Exercise training remodels subcutaneous adipose tissue in adults with obesity even without weight
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ABSTRA

Excessive adizos;ssue mass underlies much of the metabolic health complications in obesity.
Although :ﬁaining is known to improve metabolic health in individuals with obesity, the

effects of e®ercise training without weight loss on adipose tissue structure and metabolic function

remain unclear, Thirty-six adults with obesity (BMI = 33+3 kg/m®) were assigned to 12 wks (4d/wk)

duced fat cell size, increased Collagen type 5a3, both p<0.05, increased capillary

density, p=0.05), and altered protein abundance of factors that regulate aSAT remodeling (i.e.,
reduced mhllopeptidase 9; p=0.02; increased angiopoietin-2; p<0.01). Exercise training also
increased p, undance of factors that regulate lipid metabolism (e.g., hormone sensitive lipase

and fatty a case; p<0.03) and key proteins involved in mitogen-activated protein kinase
pathway w ured the day after the last exercise session. However, most of these exercise-
mediated cgges were no longer significant 4 days after exercise. Importantly, MICT and HIIT

induced remarkabl§ similar adaptations in aSAT. Collectively, even in absence of weight loss, 12

weeks of eﬁ?ning induced changes in aSAT structure, as well as factors that regulate

metabolism and inflammatory signal pathway in adults with obesity.

<
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KEY POINTS

e Exercise training is well-known to improve metabolic health in obesity - but how exercise
modifies the structure and metabolic function of adipose tissue, in absence of weight loss,

remains unclear.

e  We report that 12 weeks of moderate-intensity continuous training (MICT) and 12 weeks of
high-intensity interval training (HIIT) both induced modifications in adipose tissue structure
and factors that regulate adipose tissue remodeling, metabolism, and inflammatory signal
pathway in adults with obesity, even without weight loss (with no meaningful differences

between MICT and HIIT).

e The modest modifications in adipose tissue structure in response to 12 weeks of MICT or

HIIT did not lead to changes in the rate of fatty acid release from adipose tissue.

e These results expand our understanding about the effects of two commonly used exercise
training prescriptions (MICT and HIIT) on adipose tissue remodeling that may lead to

advanced strategies for improving metabolic health outcomes in adults with obesity.

\\V

INTR

Abdomina!ubcutaneous adipose tissue (aSAT) in obesity is usually characterized by hypertrophic
adipocytes, ation of fibrotic collagen proteins in extracellular matrix (ECM), and relatively

low capill (Summers ef al., 1996; Sun et al., 2011; Chun, 2012), all of which are tightly
linked with TH8 resistance, cell necrosis, and inflammatory macrophage infiltration (Després,
1993; Sﬂ, 2004; Cinti et al., 2005). The increased inflammation in aSAT is considered an
import 1 to many systemic metabolic health complications (Hotamisligil e al., 1993;
ShimonH%; Kern et al., 2001). In addition, these aSAT abnormalities in obesity can limit
fat storagmresulting in the high rates of fatty acid release into the systemic circulation that

underlies i®ally harmful ectopic lipid deposition commonly found in tissues such as the liver

and skeletal of many adults with obesity (McQuaid ef al., 2011). Therefore, strategies aimed at
T to create more smaller adipocytes (i.e., adipogenesis), modify the content and
composition of tHEECM, increase capillarization (i.e., angiogenesis), reduce inflammatory pathway
activation, and increase lipid storage capacity could lead to improved metabolic health outcomes,

even in the absence of weight loss.
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Exercise is one of the first-line strategies for treating of obesity-related health complications, but how
exercise “works” to improve metabolic health in obesity is still incompletely understood. Exercise
training inieases 'eletal muscle mitochondria and oxidative capacity in adults with obesity
(Tremblay etg 994; Menshikova et al., 2005; Ryan et al., 2020). But, increasing muscle oxidative
capacity, p ften found to do rather little to improve insulin sensitivity and other key markers
of metal%)lic health in adults with obesity (Ostergard et al., 2006; Hutchison et al., 2012).
Alternativelly, evidence from our lab and others suggest exercise triggers responses in aSAT that may
lead to EC%

(Cullberg

intensity interva

eling, increased angiogenesis, and alterations in the inflammatory profile

al., 2003; Kawanishi et al., 2013; Van Pelt et al., 2017; Ludzki et al., 2018). High-
aining (HIIT) has garnered considerable attention because of its time efficiency
iolbgical responses compared with more “conventional” moderate-intensity
(MICT) (Little et al., 2014; Weston et al., 2014). However, whether and/or how
the intensity of an @kercise training program may modify adaptive responses within aSAT remains
unclear. Differential effects of HIIT vs. MICT on circulating adipokine levels and adipocyte size in

rodent modgls suggests a possibility that HIIT may induce more robust adaptations in aSAT

f

morphology and metabolism compared with MICT (Shirvani & Arabzadeh, 2020; Sun ef al., 2020).

d

The pri aims of this study were to compare the effects of 12 weeks of MICT vs. HIIT on

subcutaneou structure and whole-body fatty acid mobilization in adults with obesity. This

M

project ed the effects of MICT and HIIT on the factors that regulate aSAT remodeling
(i.e., adipogenesis, ECM remodeling, angiogenesis), metabolism (i.e., lipolysis, esterification,
mitochond tation) and inflammatory signal pathway. Importantly, because even modest
changes in bg eight and fat mass can induce some aSAT remodeling (Clément et al., 2004; Kos et

al., 2009; Ma t al., 2016), this study was designed to require participants to maintain their body

OF

weight thro e training intervention. We hypothesized that even without weight loss, 12 weeks

1

of exercis@ training would induce detectable modifications to aSAT structure and metabolic

regulation. ¢Moreoyer, we hypothesized that these training-induced effects would be more pronounced

t

in responseto HIIT compared with MICT.

