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Highlights 
 

● Differences in early math ability relate to course selection in high school 
● There are clear differences in math ability prior to starting formal schooling 
● Students with no math skills at school entry continue on a low math achievement 

trajectory throughout schooling 
● The likelihood of enrolling in college can be predicted from the level of math ability at 54 

months.  
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Abstract 

Using data from the Applied Problems subtest of the Woodcock-Johnson Tests of Achievement 

(Woodcock, McGrew, & Mather, 2001) administered to 1,364 children from the National 

Institute of Child Health and Human Development (NICHD) Study of Early Childcare and 

Youth Development (SECCYD), this study measures children’s mastery of three numeric 

competencies (counting, concrete representational arithmetic, and abstract arithmetic operations) 

at 54 months of age. We find that, even after controlling for key demographic characteristics, the 

numeric competency that children master prior to school entry relates to important educational 

transitions in secondary and post-secondary education. Those children who showed low numeric 

competency prior to school entry enrolled in lower math track classes in high school and were 

less likely to enroll in college. Important numeracy competency differences at age 54 months 

related to socioeconomic inequalities were also found. These findings suggest that important 

indicators of long-term schooling success (i.e., advanced math courses, college enrollment) are 

evident prior to schooling based on the levels of numeracy mastery. 

 Keywords: numeracy, mathematical achievement, longitudinal 
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The development of mathematical ability in childhood is crucial for later academic and 

occupational success (Heckman et al.,  2018a, 2018b; Long et al., 2012). Yet, for decades, 

children in the U.S. have lagged behind students in other countries with respect to mathematical 

achievement. In 2018, the U.S. was ranked 38th out of the 79 countries that participated in the 

Program for International Student Assessment (PISA) for mathematics (OECD, 2019). While 

U.S. students did slightly better on the 2019 Trends in International Mathematics and Science 

Study (TIMSS) math tests, they ranked behind countries such as Ireland, Russia, and South 

Korea (Mullis, et al., 2020).  According to results from the National Assessment of Educational 

Progress (NAEP), only 41% of fourth-grade students in the U.S. reached mathematics 

proficiency in 2019 and only 9% reached an advanced level of mathematics achievement (NCES, 

2019).  

In the words of Horace Mann, education should be the “great equalizer” of differences in 

students’ backgrounds and previous experiences (Mann, 1848). Yet, recent research using large-

scale, nationally representative education data finds a more discouraging situation where 

achievement gaps that exist at the entry to formal schooling persist across primary and secondary 

education (Davis-Kean & Jager, 2014; Kuhfeld, Gershoff, & Paschall, 2018; von Hippel & 

Hamrock, 2019; von Hippel, Workman, & Downey, 2018). However, this research has only 

looked at early achievement predicting later achievement—all defined by standardized 

achievement test scores across primary and early secondary education (Watts et al., 2014). Even 

though this approach provides information about the inter-temporal relation among achievement 

scores, it does not tell us whether indicators of later academic success is also driven by early 

ability skills. Thus, it is unclear if these gaps are meaningful for outcomes such as participation 

in advanced math course work in high school or college enrollment after high school (Heckman 
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et al., 2018; Heckman et al., 2010), which are more qualitative indicators of schooling success. 

Thus, the goal of this paper, using a unique birth cohort study, was to use a measure of early 

numeracy to see if there were important skills that had already been acquired prior to enrolling in 

formal schooling (i.e., kindergarten) and explore the possible links between these early numeracy 

skills and later advanced math course-taking in high school and college enrollment.   

Theoretical Conceptualizations of Early Numeracy Skills 

Early numeracy skills are thought to develop through the acquisition of several key 

foundational skills followed by incremental increases in deeper mathematical skills that build on 

that early foundation (Libertus et al., 2016; Lyons et al., 2018; Matthews & Fuchs, 2018; 

Matthews et al., 2016; Sokolowski et al., 2017). For example, Sarama and Clements (2009) posit 

a process whereby, after the notion of numeracy has been established, children engage 

mathematically with physical objects or visual representations of these objects and, over time, 

learn to generalize from these physical manipulations and conduct more abstract or symbolic 

mathematical operations. That is, children begin by conducting operations using representations 

(���+��=�����) before progressing to symbolic operations (3 + 2 = 5). Sarama and 

Clements (2009) argue that this process of “cyclic concretization” occurs in multiple 

mathematical domains, such as by first recognizing shapes to later being able to understand 

geometric principles (e.g., area, circumference).  

This conceptualization of numerical development implies a predictable sequence of 

mathematical skill acquisition, in which children move from a concrete understanding of 

numbers to a more abstract understanding. As such, this theory suggests that an understanding of 

symbolic numeric representations as well as facility with adding and subtracting using 

representations are essential building blocks for later success in mathematics. It implies that there 
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is a progressive nature to numeracy development and that the successful mastery of certain early 

skills serves as the foundation for success in later advanced mathematical skills (Siegler et al., 

2012).  

Assessing Early Numeracy Mastery 

 How, then, are these important early, foundational numeracy skills identified? One 

method has been to examine overall performance on various standardized achievement tests 

either at a single time point or across time (Barnard, 2004; Brooks-Gunn & Duncan, 1997; Lee & 

Bowen, 2006). Another method has been to deconstruct existing achievement scaled into 

component skills that may differentially predict later achievement and attainment. This approach 

was taken by Siegler and colleagues (2012), who categorized, using expert opinion, items on the 

Woodcock-Johnson Calculation Subtest (Woodcock et al., 2001) into various mathematical skills 

including addition, subtraction, multiplication, division, and fractions. They then used the 

Woodcock-Johnson Applied Problem Subtest to categorize items that were tapping into algebra 

knowledge in order to test whether these earlier skills predicted to later algebra ability. They 

found that both fraction skills and division skills when children were between the ages of 8 and 

10 years of age were important for later achievement in high school algebra. 

 The present study uses a similar approach as Siegler et al. (2012), and uses one of the 

same measures of achievement, the Woodcock-Johnson Applied Problems scale, to construct 

different numeracy skill areas. However, instead of using qualitative coding, we use an advanced 

item response methodology to categorize children’s skills. Also, unique from the research by 

Siegler and colleagues, we categorize these skills at an earlier age (preschool) and then extend 

the study to examine the role of these skills in the selection of advanced math classes in high 

school and later college enrollment. As the available measures focus primarily on capturing 
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children’s facility with numbers – rather than spatial or geographic relations – our discussion 

focuses on numeracy rather than mathematics skills more generally. 

Current Study 

Drawing from current theories about the building blocks of early numeracy skills as well 

as the research by Siegler and colleagues (2012), and using standardized assessments as a way to 

parse these numeracy skills into competency categories, the current study identifies skills 

measured at 54-months of age on the Applied Problems subtest of the Woodcock-Johnson 

Psycho-Educational Battery. We use an innovative quantitative approach based on item response 

methodology to classify these skills (Diagnostic Classification Model [DCM]; Rupp et al., 2010). 

This classification method allows children to be grouped based on their mastery of foundational 

numeracy concepts, such as counting and adding. Once these 54-month competency groups were 

established, we documented whether there were demographic differences across the groups in 

order to document early numeracy skill gaps by early life background factors. We then examined 

how these established numeric abilities groups at preschool mattered for educational outcomes in 

adolescence and young adulthood. We built on previous research by Watts and colleagues (2014) 

that found that standardized numeracy achievement scores at preschool predicted adolescent 

achievement scores at age 15. We extended this work by identifying specific early skills (rather 

than a global measure of achievement) and examined whether these categories of numeric 

competencies also predicted math achievement at age 15. We also looked to see if children in the 

early numeric competency groups differed in the difficulty of the mathematical courses they took 

in high school. We did so because mathematics courses play a crucial gatekeeping role in the 

contemporary American educational system. Being proficient or above average in mathematics 

ability (specifically algebra) allows for the completion of advanced mathematics or calculus 
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courses before graduating high school (Burris et al., 2004). Finally, based on the role of 

mathematical training in predicting college matriculation and graduation (Murnane et al., 1995), 

we also examined whether early numeracy ability predicted college enrollment. Thus, our 

research builds on prior research demonstrating that early numeracy skills predict later 

mathematical skills by charting the extent to which mastery of some of the most basic early 

numeracy concepts in early childhood predicts two educational outcomes which, themselves, are 

important indicators of a successful transition to adulthood (c.f. Attewell & Domina, 2010; Card, 

1999; Heckman et al., 2018a,b; Long et al., 2012).   

