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Summary

Unmanned aerial vehicles (UAVs) equipped with onboard sensors empower

end-users to collect data within a wide range of civil engineering applications

such as structural condition assessment. While UAVs have been used primar-

ily as mobile sensing platforms to obtain imagery or other data, their mobility

can also be used to deploy sensor networks. In this study, the feasibility of

using an autonomous UAV to deploy wireless sensors in structural monitoring

applications is proposed. While GPS-based waypoint navigation is available for

automating UAV flight operations, this approach does not provide the accu-

racy necessary for the precision placement of sensor payloads on structures.

Computer vision-based pose estimation is proposed to improve the accuracy of

UAV localization for sensor placement. Variably sized fiducial markers inte-

grated into a single pattern are applied to the surface of the structure and

adopted as navigation and precision landing targets that identify sensor place-

ment locations. Visual and inertial measurements are fused by means of a dis-

crete Kalman filter to further increase the robustness of the relative position

estimation algorithm that is included in the proportional-integral-derivative

(PID) control law used for UAV landing. Outdoor experiments under realistic

operational conditions are conducted to validate the proposed vision-aided

control of the UAV for sensor placement; the UAV is able to land on a

predefined landing point within 10 cm. A UAV moving a wireless accelerome-

ter to locations on a beam is used to experimentally show the validity of auto-

mating UAV sensor placement for modal analysis using reconfigurable sensor

network topologies.
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1 | INTRODUCTION

Adoption of sensing is growing increasingly attractive in a wide range of civil engineering applications due to the reduc-
tion of sensor cost, the integration of wireless communication that make deployments easier, and the improvement of
analytical frameworks that extract value from collected data.1 This has made monitoring common in many field appli-
cations such as structural health monitoring (SHM).2–5 In SHM applications, dense sensor arrays are often needed
which can drive system costs high. For example, long-span bridges could require hundreds of sensors to ensure
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sufficient spatial coverage for SHM.6 If sensors could be moved, the density of permanent sensors could be reduced,
thereby lowering costs while rendering systems more flexible to adapt to the needs of the SHM application. To date, the
placement of sensors on a structure are done manually with the assumption that they do not move. However, autono-
mous robotic systems could be developed for the initial placement and later movement of sensors which would make
monitoring systems more flexible and cost-effective.

Unmanned aerial vehicles (UAVs) could potentially be one such solution that offer mobility to sensors that allow
for the collection of data that are difficult to obtain using conventional stationary monitoring approaches. The data
collection capabilities of UAVs have already proven valuable in many civil engineering applications such as infra-
structure inspection, traffic monitoring, and remote sensing.7–9 Computer vision methods offer a promising approach
to identifying the condition of infrastructure with inexpensive cameras installed on the UAV. For example, recent
studies have demonstrated several innovative applications of UAVs equipped with cameras (e.g., optical, infrared) to
conduct infrastructure monitoring such as delamination detection of concrete bridge decks,10,11 modal analysis of a
pedestrian suspension bridge,12 and visual inspection of steel girder bridges.13,14 In all of these applications, the UAV
systems are primarily used as a mobile data collection platform to observe the system from afar and make no direct
contact with the structure. Also, navigation of the UAV is controlled by either a human pilot operating the UAV or
using a GPS module providing waypoint coordinates for autonomous flight operations. Both navigation methods lack
accuracy and struggle to give desirable or reliable measurements for cases where precise spatial control of the UAV is
required. The utility of UAVs could be enhanced if they not only carry sensor payloads, but also have the ability to
deploy sensors. This can be especially valuable in applications where data collection may be required over a longer
period of time (e.g., days and years) than what current UAV flight endurances allow (e.g., minutes and hours). In the
literature, mobile sensor networks deployed by robots in structures has been developed and validated by several
researchers. Huston et al. studied the use of a mobile robot that was able to crawl along bridge girders while measur-
ing girder flange thickness with an ultrasonic sensor.15 Zhu et al. prototyped a climbing robot equipped with
magnetic wheels capable of adhering to and navigating on a steel bridge. The robots carried accelerometers as a robot
payload and moved around the bridge to sample structural vibrations.16 In this paper, aerial delivery of sensing
payloads based on computer vision and position estimation is proposed as part of an autonomous UAV sensor
deployment system. Aerial deployment has advantages over wheel-based robots including more freedom in moving to
different locations.

Precision control of a UAV to land on desired positions (i.e., within 50 cm or less) is necessary for effective sensor
placement. GPS-based waypoint navigation techniques used in other SHM applications (e.g., collection of imagery data)
would be insufficient due to UAV positioning errors being as large as meters that would result in inaccurate and unsuc-
cessful sensor placement. Modern computer vision object detection and pose estimation algorithms are a promising
alternative to GPS. Autonomous landing of UAVs using vision as the primary data source is currently an active topic of
research. Among early investigations, printed patterns have been used to mark the landing target. Saripalli et al. dem-
onstrated vision-based autonomous landing of a model helicopter on an “H”-shaped pad; landing position accuracy was
reported to be within 40 cm.17 To extend the detection distance, Merz et al. proposed a landing pattern consisting of five
concentric circle triplets of different size (with radii varying from 2 to 32 cm) achieving a touch down precision of
42 cm.18 Lange et al. designed a landing pattern with several concentric white rings on a black background and was
able to hover a Hummingbird quadcopter above the pattern with a maximum deviation of 23 cm over 5 min.19 A draw-
back of the aforementioned printed patterns is that they do not have an extensible design that limits their usage when
multiple landing targets in a structure are required. Also, the detection performance of a UAV using these markers
under challenging scenarios such as low lighting has not been rigorously analyzed. To address these challenges,
researchers have developed fiducial marker systems with a large number of distinguishable patterns and features
(e.g., size) that allow a UAV to robustly estimate its location and pose under challenging field conditions
(e.g., ARToolKit,20 ArUco,21 and AprilTag22). For example, Borowczyk et al. gave a demonstration of autonomous land-
ing of a DJI M100 quadcopter on a moving vehicle (moving up to 50 km/h) using a single 30 cm � 30 cm AprilTag for
visual estimation of the vehicle.23 Chaves et al. accomplished autonomous landing of a UAV (Parrot AR.Drone) on a
Segway using a landing platform with four AprilTags with one large marker in the center for initial detection and three
small markers on the side for fine pose control at close range when completing the landing maneuver.24 The drawback
of this system is that computations were not done on the UAV so a separate laptop was needed to remotely execute the
control law. To further extend the detection range, Araar et al. designed a landing pad using a total of 28 AprilTags with
bigger tags surrounding smaller ones resulting in an 8-cm landing error when landing on a stationary target.25 Similar
to Chaves et al.,24 all computations were run on a separate laptop computer. These works reveal that a single fiducial
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marker does not provide the UAV the range necessary for detection from afar while being sufficiently small for preci-
sion navigation at close range. Also, landing pads with too many markers have high computational costs requiring
remote computers to run the control law. In this paper, a simple yet universal landing pattern for different detection
ranges is proposed for detection and use by a UAV onboard computer in near real-time.

In this study, multirotor UAVs are explored for autonomously deploying wireless sensors for structural monitoring
applications. The work emphasizes the integration of precise landing and mission management capabilities within the
onboard computer of the UAV for truly autonomous operations. Figure 1 provides the operational principles of the
autonomous UAV-based sensor deployment system proposed including the use of fiducial-based landing pads for place-
ment of a wireless sensor that can be moved from location to location. The proposed landing pad design is easily adjust-
able and able to provide reliable visual estimation by the UAV (using an onboard computer) during the entire landing
process, thereby ensuring an accurate placement of the sensor payload. The envisioned applications include movement
of sensors (e.g., accelerometers) on a structure for structural monitoring (with locations predetermined and marked
with landing pads). The work aims to make three major intellectual contributions. First, a computer vision approach
using four AprilTag markers for a single landing pad is created to trade off precision with onboard computational time
for real-time control of the UAV landing. Second, a fully autonomous system architecture is advanced to control UAV
flight operations and sensor placement using only the onboard computing resources of the UAV. Third, the integrated
UAV system is demonstrated to autonomously perform modal analysis of a simply supported beam where the only
human intervention is impacting the beam with a modal hammer (which emulates ambient vibrations). This work
evaluates the precision and repeatability of the autonomous landing process for sensor placement. The work also
showcases the quality of the sensor data collected by performing complete modal analysis of the monitored structure
using the reconfigurable sensor networks.

