
Lynch Jerome (Orcid ID: 0000-0002-8793-0061)

Autonomous wireless sensor deployment with unmanned aerial vehicles for structural health monitoring
applications

Hao Zhoua, Jerome Lynchb, Dimitrios Zekkosc

a Department of Civil and Env. Engineering, University of Michigan, Ann Arbor, MI, USA
b Department of Civil and Env. Engineering, Duke University, Durham, NC, USA

c Department of Civil and Env. Engineering, University of California, Berkeley, CA, USA

Abstract
Unmanned aerial vehicles (UAVs) equipped with onboard sensors empower end-users to collect data
within a wide range of civil engineering applications such as structural condition assessment. While UAVs
have been used primarily as mobile sensing platforms to obtain imagery or other data, their mobility can
also be used to deploy sensor networks. In this study, the feasibility of using an autonomous UAV to
deploy wireless sensors in structural monitoring applications is proposed. While GPS-based waypoint
navigation is available for automating UAV flight operations, this approach does not provide the accuracy
necessary for the precision placement of sensor payloads on structures. Computer vision-based pose
estimation is proposed to improve the accuracy of UAV localization for sensor placement. Variably sized
fiducial markers integrated into a single pattern are applied to the surface of the structure and adopted as
navigation and precision landing target that identify sensor placement locations. Visual and inertial
measurements are fused by means of a discrete Kalman filter to further increase the robustness of the
relative position estimation algorithm that is included in the PID control law used for UAV landing.
Outdoor experiments under realistic operational conditions are conducted to validate the proposed vision-
aided control of the UAV for sensor placement; the UAV is able to land on a predefined landing point
within 10 cm. A UAV moving a wireless accelerometer to locations on a beam is used to experimentally
show the validity of automating UAV sensor placement for modal analysis using reconfigurable sensor
network topologies.

Keywords
wireless sensor, mobility, computer vision, Kalman filter, autonomy, UAV

1 Introduction
Adoption of sensing is growing increasingly attractive in a wide range of civil engineering applications
due to the reduction of sensor cost, the integration of wireless communication that make deployments
easier, and the improvement of analytical frameworks that extract value from collected data.1 This has
made monitoring common in many field applications such as structural health monitoring (SHM).2–5 In
SHM applications, dense sensor arrays are often needed which can drive system costs high. For example,
long-span bridges could require hundreds of sensors to ensure sufficient spatial coverage for SHM.6 If
sensors could be moved, the density of permanent sensors could be reduced, thereby lowering costs while
rendering systems more flexible to adapt to the needs of the SHM application. To date, the placement of
sensors on a structure are done manually with the assumption that they do not move. However,
autonomous robotic systems could be developed for the initial placement and later movement of sensors
which would make monitoring systems flexible and cost-effective.

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1002/stc.2942

http://orcid.org/0000-0002-8793-0061
http://dx.doi.org/10.1002/stc.2942
http://dx.doi.org/10.1002/stc.2942

UAVs could potentially be one such solution that offer mobility to sensors that allow for the collection of
data that is difficult to obtain using conventional stationary monitoring approaches. The data collection
capabilities of UAVs have already proven valuable in many civil engineering applications such as
infrastructure inspection, traffic monitoring, and remote sensing.7–9 Computer vision methods offer a
promising approach to identifying the condition of infrastructure with inexpensive cameras installed on
the UAV. For example, recent studies have demonstrated several innovative applications of UAVs
equipped with cameras (e.g., optical, infrared) to conduct infrastructure monitoring such as delamination
detection of concrete bridge decks,10,11 modal analysis of a pedestrian suspension bridge,12 and visual
inspection of steel girder bridges.13,14 In all of these applications, the UAV systems are primarily used as
a mobile data collection platform to observe the system from afar and make no direct contact with the
structure. Also, navigation of the UAV is controlled by either a human pilot operating the UAV or using
a GPS module providing waypoint coordinates for autonomous flight operations. Both navigation methods
lack accuracy and struggle to give desirable or reliable measurements for cases where precise spatial
control of the UAV is required. The utility of UAVs could be enhanced if they not only carry sensor
payloads, but also have the ability to deploy sensors. This can be especially valuable in applications where
data collection may be required over a longer period of time (e.g., days, years) than what current UAV
flight endurances allow (e.g., minutes, hours). In the literature, mobile sensor networks deployed by robots
in structures has been developed and validated by several researchers. Huston et al. studied the use of a
mobile robot that was able to crawl along bridge girders while measuring girder flange thickness with an
ultrasonic sensor.15 Zhu et al. prototyped a climbing robot equipped with magnetic wheels capable of
adhering to and navigating on a steel bridge. The robots carried accelerometers as a robot payload and
moved around the bridge to sample structural vibrations.16 In this paper, aerial delivery of sensing
payloads based on computer vision and position estimation is proposed as part of an autonomous UAV
sensor deployment system. Aerial deployment has advantages over wheel-based robots including more
freedom in moving to different locations.

Precision control of a UAV to land on desired positions (i.e., within 0.5 m or less) is necessary for effective
sensor placement. GPS-based waypoint navigation techniques used in other SHM applications (e.g.,
collection of imagery data) are insufficient due to UAV positioning errors being as large as meters that
would result in inaccurate and unsuccessful sensor placement. Modern computer vision object detection
and pose estimation algorithms are a promising alternative to GPS. Autonomous landing of UAVs using
vision as the primary data source is currently an active topic of research. Among early investigations,
printed patterns have been used to mark the landing target. Saripalli et al. demonstrated vision-based
autonomous landing of a model helicopter on an “H”-shaped pad; landing position accuracy was reported
to be within 40 cm.17 To extend the detection distance, Merz et al. proposed a landing pattern consisting
of five concentric circle triplets of different size (with radii varying from 2 to 32 cm) achieving a touch
down precision of 42 cm.18 Lange et al. designed a landing pattern with several concentric white rings on
a black background and was able to hover a Hummingbird quadcopter above the pattern with a maximum
deviation of 23 cm over 5 minutes.19 A drawback of the aforementioned printed patterns is that they do
not have an extensible design that limits their usage when multiple landing targets in a structure are
required. Also, the detection performance of a UAV using these markers under challenging scenarios such
as low lighting has not been rigorously analyzed. To address these challenges, researchers have developed
fiducial marker systems with a large number of distinguishable patterns and features (e.g., size) that allow

This article is protected by copyright. All rights reserved.

a UAV to robustly estimate its location and pose under challenging field conditions (e.g., ARToolKit,20
ArUco,21 AprilTag22). For example, Borowczyk et al. gave a demonstration of autonomous landing of a
DJI M100 quadcopter on a moving vehicle (moving up to 50 km/h) using a signle 30 cm ×30 cm AprilTag
for visual estimation of the vehicle23. Chaves et al. accomplished autonomous landing of a UAV (Parrot
AR.Drone) on a Segway using a landing platform with four AprilTags with one large marker in the center
for initial detection and three small markers on the side for fine pose control at close range when
completing the landing maneuver.24 The drawback of this system is that computations were not done on
the UAV so a separate laptop was needed to remotely execute the control law. To further extend the
detection range, Araar et al. designed a landing pad using a total of 28 AprilTags with bigger tags
surrounding smaller ones resulting in an 8 cm landing error when landing on a stationary target.25 Similar
to Chaves et al.,24 all computations were run on a separate laptop computer. These works reveal that a
single fiducial marker does not provide the UAV the range necessary for detection from afar while being
sufficiently small for precision navigation at close range. Also, landing pads with too many markers have
high computational costs requiring remote computers to run the control law. In this paper, a simple yet
universal landing pattern for different detection ranges is proposed for detection and use by a UAV
onboard computer in near real-time.

In this study, multi-rotor UAVs are explored for autonomously deploying wireless sensors for structural
monitoring applications. The work emphasizes the integration of precise landing and mission management
capabilities within the onboard computer of the UAV for truly autonomous operations. Figure 1 provides
the operational principles of the autonomous UAV-based sensor deployment system proposed including
the use of fiducial-based landing pads for placement of a wireless sensor that can be moved from location
to location. The proposed landing pad design is easily adjustable and able to provide reliable visual
estimation by the UAV (using an onboard computer) during the entire landing process, thereby ensuring
an accurate placement of the sensor payload. The envisioned applications include movement of sensors
(e.g., accelerometers) on a structure for structural monitoring (with locations predetermined and marked
with landing pads). The work aims to make three major intellectual contributions. First, a computer vision

Figure 1. Overview of the autonomous UAV system for wireless sensor deployment.

This article is protected by copyright. All rights reserved.

approach using four AprilTag markers for a single landing pad is created to trade off precision with
onboard computational time for real-time control of the UAV landing. Second, a fully autonomous system
architecture is advanced to control UAV flight operations and sensor placement using only the onboard
computing resources of the UAV. Third, the integrated UAV system is demonstrated to autonomously
perform modal analysis of a simply supported beam where the only human intervention is impacting the
beam with a modal hammer (which emulates ambient vibrations). This work evaluates the precision and
repeatability of the autonomous landing process for sensor placement. The work also showcases the
quality of the sensor data collected by performing complete modal analysis of the monitored structure
using the reconfigurable sensor networks.

2 UAV Platforms: Hardware and Software

2.1 UAV Hardware
In this study, two UAV platforms are used: a 3D Robotics (3DR) X8 octocopter and a Lumenier QAV210
quadcopter (Figure 2). The X8 aluminum frame is a light and sturdy “X” shape and features two motors
spinning in opposite directions on each of the four arms (i.e., eight motors in total). The eight Sunnysky
2206-12 800 Kv motors give the UAV capacity to carry nearly a 1 kg payload. The eight motors also
provide redundancy offering enough lift and control should a motor burn out. The X8 is powered by a
16,000 mAh 4S 20C LiPo battery and can stay aloft for about 15 minutes. The QAV210 UAV is smaller
with a diagonal length of 210 mm. The QAV210 has a symmetric carbon fiber frame design featuring four
efficient Lumenier RX2206-11 2350 Kv motors. The QAV210 has a payload capacity of 300 grams and
a flight endurance of about 10 minutes using two 2,200 mAh 3S 40C LiPo batteries in parallel. In this
study, the heavy-duty X8 is mainly used for thorough testing of the UAV control algorithms with a heavy

(a) (b)

Figure 2. Customized multi-rotor UAVs used in this study: (a) the 3DR X8 octocopter sitting on the
landing pad with a sensor box attached (Qualisys retroreflective passive markers mounted on UAV
and landing pad for pose tracking in M-Air); (b) two Lumenier QAV210 quadcopters carrying
wireless sensor payloads on a simply supported aluminum beam (AprilTag markers on beam and
UAVs are shown).

