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Abstract 
Unmanned aerial vehicles (UAVs) equipped with onboard sensors empower end-users to collect data 
within a wide range of civil engineering applications such as structural condition assessment. While UAVs 
have been used primarily as mobile sensing platforms to obtain imagery or other data, their mobility can 
also be used to deploy sensor networks. In this study, the feasibility of using an autonomous UAV to 
deploy wireless sensors in structural monitoring applications is proposed. While GPS-based waypoint 
navigation is available for automating UAV flight operations, this approach does not provide the accuracy 
necessary for the precision placement of sensor payloads on structures. Computer vision-based pose 
estimation is proposed to improve the accuracy of UAV localization for sensor placement. Variably sized 
fiducial markers integrated into a single pattern are applied to the surface of the structure and adopted as 
navigation and precision landing target that identify sensor placement locations. Visual and inertial 
measurements are fused by means of a discrete Kalman filter to further increase the robustness of the 
relative position estimation algorithm that is included in the PID control law used for UAV landing. 
Outdoor experiments under realistic operational conditions are conducted to validate the proposed vision-
aided control of the UAV for sensor placement; the UAV is able to land on a predefined landing point 
within 10 cm. A UAV moving a wireless accelerometer to locations on a beam is used to experimentally 
show the validity of automating UAV sensor placement for modal analysis using reconfigurable sensor 
network topologies. 
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1 Introduction 
Adoption of sensing is growing increasingly attractive in a wide range of civil engineering applications 
due to the reduction of sensor cost, the integration of wireless communication that make deployments 
easier, and the improvement of analytical frameworks that extract value from collected data.1 This has 
made monitoring common in many field applications such as structural health monitoring (SHM).2–5 In 
SHM applications, dense sensor arrays are often needed which can drive system costs high. For example, 
long-span bridges could require hundreds of sensors to ensure sufficient spatial coverage for SHM.6 If 
sensors could be moved, the density of permanent sensors could be reduced, thereby lowering costs while 
rendering systems more flexible to adapt to the needs of the SHM application. To date, the placement of 
sensors on a structure are done manually with the assumption that they do not move. However, 
autonomous robotic systems could be developed for the initial placement and later movement of sensors 
which would make monitoring systems flexible and cost-effective. 
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UAVs could potentially be one such solution that offer mobility to sensors that allow for the collection of 
data that is difficult to obtain using conventional stationary monitoring approaches. The data collection 
capabilities of UAVs have already proven valuable in many civil engineering applications such as 
infrastructure inspection, traffic monitoring, and remote sensing.7–9 Computer vision methods offer a 
promising approach to identifying the condition of infrastructure with inexpensive cameras installed on 
the UAV. For example, recent studies have demonstrated several innovative applications of UAVs 
equipped with cameras (e.g., optical, infrared) to conduct infrastructure monitoring such as delamination 
detection of concrete bridge decks,10,11 modal analysis of a pedestrian suspension bridge,12 and visual 
inspection of steel girder bridges.13,14 In all of these applications, the UAV systems are primarily used as 
a mobile data collection platform to observe the system from afar and make no direct contact with the 
structure. Also, navigation of the UAV is controlled by either a human pilot operating the UAV or using 
a GPS module providing waypoint coordinates for autonomous flight operations. Both navigation methods 
lack accuracy and struggle to give desirable or reliable measurements for cases where precise spatial 
control of the UAV is required. The utility of UAVs could be enhanced if they not only carry sensor 
payloads, but also have the ability to deploy sensors. This can be especially valuable in applications where 
data collection may be required over a longer period of time (e.g., days, years) than what current UAV 
flight endurances allow (e.g., minutes, hours). In the literature, mobile sensor networks deployed by robots 
in structures has been developed and validated by several researchers. Huston et al. studied the use of a 
mobile robot that was able to crawl along bridge girders while measuring girder flange thickness with an 
ultrasonic sensor.15 Zhu et al. prototyped a climbing robot equipped with magnetic wheels capable of 
adhering to and navigating on a steel bridge. The robots carried accelerometers as a robot payload and 
moved around the bridge to sample structural vibrations.16 In this paper, aerial delivery of sensing 
payloads based on computer vision and position estimation is proposed as part of an autonomous UAV 
sensor deployment system. Aerial deployment has advantages over wheel-based robots including more 
freedom in moving to different locations. 
 
Precision control of a UAV to land on desired positions (i.e., within 0.5 m or less) is necessary for effective 
sensor placement. GPS-based waypoint navigation techniques used in other SHM applications (e.g., 
collection of imagery data) are insufficient due to UAV positioning errors being as large as meters that 
would result in inaccurate and unsuccessful sensor placement. Modern computer vision object detection 
and pose estimation algorithms are a promising alternative to GPS. Autonomous landing of UAVs using 
vision as the primary data source is currently an active topic of research. Among early investigations, 
printed patterns have been used to mark the landing target. Saripalli et al. demonstrated vision-based 
autonomous landing of a model helicopter on an “H”-shaped pad; landing position accuracy was reported 
to be within 40 cm.17 To extend the detection distance, Merz et al. proposed a landing pattern consisting 
of five concentric circle triplets of different size (with radii varying from 2 to 32 cm) achieving a touch 
down precision of 42 cm.18 Lange et al. designed a landing pattern with several concentric white rings on 
a black background and was able to hover a Hummingbird quadcopter above the pattern with a maximum 
deviation of 23 cm over 5 minutes.19 A drawback of the aforementioned printed patterns is that they do 
not have an extensible design that limits their usage when multiple landing targets in a structure are 
required. Also, the detection performance of a UAV using these markers under challenging scenarios such 
as low lighting has not been rigorously analyzed. To address these challenges, researchers have developed 
fiducial marker systems with a large number of distinguishable patterns and features (e.g., size) that allow 
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a UAV to robustly estimate its location and pose under challenging field conditions (e.g., ARToolKit,20 
ArUco,21 AprilTag22). For example, Borowczyk et al. gave a demonstration of autonomous landing of a 
DJI M100 quadcopter on a moving vehicle (moving up to 50 km/h) using a signle 30 cm ×30 cm AprilTag 
for visual estimation of the vehicle23. Chaves et al. accomplished autonomous landing of a UAV (Parrot 
AR.Drone) on a Segway using a landing platform with four AprilTags with one large marker in the center 
for initial detection and three small markers on the side for fine pose control at close range when 
completing the landing maneuver.24 The drawback of this system is that computations were not done on 
the UAV so a separate laptop was needed to remotely execute the control law. To further extend the 
detection range, Araar et al. designed a landing pad using a total of 28 AprilTags with bigger tags 
surrounding smaller ones resulting in an 8 cm landing error when landing on a stationary target.25 Similar 
to Chaves et al.,24 all computations were run on a separate laptop computer. These works reveal that a 
single fiducial marker does not provide the UAV the range necessary for detection from afar while being 
sufficiently small for precision navigation at close range. Also, landing pads with too many markers have 
high computational costs requiring remote computers to run the control law. In this paper, a simple yet 
universal landing pattern for different detection ranges is proposed for detection and use by a UAV 
onboard computer in near real-time.  
 
In this study, multi-rotor UAVs are explored for autonomously deploying wireless sensors for structural 
monitoring applications. The work emphasizes the integration of precise landing and mission management 
capabilities within the onboard computer of the UAV for truly autonomous operations. Figure 1 provides 
the operational principles of the autonomous UAV-based sensor deployment system proposed including 
the use of fiducial-based landing pads for placement of a wireless sensor that can be moved from location 
to location. The proposed landing pad design is easily adjustable and able to provide reliable visual 
estimation by the UAV (using an onboard computer) during the entire landing process, thereby ensuring 
an accurate placement of the sensor payload. The envisioned applications include movement of sensors 
(e.g., accelerometers) on a structure for structural monitoring (with locations predetermined and marked 
with landing pads). The work aims to make three major intellectual contributions. First, a computer vision 

 
Figure 1. Overview of the autonomous UAV system for wireless sensor deployment. 
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approach using four AprilTag markers for a single landing pad is created to trade off precision with 
onboard computational time for real-time control of the UAV landing. Second, a fully autonomous system 
architecture is advanced to control UAV flight operations and sensor placement using only the onboard 
computing resources of the UAV. Third, the integrated UAV system is demonstrated to autonomously 
perform modal analysis of a simply supported beam where the only human intervention is impacting the 
beam with a modal hammer (which emulates ambient vibrations). This work evaluates the precision and 
repeatability of the autonomous landing process for sensor placement. The work also showcases the 
quality of the sensor data collected by performing complete modal analysis of the monitored structure 
using the reconfigurable sensor networks. 
 