2 | UAV PLATFORMS: HARDWARE AND SOFTWARE

2.1 | UAV hardware

In this study, two UAV platforms are used: a 3D Robotics (3DR) X8 octocopter and a Lumenier QAV210 quadcopter
(Figure 2). The X8 aluminum frame is a light and sturdy “X” shape and features two motors spinning in opposite direc-
tions on each of the four arms (i.e., eight motors in total). The eight Sunnysky 2206-12 800 Kv motors give the UAV

FIGURE 1 Overview of the autonomous UAV system for wireless sensor deployment
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capacity to carry nearly a 1-kg payload. The eight motors also provide redundancy offering enough lift and control
should a motor burn out. The X8 is powered by a 16,000 mAh 4S 20C LiPo battery and can stay aloft for about 15 min.
The QAV210 UAV is smaller with a diagonal length of 210 mm. The QAV210 has a symmetric carbon fiber frame
design featuring four efficient Lumenier RX2206-11 2350 Kv motors. The QAV210 has a payload capacity of 300 g and a
flight endurance of about 10 min using two 2200 mAh 3S 40C LiPo batteries in parallel. In this study, the heavy-duty
X8 is mainly used for thorough testing of the UAV control algorithms with a heavy payload carried on board, while the
mini QAV210 is used during the experiments related to delivering light-weight wireless sensor nodes onto a narrow
beam to validate system integration and autonomy.

The X8 comes preinstalled with an original 3DR Pixhawk flight controller first released in 2013.26 The Pixhawk has
a 32-bit STM32F427 ARM Cortex-M4 processor with 256 KB RAM and 2 MB Flash, and operates at 168 MHz. The flight
controller includes two gyroscope/accelerometer sensors (TDK InvenSense MPU6000 gyroscope/accelerometer, and
STMicroelectronics L3GD20H gyroscope/LSM303D accelerometer), a 14-bit STMicroelectronics LSM303D magnetome-
ter, and MEAS MS5611 barometer. The Pixhawk provides many connectivity options including five universal asynchro-
nous receiver/transmitters (UARTs), two controller area network (CAN) ports, and one inter-integrated circuit (I2C)
interface. An external u-blox LEA-6H GPS module is paired with the Pixhawk for outdoor navigation. For the QAV210,
its small frame size requires a flight controller with a scaled-down form factor. A Holybro Pixhawk 4 Mini is chosen
which has half the footprint of the 3DR Pixhawk but has higher computing performance. The Pixhawk 4 Mini features
an upgraded 32-bit STM32F765 Arm Cortex-M7 processor running at 216 MHz with 512-KB RAM and 2-MB memory.
The enhanced onboard sensor suite includes an InvenSense ICM-20689 and Bosch BMI055 gyroscope/accelerometer
pair, an iSentek IST8310 magnetometer, and the same MS5611 barometer as the 3DR Pixhawk. The external GPS sensor
is also upgraded to a u-blox Neo-M8N module. Both flight controllers have a FrSky XSR receiver connected via SBus so
that a user can manually command the vehicle using a remote controller (RC) radio transmitter that operates on the
2.4-GHz frequency with an approximate communication range of 1 km.

To expand the onboard computational capabilities of both UAVs, a more powerful single-board computer is inte-
grated. The Nvidia Jetson TX2 is selected as the companion computer to perform tasks on the UAVs that are computa-
tionally resource intensive. The TX2 is equipped with a 256-core Pascal graphics processing unit (GPU), a dual-core
Nvidia Denver 2.0 central processing unit (CPU), a quad-core ARM Cortex-A57 CPU, and 8 GB 128-bit LPDDR4 mem-
ory. In addition, the TX2 includes Wi-Fi communication capabilities with a range of approximately 100 m. A small car-
rier board (Connect Tech's Orbitty Carrier) to which the TX2 module is attached is selected. This board
(87 � 50 � 15 mm3) takes little space on the UAV but offers a variety of communication ports (one Universal Serial
Bus (USB), two UARTs, one I2C, and four general-purpose input/outputs [GPIOs]). Communication between the flight
controller and the TX2 is established using the UART with a baud rate at 921,600. A ground-based personal computer

FIGURE 2 Customized multi-rotor UAVs used in this study: (a) the 3DR X8 octocopter sitting on the landing pad with a sensor box

attached (Qualisys retroreflective passive markers mounted on UAV and landing pad for pose tracking in M-Air); (b) two Lumenier QAV210

quadcopters carrying wireless sensor payloads on a simply supported aluminum beam (AprilTag markers on beam and UAVs are shown)
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(PC) is also used to communicate with the TX2 through its 5-GHz Wi-Fi interface. The flight controller takes com-
mands from the TX2 in the form of MAVLink messages27 posted over the UART port. At any time, a human pilot can
take control of the UAV by commanding the flight controller through the FrSky Taranis X9D transmitter which can
communicate up to 1 km line of sight (although this will not be needed in this study). The system architecture is shown
in Figure 3.

The camera is another critical component for the precise control of both UAVs. A downward facing Logitech C270
high definition (HD) web camera is connected to the bottom of the UAV and attached directly to the TX2 via USB. This
low-end webcam is purposely chosen due to its lack of auto-focus functionality because auto-focus could create blurry
images at high speeds. Despite the camera's ability to record 720p HD video clips, image resolution is set to a much
lower 640 � 480 px2 resolution so that images can be processed in real-time on the TX2. The camera is mounted
beneath the front of the UAV using rubber dampers that dampen vibrations. The use of a gimbal is intentionally
avoided to ensure an unfiltered view of the ground is obtained from which the pose of the UAV can be accurately esti-
mated. While the QAV210s carry only one camera, an additional camera (GoPro HERO5 Session) is included in the X8
for flight video logging during validation experiments (and not for use in pose estimation during landing) is communi-
cated to a ground PC using 5-GHz Wi-Fi.

The Martlet wireless sensing node28 developed at the University of Michigan is selected as the primary data col-
lection platform for accelerometers used to measure structural vibrations. The computing core of the Martlet is a
16-bit Texas Instruments (TI) TMS320F28069 modified microcontroller unit (MCU) with a clock frequency up to
80 MHz. The Martlet contains a 9-channel dual sample-and-hold 12-bit analog-to-digital converter (ADC) capable of
sampling analog signals at a maximum sampling frequency of 3 MHz. An ADC sensor interface board is attached
on top of the Martlet baseboard to provide bandpass filtering and amplification of input analog signals (100 Hz cut-
off frequency and 1� gain in this study). Wireless communication between the Martlet and a ground-based PC is
established through a power amplified TI CC2520 2.4-GHz IEEE 802.15.4 transceiver integrated with Martlet. Due
to being power amplified, the Martlet transceiver can communicate up to a range of approximately 1 km. A custom-
ized enclosure for housing the Martlet and a 2-g Crossbow CXL02LF1 accelerometer (1-mg RMS noise floor) is
selected. The sensor enclosure is attached to the bottom of the QAV210 and will move together with the vehicle
(Figure 2b).