This article is protected by copyright. All rights reserved.

payload carried on board, while the mini QAV210 is used during the experiments related to delivering
light-weight wireless sensor nodes onto a narrow beam to validate system integration and autonomy.

The X8 comes preinstalled with an original 3DR Pixhawk flight controller first released in 2013.26 The
Pixhawk has a 32-bit STM32F427 ARM Cortex-M4 processor with 256 KB RAM and 2 MB Flash, and
operates at 168 MHz. The flight controller includes two gyroscope/accelerometer sensors (TDK
InvenSense MPU6000 gyroscope/accelerometer, and STMicroelectronics L3GD20H
gyroscope/LSM303D accelerometer), a 14-bit STMicroelectronics LSM303D magnetometer, and MEAS
MS5611 barometer. The Pixhawk provides many connectivity options including five universal
asynchronous receiver/transmitters (UARTs), two controller area network (CAN) ports, and one inter-
integrated circuit (I2C) interface. An external u-blox LEA-6H GPS module is paired with the Pixhawk for
outdoor navigation. For the QAV210, its small frame size requires a flight controller with a scaled-down
form factor. A Holybro Pixhawk 4 Mini is chosen which has half the footprint of the 3DR Pixhawk but
has higher computing performance. The Pixhawk 4 Mini features an upgraded 32-bit STM32F765 Arm
Cortex-M7 processor running at 216 MHz with 512 KB RAM and 2 MB memory. The enhanced onboard
sensor suite includes an InvenSense ICM-20689 and Bosch BMI055 gyroscope/accelerometer pair, an
iSentek IST8310 magnetometer, and the same MS5611 barometer as the 3DR Pixhawk. The external GPS
sensor is also upgraded to a u-blox Neo-M8N module. Both flight controllers have a FrSky XSR receiver
connected via SBus so that a user can manually command the vehicle using a remote controller (RC) radio
transmitter that operates on the 2.4 GHz frequency with an approximate communication range of 1 km.

To expand the onboard computational capabilities of both UAVs, a more powerful single-board computer
is integrated. The Nvidia Jetson TX2 is selected as the companion computer to perform tasks on the UAVs
that are computationally resource intensive. The TX2 is equipped with a 256-core Pascal graphics
processing unit (GPU), a dual-core Nvidia Denver 2.0 central processing unit (CPU), a quad-core ARM
Cortex-A57 CPU, and 8 GB 128-bit LPDDR4 memory. In addition, the TX2 includes Wi-Fi
communication capabilities with a range of approximately 100 m. A small carrier board (Connect Tech’s

This article is protected by copyright. All rights reserved.

Orbitty Carrier) to which the TX2 module is attached is selected. This board (87×50×15 mm3) takes little
space on the UAV but offers a variety of communication ports (one Universal Serial Bus (USB), two
UARTs, one I2C, and four general-purpose input/outputs (GPIOs)). Communications between the flight
controller and the TX2 is established using the UART with a baud rate at 921,600. A ground-based
personal computer (PC) is also used to communicate with the TX2 through its 5 GHz Wi-Fi interface. The
flight controller takes commands from the TX2 in the form of MAVLink messages27 posted over the
UART port. At any time, a human pilot can take control of the UAV by commanding the flight controller
through the FrSky Taranis X9D transmitter which can communicate up to 1 km line of sight (although
this will not be needed in this study). The system architecture is shown in Figure 3.

The camera is another critical component for the precise control of both UAVs. A downward facing
Logitech C270 high definition (HD) web camera is connected to the bottom of the UAV and attached
directly to the TX2 via USB. This low-end webcam is purposely chosen due to its lack of auto-focus
functionality because auto-focus could create blurry images at high speeds. Despite the camera’s ability
to record 720p HD video clips, image resolution is set to a much lower 640×480 px2 resolution so that
images can be processed in real-time on the TX2. The camera is mounted beneath the front of the UAV
using rubber dampers that dampen vibrations. The use of a gimbal is intentionally avoided to ensure an
unfiltered view of the ground is obtained from which the pose of the UAV can be estimated. While the
QAV210s carry only one camera, an additional camera (GoPro HERO5 Session) is included in the X8 for
flight video logging during validation experiments (and not for use in pose estimation during landing) is
communicated to a ground PC using 5 GHz Wi-Fi.

The Martlet wireless sensing node28 developed at the University of Michigan is selected as the primary
data collection platform for accelerometers used to measure structural vibrations. The computing core of
the Martlet is a 16-bit Texas Instruments (TI) TMS320F28069 modified microcontroller unit (MCU) with

Figure 3. UAV system hardware architecture showing components and communication links.

This article is protected by copyright. All rights reserved.

a clock frequency up to 80 MHz. The Martlet contains a 9-channel dual sample-and-hold 12-bit analog-
to-digital converter (ADC) capable of sampling analog signals at a maximum sampling frequency of 3
MHz. An ADC sensor interface board is attached on top of the Martlet baseboard to provide bandpass
filtering and amplification of input analog signals (100 Hz cut-off frequency and 1× gain in this study).
Wireless communication between the Martlet and a ground-based PC is established through a power
amplified TI CC2520 2.4 GHz IEEE 802.15.4 transceiver integrated with Martlet. Due to being power
amplified, the Martlet transceiver can communicate up to a range of approximately 1 km. A customized
enclosure for housing the Martlet and a 2 g Crossbow CXL02LF1 accelerometer (1 mg RMS noise floor)
is selected (Figure 2(b)). The sensor enclosure is attached to the bottom of the QAV210 and will move
together with the vehicle.

2.2 Embedded Software Architecture
Embedded software is needed to automate the operations of the UAVs for the deployment of wireless
sensors used for monitoring civil engineering systems. Software is written for the two onboard computing
elements of the UAV: the TX2 companion computer and the Pixhawk flight controller. High-level flight
planning like mission management and compute-intensive tasks like visual pose estimation will be
executed using the TX2, while position and attitude control of the UAV are implemented on the flight
controller. Figure 4 shows the layout of the software architecture distributed across the two computing
elements. To speed up the development of the UAV, the open-source ArduCopter firmware from the
ArduPilot project29 is selected to run on the Pixhawk flight controller as the real-time flight control stack.
ArduCopter provides reliable and responsive flight control operations for UAVs in a full range of flight

Figure 4. Software architecture for the UAV platform where the TX2 provides high-level mission
management and image processing while the Pixhawk flight controller is responsible for vehicle
state estimation and control.

This article is protected by copyright. All rights reserved.

modes including manual and automatic flight operations. High-level control abstractions and interfaces
are well documented that enable customized flight features and the development of complex use cases.
ArduCopter also has well defined communication interfaces that allow a companion computer (like the
TX2) to gain access to flight data and to allow extra power to handle computationally intensive tasks not
easily executable on the flight controller.

The main loop (Figure 4) of the ArduCopter flight code includes a 24-state extended Kalman filter
(EKF)30,31 for vehicle state estimation (e.g., vehicle attitude using quaternions which are more
computationally efficient than Euler angles, 𝑞⃗𝑞 = [𝑞𝑞0 𝑞𝑞1 𝑞𝑞2 𝑞𝑞3]𝑇𝑇 ∈ ℝ4 , vehicle velocity in the global
North-East-Down (NED) frame 𝑣⃗𝑣 = [𝑣𝑣𝑁𝑁 𝑣𝑣𝐸𝐸 𝑣𝑣𝐷𝐷]𝑇𝑇 ∈ ℝ3 , vehicle position in the NED frame 𝑝⃗𝑝 =
[𝑝𝑝𝑁𝑁 𝑝𝑝𝐸𝐸 𝑝𝑝𝐷𝐷]𝑇𝑇 ∈ ℝ3, gyro bias offsets in the UAV’s local body frame 𝑏𝑏𝑔𝑔����⃗ = �𝑏𝑏𝑔𝑔𝑔𝑔 𝑏𝑏𝑔𝑔𝑔𝑔 𝑏𝑏𝑔𝑔𝑔𝑔�

𝑇𝑇 ∈ ℝ3, gyro scale
factor in the local IMU frame 𝑠𝑠𝑔𝑔���⃗ = �𝑠𝑠𝑔𝑔𝑔𝑔 𝑠𝑠𝑔𝑔𝑔𝑔 𝑠𝑠𝑔𝑔𝑔𝑔�

𝑇𝑇 ∈ ℝ3, acceleration bias in vehicle body Z direction
𝑏𝑏𝑎𝑎𝑎𝑎 ∈ ℝ1, earth magnetic field in the NED frame 𝑚𝑚𝑒𝑒�����⃗ = [𝑚𝑚𝑁𝑁 𝑚𝑚𝐸𝐸 𝑚𝑚𝐷𝐷]𝑇𝑇 ∈ ℝ3, body magnetic field 𝑚𝑚𝑏𝑏�����⃗ =
[𝑚𝑚𝑋𝑋 𝑚𝑚𝑌𝑌 𝑚𝑚𝑍𝑍]𝑇𝑇 ∈ ℝ3 , and wind velocity 𝑣𝑣𝑤𝑤����⃗ = [𝑣𝑣𝑤𝑤𝑤𝑤 𝑣𝑣𝑤𝑤𝑤𝑤]𝑇𝑇 ∈ ℝ2). In this study, the vehicle attitude 𝑞⃗𝑞 ,
velocity 𝑣⃗𝑣, and position 𝑝⃗𝑝 will be used for control of the UAV. The EKF is designed to linearize the
nonlinear UAV flight dynamics and sensor measurement equations using IMU dead-reckoning to
propagate the state and onboard sensor (e.g., GPS, barometer) measurements to update the state estimation.
Advantages of the EKF include being able to switch between sensors (in case a sensor fault is identified)
and the estimation of external flight variables such as gyro and accelerometer biases, and wind speed
leading to better flight performance. The ArduCopter main loop is run on the Pixhawk at 400 Hz including
the EKF filter. A number of background threads are running constantly on the flight controller to provide
input to the EKF algorithm including updates of the GPS (50 Hz), barometer (10 Hz), and IMU (400 Hz).
As a result, the EKF provides estimations of the UAV attitude, position, and velocity using available data
at the 400 Hz main loop execution rate.