 By focusing on numeracy skills at age 54 months, we are identifying the skills children 

have before they enter formal schooling, which can serve as indicators of what children may 

have learned in the home and early childhood education environments. Hence, to control for the 

possibility that early home and preschool environments may have independent effects on later 

achievement and attainment, we controlled for several potential confounding variables. 

Specifically, we included the family’s income-to-needs ratio, the quality of the home 

environment, the mother’s receptive vocabulary, and the mother’s highest level of education. To 

make sure that we are isolating preschool numeric competencies and not just reflecting 

children’s overall cognitive abilities, we controlled for the child’s cognitive functioning at 24 

months and the child’s short-term memory at 54 months in our models.  

Method 

Participants 

Data were drawn from the National Institute of Child Health and Human Development 

(NICHD) Study of Early Childcare and Youth Development (SECCYD). Researchers recruited 

mothers over the age of 18 who spoke English as their first language and delivered full-term, 



8 
EARLY NUMERACY MASTERY AND EDUCATIONAL TRANSITIONS 

healthy newborn babies in 10 geographically diverse collection sites in the U.S. This sampling 

procedure resulted in a diverse but not nationally representative sample of children born in 1991. 

Researchers followed these children and their families longitudinally through age 15. 

Additionally, after the end of NICHD sponsorship of the SECCYD, members of the NICHD 

Early Child Care Research Network collected high school transcripts and conducted a web 

survey about young adult role transitions when participants were between ages 22 and 23. The 

main time points of focus in the current study are the assessments at 54 months, age 15, the end 

of high school, and college-age. 

The full sample of the NICHD SECCYD data set includes 1,364 children. As with any 

study that employs longitudinal data with multiple measurements, attrition occurs over time. Of 

the 1,064 children in the 54-month sample, 467 have high school transcript data, and 406 have 

college enrollment data. The descriptive statistics for the 54-month sample and the final 

predictive sample are shown in Table 1 and Table S1 (Supplemental Materials). For a more 

thorough discussion of the full recruitment procedures and related limitations, see NICHD Early 

Child Care Research Network (2002). This study is based solely on secondary data that are de-

identified and available for download through the Interuniversity Consortium for Political and 

Social Research (ICPSR), thus the research ethics committee at the [blinded for review] declared 

this study exempt.  

Measures 

Background Characteristics 

We drew on data reported by SECCYD mothers when their children were one month of 

age to measure background characteristics, including the child’s sex, the child’s race and 

ethnicity (White, Black, Hispanic, Other), and the mother’s highest level of education (reported 
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in years). Family income was provided by the mother during the 1-, 6-, 15-, 24-, 36-, and 54-

month interviews. We converted income to an income-to-needs ratio based on the federal 

poverty line at the time of data collection and how many children were living in the household at 

each time point. For simplicity, we combined these time-varying measures of family income-to-

need into a stable family income-to-needs measure which is calculated as the mean value of each 

of the available income-to-needs measures. Similarly, we calculated the proportion of time a 

partner lived in the household across the same six measurement points. 

Based on research showing that the home environment may relate to children’s early 

numeracy ability (Davis-Kean, 2005; Levine et al., 2010; Susperreguy & Davis-Kean, 2016), we 

used several additional items to characterize children’s early lives. The quality of the home 

environment was assessed using the Home Observation for Measurement of the Environment 

(HOME; Bradley & Caldwell, 1979) at 36 months. The HOME is administered through both 

observational assessment and structured interviews with the child’s parents or primary 

caregivers, with higher scores indicating a higher-quality environment. A composite HOME 

score was calculated using the same measurement time points as family income. The proportion 

of time (hours per week/total nonmaternal care) in center care between 36 and 54 months of age 

was used as a measure for children’s experiences in preschool before formal schooling. The 

mother’s score on the Peabody Picture Vocabulary Test (PPVT; Dunn & Dunn, 1981) was 

obtained when the child was 36 months old and is used as an indication of the mother’s 

crystallized intelligence (e.g. NICHD Early Child Care Research Network & Duncan, 2003). We 

included the Mental Developmental Index (MDI) of the Bayley Scales of Infant Development at 

24 months (Bayley, 1993), which is an early assessment of cognitive functioning. The Bayley 

Scales of Infant Development is administered in a laboratory setting and involves a trained 
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examiner observing the focus child as he or she plays game-like tasks, such as stacking blocks or 

placing pegs in a hole on a board. The WJ-R Memory for Sentences subtest administered at 54 

months was included as a measure of the child’s short-term memory. 

Mathematical Competency  

Children’s numeracy skills were assessed by a trained examiner at multiple waves using 

the Applied Problems subtest of the Woodcock-Johnson Psycho-Educational Battery–Revised, 

Form A (WJ-AP; Woodcock & Johnson, 1989/1990). The current study focuses on children’s 

WJ-AP scores at 54 months of age as the key independent variable and their scores at age 15 

years as dependent variables; in addition, we examined their scores at 1st, 3rd, and 5th grade 

descriptively across the skill groups. At each assessment, students answered items in order of 

difficulty, and basal and ceiling levels were determined for each student in order to ensure 

efficiency in the testing process. At 54 months, students began the WJ-AP with items focused on 

counting and continued receiving new items until they incorrectly answered 6 consecutive items. 

In the SECCYD, the Applied Problems subtest had strong internal reliability at each wave (60 

items; scores ranging from α = .81-.87).  

High School Mathematics Course-Taking 

Youth mathematics course attainment was derived from the high school transcript data 

collected from students after the end of high school. SECCYD researchers used these data, in 

conjunction with contextual data collected from the principal or a designated staff member at 

each respondent’s school on course offerings and graduation requirements, to associate each 

course that appeared on a student’s transcript with a Classification of Secondary School Courses 

(CSSC) code. Developed by the National Center for Education Statistics (NCES) and used in the 

National Education Longitudinal Study of 1988 (NELS) and Education Longitudinal Study of 
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2002 (ELS) transcript studies, these codes provide a standardized accounting of high school 

course titles. We simplified these course codes into an ordinal measure of the highest level of 

mathematics that students reached by the end of high school. The five ranked ordered categories 

were: “Algebra I”, “Geometry”, “Algebra II”, “Advanced Mathematics”, and “Calculus.”  

Students in the “Advanced Mathematics” category completed at least one course beyond Algebra 

II, such as Trigonometry, Advanced Placement Statistics, or Pre-Calculus, but had not taken 

Calculus during high school.  

College Enrollment 

Our final outcome was youth’s enrollment in postsecondary education. When the 

participants in the study were aged 22 or 23, they reported whether they had graduated from high 

school, whether they had enrolled in a two-year college, and whether they had enrolled in a four-

year college. For ease of interpretation, multivariate analyses focus in particular on the 

comparison between students who enrolled in a four-year college and those who did not. 