2 UAV Platforms: Hardware and Software 
 
2.1 UAV Hardware 
In this study, two UAV platforms are used: a 3D Robotics (3DR) X8 octocopter and a Lumenier QAV210 
quadcopter (Figure 2). The X8 aluminum frame is a light and sturdy “X” shape and features two motors 
spinning in opposite directions on each of the four arms (i.e., eight motors in total). The eight Sunnysky 
2206-12 800 Kv motors give the UAV capacity to carry nearly a 1 kg payload. The eight motors also 
provide redundancy offering enough lift and control should a motor burn out. The X8 is powered by a 
16,000 mAh 4S 20C LiPo battery and can stay aloft for about 15 minutes. The QAV210 UAV is smaller 
with a diagonal length of 210 mm. The QAV210 has a symmetric carbon fiber frame design featuring four 
efficient Lumenier RX2206-11 2350 Kv motors. The QAV210 has a payload capacity of 300 grams and 
a flight endurance of about 10 minutes using two 2,200 mAh 3S 40C LiPo batteries in parallel. In this 
study, the heavy-duty X8 is mainly used for thorough testing of the UAV control algorithms with a heavy 

  
(a) (b) 

Figure 2. Customized multi-rotor UAVs used in this study: (a) the 3DR X8 octocopter sitting on the 
landing pad with a sensor box attached (Qualisys retroreflective passive markers mounted on UAV 
and landing pad for pose tracking in M-Air); (b) two Lumenier QAV210 quadcopters carrying 
wireless sensor payloads on a simply supported aluminum beam (AprilTag markers on beam and 
UAVs are shown). 
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payload carried on board, while the mini QAV210 is used during the experiments related to delivering 
light-weight wireless sensor nodes onto a narrow beam to validate system integration and autonomy.   
 
The X8 comes preinstalled with an original 3DR Pixhawk flight controller first released in 2013.26 The 
Pixhawk has a 32-bit STM32F427 ARM Cortex-M4 processor with 256 KB RAM and 2 MB Flash, and 
operates at 168 MHz. The flight controller includes two gyroscope/accelerometer sensors (TDK 
InvenSense MPU6000 gyroscope/accelerometer, and STMicroelectronics L3GD20H 
gyroscope/LSM303D accelerometer), a 14-bit STMicroelectronics LSM303D magnetometer, and MEAS 
MS5611 barometer. The Pixhawk provides many connectivity options including five universal 
asynchronous receiver/transmitters (UARTs), two controller area network (CAN) ports, and one inter-
integrated circuit (I2C) interface. An external u-blox LEA-6H GPS module is paired with the Pixhawk for 
outdoor navigation. For the QAV210, its small frame size requires a flight controller with a scaled-down 
form factor. A Holybro Pixhawk 4 Mini is chosen which has half the footprint of the 3DR Pixhawk but 
has higher computing performance. The Pixhawk 4 Mini features an upgraded 32-bit STM32F765 Arm 
Cortex-M7 processor running at 216 MHz with 512 KB RAM and 2 MB memory. The enhanced onboard 
sensor suite includes an InvenSense ICM-20689 and Bosch BMI055 gyroscope/accelerometer pair, an 
iSentek IST8310 magnetometer, and the same MS5611 barometer as the 3DR Pixhawk. The external GPS 
sensor is also upgraded to a u-blox Neo-M8N module. Both flight controllers have a FrSky XSR receiver 
connected via SBus so that a user can manually command the vehicle using a remote controller (RC) radio 
transmitter that operates on the 2.4 GHz frequency with an approximate communication range of 1 km. 
 
To expand the onboard computational capabilities of both UAVs, a more powerful single-board computer 
is integrated. The Nvidia Jetson TX2 is selected as the companion computer to perform tasks on the UAVs 
that are computationally resource intensive. The TX2 is equipped with a 256-core Pascal graphics 
processing unit (GPU), a dual-core Nvidia Denver 2.0 central processing unit (CPU), a quad-core ARM 
Cortex-A57 CPU, and 8 GB 128-bit LPDDR4 memory. In addition, the TX2 includes Wi-Fi 
communication capabilities with a range of approximately 100 m. A small carrier board (Connect Tech’s 
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Orbitty Carrier) to which the TX2 module is attached is selected. This board (87×50×15 mm3) takes little 
space on the UAV but offers a variety of communication ports (one Universal Serial Bus (USB), two 
UARTs, one I2C, and four general-purpose input/outputs (GPIOs)). Communications between the flight 
controller and the TX2 is established using the UART with a baud rate at 921,600. A ground-based 
personal computer (PC) is also used to communicate with the TX2 through its 5 GHz Wi-Fi interface. The 
flight controller takes commands from the TX2 in the form of MAVLink messages27 posted over the 
UART port. At any time, a human pilot can take control of the UAV by commanding the flight controller 
through the FrSky Taranis X9D transmitter which can communicate up to 1 km line of sight (although 
this will not be needed in this study). The system architecture is shown in Figure 3. 
 
The camera is another critical component for the precise control of both UAVs. A downward facing 
Logitech C270 high definition (HD) web camera is connected to the bottom of the UAV and attached 
directly to the TX2 via USB. This low-end webcam is purposely chosen due to its lack of auto-focus 
functionality because auto-focus could create blurry images at high speeds. Despite the camera’s ability 
to record 720p HD video clips, image resolution is set to a much lower 640×480 px2 resolution so that 
images can be processed in real-time on the TX2. The camera is mounted beneath the front of the UAV 
using rubber dampers that dampen vibrations. The use of a gimbal is intentionally avoided to ensure an 
unfiltered view of the ground is obtained from which the pose of the UAV can be estimated. While the 
QAV210s carry only one camera, an additional camera (GoPro HERO5 Session) is included in the X8 for 
flight video logging during validation experiments  (and not for use in pose estimation during landing) is 
communicated to a ground PC using 5 GHz Wi-Fi.  
 
The Martlet wireless sensing node28 developed at the University of Michigan is selected as the primary 
data collection platform for accelerometers used to measure structural vibrations. The computing core of 
the Martlet is a 16-bit Texas Instruments (TI) TMS320F28069 modified microcontroller unit (MCU) with 

 
Figure 3. UAV system hardware architecture showing components and communication links. 
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a clock frequency up to 80 MHz. The Martlet contains a 9-channel dual sample-and-hold 12-bit analog-
to-digital converter (ADC) capable of sampling analog signals at a maximum sampling frequency of 3 
MHz. An ADC sensor interface board is attached on top of the Martlet baseboard to provide bandpass 
filtering and amplification of input analog signals (100 Hz cut-off frequency and 1× gain in this study). 
Wireless communication between the Martlet and a ground-based PC is established through a power 
amplified TI CC2520 2.4 GHz IEEE 802.15.4 transceiver integrated with Martlet. Due to being power 
amplified, the Martlet transceiver can communicate up to a range of approximately 1 km.  A customized 
enclosure for housing the Martlet and a 2 g Crossbow CXL02LF1 accelerometer (1 mg RMS noise floor) 
is selected (Figure 2(b)). The sensor enclosure is attached to the bottom of the QAV210 and will move 
together with the vehicle. 
 
2.2 Embedded Software Architecture 
Embedded software is needed to automate the operations of the UAVs for the deployment of wireless 
sensors used for monitoring civil engineering systems. Software is written for the two onboard computing 
elements of the UAV: the TX2 companion computer and the Pixhawk flight controller. High-level flight 
planning like mission management and compute-intensive tasks like visual pose estimation will be 
executed using the TX2, while position and attitude control of the UAV are implemented on the flight 
controller. Figure 4 shows the layout of the software architecture distributed across the two computing 
elements. To speed up the development of the UAV, the open-source ArduCopter firmware from the 
ArduPilot project29 is selected to run on the Pixhawk flight controller as the real-time flight control stack. 
ArduCopter provides reliable and responsive flight control operations for UAVs in a full range of flight 

 
Figure 4. Software architecture for the UAV platform where the TX2 provides high-level mission 
management and image processing while the Pixhawk flight controller is responsible for vehicle 
state estimation and control. 
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modes including manual and automatic flight operations. High-level control abstractions and interfaces 
are well documented that enable customized flight features and the development of complex use cases. 
ArduCopter also has well defined communication interfaces that allow a companion computer (like the 
TX2) to gain access to flight data and to allow extra power to handle computationally intensive tasks not 
easily executable on the flight controller. 
 