To control UAV motions for autonomous flight, ArduCopter implements a cascaded control structure with
a position controller followed by an attitude controller. The first step of the control solution is the “flight
mode update” which is used to offer a target mode for the UAV (e.g., “Land”, “RTL” for return to launch).
Flight mode update can be informed by a command from a radio controller when in manual mode or, as
is done in this study, issued by the external onboard computer (i.e., the TX2) as part of a state machine
associated with automated flight operations. Depending on the flight mode, the flight controller utilizes
different control strategies. The “Land” mode is most pertinent to this study and the control logic behind
precision landing is described here. The outermost control loop is the position controller that is based on
a proportional-integral-derivative (PID) controller design. The position controller takes in a target vehicle
position 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 and velocity 𝑣⃗𝑣𝑐𝑐𝑐𝑐𝑐𝑐 from the precision-landing Kalman filter (which will be illustrated in the
next section) and the vehicle’s actual position 𝑟𝑟 and velocity 𝑣⃗𝑣 from the 24-state EKF to generate a target
vehicle attitude 𝑞⃗𝑞𝑐𝑐𝑐𝑐𝑐𝑐 that will be fed into the attitude controller. Similarly, the attitude controller adopts
a PID design for each angle axis and outputs desired angular body rates Ω��⃗ 𝑐𝑐𝑐𝑐𝑐𝑐 (i.e.,
[Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]𝑇𝑇 ∈ ℝ3 along the three axes of the vehicle’s body frame) for the vehicle. At the end
of the ArduCopter main loop, outputs from the attitude and position controllers are converted to absolute
motor outputs (i.e., PWM values) for the specific frame type (e.g., quad, X8) and sent to the electronic
speed controls (ESCs) which command each motor with a PWM output, 𝐹⃗𝐹𝑐𝑐𝑐𝑐𝑐𝑐 (i.e., [𝐹𝐹1 𝐹𝐹2 …𝐹𝐹𝑛𝑛]𝑇𝑇 ∈ ℝ𝑛𝑛,

This article is protected by copyright. All rights reserved.

where 𝑛𝑛 is the number of motors). It should be emphasized that the contributions of this work lay mainly
on the TX2 side, where visual estimation of the UAV’s relative position to the landing pad is provided
based on computer vision methods. In contrast, the Pixhawk is used as coded with an addition of a Kalman
filter for precision landing and fine tuning of the PID control parameters for precision control of the UAV.

The Nvidia Jetson TX2 companion computer running Linux (Ubuntu 16.04) constitutes the other
significant part of the UAV software system. The main thread embedded on the TX2 is a finite-state
machine (FSM) for automated flight operations including where and when to place wireless sensors on a
structural system. The FSM is primarily focused on implementing a target search for identifying sensor
locations and performing precision landing of the UAV while ensuring flight safety and efficiency. To do
this, the UAV’s bottom mounted camera interfaced to the TX2 will be used to search for landing locations
identified with fiducial markers and to improve UAV positioning during precision landing. The DroneKit-
Python API32 is set up on the TX2 to establish communication between the Pixhawk flight controller and
the TX2 using the MAVLink communication protocol. Through this low-latency communication protocol,
the TX2 is able to get real-time access to the vehicle’s state and to command vehicle operations.

3 Methodology

3.1 Sensor Deployment State Management
The major intellectual merit of the work is embodied in the methodology associated with automation of
sensor deployment and redeployment. At the core of the work is the creation of an FSM embedded in the
UAV onboard computer (i.e., TX2) that choreographs each step of the fully autonomous sensor
deployment. The deployment strategy (Figure 1) is based on a structure with pre-determined sensor
locations defined by fiducial markers. Once sufficient data is collected, the sensor is retrieved by the UAV,
transported and positioned to another installation location. This deployment strategy is executed by the
UAV using the FSM embedded in the onboard TX2 computer.

Figure 5. Finite-state machine for the UAV-based sensor placement mission; certain operations are
only granted a limited time to stay in for battery life preservation.

This article is protected by copyright. All rights reserved.

The FSM approach partitions the autonomous sensor deployment method into a set of well-defined
operational states with deterministic transitions between them. As shown in Figure 5, the task of deploying
a wireless sensor node is split into manageable pieces such as searching for the target landing pattern in
the air, hovering above the landing pattern, and performing a precision landing of the UAV for sensor
placement. The FSM guides the UAV to first take off from the home position to a target height and to fly
a predetermined flight path while searching for the desired fiducial marker on the structure that indicates
the installation location of the wireless sensor (e.g., sensor location 1 in Figure 1). If the desired landing
pattern is found, a precision landing maneuver based on computer vision is performed to land on the target
pattern for placement of the sensor. After desired measurements are taken, the UAV takes off and searches
for the next installation location (e.g., sensor location 2 in Figure 1). The UAV repeats this procedure until
all required locations are visited, at which point the UAV returns to its home position. A challenge with
UAVs in general is their limited battery energy; this requires an efficient FSM that does not waste scarce
energy. Certain states in the FSM presented in Figure 5 are only granted a limited time for the UAV to
stay in so that battery life is not wasted.

In the flight operations dictated by the FSM, the UAV will rely on two primary sources of data for spatial
pose estimation: vehicle state estimation data (e.g., vehicle position 𝑟𝑟, velocity 𝑣⃗𝑣, attitude 𝑞⃗𝑞) queried by
the TX2 companion computer from the flight controller and camera images viewing the landing pattern
which are a set of unique fiducial markers. The TX2 has a flight path defined by GPS waypoints that is
communicated point by point to the flight controller over the MAVLink communication interface. The
GPS data is sufficiently accurate (i.e., within meters) for guiding the UAV over large distances, but is too
coarse for precision landing. Once the fiducial marker corresponding to a desired landing location is found,
the UAV uses the TX2 computer to estimate with greater precision (i.e., within centimeters) the UAV
position 𝑟𝑟 and orientation 𝑞⃗𝑞 using camera images of the fiducial markers and a Kalman filter. Once the
landing pattern is detected, the cascaded position and attitude controller (Figure 4) inside the Pixhawk
controls the UAV to land using the estimated UAV pose relative to the landing pattern as an input to the

This article is protected by copyright. All rights reserved.

control law. The processing of the camera images and relative pose estimation are done by the TX2
computer using tailored software written in Python as part of this study. The fusion of the camera estimates
and other sensor data such as IMU-based measurements is implemented via a second Kalman filter (i.e.,
independent of the EKF) embedded in the Pixhawk flight controller by the authors .

3.2 Landing Pattern Design and Detection
Being able to detect the landing pattern defined by fiducial markers is fundamental to the automated sensor
deployment FSM. Specific challenges include keeping the visual target within the camera’s limited field
of view (FoV), robust detection of the landing pattern using low-resolution images, and use of the fiducial
markers for UAV state estimation for precision landing. A multi-resolution tag pattern is designed to
address these challenges. During a precision landing task, ground areas covered by the UAV’s downward
facing camera is limited by the camera’s FoV and the height, 𝑑𝑑𝑑𝑑, of the UAV. A camera from a higher
altitude with a wider FoV has better coverage of the ground. More specifically, as shown in Figure 6, the
maximum lateral and longitudinal ground distance covered by the camera, 𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑, can be calculated:

𝑑𝑑𝑑𝑑 = 2 ∙ 𝑑𝑑𝑑𝑑 ∙ tan �
𝐹𝐹𝐹𝐹𝐹𝐹𝑥𝑥

2 � ,𝑑𝑑𝑑𝑑 = 2 ∙ 𝑑𝑑𝑑𝑑 ∙ tan �
𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦

2 �, (1)

where 𝐹𝐹𝐹𝐹𝐹𝐹𝑥𝑥 and 𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦 are the camera’s field of view along the 𝑥𝑥 and 𝑦𝑦 axis, respectively. The designed
landing pattern includes fiducial markers of different sizes which are intentionally positioned as guides to
the UAV at different distances from the target during landing, leading to better precision. Bigger markers
allow the UAV to detect landing spots from high altitudes, but smaller markers are needed to ensure
precision during landing. As the UAV descends, bigger tags gradually leave the camera’s FoV while
smaller ones become detectable, thereby providing a continuous navigation guide for the UAV.

(a) (b)
Figure 6. (a) Area covered on the ground by a downward facing camera restrained by FoV and height
(in this case, only the two smallest tags stay completely in the camera’s FoV); (b) landing pattern
with four different sizes of AprilTags with the gray cross mark defining the landing spot.

This article is protected by copyright. All rights reserved.

The AprilTag fiducial detection system is chosen for the design of the landing pad due to its robust
performance with respect to suboptimal lighting conditions, occlusion, and motion blur.22 These black and
white, QR-code-like square tags contain identification information (tag ID) and provides full pose
estimation of a calibrated camera with respect to a tag. The AprilTag detection system is composed of two
major components: tag detector and coding system. The detector’s job is to estimate the position of
potential tags in an image and the coding system enables encoding/decoding of distinguishable IDs. The
detection process starts with detecting line segments by grouping together pixels with similar gradient
directions and magnitude. Sequences of line segments that form a 4-sided shape (i.e., possible tag
boundaries) are then identified based on a recursive depth-first search method.22 The final stage of the
detection algorithm is payload decoding, where bits from the tag-relative payload field are extracted one
by one. Once the data payload is determined, the coding system determines whether it is a valid tag or not.
The AprilTag encoding scheme utilizes a modified lexicographic coding system that ensures minimum
Hamming distance between codewords while rejecting simple patterns that commonly occur in natural
scenes.22 Different families of tags are provided by the AprilTag coding system, depending on the size of
the tag (e.g., 4×4, 5×5, 6×6 grids) and the minimum Hamming distance between codewords. In general,
families with smaller grid size (and hence larger pixel size) enable detection from afar while those with a
larger grid size allow larger Hamming distance thereby providing higher identification accuracy. In this
study, the Tag36h11 AprilTag family (6×6 codewords with a 11 bits minimum Hamming distance) is
adopted for its high detection accuracy with low processing time. A Python module is implemented in the
UAV TX2 to detect the AprilTag.33

The strategy taken in this study is to adopt four AprilTag markers of different sizes as a multi-resolution
landing pattern (Figure 6(b)) to use for precision landing. The four markers are organized in an optimal
fashion to minimize jitter in the control of the UAV that can occur if the landing control algorithm switches
tags for its reference during execution.34 To further minimize jitter, this study abandons the switching of
AprilTag markers during landing and uses all of the tags identifiable to reference a single reference point
which is associated with the smallest marker (since this tag is the most likely to stay in the UAV camera
FoV the longest). The UAV will identify as many of the AprilTag markers it can and use all detected
markers to estimate the UAV pose.