Analysis Plan 

The purpose of our study was to identify early numeracy skills that may be key predictors 

of later achievement and attainment, using a validated mathematics assessment. The analysis 

proceeded in four steps. First, an exploratory factor analysis (EFA) was conducted to identify 

items in the WJ-AP that factored together. Second, we used a Diagnostic Classification Model 

(DCM; explained in detail below) to classify students into groups based on their mastery of key 

numerical concepts at 54 months that were identified through the EFA. Third, we examined 

descriptive analyses of early numeracy concept mastery inequalities by race or ethnicity, parent 

education, and other aspects of their home environments in order to understand the 

characteristics of students who were classified together.  Fourth, multivariate models were used 
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to investigate the link between early concept mastery and later educational outcomes taking into 

consideration a rich set of background characteristics, as well as the classification groupings that 

were established by the DCM procedure. 

Results 

Identification of Early Numerical Competency Factors 

We used EFA models to uncover latent factors that explained shared variation in 

children’s patterns of correct item responses across multiple items. Initially, we allowed for one 

to six factors to be identified using oblique Geomin rotation to allow the factor analysis to return 

correlated factors (loadings patterns from the six EFA analyses are shown in Table S2a). Factor 

analyses were conducted on the first 25 WJ-R Applied Problems items using mean- and 

variance-adjusted weighted least squares estimation in Mplus (Muthén & Muthén, 2016) with the 

full sample of 54-month-old children (n = 1,041). As a result of the ceiling rules in the 

administration of the test, children at this age typically responded to the first 10-20 items before 

hitting the ceiling, thus 25 seemed likely to capture the abilities of all respondents at 54 months. 

All of the models showed excellent fit based on traditional standards (RMSEA <.05 and CFI > 

.90; Hu & Bentler, 1999). Therefore, we compared the EFA results in terms of the conceptual 

clarity of the item factors and consistency of factor structures across models. The model with 

four latent factors had conceptual clarity and was more parsimonious and stable than the five or 

six-factor model (Table S2b). 

The first item factor contains items related to counting objects (8 questions; e.g., “How 

many dogs?”, “How many cows?”). The second factor contains items that provide visual 

representations of objects and focus on subtracting objects (6 questions; e.g., “If you took away 5 

crayons, how many are left?”) and thus we labeled it concrete representational arithmetic 
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operations. The third factor contains items in which children are asked to add objects that are not 

visually represented (4 questions; e.g., “If you have five balloons and get one more, how many 

do you have?”) and thus was labeled abstract arithmetic operations. We conceptualize these 

three skill-sets as steps in the process that Sarama and Clements (2009) describe as “cyclic 

concretization,” in which children first engage with numerical concepts at a sensory-concrete 

level before gaining a capacity to make verbally-based or symbolic numeracy generalizations. A 

fourth factor contained two items that asked children to read the time from diagrams of analog 

clocks which we labeled clocks. However, since these two items appeared to measure a separate, 

potentially important skill (i.e. the ability to tell time) but not numerical skills, we calculated the 

percentage correct on the two items (0 = both wrong, 0.5 = one correct, 1 = both correct) and 

included this variable in the multiple regression models, but not the DCM. This allowed us to 

more clearly align the analyses with the Sarama and Clements (2009) hierarchical process of 

mathematical development but allowed for the relation with the other items to be accounted for 

in the regressions. 

Early Numeracy Skills Mastery Groups 

After identifying three conceptually consistent factors related to numerical skills, these 

factors served as the basis for examining groups of children by skill mastery. Some classification 

models, such as Latent Class Analysis, focus on groups based on a single construct, but in this 

study, the focus is mastery of a set of specific skills at preschool age. DCMs are a family of 

confirmatory psychometric models that characterize individuals based on their mastery of a 

discrete set of narrowly defined skills (for example, see Gierl, Alves, & Majeau, 2010). This 

approach contrasts with traditional psychometric approaches such as item response theory (IRT) 

models, in which the latent variables are continuous and typically somewhat broadly defined, 
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such as “mathematics ability”. The DCMs specify the cognitive attributes that examinees must 

possess in order to answer test items correctly, and the end-product of DCMs is the classification 

of examinees with respect to the mastery of these attributes (where the cut-points for mastery 

classification are derived within the model). Following the DCM convention, we use the term 

“attribute” to refer to the dichotomous latent traits that distinguish between examinees who have 

mastered and those who have not mastered each skill of interest. For the reliability of DCM 

examinee estimates, see Templin and Bradshaw (2013). DCMs are considered confirmatory 

latent class models because the number of attributes and the item-attribute alignment are both 

defined prior to analyses. The 18 items and three dimensions identified by the EFA were the 

basis of the DCM structure (shown in Supplemental Table S3). Child group classifications were 

determined by the item responses, the item properties, and the population-level base rates of 

examinees that are masters of each attribute. 

 In the DCM framework, items can be specified to measure a single attribute or multiple 

attributes. When an item measures multiple attributes or skills, DCM can be estimated under a 

variety of assumptions regarding how the attributes interact to predict a correct response. For 

example, a child may be able to get a subtraction item correct by using their counting skills (e.g., 

counting backward on their hands), even if they have not learned subtraction methods. This 

would be an example of a compensatory model, where that possession of one attribute could 

offset the absence of another. Alternatively, there may be other items where it is thought that all 

relevant attributes are necessary in order for an examinee to have any increase in the probability 

of a correct response. For instance, an item that asks examinees to add together two fractions 

may require both adding and fraction knowledge for the examinee to answer the item correctly. 

If a child has just mastered adding but not fractions, they would be unlikely to get the correct 
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response. In this study, we utilized a compensatory re-parameterized unified model (C-RUM; 

Choi et al., 2012), which when items are tied to multiple attributes, allows for mastery of one 

attribute to compensate for non-mastery on other attributes. C-RUM is a special case of the log-

linear diagnostic classification model (LDCM) in which only the main effects are estimated. 

In addition to the specification of how the attributes are theorized to relate to the items, 

DCM requires the specification of the joint distribution of binary attributes in models. A higher-

order latent trait was specified to explain the relationship between the attributes (De La Torre & 

Douglas, 2004). The higher-order structure assumes that there is a general mathematics aptitude 

(continuous) dimension that explains the relationship between the categorical attributes, which 

captures specific numeracy skills. 

We used flexMIRT version 3.2 (Cai, 2016) to estimate the DCM with the three attributes: 

counting, concrete representational arithmetic operations, and abstract arithmetic operations. 

Supplemental Table S4 presents the population probabilities of the eight potential groups that 

reflect all combinations of mastery/non-mastery status of the three skill attributes (counting, 

concrete representational arithmetic, and abstract arithmetic). Due to the inherent ordering in 

numeracy skill development, some combinations are very rarely observed in the population. The 

three abstract arithmetic items (AP16, AP17, AP21) appear later in the measure than the 

majority of the concrete representational arithmetic items and were found to be more difficult for 

the participants in this sample. As a result, only four attribute groups were observed in the 54-

month sample.  

The descriptive portrait of these early numeracy skill groups that emerges from this 

analysis can be found in Table 2, with the four skill groups having the following labels: (a) no 

applied problems mastery (NAP), (b) counting mastery (C), (c) counting and concrete 
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representational arithmetic mastery (CR), and (d) counting, concrete representational, abstract 

arithmetic mastery (CRA). As shown in the table just 16% of the sample falls into the “NAP” 

group, 31% falls in the “C” group, 27% in the “CR” group, and 26% of children fall into the 

“CRA” group at 54 months of age. The percentage correct for the counting, concrete 

representational arithmetic, and abstract arithmetic operations items within each mastery group 

are reported in Table 2. For example, the average student in the “C” group got 79% of the 

counting items correct, but only 23% of the concrete representational arithmetic operations and 

3% of the abstract arithmetic operations items correct. In comparison, the average student in the 

“CRA” group got 95% of the counting items correct, 70% of the concrete representational 

arithmetic operations, and 48% of the abstract arithmetic operations items correct. The 

continuing trajectories of these four skill groups across all included timepoints are shown in 

Figure 1. 