U

A
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METHODS & MATERIALS

Subjects
Thirty-six @besity (BMI: 30-40 kg/m?) participated in the study. All participants were

sedentafy, amdmeperted to have had a stable body weight at least 6 months before their first pre-
training cliMsurement. Subjects were not taking any medications or supplements known to
affect their gletaBglism except contraceptive medications for some female participants (n=16 out of
24). Eligib igipant also had no history of cardiovascular or metabolic disease. All female

participantMemenopausal and not pregnant or lactating. All participants completed a detailed
S

medical hi ey and resting electrocardiogram, which were reviewed by a physician before any

testing. Su icipating in this study also participated in a related study from our laboratory,
focused prigaaci the effects of 3 months of exercise training in whole-body insulin sensitivity and
muscle lipiglism (Ryan et al., 2020). Some of the methods (e.g., exercise training protocols)
and results ribing the basic responses to training (e.g., anthropometric characteristics, peak
oxygen upt been reported elsewhere (Ryan et al., 2020) but are repeated here for
conveniendg. n informed consent was obtained from all subjects before the study. This study
conformed to the standards set by the Declaration of Helsinki, except for registration in a database.

This study roved by the University of Michigan Institutional Review Board (reference no.

HUMO00106883%) and registered at clinicaltrials.gov (NCT02706093).
—

Study Des*
e

high-intensity'tterval training (HIIT; n=19) groups in a counter balanced manner to optimize

matching :sex and baseline anthropometric characteristics and aerobic fitness between training

ing, subjects underwent one “clinical trial” (i.e., hyperinsulinemic-euglycemic

Enrolled s pre assigned to either moderate-intensity continuous training (MICT; n=17) or

groups.
clamp, [ tate tracer infusion to measure whole-body fatty acid mobilization, aSAT
biopsies; s@in Clinical trial section, below). After 12-weeks of MICT or HIIT, subjects

underwent iffical trials, one conducted the day after the last exercise session (1d-Post training)

and the oth cted after subjects refrained from exercise for 4 days (4d-Post training) to wash
uence of the acute exercise effects. Importantly, subjects were required to maintain
their body weight throughout the intervention (see details in Training intervention section, below). A

schematic of the study design is presented in Figure 1.
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Body composition and aerobic fitness testing

Before and after subjects completed the 12-week MICT or HIIT, body composition and aerobic
fitness (ﬂygen uptake; VO,peak) were measured. Fat mass and fat free mass (FFM) were
determinemrgy x-ray absorptiometry (Lunar DPX DEXA scanner, GE, WI). VO,peak was

assessed o cycle ergometer (Corvival, Lode, Netherlands) using an incremental exercise
protocoisstantimgeatet 0 watts for 4min and was increased 20 watts each minute until volitional
exhaustionw of oxygen consumption was measured throughout this test using a metabolic cart
(Max-I1I, Phgsiodgme Inc, NY) and VO,peak was determined as the highest 30-second average before
volitional fagi easurements of respiratory exchange ratio (RER) > 1.1 and maximal heart rate
(HR pax) = Me predicted values (i.e., 220-age) were used as secondary indices to help confirm

maximal e g these tests.

Training iCOns

Training p

Subjects ingbo ups exercised 4 days per week for 12 weeks. Each exercise training session for

the MICT group Consisted of continuous exercise for 45 minutes at 70% of their HR ., For the HIIT

group, € ining session involved a 3-minute warm-up at ~65% HR,,x and then 10 x 1-minute
intervals a max interspersed with 1 minute low-intensity active recovery. These high intensity
interval ollowed by 3-minute cool-down at 65% HR,.x. Participants in both groups were

allowed to select their preferred mode of exercise among stationary cycling, treadmill, elliptical or

rowing erg Exercise time (MICT; 45 minutes, HIIT; 25 minutes) and energy expenditure
(MICT; ~230%ealg, HIIT; ~150 kcals) between groups were considerably different to address the
study goal ring the low-volume HIIT protocol (Gibala ef al., 2012) with a conventional and
commorrd steady-state exercise training program.

Training faﬁtion/ramp-up.
Subjects in ning groups followed a strictly regulated ramp-up protocol to gradually increase

sity and duration during the first two weeks of training. During the first week,

th groups performed 4 sessions of continuous 25 minutes exercise at 65% HR ..
During the second week of the ramp-up, subjects in the MICT group performed 4 sessions of

continuous 35-minute exercise at 70% HR .., while participants in the HIIT group performed 4
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sessions of exercise progressively increasing the number of 1-minute intervals at 90% HR .« (i.e., 2 X

1,4x1,6x1, 8 x 1). Both groups began their full training prescription at the beginning of week 3.

T

Monitorinadherence and weight maintenance.

Study stffSupervised all exercise sessions for the first 3 weeks of training (total 12 sessions). For the
remainder h—week training program, subjects were required to be present for two supervised
training semh week, with two unsupervised sessions monitored using downloadable telemetry
heart rate dcwi olar, Finland) that were provided to all participants, and were required to be worn
during all maining sessions. Heart rate data during all sessions were reviewed by study staff
to ensure s tsappropriate completion of all sessions at the assigned intensity and duration. In

order to m ight stability, participants were weighed several times each week and if body mass

deviated b om their baseline, our research dietitian provided nutritional guidance to adjust

their calorico maintain their weight at their baseline levels.
Clinical trm

three separate clinical trials; Once before training (Pre-training) and twice after

training (1d-P ining and 4d-Post training; Figure 1). For each of these three visits, subjects

igan Clinical Research Unit at 1730 h the evening before the clinical trial. For the
1d-Post training visit, participants performed their usual exercise session beginning at 1800 h (before
dinner). In‘sﬁdiatelpr after the exercise session, participants ingested a nutritional supplement drink,
which was indigidually determined to replace the calories expended during their exercise session with
Plus, Nestle, Switzerland; 50% carbohydrates, 35% fat, and 15% protein) to

prevent an exercise-induced energy deficit state during the trial. During all trials, subjects were

their dinne

provided a§tandardized dinner (30% of estimated total daily energy expenditure) and snack (10% of

estimated tgtal daily energy expenditure) at 1900 h and 2200 h respectively. The macronutrient

compositiofl of the meal and snacks was 55% carbohydrates, 30% fat, and 15% protein. Participants
had access to Watiad libitum, but after their evening snack they remained fasted until completion of

all measur e next morning. Participants slept in their hospital room overnight.