3.3 Visual Position Estimation
Having detected the landing pad and identified the pixel coordinates of the detected AprilTags’ feature
points (i.e., tag center and corners), estimation of the position of the UAV relative to the landing point is
possible. Towards this end, a robust relative position estimation method relying on both IMU and vision
data is developed. To compensate for cases where visual localization data is not available, a Kalman filter
is next implemented to provide continuous estimation of the UAV position relative to the landing point.

3.3.1 Relative Position Estimation
Figure 7(a) presents the method for positioning the UAV with respect to the landing point 𝑀𝑀. In this study,
a superscript on the location variable denotes the reference frame (e.g., 𝑃𝑃𝐴𝐴 denotes the coordinates of
point 𝑃𝑃 with respect to frame 𝐴𝐴). Three main coordinate frames and transformations between them are
illustrated. The global North-East-Down frame, denoted Ground, is located at the UAV’s home position

This article is protected by copyright. All rights reserved.

𝑃𝑃 (i.e., where it takes off). The North direction (𝑥𝑥𝑃𝑃) is provided by the magnetometer sensor onboard the
vehicle. The UAV body frame is set at its center of gravity (CG), point 𝑄𝑄, with the 𝑥𝑥𝑄𝑄 axis pointing
between two of the arms towards the front of UAV, the 𝑦𝑦𝑄𝑄 axis pointing to the right, and the 𝑧𝑧𝑄𝑄 axis
pointing to the bottom of the UAV. A Camera frame 𝑂𝑂(𝑥𝑥𝑂𝑂 ,𝑦𝑦𝑂𝑂 , 𝑧𝑧𝑂𝑂) is defined at the optical center 𝑂𝑂.
Common practice is to set 𝑥𝑥𝑂𝑂 to right of the camera, 𝑦𝑦𝑂𝑂 down, and 𝑧𝑧𝑂𝑂 outwards from the camera lens. The
objective is to find the relative position of the landing point 𝑀𝑀 with respect to the UAV’s CG, point 𝑄𝑄, in
the Ground frame. Because the UAV’s coordinates in the Ground frame (i.e., 𝑄𝑄𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) is provided as
state estimations by the 24-state EKF implemented in the Pixhawk flight controller, the objective then
becomes to find 𝑀𝑀’s coordinates in the Ground frame (i.e., 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺).

The first step is to compute the landing point 𝑀𝑀’s representation in the Camera frame, 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. To this
end, a pinhole camera model (Figure 7(b)) is adopted to construct the mathematical relationship between
coordinates of point 𝑀𝑀 in a 3D world frame and the 2D coordinates of its projection point denoted as point
𝑁𝑁 in the image pixel frame. Four coordinate systems are defined in the pinhole model of Figure 7(b). The
Camera reference frame is as defined in Figure 7(a). The World frame 𝑊𝑊(𝑥𝑥𝑊𝑊,𝑦𝑦𝑊𝑊, 𝑧𝑧𝑊𝑊) is the frame of
reference for absolute positioning. The Image coordinate frame, denoted as 𝐺𝐺(𝑥𝑥𝐺𝐺 ,𝑦𝑦𝐺𝐺), is defined with the
origin 𝐺𝐺 at the top-left corner of the image with 𝑥𝑥𝐺𝐺 pointing to the right. The fourth reference frame Pad,

(a) (b)
Figure 7. Diagram illustrating different coordinate systems and transformations between them: (a)
how to compute the relative position of the UAV with respect to the landing point 𝑀𝑀 in the Ground
frame; (b) pinhole camera model showing the landing point 𝑀𝑀 in the 3D World frame and its
projection point 𝑁𝑁 in the Image plane through the camera lens center 𝑂𝑂.

This article is protected by copyright. All rights reserved.

denoted as 𝑀𝑀(𝑥𝑥𝑀𝑀 ,𝑦𝑦𝑀𝑀 , 𝑧𝑧𝑀𝑀), is defined at the landing point 𝑀𝑀. In the Pad frame, 𝑦𝑦𝑀𝑀 points to the right and
𝑧𝑧𝑀𝑀 points perpendicular to the pad itself. Both the 𝑥𝑥𝑀𝑀 and 𝑦𝑦𝑀𝑀 axes are parallel to tag boundaries.

The pinhole camera model can be formulated as:

 𝑐𝑐𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐾𝐾[𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]𝑀𝑀𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊, (2)

where 𝑐𝑐 ∈ ℝ is a scaling factor, 𝐾𝐾 ∈ ℝ3×3 is the camera intrinsic matrix, [𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] ∈ ℝ3×4 is

the camera extrinsic matrix representing the relative rotation and translation of frame World with respect
to frame Camera, 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = [𝑢𝑢 𝑣𝑣 1]𝑇𝑇 ∈ ℝ3×1 and 𝑀𝑀𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = [𝑥𝑥 𝑦𝑦 𝑧𝑧 1]𝑇𝑇 ∈ ℝ4×1 are homogeneous
coordinates of point 𝑁𝑁 and 𝑀𝑀, respectively. The camera intrinsic matrix, 𝐾𝐾, is based on the camera optics
and is a constant matrix that only needs to be found once. Equation (2) can be expanded as:

𝑐𝑐 �
𝑢𝑢
𝑣𝑣
1
� = 𝐾𝐾 �

𝑟𝑟11 𝑟𝑟12 𝑟𝑟13 𝑡𝑡1
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23 𝑡𝑡2
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33 𝑡𝑡3

� �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

�. (3)

Note that the translation vector 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 can be interpreted as the coordinates of the origin of the World
frame with respect to the Camera frame (Figure 7(b)). By purposefully defining the World frame exactly
as the Pad frame, the landing point 𝑀𝑀 becomes the origin of the World frame, and 𝑀𝑀’s representation with
respect to the Camera frame is simply 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, i.e.,

 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≜ [𝑡𝑡1 𝑡𝑡2 𝑡𝑡3]𝑇𝑇. (4)

𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 represents all the necessary information about the landing point that can be obtained from a
single image needed for control of the UAV to land with precision on the pad. Specifically, 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, or
the translation vector 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, defines the relative distances, Δ𝑥𝑥, Δ𝑦𝑦, and Δ𝑧𝑧, of the camera with respect
to the landing pad that will be used to control the UAV landing with the control law aiming to drive
𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 to zero.

The problem of estimating the pose of a calibrated camera (with known intrinsic matrix, 𝐾𝐾) based on a set
of 𝑛𝑛 reference 3D points and their corresponding 2D projections is commonly referred to as the
Perspective-n-Point (PnP) problem. Mathematically, the PnP problem can be defined as given a set of 𝑛𝑛
3D world coordinates-2D image coordinates pairs, determine the camera extrinsic matrix
[𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] (Equation (2)). Existing solutions to the PnP problem can be classified into two

methods: optimization-based iterative methods (solved by minimizing a properly defined cost function)35
and closed form methods (solving the equation directly)36. Making use of the open-source computer vision
library, OpenCV,37 an iterative method called solvePnP38 is selected here. The cost function used by
solvePnP is the reprojection error, which is defined as the sum of squared distances between the observed
projection points and those calculated in each iteration. Solutions of the extrinsic matrix
[𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] that minimize the reprojection error are found based on the well-known Levenberg-

Marquardt algorithm.39,40 The translation vector 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (i.e., 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3) is then the relative location

This article is protected by copyright. All rights reserved.

of the camera to the pad in the World frame; it is this viector that is used by the subsequent Kalman filter
used to estimate the UAV position during controlled landing.

The compute-intensive solvePnP algorithm is implemented in the TX2. After obtaining the translation
vector 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (i.e., 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3) from each image, MAVLink messages encoding 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3 are sent
from the TX2 to the flight controller (Figure 4). These visual estimations are used as a measurement
update for a precision-landing Kalman filter that will be illustrated next.

Once 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is computed, a set of homogeneous transformations can be applied to get 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 based
on rigid motions between different frames:

 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐻𝐻𝑈𝑈𝑈𝑈𝑈𝑈𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , (5)

where 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are 4 × 1 homogeneous coordinates augmenting the original 3 × 1
coordinates by a fourth component of 1. A homogeneous transformation matrix 𝐻𝐻𝐵𝐵𝐴𝐴 (4×4) is nothing but
a compact way to include both the relative rotation 𝑅𝑅𝐵𝐵𝐴𝐴 and translation 𝑡𝑡𝐵𝐵𝐴𝐴 between two frames 𝐴𝐴 and 𝐵𝐵,
i.e.,
 𝐻𝐻𝐵𝐵𝐴𝐴 = �𝑅𝑅𝐵𝐵

𝐴𝐴 𝑡𝑡𝐵𝐵𝐴𝐴
0 1

�. (6)

𝐻𝐻𝑈𝑈𝑈𝑈𝑈𝑈𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 comes from the attitude and position estimations for the UAV in real time, and 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈𝑈𝑈𝑈𝑈 is a
preset constant dependent on how and where the camera is mounted on the UAV.