Demographic Differences in Early Numeracy Skill Groups 

The descriptive statistics reported in Table 2 allow for an investigation of the potential 

sources of early inequalities in numeracy skills and for a look at the differences among the early 

skills groups in their later educational outcomes. Although we found no age differences across 

the four skills groups, there were substantial race and socioeconomic disparities in skill mastery 

at 54-months. White children, who make up 79% of the entire SECCYD sample, are 

overrepresented in the “CRA” group and under-represented in the “NAP” group. Forty-seven 

percent of the children in the “NAP” group are non-White, compared with 10% of the children in 

the “CRA” group. Black families makeup 11% of the total analysis sample but are 

overrepresented in the “NAP” group (30%) and underrepresented in the “CRA” group (1%).  
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Additionally, we found a positive and monotonic relationship between multiple measures 

of children’s home environment and resources and membership in the skills groups. As Table 2 

indicates, the mean level of educational attainment for mothers of children in the “NAP” group is 

slightly above 12 years of schooling or high school equivalent, while the mean level of 

educational attainment for mothers of children in the “C” group is equivalent to a community 

college education, and mean level of educational attainment for mothers of children in the 

“CRA” is equivalent to four years of college. While 94% of children in the “CRA” group resided 

with two parents, a smaller percent (74%) of the children in the “NAP” group had two parents 

residing in the home. The average child in the “CRA” group had parents who had two times 

more economic resources available for their children in early childhood than did children in the 

“NAP” group. The average HOME score for children in the “CRA” group was more than 1.5 

standard deviations higher than the average HOME score for children in the “NAP” group.  

Descriptive Data on the Links between Early Numeracy Skills and Later Achievement and 

Attainment 

The longitudinal nature of the SECCYD’s data allowed us to examine how children in the 

skill groups scored relative to each other over time as well as how early skill group membership 

was linked with later achievement and attainment. As the data reported in Table 2 demonstrates, 

the gap in WJ-AP scores between children in the “NAP” group and children in the “C” group 

narrows from 40 points (almost two standard deviations) at 54 months to just 5 points (less than 

a third of a standard deviation) at age 15.  However, the achievement gaps between children who 

demonstrated “NAP” at 54 months and children in the two highest skills groups remain relatively 

large throughout the transition to adolescence. Children who demonstrated a mastery of counting 

and concrete representational arithmetic by 54 months scored 11 points higher in mathematics 
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achievement at age 15 than did students who demonstrated little numerical mastery at 54 months, 

which is more than a standard deviation in the WJ-AP achievement scores among 15-year-olds. 

Similarly, children who demonstrated a mastery of all three early numeric skills at 54 months 

scored 17 points higher, or nearly two standard deviations, at age 15 than students who 

demonstrated no numerical mastery at 54 months. 

Differences among the four early numerical competency groups in mathematics course 

selection at the end of high school were even larger. As Figure 2 illustrates, within the “NAP” 

group, just 36% of students reached a mathematics course higher than Algebra 2. In comparison, 

approximately 70% of the “CR” group and approximately 85% of students in the “CRA” group 

completed a mathematics course higher than Algebra 2. Indeed, children who had mastered 

counting by 54 months completed high school Calculus at nearly three times the rate of children 

who demonstrated no numerical competencies at 54 months. These course completion gaps were 

even more pronounced for children in the top two skills groups: children who had mastered 

“CR” completed Calculus at nearly seven times the rate of children with “NAP” while children 

in the “CRA” group completed Calculus at eight times the rate of children with “NAP.” Figure 3 

shows the early childhood numeric skills groups were also highly predictive of college 

enrollment, such that 76% of children who had mastered all three early numeric preschool skills 

were enrolled in a 4-year college compared to 26% of young adults who had mastered none of 

the early numeric skills when in preschool. 

Predictive Multivariate Analyses 

Part of the relationship between early skills groups and age 15 mathematics achievement 

is likely a function of students’ home resources, cognitive ability, and other potentially 

confounding factors. Thus, in our models of the relations between these early numeracy skill 
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groups and WJ-AP scores at age 15, high school mathematics course-taking, and college 

enrollment, we statistically controlled for the rich set of background characteristics described 

above and displayed in Table 2. In doing so, we were able to identify the relations between early 

skills and later outcomes independent of a wide range of potential confounders.  

Each of these models was estimated using Mplus (Muthén & Muthén, 2016) on the full 

sample of students for whom longitudinal data from age 54 months through college enrollment is 

available (n = 470). Full-Information Maximum Likelihood (FIML) estimation was used to 

handle data missing at random (Graham et al., 2007). The final set of analyses thus examined the 

relations between students’ early numeracy competencies and (a) their mathematics achievement 

through age 15, (b) their highest level of mathematics course completion by the end of high 

school, and (c) whether they enrolled in a 2- year or 4- year college by age 22 or 23. 

The first model in Table 3 examined the relation between early numeracy skill groups 

and adolescent mathematics achievement at age 15 as measured by standardized scores on the 

WJ-R. Relative to the “NAP” group, children who had mastered “CR” by 54 months scored 

approximately half a standard deviation higher on the age 15 test (B = 7.28, SE = 2.65, p < .01), 

holding constant the other variables in the model. Children who demonstrated a mastery of 

“CRA” at 54 months scored approximately two-thirds of a standard deviation higher than 

children with no numerical mastery at 54 months (B = 10.02, SE = 3.94, p < .01). 

Model 2 reported in Table 3 traced the relation between the early numeracy skills groups 

and children’s high school mathematics course completion. Given that mathematics course 

completion is a five-category ordinal variable in which each of the categories has clear rank 

order (1=“Algebra I”, 2=“Geometry”, 3=“Algebra II”, 4=“Advanced Mathematics”, 

5=“Calculus”), we estimated an ordered logit or proportional odds model. Ordered logit models 
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are appropriate when the outcome has a clear ordering, such as remedial courses to advanced 

mathematics courses. Unlike ordinary least-squares (OLS) regression, these models do not 

assume that the outcome variable is ordered at equal intervals. Additionally, ordered logit models 

are more parsimonious than fitting a series of logistic regression models for each mathematics 

course pair. To develop a single regression model, ordered logit models were used to estimate 

cumulative probabilities, namely the probability that the outcome is less than or equal to a given 

category of the dependent variable. The ordered logit model estimates regression parameters (β) 

for each independent variable i as well as m – 1 threshold parameters (θm). The ordered logit 

regression models reported in this manuscript assumed that the coefficients that describe the 

relationship between the odds of completing Calculus versus the combined lower mathematics 

courses were the same as those that describe the odds of completing either Geometry or Calculus 

versus the combined lower categories. 

After we controlled for our set of demographics, family, and maternal variables, students 

who had demonstrated a mastery of either two or all three of the early numeric skills at 54 

months were significantly more likely to complete high school Calculus than children in the 

“NAP” group. To make the results from the ordered logistic more interpretable, we also 

calculated the marginal probabilities of enrolling in Calculus given students’ mastery of early 

numeric skills at 54 months. The marginal probability is calculated separately for each group, 

setting all of the other predictors in the model to their sample mean values. The predicted 

probabilities of completing Calculus by the end of high school for each skill group as well as the 

corresponding 95% confidence intervals can be found in Figure 4. As the figure shows, the 

predicted probability of enrolling in Calculus for a hypothetical child in the “NAP” group who is 

at the sample average on all background characteristics is 13% (adjusted model). On the other 
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hand, the predicted probability of enrolling in Calculus for a hypothetical child in the “CRA” 

group who is at the sample average on all background characteristics is 34%. 

