two LiDAR PCs, the green and NIR 
NAIP bands, NDVI, and the visible bands from the CIR imagery all are top contributors to the 
random forest model’s ability to accurately classify genera.  
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Figure 4.7. Multi-way importance plot generated by randomForestExplainer for highest-performing random forest model. 
Variables marked as “top” are ranked into the top ten according to summed rankings of GINI decrease, accuracy 
decrease, and p-value. 

Discussion 

Although our efforts did not result in a level of accuracy that could reasonably be of use to 
conservation planners, we can draw several important conclusions to aid future efforts at genus 
classification. For one, the inclusion of our more experimental layers (the texture rasters, LiDAR 
PCs, and soils layer) did increase overall classification accuracy. Second, segmenting trees using the 
lidR package resulted in higher accuracy across the board than other segmentation methods.  
 
Classification attempts were robust with respect to model type and genus threshold; although 
random forest models consistently performed better than SVM or multinomial regression, they were 
rarely more than a few percentage points off. Similarly, adjustments to genus threshold within a 
range of 50 to 200 seemed to have minimal effect on resulting accuracy and kappa scores.  
 
We also found that maples were very often subject to erroneous classification insofar as trees of 
other genera were consistently classed as maples; in the summary of our highest performing model 
generated with the confusionMatrix function in the caret package for R, the Acer class had the highest 
sensitivity of any class (0.92) and the lowest specificity (0.51). This is likely because Acer has the 
highest prevalence within our training and testing data: 37% for the dataset of lidR segmented trees. 
Because maples are shade-tolerant and often found in the sub-canopy, it is possible that a large 
number of canopy segments were mislabeled due to the presence of subcanopy maple stems. 
Furthermore, due to the popularity of maples as a street tree and the prevalence of varied cultivars 
within the street tree dataset, it may be that Acer encompasses a wider variety of species and cultivars 
than most other genera, making it difficult to separate out effectively.  
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Maples aside, we can identify more general sources of error. Foremost among these is poor 
alignment between our training data and delineated tree crowns. Our training data was drawn from 
five different sources, only one of which was gathered by the project team. These stem locations 
often did not overlap with delineated crowns, cutting our available training and testing data by half 
in some cases. Moreover, it is likely that some datasets did not carefully delineate between over- and 
understory trees. More careful data cleaning may have resulted in higher quality data.  
 
Based on the above, we have the following recommendations for improving the genus classification 
process: 

● Given the consistently higher performance of lidR segmentation, we recommend that greater 
care and attention be given to tuning the parameters of the find_trees and segment_trees 
algorithms. In particular, it may be beneficial to use different parameters for street trees and 
dense forest canopies by selectively masking out one or the other and then merging the 
resulting layers. It may also be worth devoting time and computational resources to 
implementing segmentation methods that operate directly on LiDAR point clouds, such as 
the deciduous-focused method developed by Lu et al. (2013). 

● Important metrics calculated from the random forest model indicate that both the texture 
rasters and the LiDAR principal components were important contributors to classification 
accuracy. As with segmentation, both of these variables admit extensive parameter 
optimization. In particular, we recommend experimenting with moving window sizes for the 
texture layers and testing different voxel lengths, widths, and heights for the LiDAR PCA. In 
particular, wider and flatter voxel sizes (similar to those used in Ciuti et al. (2017) may 
capture less within-tree variation and instead characterize broad forest types more reliably.  

● As mentioned above, more care should be taken to clean training data. Using one source at a 
time and comparing resulting accuracy could provide important insight into the quality of 
the data provided. 

● There is room to incorporate a broader temporal range to take advantage of plant phenology 
beyond the inclusion of leaf-off data.  

● As discussed above, the genus Acer may encompass a wider range of species and cultivars 
than most other genera. Models might perform better if samples of Acer are grouped at the 
species level rather than as a single genus. 



 

27 

Chapter 5: Project Conclusions 

One major rationale for this project was to find and preserve mature, native trees located on 
property not owned by the City. In Table 5.1, we found that 82% of the urban canopy exists on 
non-city owned land. Our manual fragment delineation covers 14% of the total canopy, with two-
thirds located outside of City-owned property. Clustering classification results indicate that roughly 
twice as much, 28% of the total canopy, should be considered a native forest fragment candidate, 
with most of that additional area falling outside of City-owned land. Furthermore, turfgrass was 
identified as 50% of the total canopy.  
 