FIGURE 3 UAV system hardware architecture showing components and communication links
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2.2 | Embedded software architecture

Embedded software is needed to automate the operations of the UAVs for the deployment of wireless sensors used for
monitoring civil engineering systems. Software is written for the two onboard computing elements of the UAV: the TX2
companion computer and the Pixhawk flight controller. High-level flight planning like mission management and
compute-intensive tasks like visual pose estimation will be executed using the TX2, while position and attitude control
of the UAV are implemented on the flight controller. Figure 4 shows the layout of the software architecture distributed
across the two computing elements. To speed up the development of the UAV, the open-source ArduCopter firmware
from the ArduPilot project29 is selected to run on the Pixhawk flight controller as the real-time flight control stack.
ArduCopter provides reliable and responsive flight control operations for UAVs in a full range of flight modes including
manual and automatic flight operations. High-level control abstractions and interfaces are well documented that enable
customized flight features and the development of complex use cases. ArduCopter also has well defined communication
interfaces that allow a companion computer (like the TX2) to gain access to flight data and to allow extra power to han-
dle computationally intensive tasks not easily executable on the flight controller.

The main loop (Figure 4) of the ArduCopter flight code includes a 24-state extended Kalman filter (EKF)30,31 for
vehicle state estimation (e.g., vehicle attitude using quaternions which are more computationally efficient than Euler

angles, q
!¼ q0 q1 q2 q3½ �T �ℝ4, vehicle velocity in the global North-East-Down [NED] frame v

!¼ vN vE vD½ �T �ℝ3, vehicle

position in the NED frame r
!¼ rN rE rD½ �T �ℝ3, gyro bias offsets in the UAV's local body frame bg

!¼ bgX bgY bgZ
� �T �ℝ3,

gyro scale factor in the local IMU frame sg
!¼ sgX sgY sgZ

� �T �ℝ3, acceleration bias in vehicle body Z direction baZ �ℝ1,

earth magnetic field in the NED frame me
�!¼ mN mE mD½ �T �ℝ3, body magnetic field mb

�!¼ mX mY mZ½ �T �ℝ3, and lat-

eral wind velocity vw
!¼ vwN vwE½ �T �ℝ2). In this study, the vehicle attitude q

!
, velocity v

!
, and position p

!
will be used for

control of the UAV. The EKF is designed to linearize the nonlinear UAV flight dynamics and sensor measurement
equations using IMU dead-reckoning to propagate the state and onboard sensor (e.g., GPS and barometer) measure-
ments to update the state estimation. Advantages of the EKF include being able to switch between sensors (in case a
sensor fault is identified) and the estimation of external flight variables such as gyro and accelerometer biases, and wind
speed leading to better flight performance. The ArduCopter main loop is run on the Pixhawk at 400Hz including the

FIGURE 4 Software architecture for the UAV platform where the TX2 provides high-level mission management and image processing

while the Pixhawk flight controller is responsible for vehicle state estimation and control

6 of 24 ZHOU ET AL.



EKF filter. A number of background threads are running constantly on the flight controller to provide input to the
EKF algorithm including updates of the GPS (50Hz), barometer (10 Hz), and IMU (400Hz). As a result, the EKF
provides estimations of the UAV attitude, position, and velocity using available data at the 400 Hz main loop
execution rate.

To control UAV motions for autonomous flight, ArduCopter implements a cascaded control structure with a posi-
tion controller followed by an attitude controller. The first step of the control solution is the “flight mode update” which
is used to offer a target mode for the UAV (e.g., “Land” and “RTL” for return to launch). Flight mode updates can be
informed by a command from a radio controller when in manual mode or, as is done in this study, issued by the exter-
nal onboard computer (i.e., the TX2) as part of a state machine associated with automated flight operations. Depending
on the flight mode, the flight controller utilizes different control strategies. The “Land” mode is most pertinent to this
study and the control logic behind precision landing is described here. The outermost control loop is the position con-
troller that is based on a proportional-integral-derivative (PID) controller design. The position controller takes in a tar-
get vehicle position r

!
cmd and velocity v

!
cmd from the precision-landing Kalman filter (which will be illustrated in the

next section) and the vehicle's actual position r
!

and velocity v
!

from the 24-state EKF to generate a target vehicle atti-
tude q

!
cmd that will be fed into the attitude controller. Similarly, the attitude controller adopts a PID design for each

angle axis and outputs desired angular body rates Ω
!

cmd (i.e., ΩcmdX ΩcmdY ΩcmdZ½ �T �ℝ3 along the three axes of the vehi-
cle's body frame) for the vehicle. At the end of the ArduCopter main loop, outputs from the attitude and position con-
trollers are converted to absolute motor outputs (i.e., PWM values) for the specific frame type (e.g., quad, X8) and sent
to the electronic speed controls (ESCs) which command each motor with a PWM output, F

!
cmd (i.e., F1 F2…Fn½ �T �ℝn,

where n is the number of motors). It should be emphasized that the contributions of this work lay mainly on the TX2
side, where visual estimation of the UAV's relative position to the landing pad is provided based on computer vision
methods. In contrast, the Pixhawk is used as coded with an addition of a Kalman filter for precision landing and fine
tuning of the PID control parameters for precision control of the UAV.

The Nvidia Jetson TX2 companion computer running Linux (Ubuntu 16.04) constitutes the other significant part of
the UAV software system. The main thread embedded on the TX2 is a finite-state machine (FSM) for automated flight
operations including where and when to place wireless sensors on a structural system. The FSM is primarily focused on
implementing a target search for identifying sensor locations and performing precision landing of the UAV while ensur-
ing flight safety and efficiency. To do this, the UAV's bottom mounted camera interfaced to the TX2 will be used to sea-
rch for landing locations identified with fiducial markers and to improve UAV positioning during precision landing.
The DroneKit-Python API32 is set up on the TX2 to establish communication between the Pixhawk flight controller and
the TX2 using the MAVLink communication protocol. Through this low-latency communication protocol, the TX2 is
able to get real-time access to the vehicle's state and to command vehicle operations.

3 | METHODOLOGY

3.1 | Sensor deployment state management

The major intellectual merit of the work is embodied in the methodology associated with automation of sensor deploy-
ment and redeployment. At the core of the work is the creation of an FSM embedded in the UAV onboard computer
(i.e., TX2) that choreographs each step of the fully autonomous sensor deployment. The deployment strategy (Figure 1)
is based on a structure with predetermined sensor locations defined by fiducial markers. Once sufficient data are col-
lected, the sensor is retrieved by the UAV, transported and positioned to another installation location. This deployment
strategy is executed by the UAV using the FSM embedded in the onboard TX2 computer.

The FSM approach partitions the autonomous sensor deployment method into a set of well-defined operational
states with deterministic transitions between them. As shown in Figure 5, the task of deploying a wireless sensor node
is split into manageable pieces such as searching for the target landing pattern in the air, hovering above the landing
pattern, and performing a precision landing of the UAV for sensor placement. The FSM guides the UAV to first take off
from the home position to a target height and to fly a predetermined flight path while searching for the desired fiducial
marker on the structure that indicates the installation location of the wireless sensor (e.g., sensor location 1 in
Figure 1). If the desired landing pattern is found, a precision landing maneuver based on computer vision is performed
to land on the target pattern for placement of the sensor. After desired measurements are taken, the UAV takes off and
searches for the next installation location (e.g., sensor location 2 in Figure 1). The UAV repeats this procedure until all
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required locations are visited, at which point the UAV returns to its home position. A challenge with UAVs in general
is their limited battery energy; this requires an efficient FSM that does not waste scarce energy. Certain states in the
FSM presented in Figure 5 are only granted a limited time for the UAV to stay in so that battery life is not wasted.