The main loop (Figure 4) of the ArduCopter flight code includes a 24-state extended Kalman filter 
(EKF)30,31 for vehicle state estimation (e.g., vehicle attitude using quaternions which are more 
computationally efficient than Euler angles, 𝑞⃗𝑞 = [𝑞𝑞0 𝑞𝑞1 𝑞𝑞2 𝑞𝑞3]𝑇𝑇 ∈ ℝ4 , vehicle velocity in the global 
North-East-Down (NED) frame 𝑣⃗𝑣 = [𝑣𝑣𝑁𝑁 𝑣𝑣𝐸𝐸  𝑣𝑣𝐷𝐷]𝑇𝑇 ∈ ℝ3 , vehicle position in the NED frame 𝑝⃗𝑝 =
[𝑝𝑝𝑁𝑁 𝑝𝑝𝐸𝐸  𝑝𝑝𝐷𝐷]𝑇𝑇 ∈ ℝ3, gyro bias offsets in the UAV’s local body frame 𝑏𝑏𝑔𝑔����⃗ = �𝑏𝑏𝑔𝑔𝑔𝑔 𝑏𝑏𝑔𝑔𝑔𝑔 𝑏𝑏𝑔𝑔𝑔𝑔�

𝑇𝑇 ∈ ℝ3, gyro scale 
factor in the local IMU frame 𝑠𝑠𝑔𝑔���⃗ = �𝑠𝑠𝑔𝑔𝑔𝑔 𝑠𝑠𝑔𝑔𝑔𝑔 𝑠𝑠𝑔𝑔𝑔𝑔�

𝑇𝑇 ∈ ℝ3, acceleration bias in vehicle body Z direction 
𝑏𝑏𝑎𝑎𝑎𝑎 ∈ ℝ1, earth magnetic field in the NED frame 𝑚𝑚𝑒𝑒�����⃗ = [𝑚𝑚𝑁𝑁  𝑚𝑚𝐸𝐸  𝑚𝑚𝐷𝐷]𝑇𝑇 ∈ ℝ3, body magnetic field 𝑚𝑚𝑏𝑏�����⃗ =
[𝑚𝑚𝑋𝑋 𝑚𝑚𝑌𝑌 𝑚𝑚𝑍𝑍]𝑇𝑇 ∈ ℝ3 , and wind velocity 𝑣𝑣𝑤𝑤����⃗ = [𝑣𝑣𝑤𝑤𝑤𝑤 𝑣𝑣𝑤𝑤𝑤𝑤]𝑇𝑇 ∈ ℝ2). In this study, the vehicle attitude 𝑞⃗𝑞 , 
velocity 𝑣⃗𝑣, and position 𝑝⃗𝑝 will be used for control of the UAV. The EKF is designed to linearize the 
nonlinear UAV flight dynamics and sensor measurement equations using IMU dead-reckoning to 
propagate the state and onboard sensor (e.g., GPS, barometer) measurements to update the state estimation. 
Advantages of the EKF include being able to switch between sensors (in case a sensor fault is identified) 
and the estimation of external flight variables such as gyro and accelerometer biases, and wind speed 
leading to better flight performance. The ArduCopter main loop is run on the Pixhawk at 400 Hz including 
the EKF filter. A number of background threads are running constantly on the flight controller to provide 
input to the EKF algorithm including updates of the GPS (50 Hz), barometer (10 Hz), and IMU (400 Hz). 
As a result, the EKF provides estimations of the UAV attitude, position, and velocity using available data 
at the 400 Hz main loop execution rate. 
 
To control UAV motions for autonomous flight, ArduCopter implements a cascaded control structure with 
a position controller followed by an attitude controller. The first step of the control solution is the “flight 
mode update” which is used to offer a target mode for the UAV (e.g., “Land”, “RTL” for return to launch). 
Flight mode update can be informed by a command from a radio controller when in manual mode or, as 
is done in this study, issued by the external onboard computer (i.e., the TX2) as part of a state machine 
associated with automated flight operations. Depending on the flight mode, the flight controller utilizes 
different control strategies. The “Land” mode is most pertinent to this study and the control logic behind 
precision landing is described here. The outermost control loop is the position controller that is based on 
a proportional-integral-derivative (PID) controller design. The position controller takes in a target vehicle 
position 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 and velocity 𝑣⃗𝑣𝑐𝑐𝑐𝑐𝑐𝑐 from the precision-landing Kalman filter (which will be illustrated in the 
next section) and the vehicle’s actual position 𝑟𝑟 and velocity 𝑣⃗𝑣 from the 24-state EKF to generate a target 
vehicle attitude 𝑞⃗𝑞𝑐𝑐𝑐𝑐𝑐𝑐 that will be fed into the attitude controller. Similarly, the attitude controller adopts 
a PID design for each angle axis and outputs desired angular body rates Ω��⃗ 𝑐𝑐𝑐𝑐𝑐𝑐  (i.e., 
[Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]𝑇𝑇 ∈ ℝ3 along the three axes of the vehicle’s body frame) for the vehicle. At the end 
of the ArduCopter main loop, outputs from the attitude and position controllers are converted to absolute 
motor outputs (i.e., PWM values) for the specific frame type (e.g., quad, X8) and sent to the electronic 
speed controls (ESCs) which command each motor with a PWM output, 𝐹⃗𝐹𝑐𝑐𝑐𝑐𝑐𝑐 (i.e., [𝐹𝐹1 𝐹𝐹2 …𝐹𝐹𝑛𝑛]𝑇𝑇 ∈ ℝ𝑛𝑛, 
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where 𝑛𝑛 is the number of motors). It should be emphasized that the contributions of this work lay mainly 
on the TX2 side, where visual estimation of the UAV’s relative position to the landing pad is provided 
based on computer vision methods. In contrast, the Pixhawk is used as coded with an addition of a Kalman 
filter for precision landing and fine tuning of the PID control parameters for precision control of the UAV.  
 
The Nvidia Jetson TX2 companion computer running Linux (Ubuntu 16.04) constitutes the other 
significant part of the UAV software system. The main thread embedded on the TX2 is a finite-state 
machine (FSM) for automated flight operations including where and when to place wireless sensors on a 
structural system. The FSM is primarily focused on implementing a target search for identifying sensor 
locations and performing precision landing of the UAV while ensuring flight safety and efficiency. To do 
this, the UAV’s bottom mounted camera interfaced to the TX2 will be used to search for landing locations 
identified with fiducial markers and to improve UAV positioning during precision landing. The DroneKit-
Python API32 is set up on the TX2 to establish communication between the Pixhawk flight controller and 
the TX2 using the MAVLink communication protocol. Through this low-latency communication protocol, 
the TX2 is able to get real-time access to the vehicle’s state and to command vehicle operations. 
 
3 Methodology 
 
3.1 Sensor Deployment State Management 
The major intellectual merit of the work is embodied in the methodology associated with automation of 
sensor deployment and redeployment. At the core of the work is the creation of an FSM embedded in the 
UAV onboard computer (i.e., TX2) that choreographs each step of the fully autonomous sensor 
deployment. The deployment strategy (Figure 1) is based on a structure with pre-determined sensor 
locations defined by fiducial markers. Once sufficient data is collected, the sensor is retrieved by the UAV, 
transported and positioned to another installation location. This deployment strategy is executed by the 
UAV using the FSM embedded in the onboard TX2 computer.  

 

 
Figure 5. Finite-state machine for the UAV-based sensor placement mission; certain operations are 
only granted a limited time to stay in for battery life preservation. 
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The FSM approach partitions the autonomous sensor deployment method into a set of well-defined 
operational states with deterministic transitions between them. As shown in Figure 5, the task of deploying 
a wireless sensor node is split into manageable pieces such as searching for the target landing pattern in 
the air, hovering above the landing pattern, and performing a precision landing of the UAV for sensor 
placement. The FSM guides the UAV to first take off from the home position to a target height and to fly 
a predetermined flight path while searching for the desired fiducial marker on the structure that indicates 
the installation location of the wireless sensor (e.g., sensor location 1 in Figure 1). If the desired landing 
pattern is found, a precision landing maneuver based on computer vision is performed to land on the target 
pattern for placement of the sensor. After desired measurements are taken, the UAV takes off and searches 
for the next installation location (e.g., sensor location 2 in Figure 1). The UAV repeats this procedure until 
all required locations are visited, at which point the UAV returns to its home position. A challenge with 
UAVs in general is their limited battery energy; this requires an efficient FSM that does not waste scarce 
energy. Certain states in the FSM presented in Figure 5 are only granted a limited time for the UAV to 
stay in so that battery life is not wasted. 
 
In the flight operations dictated by the FSM, the UAV will rely on two primary sources of data for spatial 
pose estimation: vehicle state estimation data (e.g., vehicle position 𝑟𝑟, velocity 𝑣⃗𝑣, attitude 𝑞⃗𝑞) queried by 
the TX2 companion computer from the flight controller and camera images viewing the landing pattern 
which are a set of unique fiducial markers. The TX2 has a flight path defined by GPS waypoints that is 
communicated point by point to the flight controller over the MAVLink communication interface. The 
GPS data is sufficiently accurate (i.e., within meters) for guiding the UAV over large distances, but is too 
coarse for precision landing. Once the fiducial marker corresponding to a desired landing location is found, 
the UAV uses the TX2 computer to estimate with greater precision (i.e., within centimeters) the UAV 
position 𝑟𝑟 and orientation 𝑞⃗𝑞 using camera images of the fiducial markers and a Kalman filter. Once the 
landing pattern is detected, the cascaded position and attitude controller (Figure 4) inside the Pixhawk 
controls the UAV to land using the estimated UAV pose relative to the landing pattern as an input to the 
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control law. The processing of the camera images and relative pose estimation are done by the TX2 
computer using tailored software written in Python as part of this study. The fusion of the camera estimates 
and other sensor data such as IMU-based measurements is implemented via a second Kalman filter (i.e., 
independent of the EKF) embedded in the Pixhawk flight controller by the authors .  
 