Given that clustering found roughly twice as much native forest as manual delineation and almost 
three times as much native forest outside City-owned property, we can tentatively conclude that 
machine learning is a useful and justified approach to the problem of identifying native forest 
fragments on private land, though more ground-truthing and quality control is needed.  

 

Category Acreage % of Total Canopy 

Urban canopy 6,900 100% 

Urban canopy (non-city-owned) 5,653 82% 

Manually delineated fragments 994 14% 

Manually delineated fragments (non-
city-owned) 

624 9% 

Fragments ID’d by clustering 1,966 28% 

Fragments ID’d by clustering (non-
city-owned) 

1,489 22% 

Turfgrass 3,442 50% 

Table 5.1. Acreage and total canopy cover of manually delineated fragments, fragments identified by clustering, and 

turfgrass on both city and non-city owned property.  

 
Overall, our efforts have shown that there is a substantial and ecologically relevant amount of 
fragmented old-growth forest within the city’s neighborhoods and outside managed natural areas, 
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thus demonstrating the utility and importance of leveraging remotely sensed data to aid in 
stewardship actions.  
 
Finally, we strongly recommend that all three analyses presented here be refined and repeated when 
possible. In each chapter conclusion we have outlined specific suggestions for improving upon our 
work. Implementing these could substantially improve accuracy and use value of each layer. 
Furthermore, recreating these maps with new data as it becomes available would allow our clients to 
track changes to the city’s urban canopy and turf grass coverage over time. The ability to identify 
trends in forest fragmentation and succession could be an invaluable aid to uplifting the urban 
canopy’s contribution to a healthy, sustainable, and vibrant community. 
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Appendices 

Appendix A: Predictor Layer Preparation 

We gathered six raster datasets (Table 4.3) to use as predictor variables in the genus and native 

fragment classification processes. 

 

Name  Year Format or Resolution 

Color-Infrared (CIR) 2020 0.5 feet 

Color-Infrared (CIR) 2018 0.5 feet 

National Agriculture Imagery 
Program (NAIP) 

2018 2 feet 

NearMap July 17, 2018 3.918 feet 

Light Detection and Ranging 
(LiDAR) 

2018 1,101,733,871 points, 1.246-1.9 
feet point-spacing 

Soils September 16, 2019 N/A (vector shapefile) 

Table A.1. Predictor Raster datasets. 

Before utilizing the rasters in analyses, georectification was carried out to correct for misalignment 

between datasets. 115 control points were established based on building chimneys in the 2020 

Color-Infrared imagery. This feature was chosen due to its scale and commonality. A first-order 

polynomial transformation was applied to 2018 CIR and 2018 NAIP imagery. 

 

An NDVI layer was calculated from the NAIP imagery using the built-in NDVI raster function in 

ArcGIS Pro. This function automatically scales the resulting raster from 0 to 255. Texture rasters 

were created from the green and near-infrared NAIP bands by using a seven pixel focal window 

with the range statistic, following Ziegler (2016). Additionally, we created a canopy height model 

from 2017 LiDAR data using the pit-free algorithm in the lidR package (Roussel & Auty, 2022) for 

R.  

 

As experimental additional predictors aimed at characterizing overall canopy structure, a principal 

component analysis was performed on the 2017 LiDAR data following the methodology put 

forward by Ciuti et. al. (2017). This process has been described in full in Appendix E. 
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Appendix B: Unsupervised Vegetation Classification
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Appendix C: Confusion Matrix for Top Performing Random Forest Model 

  Reference 

  ACER AMELA BETUL CARYA CATAL CELTI CERCI CRATA GLEDI GYMNO JUGLA LIRIO MALUS MORUS Other PICEA PINUS PLATA POPUL PRUNU PSEUD7 PYRUS QUERC ROBIN SOPHO THUJA TILIA ULMUS ZELKO 

 

ACER 5098 40 39 106 56 51 57 33 530 46 159 86 239 39 373 148 173 429 50 75 21 145 596 44 53 31 496 269 102 

AMELA 0 5 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 

BETUL 1 0 3 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

CARYA 4 0 0 51 0 0 1 0 0 0 13 0 0 0 2 0 0 0 0 5 0 0 29 0 0 0 1 0 0 

CATAL 0 0 0 0 5 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

CELTI 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CERCI 0 0 1 0 0 0 5 0 0 0 1 1 2 0 0 1 0 2 0 0 0 0 1 0 0 0 1 1 0 