In the flight operations dictated by the FSM, the UAV will rely on two primary sources of data for spatial pose esti-
mation: vehicle state estimation data (e.g., vehicle position r

!
, velocity v

!
, and attitude q

!
) queried by the TX2 companion

computer from the flight controller and camera images viewing the landing pattern which are a set of unique fiducial
markers. The TX2 has a flight path defined by GPS waypoints that is communicated point by point to the flight control-
ler over the MAVLink communication interface. The GPS data is sufficiently accurate (i.e., within meters) for guiding
the UAV over large distances, but is too coarse for precision landing. Once the fiducial marker corresponding to a
desired landing location is found, the UAV uses the TX2 computer to estimate with greater precision (i.e., within centi-
meters) the UAV position r

!
and orientation q

!
using camera images of the fiducial markers and a Kalman filter. Once

the landing pattern is detected, the cascaded position and attitude controller (Figure 4) inside the Pixhawk controls the
UAV to land using the estimated UAV pose relative to the landing pattern as an input to the control law. The
processing of the camera images and relative pose estimation are done by the TX2 computer using tailored software
written in Python as part of this study. The fusion of the camera estimates and other sensor data such as IMU-based
measurements is implemented via a second Kalman filter (i.e., independent of the EKF) embedded in the Pixhawk
flight controller by the authors.

3.2 | Landing pattern design and detection

Being able to detect the landing pattern defined by fiducial markers is fundamental to the automated sensor deploy-
ment FSM. Specific challenges include keeping the visual target within the camera's limited field of view (FoV), robust
detection of the landing pattern using low-resolution images, and use of the fiducial markers for UAV state estimation
for precision landing. A multiresolution tag pattern is designed to address these challenges. During a precision landing
task, ground areas covered by the UAV's downward facing camera is limited by the camera's FoV and the height, dz, of
the UAV. A camera from a higher altitude with a wider FoV has better coverage of the ground. More specifically, as
shown in Figure 6, the maximum lateral and longitudinal ground distance covered by the camera, dx and dy, can be
calculated:

FIGURE 5 Finite-state machine for the UAV-based sensor placement mission; certain operations are only granted a limited time to stay

in for battery life preservation
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dx¼ 2 �dz � tan FoVx

2

� �
,dy¼ 2 �dz � tan FoVy

2

� �
, ð1Þ

where FoVx and FoVy are the camera's field of view along the x and y axis, respectively. The designed landing pattern
includes fiducial markers of different sizes which are intentionally positioned as guides to the UAV at different dis-
tances from the target during landing, leading to better precision. Bigger markers allow the UAV to detect landing spots
from high altitudes, but smaller markers are needed to ensure precision during landing. As the UAV descends, bigger
tags gradually leave the camera's FoV while smaller ones become detectable, thereby providing a continuous navigation
guide for the UAV.

The AprilTag fiducial detection system is chosen for the design of the landing pad due to its robust performance
with respect to suboptimal lighting conditions, occlusion, and motion blur.22 These black and white, QR-code-like
square tags contain identification information (tag ID) and provides full pose estimation of a calibrated camera with
respect to a tag. The AprilTag detection system is composed of two major components: tag detector and coding system.
The detector's job is to estimate the position of potential tags in an image and the coding system enables encoding/
decoding of distinguishable IDs. The detection process starts with detecting line segments by grouping together pixels
with similar gradient directions and magnitude. Sequences of line segments that form a four-sided shape (i.e., possible
tag boundaries) are then identified based on a recursive depth-first search method.22 The final stage of the detection
algorithm is payload decoding, where bits from the tag-relative payload field are extracted one by one. Once the data
payload is determined, the coding system determines whether it is a valid tag or not. The AprilTag encoding scheme
utilizes a modified lexicographic coding system that ensures minimum Hamming distance between codewords while
rejecting simple patterns that commonly occur in natural scenes.22 Different families of tags are provided by the April-
Tag coding system, depending on the size of the tag (e.g., 4 � 4, 5 � 5, and 6 � 6 grids) and the minimum Hamming
distance between codewords. In general, families with smaller grid size (and hence larger pixel size) enable detection
from afar while those with a larger grid size allow larger Hamming distance thereby providing higher identification
accuracy. In this study, the Tag36h11 AprilTag family (6 � 6 codewords with a 11 bits minimum Hamming distance) is
adopted for its high detection accuracy with low processing time. A Python module is implemented in the UAV TX2 to
detect the AprilTag.33

The strategy taken in this study is to adopt four AprilTag markers of different sizes as a multi-resolution landing
pattern (Figure 6b) for precision landing. The four markers are organized in an optimal fashion to minimize jitter in
the control of the UAV that can occur if the landing control algorithm switches tags for its reference during execution.34

To further minimize jitter, this study abandons the switching of AprilTag markers during landing and uses all of the

FIGURE 6 (a) Area covered on the ground by a downward facing camera restrained by FoV and height (in this case, only the two

smallest tags stay completely in the camera's FoV); (b) landing pattern with four different sizes of AprilTags with the gray cross mark

defining the landing spot
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tags identifiable to reference a single reference point which is associated with the smallest marker (since this tag is the
most likely to stay in the UAV camera FoV the longest). The UAV will identify as many of the AprilTag markers it can
and use all detected markers to estimate the UAV pose.

3.3 | Visual position estimation

Having detected the landing pad and identified the pixel coordinates of the detected AprilTags' feature points (i.e., tag
center and corners), estimation of the position of the UAV relative to the landing point is possible. Towards this end, a
robust relative position estimation method relying on both IMU and vision data is developed. To compensate for cases
where visual localization data is not available, a Kalman filter is next implemented to provide continuous estimation of
the UAV position relative to the landing point.

3.3.1 | Relative position estimation

Figure 7a presents the method for positioning the UAV with respect to the landing point M. In this study, a superscript
on the location variable denotes the reference frame (e.g., PA denotes the coordinates of point P with respect to frame
A). Three main coordinate frames and transformations between them are illustrated. The global NED frame, denoted
Ground, is located at the UAV's home position P (i.e., where it takes off). The North direction (xP) is provided by the
magnetometer sensor onboard the vehicle. The UAV body frame is set at its center of gravity (CG), point Q, with the xQ
axis pointing between two of the arms towards the front of UAV, the yQ axis pointing to the right, and the zQ axis
pointing to the bottom of the UAV. A Camera frame O xO,yO,zOð Þ is defined at the optical center O. Common practice is
to set xO to right of the camera, yO down, and zO outwards from the camera lens. The objective is to find the relative
position of the landing point M with respect to the UAV's CG, point Q, in the Ground frame. Because the UAV's coordi-
nates in the Ground frame (i.e., QGround) is provided as state estimations by the 24-state EKF implemented in the
Pixhawk flight controller, the objective then becomes to find M 's coordinates in the Ground frame (i.e., MGround).

FIGURE 7 Diagram illustrating different coordinate systems and transformations between them: (a) how to compute the relative

position of the UAV with respect to the landing point M in the Ground frame; (b) pinhole camera model showing the landing point M in the

3D World frame and its projection point N in the Image plane through the camera lens center O
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The first step is to compute the landing point M 's representation in the Camera frame, MCamera. To this end, a pin-
hole camera model (Figure 7b) is adopted to construct the mathematical relationship between coordinates of point M
in a 3D world frame and the 2D coordinates of its projection point denoted as point N in the image pixel frame. Four
coordinate systems are defined in the pinhole model of Figure 7b. The Camera reference frame is as defined in
Figure 7a. The World frame W xW ,yW ,zWð Þ is the frame of reference for absolute positioning. The Image coordinate
frame, denoted as G xG,yGð Þ, is defined with the origin G at the top-left corner of the image with xG pointing to the right.
The fourth reference frame Pad, denoted as M xM ,yM ,zMð Þ, is defined at the landing point M. In the Pad frame, yM
points to the right and zM points perpendicular to the pad itself. Both the xM and yM axes are parallel to tag boundaries.