3.2 Landing Pattern Design and Detection 
Being able to detect the landing pattern defined by fiducial markers is fundamental to the automated sensor 
deployment FSM. Specific challenges include keeping the visual target within the camera’s limited field 
of view (FoV), robust detection of the landing pattern using low-resolution images, and use of the fiducial 
markers for UAV state estimation for precision landing. A multi-resolution tag pattern is designed to 
address these challenges. During a precision landing task, ground areas covered by the UAV’s downward 
facing camera is limited by the camera’s FoV and the height, 𝑑𝑑𝑑𝑑, of the UAV. A camera from a higher 
altitude with a wider FoV has better coverage of the ground. More specifically, as shown in Figure 6, the 
maximum lateral and longitudinal ground distance covered by the camera, 𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑, can be calculated:  
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where 𝐹𝐹𝐹𝐹𝐹𝐹𝑥𝑥 and 𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦 are the camera’s field of view along the 𝑥𝑥 and 𝑦𝑦 axis, respectively. The designed 
landing pattern includes fiducial markers of different sizes which are intentionally positioned as guides to 
the UAV at different distances from the target during landing, leading to better precision. Bigger markers 
allow the UAV to detect landing spots from high altitudes, but smaller markers are needed to ensure 
precision during landing. As the UAV descends, bigger tags gradually leave the camera’s FoV while 
smaller ones become detectable, thereby providing a continuous navigation guide for the UAV. 

 

 

(a) (b) 
Figure 6. (a) Area covered on the ground by a downward facing camera restrained by FoV and height 
(in this case, only the two smallest tags stay completely in the camera’s FoV); (b) landing pattern 
with four different sizes of AprilTags with the gray cross mark defining the landing spot. 
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The AprilTag fiducial detection system is chosen for the design of the landing pad due to its robust 
performance with respect to suboptimal lighting conditions, occlusion, and motion blur.22 These black and 
white, QR-code-like square tags contain identification information (tag ID) and provides full pose 
estimation of a calibrated camera with respect to a tag. The AprilTag detection system is composed of two 
major components: tag detector and coding system. The detector’s job is to estimate the position of 
potential tags in an image and the coding system enables encoding/decoding of distinguishable IDs. The 
detection process starts with detecting line segments by grouping together pixels with similar gradient 
directions and magnitude. Sequences of line segments that form a 4-sided shape (i.e., possible tag 
boundaries) are then identified based on a recursive depth-first search method.22 The final stage of the 
detection algorithm is payload decoding, where bits from the tag-relative payload field are extracted one 
by one. Once the data payload is determined, the coding system determines whether it is a valid tag or not. 
The AprilTag encoding scheme utilizes a modified lexicographic coding system that ensures minimum 
Hamming distance between codewords while rejecting simple patterns that commonly occur in natural 
scenes.22 Different families of tags are provided by the AprilTag coding system, depending on the size of 
the tag (e.g., 4×4, 5×5, 6×6 grids) and the minimum Hamming distance between codewords. In general, 
families with smaller grid size (and hence larger pixel size) enable detection from afar while those with a 
larger grid size allow larger Hamming distance thereby providing higher identification accuracy. In this 
study, the Tag36h11 AprilTag family (6×6 codewords with a 11 bits minimum Hamming distance) is 
adopted for its high detection accuracy with low processing time. A Python module is implemented in the 
UAV TX2 to detect the AprilTag.33 
 
The strategy taken in this study is to adopt four AprilTag markers of different sizes as a multi-resolution 
landing pattern (Figure 6(b)) to use for precision landing. The four markers are organized in an optimal 
fashion to minimize jitter in the control of the UAV that can occur if the landing control algorithm switches 
tags for its reference during execution.34 To further minimize jitter, this study abandons the switching of 
AprilTag markers during landing and uses all of the tags identifiable to reference a single reference point 
which is associated with the smallest marker (since this tag is the most likely to stay in the UAV camera 
FoV the longest). The UAV will identify as many of the AprilTag markers it can and use all detected 
markers to estimate the UAV pose. 
 
3.3 Visual Position Estimation 
Having detected the landing pad and identified the pixel coordinates of the detected AprilTags’ feature 
points (i.e., tag center and corners), estimation of the position of the UAV relative to the landing point is 
possible. Towards this end, a robust relative position estimation method relying on both IMU and vision 
data is developed. To compensate for cases where visual localization data is not available, a Kalman filter 
is next implemented to provide continuous estimation of the UAV position relative to the landing point. 
 
3.3.1 Relative Position Estimation 
Figure 7(a) presents the method for positioning the UAV with respect to the landing point 𝑀𝑀. In this study, 
a superscript on the location variable denotes the reference frame (e.g., 𝑃𝑃𝐴𝐴 denotes the coordinates of 
point 𝑃𝑃 with respect to frame 𝐴𝐴). Three main coordinate frames and transformations between them are 
illustrated. The global North-East-Down frame, denoted Ground, is located at the UAV’s home position 
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𝑃𝑃 (i.e., where it takes off). The North direction (𝑥𝑥𝑃𝑃) is provided by the magnetometer sensor onboard the 
vehicle. The UAV body frame is set at its center of gravity (CG), point 𝑄𝑄, with the 𝑥𝑥𝑄𝑄  axis pointing 
between two of the arms towards the front of UAV, the 𝑦𝑦𝑄𝑄 axis pointing to the right, and the 𝑧𝑧𝑄𝑄 axis 
pointing to the bottom of the UAV. A Camera frame 𝑂𝑂(𝑥𝑥𝑂𝑂 ,𝑦𝑦𝑂𝑂 , 𝑧𝑧𝑂𝑂) is defined at the optical center 𝑂𝑂. 
Common practice is to set 𝑥𝑥𝑂𝑂 to right of the camera, 𝑦𝑦𝑂𝑂 down, and 𝑧𝑧𝑂𝑂 outwards from the camera lens. The 
objective is to find the relative position of the landing point 𝑀𝑀 with respect to the UAV’s CG, point 𝑄𝑄, in 
the Ground frame. Because the UAV’s coordinates in the Ground frame (i.e., 𝑄𝑄𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) is provided as 
state estimations by the 24-state EKF implemented in the Pixhawk flight controller, the objective then 
becomes to find 𝑀𝑀’s coordinates in the Ground frame (i.e., 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺). 
 
The first step is to compute the landing point 𝑀𝑀’s representation in the Camera frame, 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. To this 
end, a pinhole camera model (Figure 7(b)) is adopted to construct the mathematical relationship between 
coordinates of point 𝑀𝑀 in a 3D world frame and the 2D coordinates of its projection point denoted as point 
𝑁𝑁 in the image pixel frame. Four coordinate systems are defined in the pinhole model of Figure 7(b). The 
Camera reference frame is as defined in Figure 7(a). The World frame 𝑊𝑊(𝑥𝑥𝑊𝑊,𝑦𝑦𝑊𝑊, 𝑧𝑧𝑊𝑊) is the frame of 
reference for absolute positioning. The Image coordinate frame, denoted as 𝐺𝐺(𝑥𝑥𝐺𝐺 ,𝑦𝑦𝐺𝐺), is defined with the 
origin 𝐺𝐺 at the top-left corner of the image with 𝑥𝑥𝐺𝐺 pointing to the right. The fourth reference frame Pad, 

 

 

(a) (b) 
Figure 7. Diagram illustrating different coordinate systems and transformations between them: (a) 
how to compute the relative position of the UAV with respect to the landing point 𝑀𝑀 in the Ground 
frame; (b) pinhole camera model showing the landing point 𝑀𝑀  in the 3D World frame and its 
projection point 𝑁𝑁 in the Image plane through the camera lens center 𝑂𝑂. 
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denoted as 𝑀𝑀(𝑥𝑥𝑀𝑀 ,𝑦𝑦𝑀𝑀 , 𝑧𝑧𝑀𝑀), is defined at the landing point 𝑀𝑀. In the Pad frame, 𝑦𝑦𝑀𝑀 points to the right and 
𝑧𝑧𝑀𝑀 points perpendicular to the pad itself. Both the 𝑥𝑥𝑀𝑀 and 𝑦𝑦𝑀𝑀 axes are parallel to tag boundaries. 
 