CRATA 1 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GLEDI 194 4 4 7 0 4 3 4 899 6 19 0 18 4 29 9 13 18 1 8 6 26 85 2 15 6 96 35 46 

GYMNO 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

JUGLA 18 1 0 16 1 1 4 0 6 0 84 0 2 2 6 3 3 1 3 4 0 1 25 2 1 1 12 7 0 

LIRIO 2 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

MALUS 29 3 2 0 0 2 2 16 5 0 0 0 137 0 12 8 14 0 0 8 2 5 10 0 0 1 5 1 3 

MORUS 0 0 1 0 0 0 0 0 0 0 0 0 0 4 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 

Other 5 2 0 0 0 0 0 0 1 0 0 0 2 2 58 4 8 1 1 1 2 1 3 0 0 0 3 5 0 

PICEA 18 3 6 1 1 0 4 0 4 3 4 0 16 2 22 168 38 1 0 6 6 5 7 1 0 4 3 4 0 

PINUS 41 3 3 1 1 0 2 2 9 0 2 0 32 1 35 76 276 2 0 9 9 3 15 0 0 7 10 4 5 
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PLATA 37 2 2 1 0 0 1 1 4 3 3 1 1 0 10 3 2 289 1 3 1 1 14 0 3 0 8 0 0 

POPUL 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 12 0 0 0 0 0 0 0 1 2 0 

PRUNU 3 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 11 0 0 3 0 0 0 0 1 0 

PSEUD7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 8 0 0 0 0 0 0 0 0 

PYRUS 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 3 1 0 0 1 0 24 0 0 0 0 0 1 0 

QUERC 101 5 7 127 4 2 13 0 8 5 72 9 12 3 44 13 19 6 35 51 1 2 541 22 0 2 30 29 1 

ROBIN 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 1 0 

SOPHO 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

THUJA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 18 0 0 0 

TILIA 25 0 0 3 0 0 0 0 16 0 5 0 7 2 4 3 2 1 1 2 1 3 7 2 1 0 139 1 4 

ULMUS 2 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 17 0 

ZELKO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 10 
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Appendix D: Additional Genus Classification Model Tests 

All listed model runs were done on the full Ann Arbor dataset with a random seed of 1. 

 

Segment. 

method 

Genus 

Threshold 

Training 

Data Predictor layers 

# 

Trees 

# 

Genera 

RF 

Acc. RF k̂ 

SVR 

Acc. SVR k̂ 

Multinom

. Acc. 

Multinom. 

k̂ 

Max 

Acc. 

lidR, 30 ft. 

window 100 All 

CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped to 
chm>10ft NDVI>10), texture rasters of NAIP Green and NIR, CHM 
texture, soils, LiDAR PCs 1-6 29399 29 0.543 0.372 0.527 0.339 0.525 0.368 0.543 

lidR, 30 ft. 

window 100 All 

(No soil) CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped 
to chm>10ft NDVI>10), texture rasters of NAIP Green and NIR, CHM 
texture, LiDAR PCs 1-6 29399 29 0.537 0.364 0.540 0.366 0.519 0.353 0.540 

lidR, 30 ft. 

window 100 All 

(No soil, PCs 1-3 only) CHM, NDVI, NAIP2018, CIR2018, 
Nearmap2018 (all clipped to chm>10ft NDVI>10), texture rasters of 
NAIP Green and NIR, CHM texture, soils, LiDAR PCs 1-3 29399 29 0.538 0.367 0.538 0.363 0.517 0.349 0.538 

lidR, 30 ft. 

window 100 All 

Rescaled [CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped 
to chm>10ft NDVI>10), texture rasters of NAIP Green and NIR, CHM 
texture, soils] 33513 30 0.518 0.341 0.483 0.264 0.489 0.311 0.518 

lidR, 30 ft. 

window 100 All 

CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped to 
chm>10ft NDVI>10), texture rasters of NAIP Green and NIR, CHM 
texture, soils 33513 30 0.518 0.340 0.483 0.264 0.488 0.311 0.518 

lidR, 30 ft. 

window 20 All 

CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped to 
chm>10ft NDVI>10), texture rasters of NAIP Green and NIR, CHM 
texture, soils 33513 53 0.514 0.335 0.483 0.264 0.488 0.310 0.514 

lidR, 30 ft. 