At ~0700 h the next morning, intravenous catheters were inserted into a hand/forearm vein on each
arm. A baseline blood sample was collected at ~0800 h. At ~0830 h we collected aSAT biopsy
samples 10-15cm lateral to the umbilicus, as previously described (Ludzki et al., 2020). Briefly, we
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collected approximately 100mg of a core aSAT sample, which was immediately fixed in 10%

formalin for histological analyses of aSAT morphology and structure (see details below), and another

minutes and 20% dextrose was infused at a variable rate to accommodate

was assess

Briefly, a pwgntinuous infusion of insulin (40mU/m?*/min) was administered; blood glucose

changes in cose to maintain blood glucose at the participants’ overnight fasted levels. After

blood glucose congéntration stabilized without further changes in the rate of D20 infusion for > ~20

collected eyery 5 minutes for the determination of steady state plasma fatty acid kinetics.

Analyticalmres

Histolog essment of aSAT morphology and structure

minutes (typicallf 100min after beginning the clamp procedure), five arterialized blood samples were

The co les that were fixed in 10% formalin at the time of the biopsy were later paraffin
embedded (Sakura Tissue Tek TEC, Japan). Embedded samples were sectioned in 10pum thickness by
a microton! (#RM2235, Leica, Germany) and placed on a microscopy slide. Histological analysis

was performed.on samples collected before the 12-week training intervention and those collected 4d-

Post trainifg ep staining conditions consistent as possible, samples from Pre-training and 4d-

Post training s were placed on the same slide. Sections were prepared for staining by being
deparaffiniged and dehydrated with xylene and series of ethanol respectively, as described previously
(Parlee ” . To minimize variance between subjects, staining was performed in several

batches microscopy conditions (i.e., exposure time) were kept consistent.

Adipocyte si 1stological sample sections were stained with Harris” hematoxylin (#HHS16; Sigma
in (#318906; Sigma Aldrich) followed by dehydration by ethanol. Xylene based
permount was used to mount the slides. Images of the stained sections were obtained with brightfield
channel in 10x by Keyence BZ-X700 microscope (Keyence, Japan). Adipocyte size was determined

by using Image J (NIH, USA) as described previously (Parlee et al., 2014). Proportion of small
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adipocytes were measured by calculating the percentage of adipocytes with mean size larger than

1000pm” and lower than 3000pm’.

Extracellulrosis: Deparaftinized sections were stained with Picro Sirius red (#36554-8;

Sigma lﬂdw hour to determine total fibrosis in aSAT extracellular matrix. Sections were then
rinsed with§@acidified water, followed by dehydration with ethanol and mounted with xylene based
permount. Tg defermine the abundance of subtypes of collagen fibers in extracellular matrix, we
performed fluoresgénce immunohistochemistry. Deparaffinized sections were incubated in 0.5mM
HCI-Glycing,b (pH 3.0) at 90°C for 20 min for antigen retrieval. Sections were subsequently
blocked Wiw

in PBS for ﬁ:ctions were then incubated with primary antibodies overnight at 4°C, and then

drogen peroxide in methanol for 15 minutes followed by 5% normal goat serum

incubated with appfopriate secondary antibody in dark. Sections were mounted with antifade

mounting medi rolong Gold; Thermofisher Scientific). Images of the stained sections were

eyence BZ-X700 microscope (10x; fluorescence) and analyzed by using Image J. The

proportions of each collagen were calculated by dividing the positively stained area by the entire

section are@ P antibodies were Collagen type 4 (Col4, #C1926, Sigma Aldrich), Collagen type
5a3 (Col5a3, #1'S*C353420, LifeSpan BioSciences), Collagen type 6 (Col6, # ab6588, Abcam).
Second odies were AlexaFlour 488 (# A11008, A21422, Thermofisher Scientific) and 555 (#
A21428, T er Scientific).

Capillary Mcﬁons were incubated with anti-von Willebrand Factor (#AB7356; Abcam)
primary antiid@@9afollowed by incubation with HRP conjugated secondary antibody and DAB
substrate fation. Hematoxylin was used for counterstaining. Images were obtained in 10x
by Keyenc 0 microscope (brightfield). Image J was used to analyze capillary density (i.e.,

number of @apillaries per section area and number of capillaries per adipocytes) and capillary size.

=

Protein abundancdf factors regulating aSAT remodeling, metabolism, and inflammatory pathway.

A portion o spirated aSAT biopsy sample (~140mg wet weight) was homogenized in ice-cold
(#9806, Cell Signaling Technology, MA) with freshly added protease and
phosphatase inhibitors (P8340, P5726, and P0044; Sigma Aldrich) using two 5 mm steel beads
(TissueLyser II, Qiagen, CA). Homogenates were rotated at 50 rpm for 60 min at 4°C and then
centrifuged at 4°C for 3 x 15 minutes at 15,000g, disposing the lipid fraction between each
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centrifugation. Protein concentration was assessed using the bicinchoninic acid method (#23225,

Thermofisher Scientific). Samples for Western blotting were prepared in 4x Laemmli buffer, heated

for 5 mi , and equal amounts of protein (15ug) were loaded onto handcast gels ranging
from 8 to 15%embigllowing separation by SDS-PAGE, proteins were transferred onto nitrocellulose
membranes branes were blocked for 2 hours with 5% bovine serum albumin in tris-buffered

saline, (LIWN (TBST) at room temperature and incubated with primary antibodies overnight
at 4°C. Aft@f primary antibody incubation, membranes were washed and incubated with appropriate
secondary anfi (#7074 or #7076, Cell Signaling Technology). All blots were developed using
emilugiinescence (#1705061, Biorad or #34095, Fisher) and imaged (Fluorchem E

enhanced
Imager, ProteinSimple, CA). Primary antibodies were Adipose triglyceride lipase (ATGL, #2138, Cell
Signaling y), Hormone-sensitive lipase (HSL, #18381, Cell Signaling Technology),
Comparati identification-58 (CGI-58, ab183739, Abcam), Glycerol-3-phosphate
acyltransferase 1 (§PAT1, PA5-20524, Thermofisher Scientific), Diglyceride acyltransferase 1
(DGAT1, NB110-41487, Novus Biologics), CD36 (sc-9154, Santacruz biotechnology), Cytochrome c
oxidase suBunit IV (COX-1V, #4844, Cell Signaling Technology), Peroxisome Proliferator Activated
amma (PPARy, #2435, Cell Signaling Technology), CCAAT Enhancer Binding Protein