The pinhole camera model can be formulated as follows:

cNImage ¼K RCamera
World jtCamera

World

� �
MWorld, ð2Þ

where c�ℝ is a scaling factor, K �ℝ3�3 is the camera intrinsic matrix, RCamera
World jtCamera

World

� �
�ℝ3�4 is the camera extrinsic

matrix representing the relative rotation and translation of frame World with respect to frame Camera, NImage ¼
u v 1½ �T �ℝ3�1 and MWorld ¼ x y z 1½ �T �ℝ4�1 are homogeneous coordinates of point N and M, respectively. The camera
intrinsic matrix, K, is based on the camera optics and is a constant matrix that only needs to be found once. Equation 2
can be expanded as follows:

c

u

v

1

264
375¼K

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

264
375

x

y

z

1

26664
37775: ð3Þ

Note that the translation vector tCamera
World can be interpreted as the coordinates of the origin of the World frame with

respect to the Camera frame (Figure 7b). By purposefully defining the World frame exactly as the Pad frame, the land-
ing point M becomes the origin of the World frame, and M's representation with respect to the Camera frame is simply
tCamera
World , that is,

MCamera ¼ tCamera
World ≜ t1 t2 t3½ �T : ð4Þ

MCamera represents all the necessary information about the landing point that can be obtained from a single image
needed for control of the UAV to land with precision on the pad. Specifically, MCamera, or the translation vector tCamera

World ,
defines the relative distances, Δx, Δy, and Δz, of the camera with respect to the landing pad that will be used to control
the UAV landing with the control law aiming to drive tCamera

World to zero.
The problem of estimating the pose of a calibrated camera (with known intrinsic matrix, K) based on a set of n refer-

ence 3D points and their corresponding 2D projections is commonly referred to as the Perspective-n-Point (PnP) prob-
lem. Mathematically, the PnP problem can be defined as given a set of n 3D world coordinates-2D image coordinates
pairs, determine the camera extrinsic matrix RCamera

World jtCamera
World

� �
(Equation 2). Existing solutions to the PnP problem can

be classified into two methods: optimization-based iterative methods (solved by minimizing a properly defined cost
function)35 and closed form methods (solving the equation directly).36 Making use of the open-source computer vision
library, OpenCV,37 an iterative method called solvePnP38 is selected here. The cost function used by solvePnP is the
reprojection error, which is defined as the sum of squared distances between the observed projection points and those
calculated in each iteration. Solutions of the extrinsic matrix RCamera

World jtCamera
World

� �
that minimize the reprojection error are

found based on the well-known Levenberg–Marquardt algorithm.39,40 The translation vector tCamera
World (i.e., t1, t2, and t3)

is then the relative location of the camera to the pad in the World frame; it is this vector that is used by the subsequent
Kalman filter used to estimate the UAV position during controlled landing.

The compute-intensive solvePnP algorithm is implemented in the TX2. After obtaining the translation vector tCamera
World

from each image, MAVLink messages encoding t1, t2, and t3 are sent from the TX2 to the flight controller (Figure 4).
These visual estimations are used as a measurement update for a precision-landing Kalman filter that will be
illustrated next.
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Once MCamera is computed, a set of homogeneous transformations can be applied to get MGround based on rigid
motions between different frames:

MGround ¼HGround
UAV HUAV

CameraM
Camera, ð5Þ

where MGround and MCamera are 4 � 1 homogeneous coordinates augmenting the original 3 � 1 coordinates by a fourth
component of 1. A homogeneous transformation matrix HA

B (4 � 4) is nothing but a compact way to include both the
relative rotation RA

B and translation tAB between two frames A and B, that is,

HA
B ¼

RA
B tAB

0 1

" #
: ð6Þ

HGround
UAV comes from the attitude and position estimations for the UAV in real time, and HUAV

Camera is a preset constant
dependent on how and where the camera is mounted on the UAV.

As a side note, the rotation matrix RCamera
World , or specifically RCamera

Pad , produced by the solvePnP algorithm is utilized to
line up the Camera frame and the Pad frame such that the camera's xO axis coincides with the pad's yM axis. Before pre-
cision landing starts, the vehicle is commanded to yaw an appropriate angle based on this rotation matrix. In this way,
the orientation of the UAV is deterministic with respect to the landing pad when it lands.

3.3.2 | Kalman filter for landing position estimation

The IMU can be further exploited to increase the robustness and accuracy of the vision-based relative position estima-
tion. Visual and inertial fusion has been an active topic of research to address accurate and reliable localization and
mapping in a wide range of robotic oriented applications. Existing approaches found in the literature can be broadly
classified into two categories: batch nonlinear optimization methods41–43 and recursive filtering methods.44,45 The opti-
mization methods jointly minimize errors from both the IMU and vision measurements, while filter based methods
commonly use IMU measurements for state propagation with updates originating from visual observations. Nonlinear
optimization methods are higher performing, but their increased accuracy comes at a cost of more computational
resources. Hence, a recursive linear Kalman filter is adopted in this work due to its simplicity and the flight controller's
limited computing power.

A standard visual-inertial filtering method requires a state vector involving states of both the vehicle and the land-
ing pad (e.g., their positions and velocities). When visual data is not available, state estimation for the UAV is provided
by the 24-state EKF implemented in the Pixhawk flight controller stack. When an image is available, the original
24-dimension state vector would be augmented to include the landing pad's states. This approach would require a large
number of modifications to the original flight controller EKF codebase shown in Figure 4. Alternatively, a less accurate
but more efficient approach taken herein is adding a second Kalman filter for relative position and velocity estimations
of the landing pad while leaving the state estimates for the UAV from the original 24-state EKF filter unchanged. State
estimations from the 24-state EKF can be used as inputs to the second Kalman filter, while visual estimation results
from the previous section will be used as measurement updates (Figure 4).

The second Kalman filter is established as follows. As the dynamics of the UAV are loosely coupled in the xP, yP,
and zP directions in the Ground frame, they are modeled independently during the precision landing process. In the zP
direction, a standard landing maneuver is commanded. On the horizontal plane, two discrete Kalman filters are used
independently: one in the xP (North) direction and another in the yP (East) direction. Without loss of generality, the
Kalman filter in the xP direction is illustrated. The states of the Kalman filter are the relative position and relative veloc-
ity of the landing pad with respect to the UAV, s¼ xrel vrel

� �T
. The next state skþ1 is propagated from the currents state

sk using the following motion model:

skþ1 ¼
xrelkþ1

vrelkþ1

" #
¼ 1 δt

0 1

� �
xrelk

vrelk

" #
þ 0

δvrelk

� �
þ 0

δvnoiserelk

� �
≜FkskþGkukþqk: ð7Þ
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The Kalman filter assumes a constant relative speed in δt, which is reasonable because the filter is updated at
400Hz. The controlled input u¼ 0 δvrel

� �T
is the negative of the UAV's velocity change over the timestep δt. The process

noise qk ¼ 0 δvnoiserelk

� �T ~N 0,Qkð Þ is set to be the estimated accelerometer noise times δt. Both δvrel and δvnoiserel comes
directly from the original 24-state EKF. Relative distance is measured and updated when visual data arrives. The mea-
surement model is simply:

mk ¼ xmeas
rel
k ¼ 1 0½ � xrelk

vrelk

" #
þδmnoise

rel
k ≜Hkskþ rk, ð8Þ

where zk comes from the relative position estimates output from execution of solvePnP on the TX2 using
the image data. The measurement noise rk ¼ δmnoise

rel
k
~N 0,Rkð Þ is assigned to be 2% of the UAV's distance to

landing point, which works well in practice. Given the linear state space model of the relative position Equations 7 and
8, a Kalman filter is developed to predict the state, skþ1. The Kalman filter predicts the state mean, bskþ1, and the
state covariance matrix, bPkþ1, before updating the gain of the Kalman filter, Kkþ1, state, skþ1, and state covariance
matrix, Pkþ1.