Model 3 presented in Table 3 is a logistic regression model predicting enrollment in a 

four-year college or university given early numeracy skills. After controlling for background 

characteristics, children who had demonstrated a mastery of all three early numeric skills at 54 

months were significantly more likely to enroll in a four-year college than children in the “NAP” 

group. Using the parameters from Model 3, the predicted probabilities of enrollment in a four-

year college or university for each skill group as well as the corresponding 95% confidence 

intervals can be found in Figure 5. Controlling for mean values of all covariates in both groups, 

the predicted probability that children in the “CRA” group would enroll in a four-year college 

was 80% compared with 53% for children in the “NAP” group for the adjusted model. 

Discussion 

Education is considered one of the primary avenues to help in equalizing the gaps in 

income and general resource differences in our society (Mann, 1848). Decades of research, 

however, have documented an achievement gap at the beginning of mandatory schooling that 

persists throughout primary and secondary education, even with educational interventions 

occurring throughout the educational cycle (von Hippel & Hamrock, 2019). Understanding what 

aspects of achievement may be important to understand for long-term educational outcomes for 

children. Given the importance of mathematical achievement in later schooling and job market 

success (Murnane et al., 1995; Watts et al., 2018), this study investigated the extent to which the 

development of children’s mastery of early numerical concepts was associated with later 

mathematics ability and advanced math course selection in high school and college enrollment in 

young adults.  
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Our study expanded on previous research tracing the relation between preschool and 

adolescents’ math achievement test scores (Watts et al., 2014) in two ways—first, we identified 

numeric skills using a quantitative method for identifying skills that group together. Second, we 

investigated the extent to which membership in those early mastery groups fared in later pivotal 

educational outcomes, such as enrolling in advanced math courses in high school and enrolling 

in college as a young adult. We found that these early numeracy mastery groups are important 

indicators of later educational outcomes and relate to aspects of the home environment, caregiver 

cognitive resources, and the children’s own early cognitive ability. 

This study used classification models to identify latent constructs based on specific items 

of a well-validated standardized mathematics assessment and then grouped children based on 

mastery of these numeric skills. Consistent with the theoretical literature, our analyses suggest 

that children begin with a concrete understanding of numerical concepts and proceed to more 

abstract, representational understandings (Sarama & Clements, 2009). The vast majority of 

children in our sample had mastered counting prior to starting school, which is consistent with 

research that shows over 80% of kindergartners are already skilled in counting (Claessens et al., 

2014). Notably, however, there is substantial variation among children in early numeracy skills 

mastery. Approximately 16% of children in our study had mastered no basic numeracy skills, as 

tested by the standardized achievement test, prior to kindergarten, whereas nearly 30% had 

mastered abstract single-digit addition and subtraction. This heterogeneity in early numeracy 

mastery replicates earlier longitudinal research by Watts and colleagues (2014), who found that 

preschool test scores on a standardized achievement test related to later achievement test scores 

and educational attainment. Importantly, the findings extend this earlier research by showing that 

the heterogeneity in the mastery of specific numeracy concepts at 4.5 years of age (not just 
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overall test scores) was strongly predictive of later course selections in high school and college 

enrollment for this sample, even after controlling for a large set of background characteristics. 

Thus, not only do we find that there is an autoregressive relation (same achievement test scores 

predicting each other across time) but we also found that the mastery of early numeracy skills 

relates to more qualitative educational transitions such as course selection and applying to 

college. This provides additional support for differences in early skills setting a stable trajectory 

of achievement, as defined by test scores, but also by other educational choices that put students 

on certain pathways for educational success (von Hippel & Hamrock, 2019).  

We also found children who enter school with few discernable early numeracy skills, as 

measured by a standardized achievement test, are less likely to take advanced mathematics 

classes in high school or enrolling in a four-year college. These findings suggest that future 

research efforts should examine the specific contexts prior to formal schooling that may relate to 

the development of early mathematics. Based on previous research (Bradley & Corwyn, 2002; 

Davis-Kean, 2005; Levine et al., 2010; Susperreguy & Davis-Kean, 2016), two possible 

contexts, the home environment, and preschool enrollment were included as covariates.  The 

home environment has been shown to relate to numeracy skill formation. For example, research 

has shown children who are exposed to more instances of “math talk” conversations in the home 

have higher scores on standardized mathematics tests a year later, even after controlling for 

maternal education (Susperreguy & Davis-Kean, 2016).  However, children’s numeracy skills at 

the entry to formal schooling track their achievement across schooling as well as course selection 

in high school and later college enrollment even after controlling for the home environment and 

preschool enrollment. This finding suggests that initial differences in numeric skills remain 

stable and predictive of later achievement (Brooks-Gunn & Duncan, 1997; Davis-Kean & Jager, 
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2014; Reardon, 2011, von Hippel & Hamrock, 2019), but also predict important qualitative 

outcomes such as course selection and transition to higher education. 

Limitations 

These analyses are correlational and thus we are unable to make statements about the 

causal nature of early skills to later skills in our inferential analyses. Similarly, our analyses do 

not explain why numeracy skill differentials are predictive of later achievement and attainment, 

thus we do not know the mechanisms of the stability we see in the test scores or educational 

choices. Although we controlled for a range of demographic and home environment factors to 

rule out the potential influence of selection variables, there are likely unmeasured factors that 

exert influence both on early numeracy skills and on later achievement and attainment that need 

to be explored. For example, we do not examine the school or classroom factors that might relate 

to the stability of achievement and educational choices. It is possible that children from low-

resourced homes also attend low-resourced schools and thus, the stability in these environments 

is why we see the stability in achievement scores and educational choices. It is further possible 

that educators discriminate against students who enter into school with relatively few numeracy 

skills, limiting their ability to grow academically and transition to high-status educational 

opportunities. It is also the case that Black children were overrepresented in the NAP skill group, 

and thus part of the reason this group fared the worst of the four groups may be their experiences 

with race-based discrimination throughout elementary, middle, and high school. We statistically 

controlled the models for parent education and mother’s receptive vocabulary, however, we do 

not know if there are other unmeasured generational transfer (heritability) aspects that may relate 

to the stability of achievement and educational choices that the analyses have not adequately 

adjusted. Unfortunately, this data set does not provide either twin or adoptive data for us to 
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assess heritability in a traditional way and so instead we have used the variables available to try 

and adjust the analyses for this transfer. 

Our study is also restricted by our use of one standardized mathematics assessment. 

Although the Woodcock-Johnson is a widely used assessment in the field, the types of skills it 

assesses may be limited, particularly for children at age 54 months. For example, the Woodcock-

Johnson provides limited information about children’s non-symbolic, symbolic, spatial, 

geometry, and magnitude skills as discrete components; each of which is likely an important 

contributor to mathematical development (Merkley & Ansari, 2016; Purpura & Simms, 2018; 

Siegler, 2016). As a result, our analyses and discussion focus on numeracy, rather than 

mathematical skills more generally. 

Our outcome of the highest math course taken in high school was not able to consider the 

highest level of math courses offered by the school. Thus, it is possible that some students may 

have had the skills to take those courses but they were not offered at their high school. We do not 

have access to that information about their schools and so it remains a limitation of our study. 

Finally, even though we use data from a national study that reflects variation across the 

country, the study sample was not selected to be representative of the population of the U.S. The 

NICHD-SEYCCD, for example, does not include children who were considered to be born of 

low birth weight and the mothers could not be teenagers. There is also a potential selection effect 

related to those who completed the young adulthood questionnaires that asked questions on 

college enrollment. Even though we adjusted for attrition and missing data, the loss of children 

from Black families and from families in the lowest income groups potentially further restricts 

the generalizability of the results. Future research is needed to see if these early skills groups can 
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be replicated with a nationally representative sample and to test whether these early skill groups 

have similar relations with later achievement outcomes. 