% 78, Cell Signaling Technology), Fatty acid-binding protein 4 (FABP4, sc-271529,

Receptor
Alpha (CEBPO
Santacruz Bioteclinology), Matrix metalloproteinase 2 (MMP2, #87809, Cell Signaling Technology),

Matrix roteinase 9 (MMP9, #13667, Cell Signaling Technology), Tissue inhibitor
metalloprotei (TIMP1, #8926, Cell Signaling Technology), Tissue inhibitor metalloproteinase 2
(TIMPZ; , Cell Signaling Technology), Vascular Endothelial Growth Factor A (VEGFa,
ab46154, Abcam), Angiopoietin 1 (HPA018816, Sigma Aldrich), Angiopoietin 2 (sc-74403,
Santacruz logy), p38 MAPK (#9212, Cell Signaling Technology), Phospho-p38 MAPK
(Thr180/Ty 0211, Cell Signaling Technology), p44/42 MAPK (Erk1/2, #4695, Cell Signaling
Technolog@ho—p44/42 MAPK (Thr202/Tyr204) (phopho-Erk1/2, # 4376, Cell Signaling
Technolo INK (#9252, Cell Signaling Technology), Phospho-SAPK/INK (Thr183/Tyr185)
(#9251, i ing Technology). To normalize proteins to total protein level, Memcode (#24580,
ThermokF]j idftific) was used to stain total protein in the membranes (Moritz, 2017). To reduce

gel-to-gel variability, an internal standard sample (IS; composite aSAT lysate from 8 obese
individuals) was alSo loaded onto each gel for normalization.

Circulating ¢ rations of adipokines and fatty acids

Plasma concentrations of total adiponectin (DRP300, R&D Systems), high molecular weight (HMW)
adiponectin (DHWADO, R&D Systems) and leptin (EZHL-80SK, Sigma Aldrich) were assessed by
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ELISA. Plasma concentrations of fatty acids (NC9517309, NC9517311, Fujifilm Medical Systems)

were measured using commercially available kits.

T

Plasma fatl @ etics. Gas chromatography-mass spectroscopy (Agilent 5973 Networks, Mass
SelectiVﬁ Dnglent, DE) was used to determine the tracer-to-tracee ratio (TTR) for plasma
palmitate fatty acid rate of appearance (Ra) into plasma was calculated as we have reported

previously (Newsom ef al., 2010).

Statistical w

Non—norma! :y Elibuted data were log-transformed before statistical analysis. Linear mixed models

were appli mine the main effects of training group (MICT vs. HIIT) and training status (pre

training vs = training or pre training vs. 1d-Post training vs. 4d-Post training) and training
group X traui us interactions (IBM Corp. Released 2019. IBM SPSS Statistics for Windows,
Version 26 nk, NY: IBM Corp). Fisher’s least significant different method was used for post
hoc compa en significant interaction effects (i.e., training group x training status interaction)
were o mwise comparisons were also conducted between different training status (i.e., Pre-

training vs. training vs. 4d-Post training). In the few measurements where missing data were

inadequate tissue yield or tracer availability, data for these measurements from all

trials were excluded and specific sample size is reported for these few outcomes. All data are

presented !mean + SD.

RESULTSO

Body w > composition, VO,peak, and blood parameters in response to training

A total of 3@5 with obesity completed the exercise training interventions (MICT; n= 17, HIIT;
n = 19; Table T). Both MICT and HIIT significantly increased both absolute (L/min) and relative
(ml/kgF VOspeak (p <0.001), and there was a trend for the increase in absolute VO,peak in
HIIT (11+£ ¢ greater than MICT (6+£8%) (p=0.1). As designed, body mass and fat free mass
did not change after training (Table 1), but there was a trend for body fat mass to be slightly lower

after both HIIT and MICT (p=0.06), which was the result of very small (< ~0.5kg), yet the consistent

reduction in total body fat mass across subjects (Table 1).
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Three months of exercise training without weight loss did not alter fasting plasma concentrations of

[

fatty aci ngly, fasting plasma concentrations of total adiponectin, HMW adiponectin and

leptin wer icantly reduced after training (p=0.001, p=0.03, p=0.03, respectively; Table 1)

with no difi een MICT and HIIT.

rip

Morphologi€al structural aSAT remodeling in response to training

G

Adipocyte ¢ . Twelve weeks of MICT and HIIT slightly (~10%), yet significantly reduced mean

adipocyte size =B 002; Figure 2A and 2B) and increased the proportion of small adipocytes

S

(p=0.018; re®2C). This was evidenced by a leftward shift in the frequency distribution for 4d-Post
training adipocyteize (Figure 2D). There were no distinguishable differences between MICT and
HIIT (Figul !

U

aSAT fibro CM collagen. aSAT fibrosis (as assessed by Sirius Red staining) was not altered

dl

after trainingyi r MICT or HIIT (Figure 3A and 3B). Using immunohistochemistry to assess
potenti the abundance of some specific aSAT ECM proteins, we found a small, yet
significant incri in Col5a3 4 days after training (p=0.04) with no differences between MICT and

HIIT (

M

3B). Conversely, the abundance of Col4 and 6 were not significantly altered by
exercise training (Figure 3A and 3B).

aSAT capilla . Exercise training increased capillarization when expressed as the number of

capillaries peft (Figure 4A and 4B; p=0.05). Conversely, the change of capillarization when

expressed @ the number of capillaries per adipocyte (Figures 4A and 4C), did not quite reach

statistic ce (p=0.1). There were no differences in capillarization observed between MICT
and HII'T" ally, capillary cross-sectional area also did not change 4 days after training in
either MICE‘ (Figure 4D).