The pinhole camera model can be formulated as: 
 
 𝑐𝑐𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐾𝐾[𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]𝑀𝑀𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊, (2) 

 
where 𝑐𝑐 ∈ ℝ is a scaling factor, 𝐾𝐾 ∈ ℝ3×3 is the camera intrinsic matrix, [𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] ∈ ℝ3×4 is 

the camera extrinsic matrix representing the relative rotation and translation of frame World with respect 
to frame Camera, 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = [𝑢𝑢 𝑣𝑣 1]𝑇𝑇 ∈ ℝ3×1  and 𝑀𝑀𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = [𝑥𝑥 𝑦𝑦 𝑧𝑧 1]𝑇𝑇 ∈ ℝ4×1  are homogeneous 
coordinates of point 𝑁𝑁 and 𝑀𝑀, respectively. The camera intrinsic matrix, 𝐾𝐾, is based on the camera optics 
and is a constant matrix that only needs to be found once. Equation (2) can be expanded as: 
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Note that the translation vector 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 can be interpreted as the coordinates of the origin of the World 
frame with respect to the Camera frame (Figure 7(b)). By purposefully defining the World frame exactly 
as the Pad frame, the landing point 𝑀𝑀 becomes the origin of the World frame, and 𝑀𝑀’s representation with 
respect to the Camera frame is simply 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, i.e., 
 
 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≜ [𝑡𝑡1 𝑡𝑡2 𝑡𝑡3]𝑇𝑇. (4) 
 
𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 represents all the necessary information about the landing point that can be obtained from a 
single image needed for control of the UAV to land with precision on the pad. Specifically, 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, or 
the translation vector 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, defines the relative distances, Δ𝑥𝑥, Δ𝑦𝑦, and Δ𝑧𝑧, of the camera with respect 
to the landing pad that will be used to control the UAV landing with the control law aiming to drive 
𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 to zero. 

 
The problem of estimating the pose of a calibrated camera (with known intrinsic matrix, 𝐾𝐾) based on a set 
of 𝑛𝑛  reference 3D points and their corresponding 2D projections is commonly referred to as the 
Perspective-n-Point (PnP) problem. Mathematically, the PnP problem can be defined as given a set of 𝑛𝑛 
3D world coordinates-2D image coordinates pairs, determine the camera extrinsic matrix 
[𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] (Equation (2)). Existing solutions to the PnP problem can be classified into two 

methods: optimization-based iterative methods (solved by minimizing a properly defined cost function)35 
and closed form methods (solving the equation directly)36. Making use of the open-source computer vision 
library, OpenCV,37 an iterative method called solvePnP38 is selected here. The cost function used by 
solvePnP is the reprojection error, which is defined as the sum of squared distances between the observed 
projection points and those calculated in each iteration. Solutions of the extrinsic matrix 
[𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] that minimize the reprojection error are found based on the well-known Levenberg-

Marquardt algorithm.39,40 The translation vector 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (i.e., 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3) is then the relative location 
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of the camera to the pad in the World frame; it is this viector that is used by the subsequent Kalman filter 
used to estimate the UAV position during controlled landing. 
 
The compute-intensive solvePnP algorithm is implemented in the TX2. After obtaining the translation 
vector 𝑡𝑡𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (i.e., 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3) from each image, MAVLink messages encoding 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3 are sent 
from the TX2 to the flight controller (Figure 4). These visual estimations are used as a measurement 
update for a precision-landing Kalman filter that will be illustrated next. 
 
Once 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is computed, a set of homogeneous transformations can be applied to get 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 based 
on rigid motions between different frames: 
 
 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐻𝐻𝑈𝑈𝑈𝑈𝑈𝑈𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , (5) 

 
where 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  and 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  are 4 × 1 homogeneous coordinates augmenting the original 3 × 1 
coordinates by a fourth component of 1. A homogeneous transformation matrix 𝐻𝐻𝐵𝐵𝐴𝐴 (4×4) is nothing but 
a compact way to include both the relative rotation 𝑅𝑅𝐵𝐵𝐴𝐴 and translation 𝑡𝑡𝐵𝐵𝐴𝐴 between two frames 𝐴𝐴 and 𝐵𝐵, 
i.e., 
 𝐻𝐻𝐵𝐵𝐴𝐴 = �𝑅𝑅𝐵𝐵

𝐴𝐴 𝑡𝑡𝐵𝐵𝐴𝐴
0 1

�. (6) 

 
𝐻𝐻𝑈𝑈𝑈𝑈𝑈𝑈𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 comes from the attitude and position estimations for the UAV in real time, and 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈𝑈𝑈𝑈𝑈  is a 
preset constant dependent on how and where the camera is mounted on the UAV. 
 
On a side note, the rotation matrix 𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, or specifically 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, produced by the solvePnP algorithm 
is utilized to line up the Camera frame and the Pad frame such that the camera’s 𝑥𝑥𝑂𝑂 axis coincides with 
the pad’s 𝑦𝑦𝑀𝑀 axis. Before precision landing starts, the vehicle is commanded to yaw an appropriate angle 
based on this rotation matrix. In this way, the orientation of the UAV is deterministic with respect to the 
landing pad when it lands. 
 
3.3.2 Kalman Filter for Landing Position Estimation 
The IMU can be further exploited to increase the robustness and accuracy of the vision-based relative 
position estimation. Visual and inertial fusion has been an active topic of research to address accurate and 
reliable localization and mapping in a wide range of robotic oriented applications. Existing approaches 
found in the literature can be broadly classified into two categories: batch nonlinear optimization 
methods41–43 and recursive filtering methods44,45. The optimization methods jointly minimize errors from 
both the IMU and vision measurements, while filter based methods commonly use IMU measurements 
for state propagation with updates originating from visual observations. Nonlinear optimization methods 
are higher performing, but their increased accuracy comes at a cost of more computational resources. 
Hence, a recursive linear Kalman filter is adopted in this work due to its simplicity and the flight 
controller’s limited computing power.  
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A standard visual-inertial filtering method requires a state vector involving states of both the vehicle and 
the landing pad (e.g., their positions and velocities). When visual data is not available, state estimation for 
the UAV is provided by the 24-state EKF implemented in the Pixhawk flight controller stack. When an 
image is available, the original 24-dimension state vector would be augmented to include the landing 
pad’s states. This approach would require a large number of modifications to the original flight controller 
EKF codebase shown in Figure 4. Alternatively, a less accurate but more efficient approach taken herein 
is adding a second Kalman filter for relative position and velocity estimations of the landing pad while 
leaving the state estimates for the UAV from the original 24-state EKF filter unchanged. State estimations 
from the 24-state EKF can be used as inputs to the second Kalman filter, while visual estimation results 
from the previous section will be used as measurement updates (Figure 4). 
 
The second Kalman filter is established as follows. As the dynamics of the UAV are loosely coupled in 
the 𝑥𝑥𝑃𝑃, 𝑦𝑦𝑃𝑃, and 𝑧𝑧𝑃𝑃 directions in the Ground frame, they are modeled independently during the precision 
landing process. In the 𝑧𝑧𝑃𝑃 direction, a standard landing maneuver is commanded. On the horizontal plane, 
two discrete Kalman filters are used independently: one in the 𝑥𝑥𝑃𝑃 (North) direction and another in the 𝑦𝑦𝑃𝑃 
(East) direction. Without loss of generality, the Kalman filter in the 𝑥𝑥𝑃𝑃 direction is illustrated. The states 
of the Kalman filter are the relative position and relative velocity of the landing pad with respect to the 
UAV, 𝑠𝑠 = [𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟  𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟]𝑇𝑇. The next state 𝑠𝑠𝑘𝑘+1 is propagated from the currents state 𝑠𝑠𝑘𝑘 using the following 
motion model: 
 
 

𝑠𝑠𝑘𝑘+1 = �
𝑥𝑥𝑘𝑘+1𝑟𝑟𝑟𝑟𝑟𝑟

𝑣𝑣𝑘𝑘+1𝑟𝑟𝑟𝑟𝑟𝑟 � = �1 𝛿𝛿𝛿𝛿
0 1 � �

𝑥𝑥𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟

𝑣𝑣𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟
� + � 0

𝛿𝛿𝛿𝛿𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟
� + �

0
𝛿𝛿𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟� ≜ 𝐹𝐹𝑘𝑘𝑠𝑠𝑘𝑘 + 𝐺𝐺𝑘𝑘𝑢𝑢𝑘𝑘 + 𝑞𝑞𝑘𝑘 . (7) 
 
The Kalman filter assumes a constant relative speed in 𝛿𝛿𝛿𝛿, which is reasonable because the filter is updated 
at 400 Hz. The controlled input 𝑢𝑢 = [0 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟]𝑇𝑇 is the negative of the UAV’s velocity change over the 
timestep 𝛿𝛿𝛿𝛿. The process noise 𝑞𝑞𝑘𝑘 = [0 𝛿𝛿𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟]𝑇𝑇~𝑁𝑁(0,𝑄𝑄𝑘𝑘) is set to be the estimated accelerometer 
noise times 𝛿𝛿𝛿𝛿 . Both 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟  and 𝛿𝛿𝛿𝛿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑟𝑟𝑟𝑟𝑟𝑟  comes directly from the original 24-state EKF. Relative 
distance is measured and updated when visual data arrives. The measurement model is simply: 
 