window 100 All 

(No CIR) CHM, NDVI, NAIP2018, Nearmap2018 (all clipped to 
chm>10ft NDVI>10), texture rasters of NAIP Green and NIR, CHM 
texture, soils 33513 30 0.505 0.319 0.458 0.211 0.464 0.263 0.505 

lidR, 30 ft. 

window 400 All 
CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped to 
chm>10ft NDVI>10) 33522 15 0.488 0.294 0.479 0.257 0.423 0.223 0.488 

lidR, 30 ft. 

window 200 All 
CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped to 
chm>10ft NDVI>10) 33522 18 0.488 0.291 0.476 0.249 0.411 0.197 0.488 

lidR, 30 ft. 

window 40 All 
CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped to 
chm>10ft NDVI>10) 33522 21 0.481 0.279 0.472 0.243 0.417 0.213 0.481 

Pixel 200 All 

CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped to 
chm>10ft NDVI>10), texture rasters of NAIP Green and NIR, CHM 
texture, soils, LiDAR PCs 1-6 35945 20 0.470 0.290 0.447 0.243 0.449 0.280 0.470 



 

40 

Pixel 200 All 

CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped to 
chm>10ft NDVI>10), texture rasters of NAIP Green and NIR, CHM 
texture, soils 42882 25 0.440 0.250 0.431 0.213 0.404 0.200 0.440 

Pixel 200 All 
CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped to 
chm>10ft NDVI>10) 42882 26 0.408 0.205 0.401 0.152 0.369 0.138 0.408 

Buffered 

pixel 40 Survey CIR2020, CIR 2018, NAIP2018, Nearmap2018 (July) 1542  0.383 0.268 X X X X 0.383 

Buffered 

pixel 40 

Street 

Trees CIR2020, CIR 2018, NAIP2018, Nearmap2018 (July) 56588  0.338 0.137 X X X X 0.338 

Buffered 

pixel 40 All CIR2020, CIR 2018, NAIP2018, Nearmap2018 (July) 69338 98 0.337 0.179 0.319 0.112 0.306 0.112 0.337 

Buffered 

pixel 100 All CIR2020, CIR 2018, NAIP2018, Nearmap2018 (July) 69338 98 0.323 0.149 0.309 0.092 0.302 0.102 0.323 

Buffered 

pixel 10 All CIR2020, CIR 2018, NAIP2018, Nearmap2018 (July) 69338 98 0.322 0.149 0.310 0.094 0.301 0.100 0.322 

Buffered 

pixel 100 All 
CHM, NDVI, NAIP2018, CIR2018, Nearmap2018 (all clipped to 
chm>10ft NDVI>10) 69421 19 0.322 0.150 0.306 0.081 0.291 0.080 0.322 

Buffered 

pixel 40 All CIR2020, CIR2018 69338 98 0.302 0.133 0.306 0.090 0.300 0.082 0.306 

Buffered 

pixel 40 All Nearmap2018(July),NAIP2018 69338 98 0.284 0.107 0.287 0.055 0.285 0.057 0.287 

Buffered 

pixel 40 Campus CIR2020, CIR 2018, NAIP2018, Nearmap2018 (July) 5787  0.149 0.038 X X X X 0.149 
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Appendix E: Summary of LiDAR PCA & R Script 

Introduction 

As experimental additional predictors aimed at characterizing overall canopy structure, a principal 

component analysis (PCA) was performed on the 2017 LiDAR data. Our methodology was drawn 

from that used by Ciuti et. al. (2017), albeit with some simplifications. Ciuti et. al. offer two 

arguments for using LiDAR principal components. First, PCA allows for a “fit-first, explain later” 

approach to modeling that eschews the need for a priori assumptions about what derived LiDAR 

metrics (e.g. canopy height) are relevant to a particular problem. Second, PCA is effective as a 

dimension reducing method, allowing researchers to capture more of a LiDAR point cloud’s overall 

variation with much less computational overhead. Ciuti et. al. applied this method to a deer 

browsing model, but we hypothesized that this method of quantifying vegetation structure could 

have some predictive value when assigning genus or native/secondary status. 

Methods 

Using the lidR package for R, we produced a raster stack recording the number of LiDAR returns 

within 5x5x5 foot voxels. This was done for a vertical range from 0 to 125 feet, resulting in 25 total 

rasters. In order to ensure that the PCA would only capture variance within the urban canopy, these 

layers were clipped to only include areas with canopy height over 10 feet and NDVI greater than 

100. The clipped rasters were then loaded into GRASS GIS and a PCA was performed using the 

i.pca function. Rasters for the first six principal components, accounting cumulatively for 75.99% of 

the variance in the input rasters, were exported as .tif files and used in classifier tests. 