Conclusion 

The current study complements and further emphasizes the previous research 

demonstrating the importance of improving early childhood education (Heckman et al., 2018a, 

2018b; Long et al., 2012). Just as basic research in linguistic and developmental science has 

helped educators target reading interventions toward phonemic awareness and other crucial early 

reading skills (Connor et al., 2007; Connor, Morrison, & Katch, 2004; Connor et al., 2011), our 

results emphasize the need for continued research on numeracy and mathematical development 

to understand the variety of skills that children bring to school entry. Perhaps a stronger focus on 

children’s numerical skills at 54 months of age will provide more children with the option of 

attending college. These findings also emphasize that an important way to prevent the 

persistence of achievement gaps is to identify them as early as possible and to target them with 

early intervention, potentially before the start of formal schooling (von Hippel & Hamrock, 

2019). Doing so will help to target the exposure to numeracy and mathematics instruction in 

early childhood settings and begin to address the persistent stability of achievement and 

attainment gaps documented in the research literature and that have long-term consequences for 

adult outcomes.  
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Table 1 
Comparison between 54-Month Sample and High School Course Completion SECCYD Sample  

  Full sample Final predictive sample Attrition sample Sig. 
Variable N M SD n M SD n M SD  
%Child race and ethnicity           
  White 1064 0.79 0.41 470 0.85 0.36 594 0.74 0.44 *** 
  Black 1064 0.11 0.32 470 0.07 0.25 594 0.15 0.36 *** 
  Hispanic 1064 0.06 0.23 470 0.05 0.21 594 0.06 0.24  
  Other 1064 0.04 0.21 470 0.04 0.20 594 0.05 0.22  
Mother's education (in years) 1064 14.42 2.48 470 15.14 2.45 594 13.85 2.35 *** 
Mother's PPVT score 1036 99.71 18.28 463 104.59 17.9 574 95.79 17.60 *** 
Partner in home (EC) 1064 0.86 0.3 470 0.91 0.25 594 0.82 0.33 *** 
Stable income to needs (EC) 1063 3.67 2.78 470 4.16 2.92 594 3.31 2.61 *** 
Average HOME score (EC) 1064 40.46 4.54 470 41.61 3.82 594 39.56 4.85 *** 
Proportion center care (36m-
54m) 1064 0.41 0.39 470 0.43 0.39 594 0.40 0.39  
Memory for Sentences 54m 1061 91.86 18.5 470 95.39 18.2 594 89.09 18.25 *** 
Bayley MDI 1021 92.78 14.52 461 96.51 13.94 563 89.72 14.27 *** 
Percentage correct            
  Counting 1064 0.79 0.24 470 0.85 0.20 594 0.74 0.26 *** 
  Concrete representational 
arithmetic operations 1064 0.45 0.30 470 0.51 0.29 594 0.40 0.30 *** 

  Abstract arithmetic operations 1064 0.14 0.24 470 0.19 0.27 594 0.10 0.21 *** 
  Clocks 1064 0.4 0.44 470 0.5 0.45 594 0.32 0.42 *** 
WJ-R Applied Problems           
  54 months 1064 424.84 19.24 467 429.97 17.63 594 420.82 19.51 *** 
  1st grade 995 470.25 15.50 454 473.11 15.42 541 467.84 15.18 *** 
  3rd grade 943 497.72 12.70 448 499.56 12.77 495 496.05 12.41 *** 
  5th grade 918 510.14 11.98 442 512.47 11.43 476 507.97 12.08 *** 
  Age 15 839 525.04 16.40 433 529.05 16.53 406 520.75 15.14 *** 

Note: The full sample is students who had a WJ-R Applied Problem test score at 54 months.  

The significance test compares the final predictive sample with the attrition sample (who was not observed at the end of high school). PPVT = Peabody Picture 

Vocabulary Test; EC=average of the variable reported at 1-, 6-, 15-, 24-, 36-, and 54-month interviews; HOME = Home Observation for Measurement of the 

Environment; m = months; MDI = Mental Developmental Index; WJ-R = Woodcock-Johnson Revised. 
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Table 2 

Descriptive Statistics for the Numeracy Skill Groups at the 54 Month Assessment 
  DCM attribute groups at the 54-month assessment 
  NAP C CR CRA 
N 166 327 285 263 
%Child race and ethnicity     
  White 0.53(0.50) 0.76(0.43) 0.87(0.34) 0.90(0.30) 
  Black 0.30(0.46) 0.14(0.34) 0.06(0.24) 0.01(0.09) 
  Hispanic 0.13(0.33) 0.05(0.23) 0.04(0.19) 0.04(0.19) 
  Other 0.04(0.20) 0.05(0.21) 0.03(0.16) 0.06(0.23) 
Mother's education (in years) 12.98(2.24) 13.87(2.38) 14.95(2.26) 15.49(2.32) 
Mother's PPVT score 86.78(19.02) 96.84(15.84) 102.88(16.55) 107.63(17.26) 
Partner in home (EC) 0.74(0.38) 0.83(0.32) 0.89(0.27) 0.94(0.19) 
Stable income to needs (EC) 2.23(1.76) 3.20(2.35) 3.94(2.34) 4.86(3.54) 
Average HOME score (EC) 36.55(5.36) 39.93(4.46) 41.49(3.59) 42.50(3.11) 
Proportion center care (36m-54m) 0.32(0.36) 0.39(0.37) 0.45(0.39) 0.46(0.40) 
Memory for Sentences 54m 75.92(14.24) 88.02(15.98) 97.27(15.60) 101.07(18.39) 
Bayley MDI 77.90(13.45) 89.92(12.89) 95.95(12.37) 101.69(11.00) 
Percentage correct      
  Counting 0.32(0.18) 0.79(0.12) 0.92(0.08) 0.95(0.07) 
  Concrete representational arithmetic 0.13(0.16) 0.23(0.16) 0.66(0.17) 0.70(0.22) 
  Abstract arithmetic 0.02(0.07) 0.03(0.10) 0.00(0.00) 0.48(0.21) 
  Clocks 0.07(0.21) 0.25(0.39) 0.55(0.43) 0.62(0.43) 
WJ-R Applied Problems (W Score)     
  54 months 391.84(17.02) 419.54(7.25) 434.51(5.60) 441.98(8.37) 
  1st grade 454.65(12.83) 465.58(13.29) 472.80(12.38) 480.30(13.01) 
  3rd grade 485.41(16.02) 494.82(11.52) 501.00(8.59) 504.22(9.37) 
  5th grade 499.58(13.60) 507.85(10.43) 513.69(9.18) 515.79(9.66) 
  Age 15 512.78(14.67) 518.64(13.25) 528.68(14.64) 533.95(15.96) 
% High school highest math course1     
  Algebra 1 0.26(0.45) 0.07(0.25) 0.00(0.00) 0.01(0.11) 
  Geometry 0.05(0.22) 0.09(0.29) 0.04(0.21) 0.02(0.13) 
  Algebra 2 0.33(0.48) 0.22(0.42) 0.26(0.44) 0.12(0.33) 
  Advanced math 0.31(0.47) 0.47(0.50) 0.36(0.48) 0.43(0.50) 
  Calculus 0.05(0.22) 0.15(0.36) 0.34(0.47) 0.42(0.49) 
% College Enrollment     
  Less than HS 0.05(0.23) 0.02(0.12) 0.02(0.07) 0.01(0.10) 
  HS graduate 0.29(0.46) 0.17(0.38) 0.12(0.33) 0.11(0.31) 
  Two-year college 0.40(0.49) 0.28(0.45) 0.24(0.43) 0.12(0.33) 
  Four-year college 0.26(0.44) 0.53(0.50) 0.62(0.49) 0.76(0.43) 
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Note. DCM = diagnostic classification model; NAP = no applied problems mastery, C = 

counting mastery, CR = counting and concrete representational arithmetic mastery, CRA = 

counting, concrete representational and abstract arithmetic mastery; PPVT = Peabody Picture 

Vocabulary Test; EC=average of the variable reported at 1-, 6-, 15-, 24-, 36-, and 54-month 

interviews; HOME = Home Observation for Measurement of the Environment; m = months; 

MDI = Mental Developmental Index; WJ-R = Woodcock-Johnson Revised. Means are reported 

with standard deviations in parentheses.  