 

𝑚𝑚𝑘𝑘 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘
𝑟𝑟𝑟𝑟𝑟𝑟 = [1 0] �

𝑥𝑥𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟

𝑣𝑣𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟
� + 𝛿𝛿𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟 ≜ 𝐻𝐻𝑘𝑘𝑠𝑠𝑘𝑘 + 𝑟𝑟𝑘𝑘 , (8) 
 
where 𝑧𝑧𝑘𝑘 comes from the relative position estimates output from execution of solvePnP on the TX2 using 
the image data. The measurement noise 𝑟𝑟𝑘𝑘 = 𝛿𝛿𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟~𝑁𝑁(0,𝑅𝑅𝑘𝑘) is assigned to be 2% of the UAV’s 
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distance to landing point, which works well in practice. Given the linear state space model of the relative 
position Equation (7) and Equation (8), a Kalman filter is developed to predict the state, 𝑠𝑠𝑘𝑘+1. The Kalman 
filter predicts the state mean, 𝑠̂𝑠𝑘𝑘+1, and the state covariance matrix, 𝑃𝑃�𝑘𝑘+1, before updating the gain of the 
Kalman filter, 𝐾𝐾𝑘𝑘+1, state, 𝑠𝑠𝑘𝑘+1, and state covariance matrix, 𝑃𝑃𝑘𝑘+1.  
 
The discrete Kalman filter is run on the Pixhawk flight controller since the real-time operating system 
provides a precise time base. The use of a Kalman filter allows compensation for bad visual localization 
data or even the loss of it. Erroneous and inaccurate state estimates are detected based on the normalized 
innovations squared (NIS) metric.46 In cases when a visual update is unavailable (e.g., if the camera fails 
to detect the landing point), the filter will only make a prediction of the current iteration and compensates 
in the next update step when the image is available. This allows the system to recover from several dropped 
camera frames. 
 
3.3.3 Visual-Inertial Synchronization 
Conducting image capture and processing as close to real-time as possible is critical for a healthy Kalman 
filter. High latency could result in incorrect position estimations. A seemingly simple frame polling 
command from the TX2 to the camera introduces latency because polling involves image processing in 
the camera, USB transfer of the image, and image decoding by the TX2. To reduce latency present in the 
polling process, an image capture background thread is adopted by the TX2 that continually polls the 
camera and labels each resulting frame with a timestamp. Image processing is carried out in the main 
thread with landing point estimations transferred to the flight controller via the MAVLink protocol when 
available. Because of the latency present in the camera image pipeline, an observation of the landing pad 
is received by the filter framework with a delay. To synchronize inertial and visual data, a buffer of IMU 

 
Figure 8. Visual-inertial synchronization: the total image delay is the lapse of time from the camera 
shutter time to the moment the Pixhawk executes a measurement update. Kalman filter is run on a 
delayed time horizon on the Pixhawk. Results from the Kalman filter are predicted forward to 
produce state estimations for the current time utilizing an IMU buffer. 
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measurements is maintained since the IMU data is updated faster (400 Hz) than the image measurements 
(about 30 Hz). Once the Pixhawk receives a visual position estimate, it performs an update step of the 
Kalman filter on the delayed time horizon, and then predicts forward to the current time using the buffered 
IMU data. Figure 8 illustrates the data fusion process. 
 
4 Experiments and Results 
Two different sets of experiments were designed to quantitatively assess the proposed UAV-based vision 
system for precision placement of wireless sensors on structures. The first round of experiments (Section 
4.1) focused on testing each individual system component such as position estimation of the UAV relative 
to the landing pattern and the control method used for precision landing of the UAV. These experiments 
were conducted using the 3DR X8 UAV mainly due to its sturdy frame design (allowing for possible 
crashes during experimental validation) and relatively longer flight times (15 minutes with a 1 kg payload). 
The second round of experiments (Section 4.2) were intended to validate the concept of deploying sensors 
on a structure in a modular fashion. Two QAV210 UAVs carrying cameras and wireless sensors with 
accelerometers were used to perform modal analysis of a beam structure. The case study featured fully 
autonomous operations of the two UAVs carrying a Martlet wireless sensor node that is programmed to 
safely land on a simply supported beam with a restricted surface area. The two QAV210s are programmed 
to move the sensors so as to accurately identify the beam mode shape.  
 
Field experiments were performed in M-Air, a netted outdoor flying lab (22.4×36.6×15.2 m3) designed 
for UAV research located on the campus of the University of Michigan. During testing, wind conditions 
were considered mild (with wind speed under 5.4 m/s but with occasional gusts up to 6.7 m/s) throughout 
the duration of the experiments. A Qualisys motion capture system is permanently integrated into M-Air 
and includes 30 cameras installed around the facility to provide accurate (mm-level) tracking of object 
motion. Retroreflective passive markers were mounted on the objects of interest, in this case, this study’s 
3DR X8 UAV and its landing pad (Figure 2(a)), for tracking purposes during the first experiment focused 
on tracking the landing process of the 3DR X8. The cameras’ threshold was adjusted so that only the 
bright reflective markers were captured. UAV and landing pad positioning data were reported by the 
Qualisys IR system in real-time at 60 Hz and were used as ground truth for the validation studies. It should 
be noted that the Qualisys IR system was not involved in the second experiment as the two QAV210 
UAVs used only onboard vision and computing for autonomous missions.  
 
4.1 UAV System Component Testing 
For testing and validation purposes, the landing pattern was designed with four AprilTags (Figure 6(b)) 
with side lengths of 22.4 cm, 11.2 cm, 5.6 cm, and 2.8 cm. The largest AprilTag can be reliably detected 
from as high as 12 m from the air. The smallest ApilTag fits into the X8 camera’s FoV even when the 
UAV sits on the ground over the landing spot (there is a 9.2 cm distance between the camera and the 
ground).  
 
4.1.1 SolvePnP Validation 
First, the performance levels of relative position estimation method proposed in Section 3.3.1 were 
evaluated. Two types of test flights were performed to quantify the performance of the solvePnP algorithm 
for estimating the relative position of the landing point, 𝑀𝑀, with respect to the camera lens of the UAV 
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(i.e., 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶). In the first round of test flights, the UAV was kept in a relatively close position above the 
AprilTag landing pattern with the UAV continuously estimating its position relative to the landing point, 
𝑀𝑀. The Qualisys IR motion capture system was used to determine the relative position of the UAV with 
respect the landing pattern as ground truth. The second round of testing centered on how distance affects 
the estimation accuracy of the embedded algorithm. In these tests, the UAV took off from the landing pad 
and rose up to about 12 m.  
 
Test results for two of the flights are shown in Figure 9. Estimations of 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3 from 
solvePnP) are shown in red plus signs and ground truth measurements from the motion capture system 
are shown in solid blue lines. Figure 9(a)-(c) shows results of a flight where the UAV was flown relatively 
close to the landing pattern at a height of roughly about 1.4 m, while Figure 9(d)-(f) shows another flight 
where the UAV was slowly flown away from the landing pattern getting to a height of more than 12 m. 
In both test flights, the solvePnP algorithm is able to provide estimations that follow the ground truth 
tightly in all three directions, which demonstrates the accuracy of the algorithm. Root mean square error 
(RMSE) for the estimations are shown in Table 1. For the first test flight, RMSEs in all three directions 
are well under 3 cm, which indicates the ability for the UAV to precisely land. 
 

Table 1. RMSEs of the solvePnP position estimation algorithm (Units are in meters). 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 9. Estimation of 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: (a)-(c) UAV flown relatively close to landing pattern at a distance 
roughly about 1.4 m; (d)-(f) UAV took off from the landing point and slowly flown away. 
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 𝑴𝑴𝒙𝒙
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑴𝑴𝒚𝒚

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑴𝑴𝒛𝒛
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 

1st Flight  
(Figure 12 (a)-(c)) 0.0107 0.0165 0.0269 

2nd Flight 
(Figure 12 (d)-(f)) 0.0637 0.1282 0.2008 

 
The second test flight shows that the landing pattern can be detected by the camera from as far away as 
12 m. However, as the distance between the camera and landing point (i.e., �𝑂𝑂𝑂𝑂������⃗ �) grows larger, the 
estimation accuracy decreases. The accuracy of the position estimation algorithm was assessed as a 
function of the relative distance �𝑂𝑂𝑂𝑂������⃗ �. Figure 10 presents the estimation errors with respect to the relative 
distance in all three directions. Also shown in the figure is the number of AprilTags detected and used to 
compute the relative distances indicated by blue stars. As shown, only one AprilTag is detected when the 
vehicle is far from the pattern (�𝑂𝑂𝑂𝑂������⃗ �  > 6.0 m) and close to the pattern (�𝑂𝑂𝑂𝑂������⃗ �  < 0.6 m), which proves 
the necessity of the inclusion of all four AprilTags in the landing pattern. Figure 10(b) and Figure 10(c) 
shows a clear correlation between the number of detected tags and the estimation accuracy. When all four 
AprilTags in the pattern are detected (�𝑂𝑂𝑂𝑂������⃗ � ≈ 1.6 m), the estimation error is the smallest (close to zero). 
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Another interesting finding is that comparing Figure 10(a) and (b), when �𝑂𝑂𝑂𝑂������⃗ � is relatively large, the 
estimation errors in the Camera’s 𝑥𝑥𝑂𝑂 direction are smaller than those in the 𝑦𝑦𝑂𝑂 direction. This is possibly 
due to the pattern’s larger overall length in the 𝑥𝑥𝑂𝑂 direction (thus more accurate pixel coordinates of the 
feature points and better distance estimation).  
 