On a side note, the rotation matrix 𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, or specifically 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, produced by the solvePnP algorithm
is utilized to line up the Camera frame and the Pad frame such that the camera’s 𝑥𝑥𝑂𝑂 axis coincides with
the pad’s 𝑦𝑦𝑀𝑀 axis. Before precision landing starts, the vehicle is commanded to yaw an appropriate angle
based on this rotation matrix. In this way, the orientation of the UAV is deterministic with respect to the
landing pad when it lands.

3.3.2 Kalman Filter for Landing Position Estimation
The IMU can be further exploited to increase the robustness and accuracy of the vision-based relative
position estimation. Visual and inertial fusion has been an active topic of research to address accurate and
reliable localization and mapping in a wide range of robotic oriented applications. Existing approaches
found in the literature can be broadly classified into two categories: batch nonlinear optimization
methods41–43 and recursive filtering methods44,45. The optimization methods jointly minimize errors from
both the IMU and vision measurements, while filter based methods commonly use IMU measurements
for state propagation with updates originating from visual observations. Nonlinear optimization methods
are higher performing, but their increased accuracy comes at a cost of more computational resources.
Hence, a recursive linear Kalman filter is adopted in this work due to its simplicity and the flight
controller’s limited computing power.

This article is protected by copyright. All rights reserved.

A standard visual-inertial filtering method requires a state vector involving states of both the vehicle and
the landing pad (e.g., their positions and velocities). When visual data is not available, state estimation for
the UAV is provided by the 24-state EKF implemented in the Pixhawk flight controller stack. When an
image is available, the original 24-dimension state vector would be augmented to include the landing
pad’s states. This approach would require a large number of modifications to the original flight controller
EKF codebase shown in Figure 4. Alternatively, a less accurate but more efficient approach taken herein
is adding a second Kalman filter for relative position and velocity estimations of the landing pad while
leaving the state estimates for the UAV from the original 24-state EKF filter unchanged. State estimations
from the 24-state EKF can be used as inputs to the second Kalman filter, while visual estimation results
from the previous section will be used as measurement updates (Figure 4).

The second Kalman filter is established as follows. As the dynamics of the UAV are loosely coupled in
the 𝑥𝑥𝑃𝑃, 𝑦𝑦𝑃𝑃, and 𝑧𝑧𝑃𝑃 directions in the Ground frame, they are modeled independently during the precision
landing process. In the 𝑧𝑧𝑃𝑃 direction, a standard landing maneuver is commanded. On the horizontal plane,
two discrete Kalman filters are used independently: one in the 𝑥𝑥𝑃𝑃 (North) direction and another in the 𝑦𝑦𝑃𝑃
(East) direction. Without loss of generality, the Kalman filter in the 𝑥𝑥𝑃𝑃 direction is illustrated. The states
of the Kalman filter are the relative position and relative velocity of the landing pad with respect to the
UAV, 𝑠𝑠 = [𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟]𝑇𝑇. The next state 𝑠𝑠𝑘𝑘+1 is propagated from the currents state 𝑠𝑠𝑘𝑘 using the following
motion model:

𝑠𝑠𝑘𝑘+1 = �
𝑥𝑥𝑘𝑘+1𝑟𝑟𝑟𝑟𝑟𝑟

𝑣𝑣𝑘𝑘+1𝑟𝑟𝑟𝑟𝑟𝑟 � = �1 𝛿𝛿𝛿𝛿
0 1 � �

𝑥𝑥𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟

𝑣𝑣𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟
� + � 0

𝛿𝛿𝛿𝛿𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟
� + �

0
𝛿𝛿𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟� ≜ 𝐹𝐹𝑘𝑘𝑠𝑠𝑘𝑘 + 𝐺𝐺𝑘𝑘𝑢𝑢𝑘𝑘 + 𝑞𝑞𝑘𝑘 . (7)

The Kalman filter assumes a constant relative speed in 𝛿𝛿𝛿𝛿, which is reasonable because the filter is updated
at 400 Hz. The controlled input 𝑢𝑢 = [0 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟]𝑇𝑇 is the negative of the UAV’s velocity change over the
timestep 𝛿𝛿𝛿𝛿. The process noise 𝑞𝑞𝑘𝑘 = [0 𝛿𝛿𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟]𝑇𝑇~𝑁𝑁(0,𝑄𝑄𝑘𝑘) is set to be the estimated accelerometer
noise times 𝛿𝛿𝛿𝛿 . Both 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 and 𝛿𝛿𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑟𝑟𝑟𝑟𝑟𝑟 comes directly from the original 24-state EKF. Relative
distance is measured and updated when visual data arrives. The measurement model is simply:

𝑚𝑚𝑘𝑘 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘
𝑟𝑟𝑟𝑟𝑟𝑟 = [1 0] �

𝑥𝑥𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟

𝑣𝑣𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟
� + 𝛿𝛿𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟 ≜ 𝐻𝐻𝑘𝑘𝑠𝑠𝑘𝑘 + 𝑟𝑟𝑘𝑘 , (8)

where 𝑧𝑧𝑘𝑘 comes from the relative position estimates output from execution of solvePnP on the TX2 using
the image data. The measurement noise 𝑟𝑟𝑘𝑘 = 𝛿𝛿𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟~𝑁𝑁(0,𝑅𝑅𝑘𝑘) is assigned to be 2% of the UAV’s

This article is protected by copyright. All rights reserved.

distance to landing point, which works well in practice. Given the linear state space model of the relative
position Equation (7) and Equation (8), a Kalman filter is developed to predict the state, 𝑠𝑠𝑘𝑘+1. The Kalman
filter predicts the state mean, 𝑠̂𝑠𝑘𝑘+1, and the state covariance matrix, 𝑃𝑃�𝑘𝑘+1, before updating the gain of the
Kalman filter, 𝐾𝐾𝑘𝑘+1, state, 𝑠𝑠𝑘𝑘+1, and state covariance matrix, 𝑃𝑃𝑘𝑘+1.

The discrete Kalman filter is run on the Pixhawk flight controller since the real-time operating system
provides a precise time base. The use of a Kalman filter allows compensation for bad visual localization
data or even the loss of it. Erroneous and inaccurate state estimates are detected based on the normalized
innovations squared (NIS) metric.46 In cases when a visual update is unavailable (e.g., if the camera fails
to detect the landing point), the filter will only make a prediction of the current iteration and compensates
in the next update step when the image is available. This allows the system to recover from several dropped
camera frames.

3.3.3 Visual-Inertial Synchronization
Conducting image capture and processing as close to real-time as possible is critical for a healthy Kalman
filter. High latency could result in incorrect position estimations. A seemingly simple frame polling
command from the TX2 to the camera introduces latency because polling involves image processing in
the camera, USB transfer of the image, and image decoding by the TX2. To reduce latency present in the
polling process, an image capture background thread is adopted by the TX2 that continually polls the
camera and labels each resulting frame with a timestamp. Image processing is carried out in the main
thread with landing point estimations transferred to the flight controller via the MAVLink protocol when
available. Because of the latency present in the camera image pipeline, an observation of the landing pad
is received by the filter framework with a delay. To synchronize inertial and visual data, a buffer of IMU

Figure 8. Visual-inertial synchronization: the total image delay is the lapse of time from the camera
shutter time to the moment the Pixhawk executes a measurement update. Kalman filter is run on a
delayed time horizon on the Pixhawk. Results from the Kalman filter are predicted forward to
produce state estimations for the current time utilizing an IMU buffer.

This article is protected by copyright. All rights reserved.

measurements is maintained since the IMU data is updated faster (400 Hz) than the image measurements
(about 30 Hz). Once the Pixhawk receives a visual position estimate, it performs an update step of the
Kalman filter on the delayed time horizon, and then predicts forward to the current time using the buffered
IMU data. Figure 8 illustrates the data fusion process.

4 Experiments and Results
Two different sets of experiments were designed to quantitatively assess the proposed UAV-based vision
system for precision placement of wireless sensors on structures. The first round of experiments (Section
4.1) focused on testing each individual system component such as position estimation of the UAV relative
to the landing pattern and the control method used for precision landing of the UAV. These experiments
were conducted using the 3DR X8 UAV mainly due to its sturdy frame design (allowing for possible
crashes during experimental validation) and relatively longer flight times (15 minutes with a 1 kg payload).
The second round of experiments (Section 4.2) were intended to validate the concept of deploying sensors
on a structure in a modular fashion. Two QAV210 UAVs carrying cameras and wireless sensors with
accelerometers were used to perform modal analysis of a beam structure. The case study featured fully
autonomous operations of the two UAVs carrying a Martlet wireless sensor node that is programmed to
safely land on a simply supported beam with a restricted surface area. The two QAV210s are programmed
to move the sensors so as to accurately identify the beam mode shape.

Field experiments were performed in M-Air, a netted outdoor flying lab (22.4×36.6×15.2 m3) designed
for UAV research located on the campus of the University of Michigan. During testing, wind conditions
were considered mild (with wind speed under 5.4 m/s but with occasional gusts up to 6.7 m/s) throughout
the duration of the experiments. A Qualisys motion capture system is permanently integrated into M-Air
and includes 30 cameras installed around the facility to provide accurate (mm-level) tracking of object
motion. Retroreflective passive markers were mounted on the objects of interest, in this case, this study’s
3DR X8 UAV and its landing pad (Figure 2(a)), for tracking purposes during the first experiment focused
on tracking the landing process of the 3DR X8. The cameras’ threshold was adjusted so that only the
bright reflective markers were captured. UAV and landing pad positioning data were reported by the
Qualisys IR system in real-time at 60 Hz and were used as ground truth for the validation studies. It should
be noted that the Qualisys IR system was not involved in the second experiment as the two QAV210
UAVs used only onboard vision and computing for autonomous missions.

4.1 UAV System Component Testing
For testing and validation purposes, the landing pattern was designed with four AprilTags (Figure 6(b))
with side lengths of 22.4 cm, 11.2 cm, 5.6 cm, and 2.8 cm. The largest AprilTag can be reliably detected
from as high as 12 m from the air. The smallest ApilTag fits into the X8 camera’s FoV even when the
UAV sits on the ground over the landing spot (there is a 9.2 cm distance between the camera and the
ground).