1 Due to sample attrition, the sample size for the high school’s highest math course variables was 

lower than that for the remaining variables. See Table 1 for a comparison of the full sample and 

the high school sample. 
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Table 3 
Multivariate Models Predicting Age 15 WJ-R Applied Problems Standardized Score, Highest Math Course Taken by the End of High 
School, and Four-Year College Enrollment 

  

Model 1: Age 15 
Applied Problems 

scores  

 Model 2: High school 
highest math course 

completion 

 Model 3: Four-year 
college enrollment 

(Ordinary least 
squares regression) 

 (Ordered logistic 
regression) 

(Logistic regression) 

       
Counting Mastery (C) 1.7   1.67  1.99 
Counting, Concrete Representational 
Arithmetic Mastery (CR) 7.28**   2.71*  1.87 
Counting, Concrete and Abstract Arithmetic 
Mastery (CRA) 10.02***   3.88**  3.63* 
Skill with clocks 3.94**   1.12  1.2 
WJ-R Memory for Sentences (54m) 0.08   1  1 
Male 4.92***   1.19  0.86 
Black -0.77   0.86  1.23 
Other 0.07   0.74  3.75 
Hispanic -0.87   0.76  0.58 
Mother's education (in years) 0.89**   1.24***  1.21** 
Mother's PPVT score 0.10*   1.01  1 
Proportion of epochs in center care (36m-54m) 2.29   1.02  1.58 
Partner in-home (EC) 4.19   2.21  2.57 
Stable income to needs (EC) -0.38   1.12*  0.97 
Average HOME score (EC) 0.1   0.98  1.11* 
Bayley MDI -0.03   1.01  1 
n 467   467  467 
Pseudo R2 0.3   0.27  0.31 
Bayesian Information Criteria (BIC) 11214.922   8925.95   8243.64 
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Note: WJ-R = Woodcock-Johnson Revised; m = months; PPVT = Peabody Picture Vocabulary Test; EC=average of the variable 

reported at 1-, 6-, 15-, 24-, 36-, and 54-month interviews; HOME = Home Observation for Measurement of the Environment; MDI = 

Mental Developmental Index.  High school course completion was coded as 1=“Algebra I”, 2=“Geometry”, 3=“Algebra II”, 

4=“Advanced Mathematics”, and 5=“Calculus”.   

* p < .05; ** p < .01; *** p < .001.
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Figure 1 

Note. NAP = no applied problems mastery, C = counting mastery, CR = counting and concrete 

representational arithmetic mastery, CRA = counting, concrete representational and abstract arithmetic 

mastery.  
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Figure 2 

Highest High School Math Course Completion by Early Numeracy Skill Groups 

 

 
 
Note. NAP = no applied problems mastery, C = counting mastery, CR = counting and concrete 

representational arithmetic mastery, CRA = counting, concrete representational and abstract 

arithmetic mastery. 
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Figure 3 

Highest Education Level in Young Adulthood by Early Numeracy Skill Groups 

 

 
 
Note. NAP = no applied problems mastery, C = counting mastery, CR = counting and concrete 

representational arithmetic mastery, CRA = counting, concrete representational and abstract arithmetic 

mastery. 
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Figure 4 

Predicted Probabilities of Completing Calculus in High School by Early Numeracy Skill Groups 

 

 
Note. NAP = no applied problems mastery, C = counting mastery, CR = counting and concrete 

representational arithmetic mastery, CRA = counting, concrete representational and abstract arithmetic 

mastery. This figure displays the unadjusted probability of completing Calculus by the end of high school 

given a child’s 54-month numeracy skill group and then the adjusted probability, setting all covariates in 

Table 3 to their mean values. The 95% confidence intervals are shown as black vertical bars.  
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Figure 5 

Predicted Probabilities of Four-Year College Enrollment by Early Numeracy Skill Groups 

 
 
Note. NAP = no applied problems mastery, C = counting mastery, CR = counting and concrete 

representational arithmetic mastery, CRA = counting, concrete representational and abstract arithmetic 

mastery.  This figure displays the unadjusted probability of enrolling in a four-year college given a child’s 

54-month numeracy skill group as well as the adjusted probability, setting all covariates in Table 3 to 

their mean values. The 95% confidence intervals are shown as black vertical bars.
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Table S1 
Correlations for Full Model 
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Table S2a.  
Exploratory Factor Analysis (EFA) Results. 

Item 
1F 2F 3F 4F 5F 6F 
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 

AP1 .39 .73 -.28 .30 -.48 .25 .16 .19 -.37 .29 .13 .03 .19 -.37 .33 .16 .02 .16 -.36 .32 -.02 
AP2 .79 .85 .00 .78 -.34 .02 .92 -.10 .02 .02 .94 .02 -.14 .01 .00 .88 .03 .00 .01 .02 -.46 
AP3 .86 .90 .01 .85 -.42 -.01 .72 .21 -.24 .02 .72 -.02 .23 -.23 .05 .79 -.01 .14 -.24 .05 -.04 
AP4 .87 .96 -.05 .85 -.48 .01 1.08 -.18 .02 .01 1.05 -.15 -.04 .01 .02 1.02 -.13 .02 .01 .02 -.24 
AP5 .90 .88 .08 .93 -.32 -.08 .81 .19 -.05 -.06 .82 .04 .16 -.03 -.04 .97 .02 .01 -.01 -.08 .06 
AP6 .79 .60 .31 .71 -.17 .16 .39 .38 -.12 .18 .40 .20 .21 -.12 .21 .47 .20 .13 -.12 .19 .05 
AP7 .86 .58 .41 .80 -.06 .13 .42 .44 .00 .15 

.45 .36 .10 .00 .15 .50 .43 
-

.05 
-.05 .13 .16 

AP11 .63 .34 .40 .61 .09 .04 .44 .21 .19 .03 
.50 .32 -.14 .19 .00 .54 .34 

-
.20 

.24 -.02 -.01 

AP13 .73 .55 .30 .69 -.09 .11 .41 .33 .00 .12 .39 .08 .31 .00 .16 .47 .07 .23 .01 .14 .06 
AP8 .67 .49 .29 .75 .01 -.08 .20 .60 -.03 -.06 .14 .14 .65 -.04 -.01 .21 .08 .65 -.07 -.01 .02 
AP9 .76 .46 .42 .74 .04 .05 .19 .61 .00 .07 .19 .76 -.03 -.05 .03 .20 .73 .01 .00 .03 -.11 

AP10 .70 .32 .50 .53 .02 .28 .08 .49 -.01 .29 .10 .47 .04 -.03 .31 .12 .47 .03 .01 .29 .00 
AP12 .65 .29 .47 .63 .24 .02 .01 .65 .13 .03 .02 .42 .34 .12 .06 .02 .44 .30 .05 .05 .15 
AP14 .75 .35 .52 .78 .19 -.04 .03 .79 .08 -.03 .04 .55 .38 .06 -.01 .01 .52 .52 .03 -.02 -.16 
AP15 .60 .32 .38 .67 .23 -.10 -.01 .71 .10 -.09 .00 .43 .40 .08 -.07 .04 .43 .36 .02 -.07 .15 
AP19 .40 .05 .42 .37 .36 .00 .01 .36 .33 -.01 -.03 -.04 .52 .34 .04 -.01 .01 .41 .23 .04 .31 
AP18 .76 .01 .81 .01 -.01 1.03 .05 -.01 .09 1.00 .04 -.03 -.07 .10 1.03 .04 .00 