4.1.2 Image Data Transmission Delays 
It is important for attitude data from the Pixhawk flight controller and the camera-based estimation of the 
UAV position relative the landing pattern to be synchronized. The UAV was flown over a landing pattern 
and the time delay between image capture (i.e., opening of the camera shutter) and transmission of 
extracted UAV position information (i.e., 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3) from the TX2 to the Pixhawk over the MAVLink 

   
(a) (b) (c) 

Figure 10. Estimation errors with respect to the relative distance between the UAV and the landing 
pattern. Overlayed are the number of AprilTags detected and used to compute relative distances. 

 

 
Figure 11. Image data transmission delay: the total delay equals the delay from image capturing to the 
transmission of a MAVLink message by the TX2 (red curve, on average 31.5 ms) plus the actual 
transmission time of the message from the TX2 to the Pixhawk (about 17.8 ms, not shown in the 
figure). IMU buffer size is set to 20 to compensate for the delayed visual measurement. 
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interface was calculated. This delay is shown in Figure 11 as the solid red curve with cross markers. The 
delay, which is 31.5 ms on average, is mostly due to the time needed to load the image from the camera 
and process the image. The processing time for the TX2 to process the image of the landing pattern is 
shown as the green curve with plus markers in Figure 11. The computation time is on average 13.9 ms 
and less variable. Also, this computation time is not affected by the number of AprilTags (indicated by 
blue star markers in Figure 11) used in calculation of the UAV relative position. There is a high level of 
variability in the total delay (red curve with cross markers) not seen in the computation time (green curve 
with plus markers) of the UAV position estimation. This variability is associated with stochastic delays 
of the TX2 operating system (which is not real-time) when servicing the MAVLink interface and 
executing image capturing in the background.  Once the relative position estimate is determined, the TX2 
will transmit its relative position to the Pixhawk controller. The MAVLink interface operates at a baud 
rate of 921,600 and requires about 17.8 ms to transmit its data. If average total delay of the TX2 getting 
an image from the camera, calculating the relative UAV position using the image, and sending out the 
relative position is 31.5±11.1 ms, then the total delay for the Pixhawk controller is 49.3±11.1 ms. With 
the Pixhawk generating attitude data at 400 Hz and an average delay of image data at 49.3 ms, then an 
IMU buffer (discussed in Section 3.3.3) is programmed to have 20 or more data points.   
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 12. A sequence of images captured by the webcam during precision landing (computed landing 
point 𝑀𝑀 and visual estimations from the direct method are presented in each image), roughly: (a) 4.43 
m; (b) 3.46 m; (c): 1.14 m; (d) 0.73 m; (e) 0.61 m; (f) 0.10 m height. 
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4.1.3 Precision Landing 
Next, the UAV’s capability of precision landing was tested thoroughly. Figure 12 shows a sequence of 
snapshots from the onboard webcam during a typical precision landing. Detected AprilTags are 
highlighted in each image with the corners and centers of each detected tag marked by orange dots. Based 
on these feature points, pixel coordinates for the fixed landing point 𝑀𝑀 are computed and marked with a 
red cross. 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is further extracted using the direct method and shown on top of each frame (𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3 
in green). As shown in the sequence of snapshots, only the largest AprilTag among the four is detectable 
at the very beginning of the landing process when the UAV is at about 4.43 m above the pattern (Figure 
12(a)). Smaller AprilTags gradually come into the camera’s FoV as the UAV descends. At the height of 
about 1.14 m, all four AprilTags are successfully detected (Figure 12(c)). After that, larger AprilTags 
slowly leave the camera’s FoV and only the smaller AprilTags contribute to visual estimations and provide 
guidance to the landing vehicle. Figure 12(f) shows the camera view when the vehicle lands. Relative 
horizontal distance from the camera lens to the desired landing point at this final stage is only 0.02 m. 
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Figure 13 illustrates state estimation results from the discrete Kalman filter during one typical landing. 
The Kalman filter shows good performance along the whole landing trajectory. Relative distance 
estimations (red curves) in both the Ground frame’s 𝑥𝑥𝑃𝑃 (North) and 𝑦𝑦𝑃𝑃 (East) directions follow the ground 
truth (blue curves) well. Green vertical lines indicate the moments when a visual measurement is received 
by the Pixhawk and used to update the Kalman filter. When visual measurements are not available (e.g., 
during 21-23 s in Figure 13(a) and (b), the landing pattern leaves the camera’s FOV due to the UAV’s 
aggressive maneuvers to correct its position), the Kalman filter is still able to provide estimations by only 
executing the prediction step. A set of landings are performed 25 times to assess the repeatability of the 
landing and to quantify landing precision. Figure 14 illustrates these 25 landing trajectories and their 
associated landing locations with respect to the desired landing point. The trajectory data shown in Figure 
14(a) are recorded by the motion capture system. Below a height of 2.5 m, all of the landing trajectories 

   
(a) (b) (c) 

Figure 14. Relative distance estimations in the Ground coordinate system during a typical precision 
landing: (a) 𝑥𝑥𝑃𝑃 (north); (b) 𝑦𝑦𝑃𝑃 (east); (c) −𝑧𝑧𝑃𝑃 (up). 

 
 

 
 

(a) (b) 
Figure 13. 25 landing trajectories and associated landing spots: (a) trajectories captured by Qualisys 
IR system in red with blue circles indicating a 25 cm deviation from the desired landing point in the 
horizontal plane; (b) landing accuracy with landing positions indicated by red crosses. 
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are within a deviation of 25 cm from the desired landing point in the horizontal plane. All landing 
maneuvers land the vehicle within 15 cm from the desired landing point with 22 in a circle with a radius 
of 10 cm (Figure 14(b)).  
 
4.2 Autonomous Modal Analysis of a Structural Beam 
The objectives of the second case study are to evaluate the feasibility of UAVs to: (1) autonomously place 
wireless sensor nodes on a simply supported beam structure; (2) localize the sensors on the structure; (3) 
collect ambient acceleration data from the structure; and (4) perform modal analysis of the beam. Towards 
this end, experiments were performed in M-Air using a simply support aluminum beam (182.5 cm long, 
30.5 cm wide, and 0.6 cm thick). Three different sets of landing patterns are attached on the beam along 
its longitudinal length representing target sensor locations equidistant from one another. Two QAV210 
UAVs were adopted to each carry a sensor enclosure containing a Martlet sensing node and an 
accelerometer sensor. The sensor enclosure is firmly mounted on the bottom of the UAV and moves from 
location to location on the beam as the UAV takes off and lands. When landed, the UAV’s self-weight 
(around 1.1 kg) ensures a firm connection between the sensor and the beam. Attached on top of each UAV 
is another AprilTag used for localization of the UAV-sensor pair on the beam using tailored visual 
algorithms. Figure 15 shows the setup of the case study.   
 
The experiment is performed in several steps. First, UAV 1 takes off, searches in the air for the landing 
pattern of sensor location 1, and delivers the sensing node onto the beam by landing on the pattern. Once 
UAV 1 lands, UAV 2 takes off, flies above the beam and UAV 1, and delivers its wireless sensing node to 
sensor location 2. While UAV 2 is in the air, it is also able to register the position of the landed UAV 1 
using camera data of the AprilTag on top of UAV 1. This allows the precise location of UAV 1 on the 
beam to be determined. Soon after the landing of UAV 2, a human operator strikes the beam with a modal 
hammer while both UAVs command their wireless sensing nodes to collect and transmit acceleration data 
to a ground PC. The hammer impulse is equivalent to white noise ambient excitation expected in a real, 

  
(a) (b) 

Figure 15. (a) two QAV210s sit on the ground, ready to deliver wireless sensors to measure beam 
accelerations (landing patterns are attached to positions where acceleration measurements are desired); 
(b) the wireless sensing node attached on the bottom of the QAV210 (left: the Martlet baseboard 
together with the ADC daughter board; right: the Crossbow accelerometer). 
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operational structure. UAV 1 then takes off again and moves from sensor location 1 to sensor location 3. 
Position registration of UAV 2 is accomplished during this process using images of its overhead AprilTag 
captured by UAV 1. Upon landing of UAV 1, the human operator excites the beam again and data collected 
by the accelerometers now at different locations on the beam are transmitted back to the ground PC. Lastly 
UAV 2 is commanded to fly over UAV 1 and leave the beam in order to register UAV 1’s last position. At 
the final stage of the experiment, modal analysis of the beam is performed using the acceleration response 
data collected at the three locations along the beam length. The Frequency Domain Decomposition 
(FDD)47 method is used to assemble 2-point mode shapes for each sensor configuration; overlap in the 
mode shapes allow them to be stitched together to from global modes of the beam structure. The 
experiment is fully autonomous with the human operator only intervening to impulse the beam structure 
which would not be necessary in applications in real civil engineering structures with ambient vibrations.  
 