 

Component Proportion of Variance Cumulative Proportion of 
Variance 

1 35.53% 35.53% 

2 11.99% 47.52% 

3 9.49% 57.01% 

4 7.96% 64.97% 

5 6.23% 71.20% 

6 4.79% 75.99% 

Table E.1. Principal components and the proportion of variance they account for. 
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Figure E.1. Loadings for the first six components in the principal components analysis. 

Interpretation 

Based on the loadings for each height interval and visual inspection of the maps produced by 

displaying component scores for each pixel, we can attempt a preliminary interpretation of the types 

of canopy structure represented by the first three components.  

 

Component one produces higher values for areas with a high proportion of returns between zero 

and five feet and lower values for returns between five and fifteen feet.. Accordingly, it tends to 

result in lower values for areas with dense underbrush and higher values for forests without dense 

underbrush where pulses that penetrate the canopy tend to result in a ground return. 

 

Component two attaches negative loadings to returns within 0-15 feet, particularly those in the 10-

15 foot range. Returns greater than 20 feet are loaded positively. Visual inspection of the resulting 

map shows that areas known to have dense shrubs have low scores, areas identified as native forest 

fragments tend to have moderate scores, and maximal values occur for street trees, coniferous 

stands, and ‘pioneer’ woodlands.  

 

Component three loads returns from 5-10 feet very negatively and loads returns from 15-20 feet 

very positively, with slight positive loadings for 10-15 and 20-25 feet. On the map, areas with dense 
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undergrowth tend to have the highest values, native fragments having middling scores and 

coniferous areas have the lowest values. 

R Script 

This R script reads in a folder of LiDAR tiles and outputs a series of tiled .tif files recording return 

counts for each height interval. These files must be loaded separately into another GIS (we used 

GRASS) to calculate principal components. 

 
############################### 

# AAUTC LiDAR PCA Script 

# Author: Thomas Estabrook 

# 2/9/2022 

# Updated: 1/17/2022 

############################### 

 

library(raster) 

library(lidR) 

 

############################################################################# 

 

cloud_norm <- readLAScatalog("D:/Capstone_Large_Data/Las-

PointCloud/Normalized/") 

las_check(cloud_norm) 

 

opt_chunk_buffer <- 0 

opt_select(cloud_norm) <- "xyz" 

 

for (i in c(0:24)) { 

  lower_height <- i*5 

  upper_height <- lower_height + 5 

  filter_cmd <- paste("-drop_z_below", lower_height, "-drop_z_above", 

upper_height) 

  opt_filter(cloud_norm) <- filter_cmd 

   

  outfiles <- paste0('G:/Shared drives/A2_UTC 

Drive/R_scripts/LiDAR_PCA/return_counts/h', lower_height, "_", upper_height, 

'/{*}_returns', lower_height, "_", upper_height) 

  opt_output_files(cloud_norm) <-  outfiles 

   

  return_counts <- grid_metrics(cloud_norm, ~length(Z), 5) 

} 
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Appendix F: Summary of Predictor Variables for Common Tree Genera 

Introduction 

In this appendix, we present some exploratory data analysis and visualization for the LiDAR 

segmented dataset that was used in our highest performing random forest model in Chapter 4. This 

dataset contains 29,399 trees with recorded values for thirty three continuous variables, as follows: 

 

Variable Description  Variable Description 

Mean_NDVI Mean value of NDVI raster 
calculated from NAIP imagery 

 MEANCIR2A230 Mean value of CIR green band 
in tree crown 

Min_canopy_height Minimum value of CHM in 
tree crown (ft) 

 MEANCIR3A230 Mean value of CIR red band in 
tree crown 

Max_canopy_height Maximum value of CHM in 
tree crown (ft) 

 MEANCIR4A230 Mean value of CIR NIR band 
in tree crown 

Canopy_height_range Range of CHM values in tree 
crown (ft) 

 MEANNEAR1A230 Mean value of Nearmap blue 
band in tree crown 

Mean_canopy_height Mean CHM value in tree 
crown (ft) 

 MEANNEAR2A230 Mean value of Nearmap green 
band in tree crown 

Canopy_height_sd Standard deviation of CHM 
values in tree crown (ft) 

 MEANNEAR3A230 Mean value of Nearmap red 
band in tree crown 

Volume Sum of all CHM pixels in tree 
crown (9 ft3) 