Factors ing aSAT remodeling

The morphological/structural measurements presented above were all measured in aSAT samples

collected 4 days after the last exercise training session. However, because many longer-term
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adaptations to exercise training like these often stem from relatively short-lived responses to exercise,

we measured changes in factors that regulate these structural adaptations both 1 day and 4 days after

the last ex*ise tr'ning session.

Q)

Markerﬁof Wesis regulation

The proteirhlce of total PPARYy was not different after training in either group (Figure 5A).
However, We foun@ a significant training group x training status interaction for CEBPa., another
primary tra ()

total CEB s significantly increased in aSAT 1 day and 4 days after the last exercise session in
HIIT (p=0.02"and®p=0.03 respectively) but not MICT (Figure 5B). The protein abundance of FABP4,

a marker for diffeitiated/mature adipocytes was significantly increased when measured 1 day after

exercise (p=0-01) and tended to remain elevated when measured 4 days after exercise (p=0.09) with

no differelfs Eefween MICT and HIIT (Figure 5C).
Extracellum regulators

Although id not find an effect of exercise training on total aSAT fibrosis (as assessed by Sirius

n factor for adipogenesis. Post-hoc testing revealed that the protein abundance of

Red staini re 3), we did find that abundance of MMP9, one of the key proteins involved in
ECM remodeling was reduced 4 days after exercise training (p=0.02; Figure SE). There was no
significant difference in MMP9 abundance between MICT and HIIT. The protein abundance of
MMP2, TIL

F, and G).

Angiogﬁmmrs

Aligning *H tﬂe observed increase in aSAT capillarization after both MICT and HIIT, protein
abundance of the §gi0genic regulator, Angiopoietin-2 was increased both 1 day and 4 days after

exercise tr. <0.01) with no differences between groups (Figure 5J). In contrast, we did not

TIMP2 were not altered either 1 day or 4 days after exercise training (Figure 5D,

O

observe ased abundance of VEGFa, which is widely considered a “master regulator” of

angiogeni (Figure 5SH). Additionally, we found a significant training group x training status
interaction for Angiopoietin-1, another angiogenic regulator. Post-hoc testing revealed that
Angiopoietin-1 was significantly reduced below pre-training levels when measured 4 days after

training after HIIT (p=0.006) but not MICT (Figure 5I).
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Whole-body fatty acid mobilization

After an ovegaigh

trainin | uring the insulin infusion, the potent antilipolytic effects of insulin reduced fatt
g ’ p p y

fast, fatty acid release from adipose tissue into the systemic circulation (fatty acid

Ra) was no dl by either MICT or HIIT when measured either 1 day or 4 days after exercise
acid Ra to Bvels ~70% below basal levels in both training groups (p<0.001), but there was no effect

exercise training (Higure 6).

)

Proteins rﬁ aSAT metabolism
In agreem ur observation that training did not affect fatty acid release from adipose tissue,

of exercis@on the antilipolytic effects of insulin when measured after 1 day and 4 days of

protein ab f the main triacylglycerol lipase protein, ATGL and its primary activator, CGI-58
also did no after training (Figure 7A and B). Interestingly, however, abundance of HSL,
which hyd acylglycerol to monoacylglycerol, was significantly elevated above pre-training
levels whe d 1 day after exercise (p = 0.01) and tended to remain elevated 4 days later
(p=0.06ghi . The protein abundance of the fatty acid trafficking protein, FAT/CD36 was

significantly 1

later (Fi

ed 1 day after exercise (p=0.03), which then returned to pre-training level 4 days

either of the primary fatty acid esterification proteins, GPAT1 and DGAT1 were
altered by training (Figure 7E and F). Exercise training significantly increased the protein abundance
of COX-IVpya classical marker of mitochondrial density (p<0.01; Figure 7G). However, the protein
abundanc;h, an enzyme involved in citric acid cycle and electron transport chain, was not
affected aff @ e training (Figure 7H). Importantly, we did not observe any differences between
HIIT and MT@I6r any of these proteins that regulate aSAT metabolism (Figure 7).

-

Key sigw involved in MAPK pathway

The protein abunddhce of phosphorylated P38 MAPK (Thr'® and Tyr'®?) was significantly increased
1 day after exercigggtraining (p=0.02) with no differences between MICT and HIIT (Figure 8A).

ercise-induced increase in phosphorylated P38 was no longer evident when
expressed re total P38 MAPK (Figure 8C). We also found the total protein abundances of
JNK and ERK1/2 to be significantly elevated 1 day after last exercise session (both p=0.02) with no
difference between MICT and HIIT (Figure 8D and G). Importantly, when measured 4 days after the
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last exercise training session, we could no longer detect significant changes in the abundance of any

of these proteins (total or phosphorylated forms) compared with pre-training levels.

T

DISCUSS

H I

-

The major findings of this study were that 12 weeks of exercise training, in absence of changes in
body Weig‘ and f> mass, reduced adipocyte size, modified the composition of ECM and increased
capillarizatign igaaSAT. Accompanying the changes in ECM and capillarization, we found some key
factors thafregiilatgl extracellular matrix remodeling (MMP9Y), and angiogenesis (ANGPTL2) were
altered in r o exercise training. Additionally, many of the modest exercise-induced changes in
factors that regulatg)aSAT metabolism (i.e., HSL and CD36) and inflammatory pathway activation

(i.e., phosph P38 MAPK, INK, and ERK1/2) were evident the day after the last session of

exercise bufl were reversed 4 days later. Importantly, despite the robust difference in training intensity

and volume, metabolic and aSAT adaptations in response to MICT and HIIT were remarkably similar.