-
.09 

.12 1.05 -.02 

AP20 .80 -.08 .96 .28 .01 .67 -.02 .33 -.02 .68 -.03 .18 .13 -.02 .72 -.01 .25 .04 -.07 .71 .17 
AP16 .60 .32 .37 .60 .26 -.03 .55 .06 .46 -.06 .55 .03 .07 .46 -.06 .57 .03 .04 .45 -.06 .04 
AP17 .57 .19 .47 .52 .41 .01 .48 .04 .65 -.03 .48 -.02 .09 .65 -.03 .49 .03 .00 .60 -.03 .23 
AP21 .57 .16 .49 .44 .39 .10 .44 .00 .55 .07 .44 .04 -.01 .55 .06 .42 .03 .02 .56 .06 -.01 
AP24 .22 -.59 .86 .00 .94 .22 -.04 -.01 1.24 .07 -.04 .05 .00 1.19 .06 -.05 -.01 .05 1.26 .07 -.04 

AP22 .32 .03 .34 .21 .23 .12 .06 .14 .26 .11 .05 -.13 .30 .26 .15 .10 -.07 .13 .16 .15 .40 
AP23 .45 .24 .28 .38 .04 .12 .13 .27 .07 .12 .11 .04 .29 .05 .16 .15 -.05 .37 .08 .16 -.14 
AP25 .58 .10 .53 .33 .12 .31 -.09 .44 .05 .31 -.09 .48 -.01 .04 .32 -.07 .40 .11 .06 .31 -.15 
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Note. All loadings greater than |.4| are shown in bold and were considered for inclusion in DCM (in combination with consideration of the item content). Items are 

sorted and shading is used for the four-factor solution to clarify structure. For oblique rotations, factor loadings can be greater than 1. Item refers to the item number 

in Woodcock-Johnson Applied Problems Test. Actual questions are available from the publisher. 
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Table S2b.  
Exploratory Factor Analysis (EFA) Model Fit. 
 
 

Model # Parameters Chi-Square DF P-Value RMSEA CFI 

1-factor 25 882.03 275 0 0.046 0.946 

2-factor 49 535.546 251 0 0.033 0.975 

3-factor 72 320.158 228 0.0001 0.02 0.992 

4-factor 94 257.327 206 0.0087 0.015 0.995 

5-factor 115 197.961 185 0.2441 0.008 0.999 

6-factor 135 157.695 165 0.6448 0 1 
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Table S3.  
Diagnostic Classification Model Item Mapping. 

 Three Main Mathematical Skills  
Attributes 

Item Counting 
Concrete representational 

arithmetic 
Abstract arithmetic  

AP2 1 0 0 

AP3 1 0 0 

AP4 1 0 0 

AP5 1 0 0 

AP6 1 1 0 

AP7 1 1 0 

AP11 1 0 0 

AP13 1 0 0 

AP9 1 1 0 

AP10 1 1 0 

AP12 0 1 0 

AP14 0 1 0 

AP8 0 1 0 

AP15 0 1 0 

AP19 0 1 0 

AP16 0 0 1 

AP17 0 0 1 

AP21 0 0 1 
Note. The WJ-R Applied Problems (18) items are copyrighted and shown here for reference. Diagnostic 

Classification Models (DCMs) require prior specification about the degree to which each item depends on 

each of the attributes for a correct response. This specification is provided using a “Q-matrix”. In this 

matrix, each item is listed in a separate row, and each of the three attributes are shown as separate 

columns, and each cell contains a ‘‘0’’ or a ‘‘1’’ indicating whether the item under consideration requires 

the attribute under consideration. Item refers to item number in Woodcock-Johnson Applied Problems 

Test. Actual questions are available from publisher. 
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Table S4.  
DCM Attribute Groups and Classification Probabilities. 

   Three Main Mathematical Skills  
Attributes 

Group DCM Attribute Groups Probability  Counting 
Concrete 

representational 
arithmetic  

Abstract 
arithmetic  

1 “NAP” 0.16 0 0 0 

2 Dropped due low observed 
percentage 

0.00 0 0 1 

3 
Dropped due low observed 
percentage 

0.01 0 1 0 

4 Dropped due low observed 
percentage 

0.00 0 1 1 

5 “C” 0.30 1 0 0 

6 
Dropped due low observed 
percentage 

0.01 1 0 1 

7 “CR”  0.25 1 1 0 

8 “CRA”  0.28 1 1 1 

Note. A DCM with three attributes produces 23 = 8 possible attribute groups. Only four of the groups 

were observed with any regularity in the sample. NAP = no applied problems mastery, C = counting 

mastery, CR = counting and concrete representational arithmetic mastery, CRA = counting, concrete 

representational and abstract arithmetic mastery. 

 
 
 
 

 

 

 



1 
EARLY NUMERACY MASTERY AND EDUCATIONAL TRANSITIONS 

It Matters How You Start: Early Numeracy Mastery Predicts High School Math Course-
Taking and College Attendance 

 
Pamela E. Davis-Kean 

Department of Psychology, University of Michigan, Ann Arbor 
pdakean@umich.edu 

 
Thurston Domina 

School of Education, University of North Carolina, Chapel Hill 
tdomina@unc.edu 

 
Megan Kuhfeld 

NWEA 
megan.kuhfeld@nwea.org 

 
Alexa Ellis 

Human Development and Family Studies, Purdue University 
alexa@purdue.edu 

 
Elizabeth T. Gershoff 

Human Development and Family Sciences, University of Texas at Austin 
liz.gershoff@austin.utexas.edu 

 
Author Note: This research was funded by a grant from the National Science Foundation (NSF) 
grant #1519686 to Robert Crosnoe and Elizabeth Gershoff. This research reflects the views of 
the authors of this study and not the National Science Foundation. Any questions or comments 
should be addressed to the first author at 530 Church St, Ann Arbor, MI, 48109-1043 
pdakean@umich.edu 
Data, Materials, and Code Availability Statement: This research uses the NICHD Study of Early 
Child Care and Youth Development (SECCYD) Series dataset that is available from ICPSR at 
https://www.icpsr.umich.edu/web/DSDR/series/233 and contains information on the materials 
used to age 15 of this birth cohort study. The information from the adult data is not publicly 
available and should be requested from the first author. The code used for the analyses will be 
provided upon request from the first authors. 
CRediT Author Statement: Pamela E. Davis-Kean: Conceptualization, Methodology, Writing-
Reviewing and Editing. Thurston Domina: Conceptualization, Methodology, Writing-Reviewing 
and Editing. Meghan Kuhfeld: Formal Analysis, Methodology, Writing-Reviewing and Editing. 
Alexa Ellis: Methodology, Writing-Reviewing and Editing. Elizabeth T. Gershoff: Funding 
Acquisition, Writing- Reviewing and Editing 

mailto:pdakean@umich.edu
mailto:tdomina@unc.edu
mailto:megan.kuhfeld@nwea.org
mailto:liz.gershoff@austin.utexas.edu
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1519686&HistoricalAwards=false
mailto:pdakean@umich.edu
https://www.icpsr.umich.edu/web/DSDR/series/233


This manuscript has improved greatly from its initial form, and I now believe that it should be 
accepted for publication. One question that the authors might want to consider involves their 
final conclusion about the need for numeracy instruction in the preschool years that would 
move toward leveling the playing field when children enter school. There are no end of efforts 
to have achieved that goal; many have succeeded in improving mathematical performance at 
the end of preschool, but the gains soon fade, becoming undetectable by about third grade. 
The authors might want to address whether their results provide any reason for optimism that 
further efforts at early training in numeracy and math more generally will produce more 
enduring effects. The article merits publication even without such consideration, but a 
paragraph or two about this issue might add to its contribution. 