 Area_Sq_ft Area of tree crown (ft2) 

Median_canopy_heigh Median of CHM values in tree 
crown (ft) 

 MEANNIRTEX Mean value of NIR texture 
raster calculated from NAIP 
imagery in tree crown 

Canopy_pct90 Height of the 90th percentile 
of CHM values in tree crown 
(ft) 

 MEANGTEX Mean value of green texture 
raster calculated from NAIP 
imagery in tree crown 

Canopy_pct80 Height of the 80th percentile 
of CHM values in tree crown 
(ft) 

 MEANCHMTEX Mean value of texture raster 
calculated from CHM in tree 
crown 

Canopy_pct70 Height of the 70th percentile 
of CHM values in tree crown 
(ft) 

 PC1mean Mean value of LiDAR principal 
component 1 in tree crown 

MEANNAIP1A230 Mean value of NAIP blue band 
in tree crown 

 PC2mean Mean value of LiDAR principal 
component 1 in tree crown 

MEANNAIP2A230 Mean value of NAIP green 
band in tree crown 

 PC3mean Mean value of LiDAR principal 
component 2 in tree crown 

MEANNAIP3A230 Mean value of NAIP red band  PC5mean Mean value of LiDAR principal 
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in tree crown component 3 in tree crown 

MEANNAIP4A230 Mean value of NAIP NIR 
band in tree crown 

 PC6mean Mean value of LiDAR principal 
component 4 in tree crown 

MEANCIR1A230 Mean value of CIR blue band 
in tree crown 

   

Table F.1. Predictor variables resulting from LiDAR segmentation of tree canopy. 

 
Figure F.1. Correlation plot of predictor variables. Strong correlations can be observed between all variables derived 
from LiDAR and between the bands of each imagery set. . 

Plots 

For visualization, we selected ten genera based on prevalence within the dataset and importance in 

native forest communities. These are Acer, Quercus, Carya, Gleditsa, Tilia, Plata, Pinus, Malus, Ulmus, 
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and Juglans. Variables displayed have been selected due to their high importance in the random forest 

model, described in more detail in chapter 4. 

 

 
Figure F.2. Violin plot of mean NIR texture by genus. 

 
Figure F.3. Violin plot of mean NDVI by genus. 
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Figure F.4. Violin plot of mean NAIP green texture by genus. 

 
Figure F.5. Violin plot of mean value of LiDAR PC1 by genus. 
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Figure F.6. Violin plot of mean LiDAR PC 2 by genus. 

 
Figure F.7. Violin plot of mean blue CIR band by genus. 
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Figure F.8. Violin plot of mean CIR green band by genus. 

 
Figure F.9. Violin plot of mean CIR red band by genus.
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Figure F.10. Violin plot of mean NAIP green band by genus. 

 
Figure F.11. Violin plot of mean NAIP NIR band by genus.
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Appendix G: Machine Learning R Script 

This R script takes in a .csv file containing labeled trees and predictor variables. It divides this table 

into training and testing data, feeds the training data into a random forest, SVM, and multinomial 

regression model and automatically outputs summary files with confusion matrices for each model. 

 
############################### 

# AAUTC Machine Learning Script 

# Author: Thomas Estabrook 

# 1/17/2022 

# Updated: 3/21/2022 

############################### 

 

library(sf) 

library(randomForest) 

library(tidyverse) 

library(caret) 

library(nnet) 

library(e1071) 

 

# Next code chunks can be commented/uncommented based on which segmentation 

type is used 

 

# seg_method <- "pixel"       # segmentation method (e.g. LiDAR, pixel, 

buffered pixel) 

# location <- "A2"           # location (e.g. BPW, full_city) 

# genus_threshold <- 200       # number below which genera are lumped into 

"other" category 

# today <- Sys.Date()         # current date 

# set.seed(1)                 # set a random seed for reproducibility 

# setwd('G:/Shared drives/A2_UTC Drive/R_scripts/Model_Inputs')                     

# set working directory 

#  

# # Load in the csv with tree data 

# # Should have a column with Genus, and columns for each predictor variable 

# trees <- read.csv("A2_trees_single_pixel3_pca.csv") %>% 

#   mutate(tree_id = row_number()) %>% # add a new unique ID for the dataset 

#   drop_na() %>% 

#   filter(Genus != "") 

#  

# trees$Soils <- as.factor(trees$Soils) 

#  

# head(trees) 

# colnames(trees) 

#  

# #Use this to list all columns not being used as predictor variables 

# dropcols <- c("ï..OID_", "tree_id", "Plnt_Cd", "Cmmn_Nm", "Source", 

"Prjct_C", "DBH_ft_cm_2") 
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# seg_method <- "Buffpix"       # segmentation method (e.g. LiDAR, pixel, 

buffered pixel) 