4.1.1 SolvePnP Validation
First, the performance levels of relative position estimation method proposed in Section 3.3.1 were
evaluated. Two types of test flights were performed to quantify the performance of the solvePnP algorithm
for estimating the relative position of the landing point, 𝑀𝑀, with respect to the camera lens of the UAV

This article is protected by copyright. All rights reserved.

(i.e., 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶). In the first round of test flights, the UAV was kept in a relatively close position above the
AprilTag landing pattern with the UAV continuously estimating its position relative to the landing point,
𝑀𝑀. The Qualisys IR motion capture system was used to determine the relative position of the UAV with
respect the landing pattern as ground truth. The second round of testing centered on how distance affects
the estimation accuracy of the embedded algorithm. In these tests, the UAV took off from the landing pad
and rose up to about 12 m.

Test results for two of the flights are shown in Figure 9. Estimations of 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3 from
solvePnP) are shown in red plus signs and ground truth measurements from the motion capture system
are shown in solid blue lines. Figure 9(a)-(c) shows results of a flight where the UAV was flown relatively
close to the landing pattern at a height of roughly about 1.4 m, while Figure 9(d)-(f) shows another flight
where the UAV was slowly flown away from the landing pattern getting to a height of more than 12 m.
In both test flights, the solvePnP algorithm is able to provide estimations that follow the ground truth
tightly in all three directions, which demonstrates the accuracy of the algorithm. Root mean square error
(RMSE) for the estimations are shown in Table 1. For the first test flight, RMSEs in all three directions
are well under 3 cm, which indicates the ability for the UAV to precisely land.

Table 1. RMSEs of the solvePnP position estimation algorithm (Units are in meters).

(a) (b) (c)

(d) (e) (f)

Figure 9. Estimation of 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: (a)-(c) UAV flown relatively close to landing pattern at a distance
roughly about 1.4 m; (d)-(f) UAV took off from the landing point and slowly flown away.

This article is protected by copyright. All rights reserved.

 𝑴𝑴𝒙𝒙
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑴𝑴𝒚𝒚

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑴𝑴𝒛𝒛
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

1st Flight
(Figure 12 (a)-(c)) 0.0107 0.0165 0.0269

2nd Flight
(Figure 12 (d)-(f)) 0.0637 0.1282 0.2008

The second test flight shows that the landing pattern can be detected by the camera from as far away as
12 m. However, as the distance between the camera and landing point (i.e., �𝑂𝑂𝑂𝑂������⃗ �) grows larger, the
estimation accuracy decreases. The accuracy of the position estimation algorithm was assessed as a
function of the relative distance �𝑂𝑂𝑂𝑂������⃗ �. Figure 10 presents the estimation errors with respect to the relative
distance in all three directions. Also shown in the figure is the number of AprilTags detected and used to
compute the relative distances indicated by blue stars. As shown, only one AprilTag is detected when the
vehicle is far from the pattern (�𝑂𝑂𝑂𝑂������⃗ � > 6.0 m) and close to the pattern (�𝑂𝑂𝑂𝑂������⃗ � < 0.6 m), which proves
the necessity of the inclusion of all four AprilTags in the landing pattern. Figure 10(b) and Figure 10(c)
shows a clear correlation between the number of detected tags and the estimation accuracy. When all four
AprilTags in the pattern are detected (�𝑂𝑂𝑂𝑂������⃗ � ≈ 1.6 m), the estimation error is the smallest (close to zero).

This article is protected by copyright. All rights reserved.

Another interesting finding is that comparing Figure 10(a) and (b), when �𝑂𝑂𝑂𝑂������⃗ � is relatively large, the
estimation errors in the Camera’s 𝑥𝑥𝑂𝑂 direction are smaller than those in the 𝑦𝑦𝑂𝑂 direction. This is possibly
due to the pattern’s larger overall length in the 𝑥𝑥𝑂𝑂 direction (thus more accurate pixel coordinates of the
feature points and better distance estimation).

4.1.2 Image Data Transmission Delays
It is important for attitude data from the Pixhawk flight controller and the camera-based estimation of the
UAV position relative the landing pattern to be synchronized. The UAV was flown over a landing pattern
and the time delay between image capture (i.e., opening of the camera shutter) and transmission of
extracted UAV position information (i.e., 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3) from the TX2 to the Pixhawk over the MAVLink

(a) (b) (c)

Figure 10. Estimation errors with respect to the relative distance between the UAV and the landing
pattern. Overlayed are the number of AprilTags detected and used to compute relative distances.

Figure 11. Image data transmission delay: the total delay equals the delay from image capturing to the
transmission of a MAVLink message by the TX2 (red curve, on average 31.5 ms) plus the actual
transmission time of the message from the TX2 to the Pixhawk (about 17.8 ms, not shown in the
figure). IMU buffer size is set to 20 to compensate for the delayed visual measurement.

This article is protected by copyright. All rights reserved.

interface was calculated. This delay is shown in Figure 11 as the solid red curve with cross markers. The
delay, which is 31.5 ms on average, is mostly due to the time needed to load the image from the camera
and process the image. The processing time for the TX2 to process the image of the landing pattern is
shown as the green curve with plus markers in Figure 11. The computation time is on average 13.9 ms
and less variable. Also, this computation time is not affected by the number of AprilTags (indicated by
blue star markers in Figure 11) used in calculation of the UAV relative position. There is a high level of
variability in the total delay (red curve with cross markers) not seen in the computation time (green curve
with plus markers) of the UAV position estimation. This variability is associated with stochastic delays
of the TX2 operating system (which is not real-time) when servicing the MAVLink interface and
executing image capturing in the background. Once the relative position estimate is determined, the TX2
will transmit its relative position to the Pixhawk controller. The MAVLink interface operates at a baud
rate of 921,600 and requires about 17.8 ms to transmit its data. If average total delay of the TX2 getting
an image from the camera, calculating the relative UAV position using the image, and sending out the
relative position is 31.5±11.1 ms, then the total delay for the Pixhawk controller is 49.3±11.1 ms. With
the Pixhawk generating attitude data at 400 Hz and an average delay of image data at 49.3 ms, then an
IMU buffer (discussed in Section 3.3.3) is programmed to have 20 or more data points.

(a) (b) (c)

(d) (e) (f)

Figure 12. A sequence of images captured by the webcam during precision landing (computed landing
point 𝑀𝑀 and visual estimations from the direct method are presented in each image), roughly: (a) 4.43
m; (b) 3.46 m; (c): 1.14 m; (d) 0.73 m; (e) 0.61 m; (f) 0.10 m height.

This article is protected by copyright. All rights reserved.

4.1.3 Precision Landing
Next, the UAV’s capability of precision landing was tested thoroughly. Figure 12 shows a sequence of
snapshots from the onboard webcam during a typical precision landing. Detected AprilTags are
highlighted in each image with the corners and centers of each detected tag marked by orange dots. Based
on these feature points, pixel coordinates for the fixed landing point 𝑀𝑀 are computed and marked with a
red cross. 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is further extracted using the direct method and shown on top of each frame (𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3
in green). As shown in the sequence of snapshots, only the largest AprilTag among the four is detectable
at the very beginning of the landing process when the UAV is at about 4.43 m above the pattern (Figure
12(a)). Smaller AprilTags gradually come into the camera’s FoV as the UAV descends. At the height of
about 1.14 m, all four AprilTags are successfully detected (Figure 12(c)). After that, larger AprilTags
slowly leave the camera’s FoV and only the smaller AprilTags contribute to visual estimations and provide
guidance to the landing vehicle. Figure 12(f) shows the camera view when the vehicle lands. Relative
horizontal distance from the camera lens to the desired landing point at this final stage is only 0.02 m.

This article is protected by copyright. All rights reserved.

Figure 13 illustrates state estimation results from the discrete Kalman filter during one typical landing.
The Kalman filter shows good performance along the whole landing trajectory. Relative distance
estimations (red curves) in both the Ground frame’s 𝑥𝑥𝑃𝑃 (North) and 𝑦𝑦𝑃𝑃 (East) directions follow the ground
truth (blue curves) well. Green vertical lines indicate the moments when a visual measurement is received
by the Pixhawk and used to update the Kalman filter. When visual measurements are not available (e.g.,
during 21-23 s in Figure 13(a) and (b), the landing pattern leaves the camera’s FOV due to the UAV’s
aggressive maneuvers to correct its position), the Kalman filter is still able to provide estimations by only
executing the prediction step. A set of landings are performed 25 times to assess the repeatability of the
landing and to quantify landing precision. Figure 14 illustrates these 25 landing trajectories and their
associated landing locations with respect to the desired landing point. The trajectory data shown in Figure
14(a) are recorded by the motion capture system. Below a height of 2.5 m, all of the landing trajectories

(a) (b) (c)

Figure 14. Relative distance estimations in the Ground coordinate system during a typical precision
landing: (a) 𝑥𝑥𝑃𝑃 (north); (b) 𝑦𝑦𝑃𝑃 (east); (c) −𝑧𝑧𝑃𝑃 (up).

(a) (b)
Figure 13. 25 landing trajectories and associated landing spots: (a) trajectories captured by Qualisys
IR system in red with blue circles indicating a 25 cm deviation from the desired landing point in the
horizontal plane; (b) landing accuracy with landing positions indicated by red crosses.

This article is protected by copyright. All rights reserved.

are within a deviation of 25 cm from the desired landing point in the horizontal plane. All landing
maneuvers land the vehicle within 15 cm from the desired landing point with 22 in a circle with a radius
of 10 cm (Figure 14(b)).

4.2 Autonomous Modal Analysis of a Structural Beam
The objectives of the second case study are to evaluate the feasibility of UAVs to: (1) autonomously place
wireless sensor nodes on a simply supported beam structure; (2) localize the sensors on the structure; (3)
collect ambient acceleration data from the structure; and (4) perform modal analysis of the beam. Towards
this end, experiments were performed in M-Air using a simply support aluminum beam (182.5 cm long,
30.5 cm wide, and 0.6 cm thick). Three different sets of landing patterns are attached on the beam along
its longitudinal length representing target sensor locations equidistant from one another. Two QAV210
UAVs were adopted to each carry a sensor enclosure containing a Martlet sensing node and an
accelerometer sensor. The sensor enclosure is firmly mounted on the bottom of the UAV and moves from
location to location on the beam as the UAV takes off and lands. When landed, the UAV’s self-weight
(around 1.1 kg) ensures a firm connection between the sensor and the beam. Attached on top of each UAV
is another AprilTag used for localization of the UAV-sensor pair on the beam using tailored visual
algorithms. Figure 15 shows the setup of the case study.