(O

Adipose with a greater proportion of smaller adipocytes is often considered to be more
metabolica able in terms of lower pro-inflammatory macrophage infiltration (Weisberg et al.,
2003), 1 ic rates (Laurencikiene et al., 2011), and enhanced sensitivity to insulin (Olefsky,

1976, 1977). Some studies have reported adipocyte size to be smaller after exercise training (Despres

etal., 1991 isch et al., 2009; Américo et al., 2019), perhaps contributing to the exercise-induced
improvemeg gtabolic health. However, most of these reductions in adipocyte size after exercise
training Wcompanied by a meaningful amount of weight loss, thereby confounding the
interpretatit' ct effects of exercise on adipocyte size. In contrast, by intentionally requiring our
participant$jto maintain body weight throughout the 12-week training program, we were largely able
to remove 'is convunding influence of weight loss on the effects of exercise training on adipocyte
size. We m knowledge that despite weight maintenance in our study, the very small, non-
significant reductidh in whole body fat mass (~0.5kg) may have contributed to a portion of the ~10%

reduction of adipogyte size we observed after training. However, it seems unlikely that we would be

able to s very small change in whole body fat mass at the adipocyte-level. This is supported

by our obse hat the reduction in adipocyte size in our study was not related to the reduction in
fat mass (R* = 0.005, P = 0.7), suggesting factors other than loss of body fat (e.g., formation of more
adipocytes) may also underlie the reduction of adipocyte size we observed. Our findings that some of

adipogenic markers were increased after training (i.e., trend of increase in protein abundance of
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FABP4 and significant increase in protein abundance of CEBPa in HIIT) provides some support for

this notion. It is unclear why CEBPa was only increased in HIIT, but perhaps, expression of

adipogeWtion factors may be differentially regulated by exercise intensity.

Q.

The potgntiglgglesaf exercise on aSAT ECM is important because ECM’s fibrotic content is tightly
associated si'th obesity-induced insulin resistance (Divoux et al., 2010; Spencer et al., 2011). Because
changes inwmass are known to induce remodeling of adipose ECM (Divoux et al., 2010;

L, 201),

Spencer et to accurately assess the effects of exercise on aSAT ECM, once again it is
critical to tightlyggontrol of body weight/body fat mass during exercise interventions. To our
knowledg previous study has examined the effects of exercise training on ECM remodeling
independe ight loss, and it was reported that in high fat diet (HFD)-fed mice, four-months of
exercise trainin; s

identical ga&dy weight and body fat mass between exercised and non-exercised animals
tal.,

rkedly attenuated the increase in epidydimal adipose tissue fibrosis despite

(Kawanish®et al., 2013). In contrast, our findings suggest that three-months of exercise training

without weight loss may not induce meaningful modifications in aSAT fibrosis in human subjects

with obesi ognize that our three-month exercise interventions may have been too short to

induce meaningfUl changes in aSAT fibrotic deposition in humans. An alternative possibility to

explain rent discrepancy between our findings and those of Kawanishi, et al (Kawanishi et
al.,2013) i ercise may be effective in attenuating the increased fibrotic formation that often
occurs 1 sue with weight gain but may not be as effective in reducing existing fibrosis.

Importantly, however, our observation that exercise training modestly modified the composition of

the collageMT samples may have important clinical implications. Although the increase in

Col5a3 ab ay seem to conflict with the notion that increased extracellular matrix deposition
is negative ted with metabolic health, evidence suggest Col5a3 is a crucial signaling
component j se homeostasis (Huang et al., 2011). Huang et al reported that isolated adipocytes

from epididimal fat pads in Col5a3” mice exhibited impaired glucose uptake compared with that in

wild type estimg the critical role of Col5a3 in adipose tissue glucose metabolism. Therefore,

increased of Col5a3 in response to exercise training may still reflect a metabolically

favorable adaptati

High capilla; ity in adipose tissue enhances capacity for oxygen and nutrient delivery (and
metabolic by-product removal), possibly preventing local hypoxia, which can lead to increased
fibrosis and inflammation (Halberg et al., 2009; Krishnan et al., 2012). Although we found an

increase in aSAT capillarization after exercise training (i.e., when expressed as number of capillaries
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per mm®) — this effect was rather modest and the increase in the number of capillaries per adipocyte
did not quite reach statistical significance. One previous study reported that 12 weeks of endurance
exercise trdining sg@nificantly increased the number of capillaries per adipocyte in human
aSAT(Waltoneeha!., 2015). However, this exercise-induced increase in aSAT capillarization was only

found in th bese, insulin-sensitive subjects (BMI: 26 + 0.72 kg/m?) while aSAT

9

capillarization did not increase significantly in their insulin resistant subjects with obesity (BMI: 35.1
H I

+ 0.9 kg/nf) (Walton et al., 2015). This may help explain why we did not find a more robust increase

in aSAT capillarization in our subjects. It is possible that insulin resistance may blunt angiogenesis by
suppressingithe expression of VEGFa (Pasarica ef al., 2009). Additionally, our finding that
Angiopoietin-2 peotein abundance increased after both MICT and HIIT, suggests that exercise
training m. eglllate components of the angiogenic pathway - but perhaps 12 weeks of exercise

training w g enough to induce a robust increase in capillarization of the hypertrophied

LS

adipocytes in adult§ with obesity. While our finding that Angiopoietin-1 protein abundance in aSAT
did not chan MICT is consistent with the previous exercise training study in humans (Walton

et al., 2015), the reduction in HIIT suggests that aSAT Angiopoietin-1 may be differentially regulated

A

by exercise intensity, although the underlying mechanisms for this phenomenon are unclear.

Accompanijin bserved trend for an increase in the number of capillaries per adipocyte in our

study, the m eduction in adipocyte diameter we observed after training may represent a
favorab tation in the context of oxygen and nutrient delivery, by reducing diffusion distance in

adipocytes.