# location <- "A2"           # location (e.g. BPW, full_city) 

# genus_threshold <- 100       # number below which genera are lumped into 

"other" category 

# today <- Sys.Date()         # current date 

# set.seed(1)                 # set a random seed for reproducibility 

# setwd('G:/Shared drives/A2_UTC Drive/R_scripts/Model_Inputs')                     

# set working directory 

#  

# # Load in the csv with tree data 

# # Should have a column with Genus, and columns for each predictor variable 

#  

# trees <- 

read.csv("trainingtrees_master_1006_cmDBH_shrubs_Buffer_MeanBand.csv") %>% 

#   mutate(tree_id = row_number()) %>% # add a new unique ID for the dataset 

#   drop_na() %>% 

#   filter(Genus != "") %>% 

#   left_join(area) 

#  

#  

# head(trees) 

# colnames(trees) 

#  

# #Use this to list all columns not being used as predictor variables 

# dropcols <- c("ï..OID_", "Plnt_Cd", "Cmmn_Nm", "Source", "Prjct_C", 

"ORIG_FID", "tree_id", "DBH_ft_cm", "BUFF_DIST", "Shape_Length", 

"Shape_Area") 

 

seg_method <- "lidR30_pca2"       # segmentation method (e.g. LiDAR, pixel, 

buffered pixel) 

location <- "A2"           # location (e.g. BPW, full_city) 

genus_threshold <- 100       # number below which genera are lumped into 

"other" category 

today <- Sys.Date()         # current date 

set.seed(1)                 # set a random seed for reproducibility 

setwd('G:/Shared drives/A2_UTC Drive/R_scripts/Model_Inputs')                     

# set working directory 

 

# Load in the csv with tree data 

# Should have a column with Genus, and columns for each predictor variable 

#PCs <- read.csv("G:/Shared drives/A2_UTC 

Drive/R_scripts/LiDAR_PCA/A2_LidR_seg_30_PCs.csv") 

 

trees <- read.csv("A2_LidR_seg_30_finalZS_soil_tex_area_PCs.csv") %>% 

  mutate(tree_id = row_number()) %>% # add a new unique ID for the dataset 

  drop_na() %>% 

  filter(Genus != "") 



 

53 

 

head(trees) 

colnames(trees) 

 

#Use this to list all columns not being used as predictor variables 

dropcols <- c("X", "X.1", "X.2", "Id", "MAJORITY", "MINORITY", "VARIETY", 

"tree_id") 

trees$SOIL <- as.factor(trees$SOIL) 

 

#############################################################################

############################### 

# Get counts of tree genera 

genuscounts <- trees %>% 

  group_by(Genus) %>% 

  summarise(count = n()) 

 

# Filter out underrepresented genuses and recode to "Other" 

other_genera <- genuscounts$Genus[genuscounts$count < genus_threshold]  

trees$Genus[trees$Genus %in% other_genera] <- "Other" 

 

# Randomly take half of each genus for training and testing 

training_trees <- trees %>% 

  group_by(Genus) %>% 

  slice_sample(prop = 0.5) 

 

testing_trees <- trees[!(trees$tree_id %in% training_trees$tree_id),] 

 

# Remove unneeded columns 

training_trees <- training_trees %>% 

  select(!all_of(dropcols)) 

 

testing_trees <- testing_trees %>% 

  select(!all_of(dropcols)) 

 

# Turn the Genus column into a factor 

training_trees$Genus <- as.factor(training_trees$Genus) 

testing_trees$Genus <- as.factor(testing_trees$Genus) 

 

# Run a random forest model 

rf_mod <- randomForest(Genus ~ ., data = training_trees,  

                       xtest = testing_trees[,!names(testing_trees) == 

"Genus"], 

                       ytest = testing_trees$Genus, 

                       keep.forest=TRUE) 

rf_pred <- rf_mod$test$predicted 

rf_conf <- confusionMatrix(data = rf_pred, reference = testing_trees$Genus) 

 