The experiment is performed in several steps. First, UAV 1 takes off, searches in the air for the landing
pattern of sensor location 1, and delivers the sensing node onto the beam by landing on the pattern. Once
UAV 1 lands, UAV 2 takes off, flies above the beam and UAV 1, and delivers its wireless sensing node to
sensor location 2. While UAV 2 is in the air, it is also able to register the position of the landed UAV 1
using camera data of the AprilTag on top of UAV 1. This allows the precise location of UAV 1 on the
beam to be determined. Soon after the landing of UAV 2, a human operator strikes the beam with a modal
hammer while both UAVs command their wireless sensing nodes to collect and transmit acceleration data
to a ground PC. The hammer impulse is equivalent to white noise ambient excitation expected in a real,

(a) (b)

Figure 15. (a) two QAV210s sit on the ground, ready to deliver wireless sensors to measure beam
accelerations (landing patterns are attached to positions where acceleration measurements are desired);
(b) the wireless sensing node attached on the bottom of the QAV210 (left: the Martlet baseboard
together with the ADC daughter board; right: the Crossbow accelerometer).

This article is protected by copyright. All rights reserved.

operational structure. UAV 1 then takes off again and moves from sensor location 1 to sensor location 3.
Position registration of UAV 2 is accomplished during this process using images of its overhead AprilTag
captured by UAV 1. Upon landing of UAV 1, the human operator excites the beam again and data collected
by the accelerometers now at different locations on the beam are transmitted back to the ground PC. Lastly
UAV 2 is commanded to fly over UAV 1 and leave the beam in order to register UAV 1’s last position. At
the final stage of the experiment, modal analysis of the beam is performed using the acceleration response
data collected at the three locations along the beam length. The Frequency Domain Decomposition
(FDD)47 method is used to assemble 2-point mode shapes for each sensor configuration; overlap in the
mode shapes allow them to be stitched together to from global modes of the beam structure. The
experiment is fully autonomous with the human operator only intervening to impulse the beam structure
which would not be necessary in applications in real civil engineering structures with ambient vibrations.

As shown in Figure 16, the two QAV210s successfully positioned the Martlet wireless sensing nodes on
the beam after carefully following each operation in the FSM. Position registration of the UAV is

This article is protected by copyright. All rights reserved.

accomplished by detecting both its overhead AprilTag and at least one more AprilTag on the beam at the
same time. Computed UAV positions are shown in the top-left corner of the snapshots. Estimation error
is within 2 cm when comparing to ground truth of the UAV positions using a measuring tape. Figure 16(d)
illustrates the measured locations of the landed UAVs (based on manual measurement with a ruler) after
repeating the test four times. All landing locations are within 5 cm (shown with dashed circle with 5 cm
radius) from their desired locations.

(a) (b) (c)

(d)

Figure 16. Spatial registration of wireless sensors on the beam: (a)-(c) position of the QAV210
landed on the beam; (d) locations of UAVs over four repeated tests (locations manually measured).

Table 2. Comparison of mode shapes between experimental and theoretical values
 1st Mode Shape 2nd Mode Shape
 Experiment Theory Error Experiment Theory Error

Sensor
Loc. 1

Test 1 -0.7102 -0.8244 0.1142 -1.0000 -0.9332 0.0668
Test 2 -0.7213 -0.7835 0.0622 -1.0000 -0.9737 0.0263
Test 3 -0.7649 -0.7814 0.0165 -1.0000 -0.9753 0.0247
Test 4 -0.8759 -0.8264 0.0495 -1.0000 -0.9307 0.0693

Sensor
Loc. 2

Test 1 -1.0000 -0.9920 0.0080 0.5708 0.2504 0.3204
Test 2 -1.0000 -0.9964 0.0036 0.4103 0.1696 0.2407
Test 3 -1.0000 -0.9968 0.0032 0.4210 0.1594 0.2616
Test 4 -1.0000 -0.9980 0.0020 0.4520 0.1253 0.3267

Sensor
Loc. 3

Test 1 -0.6908 -0.6354 0.0544 0.9812 0.9813 0.0001
Test 2 -0.7170 -0.6795 0.0375 0.8765 0.9971 0.1206
Test 3 -0.7486 -0.6098 0.1388 0.8314 0.9666 0.1352
Test 4 -0.6947 -0.7104 0.0157 0.7379 0.9998 0.2619

This article is protected by copyright. All rights reserved.

After the human operator strikes the beam with a modal hammer, the wireless sensing nodes collect
acceleration data at 100 Hz as shown in Figure 17(a) for the first test. The FDD method is then used to
extract the natural frequencies and mode shapes of the beam from the collected time history data. Figure
17(b) shows the singular values of the power spectral density (PSD) function matrix for the first and
second sensor locations of the first test. As it appears, the 1st and 2nd natural frequencies of the beam are
at 13 Hz and 43 Hz. The theoretical natural frequencies and mode shapes of a simply supported Euler-
Bernoulli beam can be computed using the beam’s properties (𝐸𝐸 = 6.89 × 1010 N/m2, 𝐼𝐼 = 4.6785 ×
10−8 m4, 𝜌𝜌 = 2.7 × 103 Kg/m3, 𝐴𝐴 = 2.31 × 10−3 m2, 𝐿𝐿 = 1.825 m). The theoretical 1st and 2nd natural
frequencies are determined to be 10.7 Hz and 42.6 Hz, which are in strong agreement to the experimental
results. To get the complete mode shape of beam, mode shapes (Figure 17(c) and (d)) generated from the
two strikes are stitched together using the common point sensor location 2. A detailed comparison of the
experimental and theoretical mode shape values is provided in Table 2. It should be noted that the mode
shape values plotted in Figure 17. correspond to the actual measurement location as measured manually
(as can be seen by the mode shape values for all tests not falling on a consistent vertical line). For the four
different executions of the experiment, there is strong agreement between the experimental and theoretical
mode shapes. Whereas the field tests were successful, and the results are reasonable, future work is needed
to further reduce the modal errors such as improving the UAV controller and landing pattern design for a
better landing accuracy and ensuring a firmer connection between the sensor and the structure.

(a) (b)

(c) (d)

Figure 17. Modal analysis of the simply supported beam: (a) raw acceleration data from Martlet sensin
nodes; (b) singular values of the PSD matrices; (c)-(d) 1st and 2nd mode shape of the beam.

This article is protected by copyright. All rights reserved.

4.3 Discussion and limitations
While this research successfully demonstrates proof-of-concept trails of UAVs with structural sensors
integrated precisely landing on structures using fiducial markers, there are remaining challenges inherent
to scaling this approach to large and complex operational structures. The installation of fiducial markers
(such as AprilTag patterns) on structures required for precise localization of the UAVs can be challenging
to deploy. Human-based installation in existing structures seems inevitable in the short-term but this may
come with some inherent cost and require safe access to key areas of the structure for the installer. Safe
access could be challenging for a number of structures such as those in remote areas and ones with
complex and large sizes (e.g., skyrises and long-space bridges). Incorporating fiducial markers into the
structure during construction is another viable solution but requires planning beforehand. In this research,
AprilTags are all placed horizontally on surface with the UAV landing on the landing pattern. However,
the usage of markers is not limited to a horizontal orientation. AprilTags can be put on vertical or inclined
surfaces as long as they are within the camera’s FoV and their location and pose relative to a predefined
flat landing position on the structure is known a priori. Also, the UAV need not have to land on the pattern
itself. In this work, a set of standard square tags with varied sizes is adopted to accommodate detection
from a wide range of distances resulting in relatively large markers. An improved design could be a
recursive pattern with a smaller tag nested inside a bigger tag48 such that a single marker would suffice
for use by the UAV from long and short distances. Another approach could be the use of UAV cameras
that can zoom allowing for smaller markers to be used. In general, the choice of fiducial marker calls for
a balance between detection robustness, computational efficiency, and pose estimation accuracy. There is
potential for research into how this compromise can be diminished utilizing more advanced design.
Finally, environmental disturbances can pose challenges regarding the overall reliability and robustness
of a UAV using markers to land. For instance, strong sustained wind speeds and large wind gusts could
overcome the controllability of the UAV regardless of the type of data used (vision- or IMU-based) to
estimate the UAV location and pose relative to a landing spot. Also, the robustness of the fiducial markers
must be ensured–those worn down by the elements could challenge the detection of the marker.

5 Conclusion
This study explores the development of UAVs as an intelligent agent capable of deploying wireless sensor
nodes autonomously for structural health monitoring applications. The proposed UAV system can
autonomously detect landing patterns and precisely land upon them to deploy sensors to the structure
surface. Transition between different functions like pattern searching and precision landing is
accomplished using a reliable finite-state machine embedded in the TX2 onboard computer of the UAVs.
Precision positioning of a UAV in the outdoor environment is made possible by the integration of a
customized fiducial marker pattern, a robust vision-IMU coupled estimation method, and a discrete
Kalman filter. The study reveals sensor positioning accuracy of less than 10 cm. The study also validates
UAV sensor deployments for modal analysis. Using two UAV-based wireless sensors, the system can
land on a simply supported beam with 5 cm accuracy to extract precise mode shapes. Moving forward,
the autonomous UAV sensor delivery system could be improved by incorporating on-the-fly decision-
making capabilities. Once structural diagnosis of a certain part of a structure is finished, the system should
be able to decide intelligently the next configuration of the sensor network and where it should be installed
on the structure. By instantly moving sensors to more advantageous positions on the structure, events of
interest such as structural damage can be measured and recorded in a more timely and detailed fashion.

This article is protected by copyright. All rights reserved.

Future work also includes expanding the UAV’s capability such as to precisely pick up and drop off
sensing nodes with an onboard gripper. In this way, fewer UAVs are required to install the sensor network
saving deployment cost. Fiducial markers are not always practical in remote outdoor environments. Future
work will leverage recent advances in simultaneous localization and mapping (SLAM)49,50 for
autonomous navigation of the UAV in unknown environments.