N

[

Excessi tty acid release/mobilization from aSAT into the systemic circulation that is

common in “! often results in ectopic fat deposition in other tissues (i.e., liver, skeletal muscle,

heart, etc.) derlies many obesity-related cardiometabolic complications (Ravussin & Smith,
2002; McQuai l.,2011). Our findings that 12 weeks of exercise training without weight loss did
not alter whgle-body fatty acid mobilization rate is consistent with previous reports (Horowitz et al.,

1999; Horawitz et @!., 2000). Our current findings extend on these previous studies by demonstrating

th

that the ant-lipolytic effects of insulin were also not affected by 3 months of training. We
acknowledge the pssibility that our dose of insulin during the clamp (40 mU/m*/min) may have been

high enough to mask potential improvements in anti-lipolytic sensitivity to insulin after training. But

\

based on previous work (Shojaece-Moradie et al., 2007), we do not believe this to be the case. Our
observation is study are also specific to the conditions when exercise training is not
accompanied by weight loss. We previously reported that when exercise training is accompanied by
weight loss, systemic fatty acid mobilization declines (Schenk ef al., 2009). In fact, the reduction in

lipolytic rate and systemic fatty acid mobilization was identical when adults with obesity lost 12%
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body weight with or without exercise training (Schenk et al., 2009). Therefore, it appears that changes
in systemic fatty acid mobilization are particularly responsive to weight loss but not exercise training,
inding

per se. Qu hat the protein expression of ATGL in aSAT was unaltered by training aligns

with the lack@fichange in fatty acid Ra. Although the trend of increase in aSAT HSL we found in

response ta @ may indicate increased lipolytic capacity, this may be only relevant under
conditions when energy expenditure is high (e.g., during exercise) because fatty acid mobilization rate
I

was not diffferent while our subjects were at rest. Interestingly, we found a transient increase in the

abundance

of the fatty acid transporter, CD36 in aSAT 1 day after last training session, which
& pf an adaptive response to increase the capacity of lipid handling in aSAT that the

protein abulidglice Feturned to pre-training levels 4 days after the last session of exercise suggests this

adaptation ﬁnt.

Mitochondgial biogenesis and function are often compromised in aSAT in obesity, which has been

subjects experleﬂfe during their regular exercise sessions. However, our observation that aSAT CD36

1

associated with metabolic disturbances (Hammarstedt et al., 2003; Semple et al., 2004; Heinonen et
al., 2015).
to increased en asmic reticulum stress, oxidative stress, and inflammation in response to

nutritio rload (Chen et al., 2010; Wang et al., 2010; Marycz et al., 2018). Our finding that both

tabolic abnormalities linked to low mitochondria density in aSAT may attributed

d

MICT and eased the protein abundance of COX-IV in our obese subjects expands on

\i

previou indicate that exercise training may promote mitochondrial function and
biogenesis in adipose tissue in both lean rodents (Sutherland ef al., 2009; Trevellin et al., 2014) and

non-obese Ronn et al., 2014; Riis et al., 2019). Unlike many of the other regulatory proteins

]

we measurcgdg aSAT samples, the increase in COX-IV persisted at least 4 days after the last

exercise trd @ §sion, suggesting this was more than an acute/transient adaptation. It is also

notable that theincrease in aSAT COX-IV abundance was similar in both MICT and HIIT despite the

h

large differ@nce in exercise stimulus. Although COX-IV protein abundance is commonly used as a

marker of mitochomdrial content, we recognize that additional studies are needed to more

Uit

comprehenSively determine the effects of exercise training on aSAT mitochondrial adaptations in

adults with obesit

MAPK sig adipose tissue has been reported to be involved in adipogenesis, inflammation,

A

and lipolysis, raising the possibility of an active role of MAPK signaling in aSAT remodeling (Hu et
al., 1996; Camp & Tafuri, 1997; Greenberg et al., 2001; Trujillo ef al., 2006). The only previous

study to our knowledge that examined the effects of exercise training on MAPK signaling in human
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aSAT reported a reduced expression of genes involved in the MAPK pathway after 6-month of
exercise training healthy adults (Ronn ef al., 2014). In contrast, we found no change in our markers of
MAPK act" itx ‘1' abundance of phosphorylated forms of P38, ERK1/2, and JNK relative to the
total abundapgesaf each protein) in response to training. Moreover, the transient increase in the total
protein ab @ f ERK1/2 and JNK we observed the day after the last exercise session suggests a
possibili-ty of an increase in the capacity for MAPK activity in aSAT. But this potential for increased
|
MAPK ca;Sity was transient since the abundance of JNK and ERK all returned to pre-training levels

after 4 days withgut exercise.

Leptin andwtin are two mostly well-studied peptides released from adipose tissue
(“adipokinﬁ” sity is often associated with high plasma leptin concentrations and low plasma
adiponectin concenfrations, and while the effects of weight loss on leptin (decrease) and adiponectin
(increase) concentrations are quite consistent, evidence regarding the effects of exercise training on
these adip!lines is equivocal. Some studies report systemic leptin or adiponectin levels increase
(Shadid et al., ; Markofski et al., 2014), decrease (Yatagai ef al., 2003; Ozcelik et al., 2004;
Polak et al§200

hile others report no change after training (Hulver et al., 2002; Ligibel et al.,

ant confounder to the interpretation of many of these exercise studies is the change
in body ss that often occurred during these training interventions. Our finding that 12 weeks of
exercisEhout weight loss significantly reduced both systemic adiponectin and leptin level
suggest dipokines may be regulated by training independent of weight loss. However, the

underlying mechanisms that explains the reduction in both adiponectin and leptin after training are

unclear. L

In contrast pothesis, the metabolic and structural adaptations in aSAT were remarkably
similar betWeen HIIT and MICT, despite marked differences in the exercise stimulus. This finding
may sugge‘ that ern though our MICT and HIIT protocols represent two rather distinct exercise

training regimens — the difference in the exercise stimulus between MICT and HIIT was not large

enough to evoke ni@aningful differences in adaptive responses to aSAT we measured in our study.