# Run a SVR model 

svm_mod <- svm(Genus ~ ., data = training_trees) 
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svm_pred <- predict(svm_mod, testing_trees) 

svm_conf <- confusionMatrix(data = svm_pred, reference = testing_trees$Genus) 

 

# Run multinomial logistic regression 

reg_mod <- multinom(Genus ~ ., data = training_trees, MaxNWts =10000000, 

maxit = 2000, na.action = "na.fail") 

reg_pred <- predict(reg_mod, testing_trees) 

reg_conf <- confusionMatrix(data = reg_pred, reference = testing_trees$Genus) 

reg_conf 

 

# Save outputs 

setwd('G:/Shared drives/A2_UTC Drive/R_scripts/Model_Outputs')     

filename <- paste0(seg_method, "_", location, "_", genus_threshold, "_", 

today) 

save(rf_mod, file = paste0("rf_mod_", filename)) 

save(svm_mod, file = paste0("svm_mod_", filename)) 

save(reg_mod, file = paste0("reg_mod_", filename)) 

 

sink(file = paste0("summary_", filename, ".txt")) 

print(paste("Number of genera:", length(levels(training_trees$Genus)))) 

print(paste("Number of trees:", nrow(trees))) 

 

print("Random Forest:") 

rf_conf$overall[1:2] 

print("Support Vector:") 

svm_conf$overall[1:2] 

print("Multinomial Regression:") 

reg_conf$overall[1:2] 

 

print("Random Forest:") 

rf_conf 

 

print("Support Vector:") 

svm_conf 

 

print("Multinomial Regression:") 

reg_conf 

sink(file=NULL) 
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Appendix H: Tree Crown Segmentation R Script 

This R script takes as input a folder with tiled LiDAR pointclouds and outputs a segmented raster 

with each tree crown assigned a unique ID.  

 
library(lidR) 

library(raster) 

 

f <- function(x) {  # Taken from https://jean-romain.github.io/lidRbook/itd-

its.html 

  y <- 20.1 * (-(exp(-0.08*(x-2)) - 1)) + 10 # altered for feet (state plane) 

  y[x < 6] <- 10 #10 feet for less than 6 feet tall 

  y[x > 60] <- 30 # 30 feet for greater than 60 feet tall 

  return(y) 

} 

 

for(i in seq(0:8)){ 

  setwd("G:/Shared drives/A2_UTC Drive/R_scripts/CHM_full_city_mask/") 

  double_name <- paste0("CHM_full_city_mask.", i-1,'_double.tif') 

  A2_CHM <- raster(double_name) 

 

  gc() 

  ttops30 <- find_trees(A2_CHM, lmf(30)) 

 

  # par(mfrow=c(1,1)) 

  # plot(A2_CHM, col = height.colors(50)) 

  # plot(ttops30, add = TRUE) 

 

 

  algo30 <- silva2016(A2_CHM, ttops30) 

 

  setwd("G:/Shared drives/A2_UTC 

Drive/R_scripts/CHM_full_city_mask/Unmerged_segs") 

 

  seg30 <- algo30() 

  # plot(seg30, col = pastel.colors(5000)) 

  writeRaster(seg30, paste0("A2_LidR_seg_30_", i-1, ".tif")) 

  rm(seg30) 

} 
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Appendix I: Trees Found in Unsupervised Clusters 

In an effort to characterize the clusters resulting from the unsupervised clustering algorithm 

described in Chapter 2, we used the Extract Multi-values to Points tool in ArcGIS Pro to acquire the 

cluster number of the pixel overlapping each of the trees in our training dataset. The following plots 

display the results for the 25 most common genera in the dataset. It should be noted that because 

the training dataset is not a truly random sample of the city’s canopy trees, the results here may be 

biased and should be consulted for exploratory purposes only. 

 

 
Figure I.1. DBH violin plot for training data trees found in each cluster. Clusters 4, 6, and 2 have the highest average 
DBH. “Wavy” appearance of density curves is due to the way some datasets round DBH in 2.5 cm increments. 
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Figure I.2. Count of trees by genus found in each cluster.  

 
Figure I.3. Percentage of each genus falling into each cluster.  
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Figure I.3. Percentage of each genus falling into clusters classed as native vs. those classed as secondary/shrub. We can 
observe that hophornbeams (OSTRY), hickories (CARYA), black cherries (PRUNU), oaks (QUERC), walnuts 
(JUGLA), and poplars (LIRIO) are well-represented in the clusters identified as native. 