As shown in Figure 16, the two QAV210s successfully positioned the Martlet wireless sensing nodes on 
the beam after carefully following each operation in the FSM. Position registration of the UAV is 
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accomplished by detecting both its overhead AprilTag and at least one more AprilTag on the beam at the 
same time. Computed UAV positions are shown in the top-left corner of the snapshots. Estimation error 
is within 2 cm when comparing to ground truth of the UAV positions using a measuring tape. Figure 16(d) 
illustrates the measured locations of the landed UAVs (based on manual measurement with a ruler) after 
repeating the test four times. All landing locations are within 5 cm (shown with dashed circle with 5 cm 
radius) from their desired locations.  
 

   
(a) (b) (c) 

 
(d) 

Figure 16. Spatial registration of wireless sensors on the beam: (a)-(c) position of the QAV210 
landed on the beam; (d) locations of UAVs over four repeated tests (locations manually measured). 
 

Table 2. Comparison of mode shapes between experimental and theoretical values 
  1st Mode Shape 2nd Mode Shape 
  Experiment Theory Error Experiment Theory Error 

Sensor 
Loc. 1 

Test 1 -0.7102 -0.8244 0.1142 -1.0000 -0.9332 0.0668 
Test 2 -0.7213 -0.7835 0.0622 -1.0000 -0.9737 0.0263 
Test 3 -0.7649 -0.7814 0.0165 -1.0000 -0.9753 0.0247 
Test 4 -0.8759 -0.8264 0.0495 -1.0000 -0.9307 0.0693 

Sensor 
Loc. 2 

Test 1 -1.0000 -0.9920 0.0080 0.5708 0.2504 0.3204 
Test 2 -1.0000 -0.9964 0.0036 0.4103 0.1696 0.2407 
Test 3 -1.0000 -0.9968 0.0032 0.4210 0.1594 0.2616 
Test 4 -1.0000 -0.9980 0.0020 0.4520 0.1253 0.3267 

Sensor 
Loc. 3 

Test 1 -0.6908 -0.6354 0.0544 0.9812 0.9813 0.0001 
Test 2 -0.7170 -0.6795 0.0375 0.8765 0.9971 0.1206 
Test 3 -0.7486 -0.6098 0.1388 0.8314 0.9666 0.1352 
Test 4 -0.6947 -0.7104 0.0157 0.7379 0.9998 0.2619 
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After the human operator strikes the beam with a modal hammer, the wireless sensing nodes collect 
acceleration data at 100 Hz as shown in Figure 17(a) for the first test. The FDD method is then used to 
extract the natural frequencies and mode shapes of the beam from the collected time history data. Figure 
17(b) shows the singular values of the power spectral density (PSD) function matrix for the first and 
second sensor locations of the first test. As it appears, the 1st and 2nd natural frequencies of the beam are 
at 13 Hz and 43 Hz. The theoretical natural frequencies and mode shapes of a simply supported Euler-
Bernoulli beam can be computed using the beam’s properties (𝐸𝐸 = 6.89 × 1010  N/m2, 𝐼𝐼 = 4.6785 ×
10−8 m4, 𝜌𝜌 = 2.7 × 103 Kg/m3, 𝐴𝐴 = 2.31 × 10−3 m2, 𝐿𝐿 = 1.825 m). The theoretical 1st and 2nd natural 
frequencies are determined to be 10.7 Hz and 42.6 Hz, which are in strong agreement to the experimental 
results. To get the complete mode shape of beam, mode shapes (Figure 17(c) and (d)) generated from the 
two strikes are stitched together using the common point sensor location 2. A detailed comparison of the 
experimental and theoretical mode shape values is provided in Table 2. It should be noted that the mode 
shape values plotted in Figure 17. correspond to the actual measurement location as measured manually 
(as can be seen by the mode shape values for all tests not falling on a consistent vertical line). For the four 
different executions of the experiment, there is strong agreement between the experimental and theoretical 
mode shapes. Whereas the field tests were successful, and the results are reasonable, future work is needed 
to further reduce the modal errors such as improving the UAV controller and landing pattern design for a 
better landing accuracy and ensuring a firmer connection between the sensor and the structure.    
 

  
(a) (b) 

  
(c) (d) 

Figure 17. Modal analysis of the simply supported beam: (a) raw acceleration data from Martlet sensin  
nodes; (b) singular values of the PSD matrices; (c)-(d) 1st and 2nd mode shape of the beam. 
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4.3 Discussion and limitations 
While this research successfully demonstrates proof-of-concept trails of UAVs with structural sensors 
integrated precisely landing on structures using fiducial markers, there are remaining challenges inherent 
to scaling this approach to large and complex operational structures. The installation of fiducial markers 
(such as AprilTag patterns) on structures required for precise localization of the UAVs can be challenging 
to deploy. Human-based installation in existing structures seems inevitable in the short-term but this may 
come with some inherent cost and require safe access to key areas of the structure for the installer. Safe 
access could be challenging for a number of structures such as those in remote areas and ones with 
complex and large sizes (e.g., skyrises and long-space bridges). Incorporating fiducial markers into the 
structure during construction is another viable solution but requires planning beforehand. In this research, 
AprilTags are all placed horizontally on surface with the UAV landing on the landing pattern. However, 
the usage of markers is not limited to a horizontal orientation. AprilTags can be put on vertical or inclined 
surfaces as long as they are within the camera’s FoV and their location and pose relative to a predefined 
flat landing position on the structure is known a priori. Also, the UAV need not have to land on the pattern 
itself.  In this work, a set of standard square tags with varied sizes is adopted to accommodate detection 
from a wide range of distances resulting in relatively large markers. An improved design could be a 
recursive pattern with a smaller tag nested inside a bigger tag48 such that a single marker would suffice 
for use by the UAV from long and short distances. Another approach could be the use of UAV cameras 
that can zoom allowing for smaller markers to be used. In general, the choice of fiducial marker calls for 
a balance between detection robustness, computational efficiency, and pose estimation accuracy. There is 
potential for research into how this compromise can be diminished utilizing more advanced design.   
Finally, environmental disturbances can pose challenges regarding the overall reliability and robustness 
of a UAV using markers to land. For instance, strong sustained wind speeds and large wind gusts could 
overcome the controllability of the UAV regardless of the type of data used (vision- or IMU-based) to 
estimate the UAV location and pose relative to a landing spot. Also, the robustness of the fiducial markers 
must be ensured–those worn down by the elements could challenge the detection of the marker. 
 
5 Conclusion 
This study explores the development of UAVs as an intelligent agent capable of deploying wireless sensor 
nodes autonomously for structural health monitoring applications. The proposed UAV system can 
autonomously detect landing patterns and precisely land upon them to deploy sensors to the structure 
surface. Transition between different functions like pattern searching and precision landing is 
accomplished using a reliable finite-state machine embedded in the TX2 onboard computer of the UAVs. 
Precision positioning of a UAV in the outdoor environment is made possible by the integration of a 
customized fiducial marker pattern, a robust vision-IMU coupled estimation method, and a discrete 
Kalman filter. The study reveals sensor positioning accuracy of less than 10 cm. The study also validates 
UAV sensor deployments for modal analysis. Using two UAV-based wireless sensors, the system can 
land on a simply supported beam with 5 cm accuracy to extract precise mode shapes.  Moving forward, 
the autonomous UAV sensor delivery system could be improved by incorporating on-the-fly decision-
making capabilities. Once structural diagnosis of a certain part of a structure is finished, the system should 
be able to decide intelligently the next configuration of the sensor network and where it should be installed 
on the structure. By instantly moving sensors to more advantageous positions on the structure, events of 
interest such as structural damage can be measured and recorded in a more timely and detailed fashion. 
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Future work also includes expanding the UAV’s capability such as to precisely pick up and drop off 
sensing nodes with an onboard gripper. In this way, fewer UAVs are required to install the sensor network 
saving deployment cost. Fiducial markers are not always practical in remote outdoor environments. Future 
work will leverage recent advances in simultaneous localization and mapping (SLAM)49,50 for 
autonomous navigation of the UAV in unknown environments. 
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