Alternatively, 1t 1s possible that adaptations stemming from the more “conventional” 45 min of

ise in our MICT protocol was closely matched by the brief high intensity stimulus
ite nearly 70% greater energy expenditure and 50% longer exercise time in MICT
vs. HIIT. Regardless, the similar adaptations in aSAT structure and factors that regulate metabolic
functions between HIIT and MICT were rather modest compared with previous findings that reported

metabolic improvements (i.e., increased insulin sensitivity and reduced whole body inflammation)
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and functional modifications in aSAT (Marcell et al., 2005; Fabre et al., 2018; Riis et al., 2019) after
exercise training. We postulate the modest changes in aSAT structure and markers of metabolic

function inFur stu'y compared with these others were largely a consequence of our study design to
11V gaai

intentiona ntain body weight during our training program to assess the effects of exercise
training in weight loss.

intewentioﬁ too short to induce major structural and morphological modifications given that
aSAT remodeling May be a slow process (Arner ef al., 2010). However, our findings suggest that
even 3 months of exercise training may increase the capacity of tissue remodeling (i.e., adipogenesis,
angiogenesis, ECM remodeling) and it is possible that training-induced tissue remodeling may be
even more robust after longer-term training. We did not tightly control dietary composition during the
12-week tr@ini ervention and therefore cannot completely rule out the possibility that the
structural an olic adaptations in aSAT after training may be influenced by daily variations in
nutrien and/or timing of intake. Although we note that diet composition and meal timing
could have s pact on aSAT metabolism (Shostak et al., 2013; Hernandez et al., 2017), we
closely dy weight fluctuations in our participants enough to know that they didn’t
experience wide variations in diet composition or meal timing. Also, we successfully managed
participantWeight to keep it similar to their pre-training levels during the intervention period,

0 be the most impactful on our outcomes (Sjostrom & Bjorntorp, 1974; Smith et

Hogling et al., 2015). As discussed in our previous report (Ryan et al., 2020), we

match total energy expenditure or exercise time between MICT and HIIT to

This allowi us to 'onclude that HIIT, even with lower energy expenditure and time commitment
compared with MICT induced similar adaptations in aSAT.

U

In sum findings indicate that 12 weeks of exercise training, without weight loss, induced

some remo ithin aSAT, as evidenced by a reduction in adipocyte cell size, altered ECM

A

composition, and an increase in capillarization. However, these morphological/structural adaptations
in aSAT were quite modest and did not culminate in measurable changes in whole body fatty acid

mobilization, which is a major factor underlying insulin resistance in obesity (Roden et al., 1996;
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Schenk ef al., 2009). In line with this, in previously published work from this same overall project
(Ryan et al., 2020), we reported neither MICT nor HIIT induced a persistent increase in insulin
sensitivitx Fter lg,veeks of training. Therefore, perhaps adaptations to aSAT must be robust enough
to lower systeaaie fatty acid mobilization to manifest into a measurable improvement in whole body
insulin senacknowledge that changes to aSAT structure and function may require an
exerciscgntervention longer than 3 months. Alternatively, perhaps the independent effects of exercise

training onf@SAT structure and metabolic function are relatively subtle when not accompanied by

1s known to have a robust impact on many aspects of aSAT metabolism and

(Rupnick et al., 2002; Clément et al., 2004; Larson-Meyer et al., 2006; Kos et al., 2009).

weight loss,
morpholo
The transient nature in the expression of some key factors that regulate aSAT fatty acid metabolism
and inflamfia thway activation (i.e., increased the day after the last exercise training session —
but returne -training levels 4 days later) supports the notion that the effects of exercise on
aSAT metabolic fuliction and inflammation are largely affected by the most recent session of exercise,
rather than by longer-term adaptations to exercise training. Importantly, our findings also indicate that

the effects @f MICT and HIIT on aSAT structure, metabolism and inflammatory pathway were

remarkably similar despite marked differences in the energy expenditure, duration, and intensity of

the exercisms.
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training stat post-hoc analysis identifying a significant difference compared with Pre-training
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(A~C) Protein expression of lipolytic enzymes. D). Protein expression of fatty acid trafficking protein.

(E and F) Riotein expression of esterific enzymes. (G and H) Protein expression of mitochondrial

markers. *Significant main effect of training status, with post-hoc analysis identifying a significant

difference @ | with Pre-Training (p<0.05). { Trend of main effect of training status, with post-

hoc analysis Tdemtitying a trend of difference compared with Pre-Training (0.05<p<0.1). There were
no signiﬁcg: main effects of training group or training group x training status interactions
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Figure %ns in aSAT MAPK proteins in response to exercise training.

Protein ex i f A) total P38 and B) phosphorylated P38. C) The activity of P38 was measured
by normalizing théabundance of phosphorylated P38 by total P38. Protein expression of D) total JNK
and E) phoﬁ

phosphorylated
The activi

ed JNK. F) The activity of JNK was measured by normalizing the abundance of
by total JNK. Protein expression of G) total ERK and H) phosphorylated ERK. I)
was measured by normalizing the abundance of phosphorylated ERK by total
ERK. * nt main effect of training status, with post-hoc analysis identifying a significant
difference co with Pre-Training (p<0.05). § Trend of main effect of training status, with post-
hoc analysis identifying a trend of difference compared with Pre-Training (0.05<p<0.1). There were
no significant main effects of training group or training group x training status interactions.
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Table 1. Subject characteristics and whole-body clinical biomarker measures before and after

training. Data are presented as mean + SD. *Significant main effect of training status (p < 0.05).

***Slgmﬁ*nt ma' effect of training status (p<0.001). There were no significant effects of training

group or sigy

Molecular

nt training group X training status interactions. FFM = Fat Free Mass. HMW = High

o
L

MICT (n = 17)

HIIT (n=19)

12 Women, 5 Men

12 Women, 7 Men

Helzlh;t %mé 1.71 £ 0.09 1.70 + 0.08
Pre 4d-Post Pre 4d-Post
C training Trained training Trained
Body m 98.0+11.6 97.6+11.7 96.4 + 13.7 96.6+ 13.6
F 40.5+7.1 40.1+7.2 425+7.7 42.0+7.7
Fat §g) 55.5+9.3 55.6+9.6 55.9+10.5 56.5+10.3
BMI (kg/m?) 33.7+3.2 334432 33.0+2.9 33.1+3.1
Body% 434+6 43.1+64" 42.1+54 41.6+54"
VozpeQ) 23+0.5 25406 2.5+0.6 284067
VOzpeakgl/ngFM 419+7.7 449 +7.7" 43.8+6.1 485+53"
M:uM) 392 + 159 408 £ 118 433 + 156 387+ 122
47426 4.0+23™ 4.6+1.9 39+£18"
2.6+2.0 23+18" 24+13 20+13"

adiponectin (ug/ml)

This article is protected by copyright. All rights reserved.




Plasma leptin (ng/ml) 53.2+25.1 48.5+22.6" 49.0 +24.7 48.0+27.2"

-
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