The discrete Kalman filter is run on the Pixhawk flight controller since the real-time operating system provides a
precise time base. The use of a Kalman filter allows compensation for bad visual localization data or even the loss of
it. Erroneous and inaccurate state estimates are detected based on the normalized innovations squared (NIS) metric.46

In cases when a visual update is unavailable (e.g., if the camera fails to detect the landing point), the filter will only
make a prediction of the current iteration and compensates in the next update step when the image is available. This
allows the system to recover from several dropped camera frames.

3.3.3 | Visual-inertial synchronization

Conducting image capture and processing as close to real-time as possible is critical for a healthy Kalman filter. High
latency could result in incorrect position estimations. A seemingly simple frame polling command from the TX2 to the
camera introduces latency because polling involves image processing in the camera, USB transfer of the image, and
image decoding by the TX2. To reduce latency present in the polling process, an image capture background thread is
adopted by the TX2 that continually polls the camera and labels each resulting frame with a timestamp. Image
processing is carried out in the main thread with landing point estimations transferred to the flight controller via the
MAVLink protocol when available. Because of the latency present in the camera image pipeline, an observation of the
landing pad is received by the filter framework with a delay. To synchronize inertial and visual data, a buffer of IMU
measurements is maintained since the IMU data is updated faster (400 Hz) than the image measurements (about
30 Hz). Once the Pixhawk receives a visual position estimate, it performs an update step of the Kalman filter on the del-
ayed time horizon, and then predicts forward to the current time using the buffered IMU data. Figure 8 illustrates the
data fusion process.

4 | EXPERIMENTS AND RESULTS

Two different sets of experiments were designed to quantitatively assess the proposed UAV-based vision system for pre-
cision placement of wireless sensors on structures. The first round of experiments (Section 4.1) focused on testing each
individual system component such as position estimation of the UAV relative to the landing pattern and the control
method used for precision landing of the UAV. These experiments were conducted using the 3DR X8 UAV mainly due
to its sturdy frame design (allowing for possible crashes during experimental validation) and relatively longer flight
times (15 min with a 1 kg payload). The second round of experiments (Section 4.2) were intended to validate the con-
cept of deploying sensors on a structure in a modular fashion. Two QAV210 UAVs carrying cameras and wireless sen-
sors with accelerometers were used to perform modal analysis of a beam structure. The case study featured fully
autonomous operations of the two UAVs carrying a Martlet wireless sensor node that is programmed to safely land on
a simply supported beam with a restricted surface area. The two QAV210s are programmed to move the sensors so as to
accurately identify the beam mode shape.
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Field experiments were performed in M-Air, a netted outdoor flying lab (22.4 � 36.6 � 15.2 m3) designed for UAV
research located on the campus of the University of Michigan. During testing, wind conditions were considered mild
(with wind speed under 5.4 m/s but with occasional gusts up to 6.7 m/s) throughout the duration of the experiments. A
Qualisys motion capture system is permanently integrated into M-Air and includes 30 cameras installed around the
facility to provide accurate (mm-level) tracking of object motion. Retroreflective passive markers were mounted on the
objects of interest, in this case, this study's 3DR X8 UAV and its landing pad (Figure 2a), for tracking purposes during
the first experiment focused on tracking the landing process of the 3DR X8. The cameras' threshold was adjusted so that
only the bright reflective markers were captured. UAV and landing pad positioning data were reported by the Qualisys
IR system in real-time at 60 Hz and were used as ground truth for the validation studies. It should be noted that the
Qualisys IR system was not involved in the second experiment as the two QAV210 UAVs used only onboard vision and
computing for autonomous missions.

4.1 | UAV system component testing

For testing and validation purposes, the landing pattern was designed with four AprilTags (Figure 6b) with side
lengths of 22.4, 11.2, 5.6, and 2.8 cm. The largest AprilTag can be reliably detected from as high as 12 m from the air.
The smallest ApilTag fits into the X8 camera's FoV even when the UAV sits on the ground over the landing spot
(there is a 9.2-cm distance between the camera and the ground).

4.1.1 | SolvePnP validation

First, the performance levels of relative position estimation method proposed in Section 3.3.1 were evaluated. Two types
of test flights were performed to quantify the performance of the solvePnP algorithm for estimating the relative position
of the landing point, M, with respect to the camera lens of the UAV (i.e., MCamera). In the first round of test flights, the
UAV was kept in a relatively close position above the AprilTag landing pattern with the UAV continuously estimating
its position relative to the landing point, M. The Qualisys IR motion capture system was used to determine the relative
position of the UAV with respect the landing pattern as ground truth. The second round of testing centered on how

FIGURE 8 Visual-inertial synchronization: the total image delay is the lapse of time from the camera shutter time to the moment the

Pixhawk executes a measurement update. Kalman filter is run on a delayed time horizon on the Pixhawk. Results from the Kalman filter are

predicted forward to produce state estimations for the current time utilizing an IMU buffer
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distance affects the estimation accuracy of the embedded algorithm. In these tests, the UAV took off from the landing
pad and rose up to about 12m.

Test results for two of the flights are shown in Figure 9. Estimations of MCamera (t1, t2, and t3 from solvePnP) are
shown in red plus signs and ground truth measurements from the motion capture system are shown in solid blue lines.
Figure 9a–c shows results of a flight where the UAV was flown relatively close to the landing pattern at a height of
roughly about 1.4 m, while Figure 9d–f shows another flight where the UAV was slowly flown away from the landing
pattern getting to a height of more than 12m. In both test flights, the solvePnP algorithm is able to provide estimations
that follow the ground truth tightly in all three directions, which demonstrates the accuracy of the algorithm. Root
mean square error (RMSE) for the estimations are shown in Table 1. For the first test flight, RMSEs in all three direc-
tions are well under 3 cm, which indicates the ability for the UAV to precisely land.

The second test flight shows that the landing pattern can be detected by the camera from as far away as 12 m. How-

ever, as the distance between the camera and landing point (i.e., OM
��!			 			) grows larger, the estimation accuracy

decreases. The accuracy of the position estimation algorithm was assessed as a function of the relative distance OM
��!			 			.

Figure 10 presents the estimation errors with respect to the relative distance in all three directions. Also shown in the
figure is the number of AprilTags detected and used to compute the relative distances indicated by blue stars. As shown,

only one AprilTag is detected when the vehicle is far from the pattern ( OM
��!			 			 > 6.0 m) and close to the pattern

FIGURE 9 Estimation of MCamera: (a–c) UAV flown relatively close to landing pattern at a distance roughly about 1.4 m; (d–f) UAV
took off from the landing point and slowly flown away

TABLE 1 RMSEs of the solvePnP position estimation algorithm (units are in meters)

MCamera
x MCamera

y MCamera
z

1st flight
(Figure 12a–c)

0.0107 0.0165 0.0269

2nd flight
(Figure 12d–f)

0.0637 0.1282 0.2008

ZHOU ET AL. 15 of 24



( OM
��!			 			 < 0.6 m), which proves the necessity of the inclusion of all four AprilTags in the landing pattern. Figure 10b,c

shows a clear correlation between the number of detected tags and the estimation accuracy. When all four AprilTags in

the pattern are detected ( OM
��!			 			≈ 1.6 m), the estimation error is the smallest (close to zero).

Another interesting finding is that comparing Figure 10a,b, when OM
��!			 			 is relatively large, the estimation errors in

the Camera's xO direction are smaller than those in the yO direction. This is possibly due to the pattern's larger overall
length in the xO direction (thus more accurate pixel coordinates of the feature points and better distance estimation).