6 Acknowledgements
This material is based upon work supported by the National Science Foundation (Grant Numbers 1362975,
1442773, 1446521 and 1831347) and the Office of Naval Research (Grant N00014-21-1-2033). Any
opinions, findings, and conclusions or recommendations expressed are only those of the authors.

7 References
1. Law KH, Lynch JP. Smart city: Technologies and challenges. IT Prof. 2019;21(6):46-51.
2. Lynch JP. Design of a wireless active sensing unit for localized structural health monitoring. Struct

Control Heal Monit. 2005;12(3-4):405-423. doi:10.1002/STC.77
3. Koo KY, Brownjohn JMW, List DI, Cole R. Structural health monitoring of the Tamar suspension bridge.

Struct Control Heal Monit. 2013;20(4):609-625. doi:10.1002/STC.1481
4. Tang Z, Chen Z, Bao Y, Li H. Convolutional neural network-based data anomaly detection method using

multiple information for structural health monitoring. Struct Control Heal Monit. 2019;26(1):e2296.
doi:10.1002/STC.2296

5. Tsiapoki S, Bahrami O, Häckell MW, Lynch JP, Rolfes R. Combination of damage feature decisions with
adaptive boosting for improving the detection performance of a structural health monitoring framework:
Validation on an operating wind turbine. Struct Heal Monit. 2020;20(2):637-660.

6. Jang S, Jo H, Cho S, et al. Structural health monitoring of a cable-stayed bridge using smart sensor
technology: Deployment and evaluation. Smart Struct Syst. 2010;6(5_6):461-480.

7. Floreano D, Wood RJ. Science, technology and the future of small autonomous drones. Nature.
2015;521(7553):460-466. doi:10.1038/nature14542

8. Greenwood WW, Lynch JP, Zekkos D. Applications of UAVs in civil infrastructure. J Infrastruct Syst.
2019;25(2):04019002. doi:10.1061/(asce)is.1943-555x.0000464

9. Sony S, Laventure S, Sadhu A. A literature review of next-generation smart sensing technology in
structural health monitoring. Struct Control Heal Monit. 2019;26(3):e2321. doi:10.1002/STC.2321

10. Escobar-Wolf R, Oommen T, Brooks CN, Dobson RJ, Ahlborn TM. Unmanned aerial vehicle (UAV)-
based assessment of concrete bridge deck delamination using thermal and visible camera sensors: A
preliminary analysis. Res Nondestruct Eval. 2018;29(4):183-198.

11. Yan Y, Mao Z, Wu J, Padir T, Hajjar JF. Towards automated detection and quantification of concrete
cracks using integrated images and lidar data from unmanned aerial vehicles. Struct Control Heal Monit.
2021;28(8):e2757. doi:10.1002/STC.2757

12. Hoskere V, Park JW, Yoon H, Spencer BF. Vision-based modal survey of civil infrastructure using
unmanned aerial vehicles. J Struct Eng. 2019;145(7):04019062.

13. Ellenberg A, Kontsos A, Moon F, Bartoli I. Bridge related damage quantification using unmanned aerial
vehicle imagery. Struct Control Heal Monit. 2016;23(9):1168-1179. doi:10.1002/STC.1831

14. Fujino Y, Siringoringo DM. Recent research and development programs for infrastructures maintenance,
renovation and management in Japan. Struct Infrastruct Eng. 2020;16(1):3-25.

15. Huston DR, Miller J, Esser B. Adaptive, robotic, and mobile sensor systems for structural assessment. In:
Liu S-C, ed. Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil,

This article is protected by copyright. All rights reserved.

Mechanical, and Aerospace Systems. Vol 5391. ; 2004:189-196.
16. Zhu D, Guo J, Cho C, Wang Y, Lee KM. Wireless mobile sensor network for the system identification

of a space frame bridge. IEEE/ASME Trans Mechatronics. 2012;17(3):499-507.
17. Saripalli S, Montgomery JF, Sukhatme GS. Visually guided landing of an unmanned aerial vehicle. IEEE

Trans Robot Autom. 2003;19(3):371-380. doi:10.1109/TRA.2003.810239
18. Merz T, Duranti S, Conte G. Autonomous landing of an unmanned helicopter based on vision and inertial

sensing. In: Experimental Robotics IX. Springer, Berlin/Heidelberg, Germany; 2006:343-352.
19. Lange S, Sünderhauf N, Protzel P. A vision based onboard approach for landing and position control of

an autonomous multirotor UAV in GPS-denied environments. In: 2009 International Conference on
Advanced Robotics. ; 2009:1-6.

20. Kato H, Billinghurst M. Marker tracking and hmd calibration for a video-based augmented reality
conferencing system. In: Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality
(IWAR’99). ; 1999:85-94. doi:10.1109/IWAR.1999.803809

21. Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-Jiménez MJ. Automatic generation and
detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 2014;47(6):2280-2292.

22. Olson E. AprilTag: A robust and flexible visual fiducial system. In: 2011 IEEE International Conference
on Robotics and Automation. ; 2011:3400-3407. doi:10.1109/ICRA.2011.5979561

23. Borowczyk A, Nguyen D-T, Phu-Van Nguyen A, Nguyen DQ, Saussié D, Ny J Le. Autonomous landing
of a multirotor micro air vehicle on a high velocity ground vehicle. Ifac-Papersonline. 2017;50(1):10488-
10494. doi:10.1016/J.IFACOL.2017.08.1980

24. Chaves SM, Wolcott RW, Eustice RM. NEEC research: Toward GPS-denied landing of unmanned aerial
vehicles on ships at sea. Nav Eng J. 2015;127(1):23-35.

25. Araar O, Aouf N, Vitanov I. Vision based autonomous landing of multirotor UAV on moving platform.
J Intell Robot Syst. 2017;85(2):369-384. doi:10.1007/s10846-016-0399-z

26. Rees C. PX4 and 3D Robotics launch new Pixhawk autopilot for UAVs. Published online 2013.
https://www.unmannedsystemstechnology.com/2013/08/px4-and-3d-robotics-launch-new-pixhawk-
autopilot-for-uavs/

27. MAVLink. MAVLink: Micro air vehicle message marshalling library. GitHub Repos. Published online
2010. https://github.com/mavlink/mavlink

28. Kane M, Zhu D, Hirose M, et al. Development of an extensible dual-core wireless sensing node for cyber-
physical systems. In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace
Systems 2014. Vol 9061. ; 2014:90611U. doi:10.1117/12.2045325

29. ArduPilot. ArduPilot project. GitHub Repos. Published online 2011.
https://github.com/ArduPilot/ardupilot

30. ArduPilot. ArduPilot EKF. Published online 2011. https://ardupilot.org/copter/docs/common-apm-
navigation-extended-kalman-filter-overview.html

31. Pittelkau ME. Rotation vector in attitude estimation. J Guid Control Dyn. 2003;26(6):855-860.
32. DroneKit. DroneKit-Python: Library for communicating with drones via MAVLink. Published online

2014. https://github.com/dronekit/dronekit-python
33. Swatbotics. Apriltag. GitHub Repos. Published online 2016. https://github.com/swatbotics/apriltag
34. Zhou H, Lynch JP, Zekkos D. Vision-based precision localization of UAVs for sensor payload placement

and pickup for field monitoring applications. In: Sensors and Smart Structures Technologies for Civil,
Mechanical, and Aerospace Systems 2019. Vol 10970. ; 2019:1097007.

35. Lu CP, Hager GD, Mjolsness E. Fast and globally convergent pose estimation from video images. IEEE
Trans Pattern Anal Mach Intell. 2000;22(6):610-622. doi:10.1109/34.862199

This article is protected by copyright. All rights reserved.

36. Lepetit V, Moreno-Noguer F, Fua P. EPnP: An accurate O(n) solution to the PnP problem. Int J Comput
Vis. 2009;81(2):155-166. doi:10.1007/s11263-008-0152-6

37. Bradski G. The OpenCV library. Dr Dobb’s J Softw Tools. 2000;25:120-125.
38. OpenCV. Camera calibration and 3D reconstruction, OpenCV 2.4.13.7 documentation. Published online

2019.
39. Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math.

1944;2(2):164-168. doi:10.1090/qam/10666
40. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math.

1963;11(2):431-441. doi:10.1137/0111030
41. Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P. Keyframe-based visual–inertial odometry using

nonlinear optimization. Int J Rob Res. 2015;34(3):314-334.
42. Forster C, Carlone L, Dellaert F, Scaramuzza D. On-manifold preintegration for real-time visual-inertial

odometry. IEEE Trans Robot. 2016;33(1):1-21. doi:10.1109/TRO.2016.2597321
43. Qin T, Li P, Shen S. VINS-mono: A robust and versatile monocular visual-inertial state estimator. IEEE

Trans Robot. 2018;34(4):1004-1020. doi:10.1109/TRO.2018.2853729
44. Mourikis AI, Roumeliotis SI. A multi-state constraint Kalman filter for vision-aided inertial navigation.

In: Proceedings 2007 IEEE International Conference on Robotics and Automation. ; 2007:3565-3572.
45. Bloesch M, Omari S, Hutter M, Siegwart R. Robust visual inertial odometry using a direct EKF-based

approach. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). ;
2015:298-304. doi:10.1109/IROS.2015.7353389

46. Bar-Shalom Y, Li XR, Kirubarajan T. Estimation with Applications to Tracking and Navigation: Theory
Algorithms and Software. John Wiley & Sons, New York, NY; 2004.

47. Brincker R, Zhang L, Andersen P. Modal identification from ambient responses using frequency domain
decomposition. In: IMAC 18: Proceedings of the International Modal Analysis Conference (IMAC). ;
2000:625-630.

48. Krogius M, Haggenmiller A, Olson E. Flexible Layouts for Fiducial Tags. In: IEEE International
Conference on Intelligent Robots and Systems. ; 2019:1898-1903.

49. Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I. IEEE Robot Autom Mag.
2006;13(2):99-110. doi:10.1109/MRA.2006.1638022

50. Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robot Autom
Mag. 2006;13(3):108-117. doi:10.1109/MRA.2006.1678144.

This article is protected by copyright. All rights reserved.