4.1.2 | Image data transmission delays

It is important for attitude data from the Pixhawk flight controller and the camera-based estimation of the UAV posi-
tion relative the landing pattern to be synchronized. The UAV was flown over a landing pattern and the time delay
between image capture (i.e., opening of the camera shutter) and transmission of extracted UAV position information
(i.e., t1, t2, and t3) from the TX2 to the Pixhawk over the MAVLink interface was calculated. This delay is shown in
Figure 11 as the solid red curve with cross markers. The delay, which is 31.5 ms on average, is mostly due to the time
needed to load the image from the camera and process the image. The processing time for the TX2 to process the image
of the landing pattern is shown as the green curve with plus markers in Figure 11. The computation time is on average
13.9 ms and less variable. Also, this computation time is not affected by the number of AprilTags (indicated by blue star
markers in Figure 11) used in calculation of the UAV relative position. There is a high level of variability in the total
delay (red curve with cross markers) not seen in the computation time (green curve with plus markers) of the UAV
position estimation. This variability is associated with stochastic delays of the TX2 operating system (which is not real-
time) when servicing the MAVLink interface and executing image capturing in the background. Once the relative posi-
tion estimate is determined, the TX2 will transmit its relative position to the Pixhawk controller. The MAVLink inter-
face operates at a baud rate of 921,600 and requires about 17.8 ms to transmit its data. If average total delay of the TX2
getting an image from the camera, calculating the relative UAV position using the image, and sending out the relative
position is 31.5 � 11.1 ms, then the total delay for the Pixhawk controller is 49.3 � 11.1 ms. With the Pixhawk generat-
ing attitude data at 400Hz and an average delay of image data at 49.3 ms, then an IMU buffer (discussed in
Section 3.3.3) is programmed to have 20 or more data points.

4.1.3 | Precision landing

Next, the UAV's capability of precision landing was tested thoroughly. Figure 12 shows a sequence of snapshots from
the onboard webcam during a typical precision landing. Detected AprilTags are highlighted in each image with the cor-
ners and centers of each detected tag marked by orange dots. Based on these feature points, pixel coordinates for the
fixed landing point M are computed and marked with a red cross. MCamera is further extracted using the direct method

FIGURE 10 Estimation errors with respect to the relative distance between the UAV and the landing pattern. Overlayed are the

number of AprilTags detected and used to compute relative distances
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and shown on top of each frame (t1, t2, t3 in green). As shown in the sequence of snapshots, only the largest AprilTag
among the four is detectable at the very beginning of the landing process when the UAV is at about 4.43m above the
pattern (Figure 12a). Smaller AprilTags gradually come into the camera's FoV as the UAV descends. At the height of
about 1.14m, all four AprilTags are successfully detected (Figure 12c). After that, larger AprilTags slowly leave the cam-
era's FoV and only the smaller AprilTags contribute to visual estimations and provide guidance to the landing vehicle.

FIGURE 11 Image data transmission delay: the total delay equals the delay from image capturing to the transmission of a MAVLink

message by the TX2 (red curve, on average 31.5 ms) plus the actual transmission time of the message from the TX2 to the Pixhawk (about

17.8 ms, not shown in the figure). IMU buffer size is set to 20 to compensate for the delayed visual measurement

FIGURE 12 A sequence of images captured by the webcam during precision landing (computed landing point M and visual estimations

from the direct method are presented in each image), roughly: (a) 4.43m; (b) 3.46m; (c): 1.14m; (d) 0.73m; (e) 0.61m; (f) 0.10 m height
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Figure 12f shows the camera view when the vehicle lands. Relative horizontal distance from the camera lens to the
desired landing point at this final stage is only 0.02m.

Figure 13 illustrates state estimation results from the discrete Kalman filter during one typical landing. The Kalman
filter shows good performance along the whole landing trajectory. Relative distance estimations (red curves) in both the
Ground frame's xP (North) and yP (East) directions follow the ground truth (blue curves) well. Green vertical lines indi-
cate the moments when a visual measurement is received by the Pixhawk and used to update the Kalman filter. When
visual measurements are not available (e.g., during 21–23 s in Figure 13a,b, the landing pattern leaves the camera's
FOV due to the UAV's aggressive maneuvers to correct its position), the Kalman filter is still able to provide estimations
by only executing the prediction step. A set of landings are performed 25 times to assess the repeatability of the landing
and to quantify landing precision. Figure 14 illustrates these 25 landing trajectories and their associated landing loca-
tions with respect to the desired landing point. The trajectory data shown in Figure 14a are recorded by the motion cap-
ture system. Below a height of 2.5 m, all of the landing trajectories are within a deviation of 25 cm from the desired
landing point in the horizontal plane. All landing maneuvers land the vehicle within 15 cm from the desired landing
point with 22 in a circle with a radius of 10 cm (Figure 14b).

FIGURE 13 Twenty-five landing trajectories and associated landing spots: (a) trajectories captured by Qualisys IR system in red with

blue circles indicating a 25-cm deviation from the desired landing point in the horizontal plane; (b) landing accuracy with landing positions

indicated by red crosses

FIGURE 14 Relative distance estimations in the Ground coordinate system during a typical precision landing: (a) xP (north); (b) yP
(east); (c) �zP (up)
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4.2 | Autonomous modal analysis of a structural beam

The objectives of the second case study are to evaluate the feasibility of UAVs to: (1) autonomously place wireless sen-
sor nodes on a simply supported beam structure; (2) localize the sensors on the structure; (3) collect ambient accelera-
tion data from the structure; and (4) perform modal analysis of the beam. Towards this end, experiments were
performed in M-Air using a simply support aluminum beam (182.5 cm long, 30.5 cm wide, and 0.6 cm thick). Three dif-
ferent sets of landing patterns are attached on the beam along its longitudinal length representing target sensor loca-
tions equidistant from one another. Two QAV210 UAVs were adopted to each carry a sensor enclosure containing a
Martlet sensing node and an accelerometer sensor. The sensor enclosure is firmly mounted on the bottom of the UAV
and moves from location to location on the beam as the UAV takes off and lands. When landed, the UAV's self-weight
(around 1.1 kg) ensures a firm connection between the sensor and the beam. Attached on top of each UAV is another
AprilTag used for localization of the UAV-sensor pair on the beam using tailored visual algorithms. Figure 15 shows
the setup of the case study.

The experiment is performed in several steps. First, UAV 1 takes off, searches in the air for the landing pattern
of sensor location 1, and delivers the sensing node onto the beam by landing on the pattern. Once UAV 1 lands,
UAV 2 takes off, flies above the beam and UAV 1, and delivers its wireless sensing node to sensor location 2. While
UAV 2 is in the air, it is also able to register the position of the landed UAV 1 using camera data of the AprilTag
on top of UAV 1. This allows the precise location of UAV 1 on the beam to be determined. Soon after the landing
of UAV 2, a human operator strikes the beam with a modal hammer while both UAVs command their wireless
sensing nodes to collect and transmit acceleration data to a ground PC. The hammer impulse is equivalent to white
noise ambient excitation expected in a real, operational structure. UAV 1 then takes off again and moves from sen-
sor location 1 to sensor location 3. Position registration of UAV 2 is accomplished during this process using images
of its overhead AprilTag captured by UAV 1. Upon landing of UAV 1, the human operator excites the beam again
and data collected by the accelerometers now at different locations on the beam are transmitted back to the ground
PC. Lastly UAV 2 is commanded to fly over UAV 1 and leave the beam in order to register UAV 1's last position. At
the final stage of the experiment, modal analysis of the beam is performed using the acceleration response data col-
lected at the three locations along the beam length. The frequency domain decomposition (FDD)47 method is used
to assemble two-point mode shapes for each sensor configuration; overlap in the mode shapes allow them to be
stitched together to from global modes of the beam structure. The experiment is fully autonomous with the human
operator only intervening to impulse the beam structure which would not be necessary in applications in real civil
engineering structures with ambient vibrations.

As shown in Figure 16, the two QAV210s successfully positioned the Martlet wireless sensing nodes on the beam
after carefully following each operation in the FSM. Position registration of the UAV is accomplished by detecting both

FIGURE 15 (a) two QAV210s sit on the ground, ready to deliver wireless sensors to measure beam accelerations (landing patterns are

attached to positions where acceleration measurements are desired); (b) the wireless sensing node attached on the bottom of the QAV210

(left: the Martlet baseboard together with the ADC daughter board; right: the Crossbow accelerometer)

ZHOU ET AL. 19 of 24



its overhead AprilTag and at least one more AprilTag on the beam at the same time. Computed UAV positions are
shown in the top-left corner of the snapshots. Estimation error is within 2 cm when compared to ground truth of the
UAV positions using a measuring tape. Figure 16d illustrates the measured locations of the landed UAVs (based on
manual measurement with a ruler) after repeating the test four times. All landing locations are within 5 cm (shown
with dashed circle with 5-cm radius) from their desired locations.

After the human operator strikes the beam with a modal hammer, the wireless sensing nodes collect accelera-
tion data at 100 Hz as shown in Figure 17a for the first test. The FDD method is then used to extract the natural
frequencies and mode shapes of the beam from the collected time history data. Figure 17b shows the singular
values of the power spectral density (PSD) function matrix for the first and second sensor locations of the first test.
As it appears, the first and second natural frequencies of the beam are at 13 and 43 Hz. The theoretical natural
frequencies and mode shapes of a simply supported Euler–Bernoulli beam can be computed using the beam's prop-
erties (E¼ 6:89�1010 N/m2, I¼ 4:6785�10�8 m4, ρ¼ 2:7�103 kg/m3, A¼ 2:31�10�3 m2, L¼ 1:825 m). The theoreti-
cal 1st and 2nd natural frequencies are determined to be 10.7 and 42.6 Hz, which are in strong agreement to the
experimental results. To get the complete mode shape of beam, mode shapes (Figure 17c,d) generated from the two
strikes are stitched together using the common point sensor location 2. A detailed comparison of the experimental and
theoretical mode shape values is provided in Table 2. It should be noted that the mode shape values plotted in
Figure 17. correspond to the actual measurement location as measured manually (as can be seen by the mode shape
values for all tests not falling on a consistent vertical line). For the four different executions of the experiment, there is
strong agreement between the experimental and theoretical mode shapes. Whereas the field tests were successful, and
the results are reasonable, future work is needed to further reduce the modal errors such as improving the UAV con-
troller and landing pattern design for a better landing accuracy and ensuring a firmer connection between the sensor
and the structure.

4.3 | Discussion and limitations

While this research successfully demonstrates proof-of-concept trails of UAVs with structural sensors integrated pre-
cisely landing on structures using fiducial markers, there are remaining challenges inherent to scaling this approach to
large and complex operational structures. The installation of fiducial markers (such as AprilTag patterns) on structures

FIGURE 16 Spatial registration of wireless sensors on the beam: (a–c) position of the QAV210 landed on the beam; (d) locations of

UAVs over four repeated tests (locations manually measured)
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required for precise localization of the UAVs can be challenging to deploy. Human-based installation in existing struc-
tures seems inevitable in the short-term but this may come with some inherent cost and require safe access to key areas
of the structure for the installer. Safe access could be challenging for a number of structures such as those in remote
areas and ones with complex and large sizes (e.g., skyrises and long-space bridges). Incorporating fiducial markers into
the structure during construction is another viable solution but requires planning beforehand. In this research,

FIGURE 17 Modal analysis of the simply supported beam: (a) raw acceleration data from Martlet sensing nodes; (b) singular values of

the PSD matrices; (c,d) first and second mode shape of the beam

TABLE 2 Comparison of mode shapes between experimental and theoretical values

1st mode shape 2nd mode shape

Experiment Theory Error Experiment Theory Error

Sensor loc. 1 Test 1 �0.7102 �0.8244 0.1142 �1.0000 �0.9332 0.0668

Test 2 �0.7213 �0.7835 0.0622 �1.0000 �0.9737 0.0263

Test 3 �0.7649 �0.7814 0.0165 �1.0000 �0.9753 0.0247

Test 4 �0.8759 �0.8264 0.0495 �1.0000 �0.9307 0.0693

Sensor loc. 2 Test 1 �1.0000 �0.9920 0.0080 0.5708 0.2504 0.3204

Test 2 �1.0000 �0.9964 0.0036 0.4103 0.1696 0.2407

Test 3 �1.0000 �0.9968 0.0032 0.4210 0.1594 0.2616

Test 4 �1.0000 �0.9980 0.0020 0.4520 0.1253 0.3267

Sensor loc. 3 Test 1 �0.6908 �0.6354 0.0544 0.9812 0.9813 0.0001

Test 2 �0.7170 �0.6795 0.0375 0.8765 0.9971 0.1206

Test 3 �0.7486 �0.6098 0.1388 0.8314 0.9666 0.1352

Test 4 �0.6947 �0.7104 0.0157 0.7379 0.9998 0.2619
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AprilTags are all placed horizontally on surface with the UAV landing on the landing pattern. However, the usage of
markers is not limited to a horizontal orientation. AprilTags can be put on vertical or inclined surfaces as long as they
are within the camera's FoV and their location and pose relative to a predefined flat landing position on the structure is
known a priori. Also, the UAV need not have to land on the pattern itself. In this work, a set of standard square tags
with varied sizes is adopted to accommodate detection from a wide range of distances resulting in relatively large
markers. An improved design could be a recursive pattern with a smaller tag nested inside a bigger tag48 such that a sin-
gle marker would suffice for use by the UAV from long and short distances. Another approach could be the use of UAV
cameras that can zoom allowing for smaller markers to be used. In general, the choice of fiducial marker calls for a
balance between detection robustness, computational efficiency, and pose estimation accuracy. There is potential for
research into how this compromise can be diminished utilizing more advanced design. Finally, environmental
disturbances can pose challenges regarding the overall reliability and robustness of a UAV using markers to land. For
instance, strong sustained wind speeds and large wind gusts could overcome the controllability of the UAV regardless
of the type of data used (vision- or IMU-based) to estimate the UAV location and pose relative to a landing spot. Also,
the robustness of the fiducial markers must be ensured—those worn down by the elements could challenge the detec-
tion of the marker.

5 | CONCLUSION

This study explores the development of UAVs as an intelligent agent capable of deploying wireless sensor nodes autono-
mously for structural health monitoring applications. The proposed UAV system can autonomously detect landing pat-
terns and precisely land upon them to deploy sensors to the structure surface. Transition between different functions
like pattern searching and precision landing is accomplished using a reliable finite-state machine embedded in the TX2
onboard computer of the UAVs. Precision positioning of a UAV in the outdoor environment is made possible by the
integration of a customized fiducial marker pattern, a robust vision-IMU coupled estimation method, and a discrete
Kalman filter. The study reveals sensor positioning accuracy of less than 10 cm. The study also validates UAV sensor
deployments for modal analysis. Using two UAV-based wireless sensors, the system can land on a simply supported
beam with 5-cm accuracy to extract precise mode shapes. Moving forward, the autonomous UAV sensor delivery sys-
tem could be improved by incorporating on-the-fly decision-making capabilities. Once structural diagnosis of a certain
part of a structure is finished, the system should be able to decide intelligently the next configuration of the sensor net-
work and where it should be installed on the structure. By instantly moving sensors to more advantageous positions on
the structure, events of interest such as structural damage can be measured and recorded in a more timely and detailed
fashion. Future work also includes expanding the UAV's capability such as to precisely pick up and drop off sensing
nodes with an onboard gripper. In this way, fewer UAVs are required to install the sensor network saving deployment
cost. Fiducial markers are not always practical in remote outdoor environments. Future work will leverage recent
advances in simultaneous localization and mapping (SLAM)49,50 for autonomous navigation of the UAV in unknown
environments.
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