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Summary

The early detection of hepatocellular carcinoma (HCC) is critical to improving
outcomes since advanced HCC has limited treatment options. Current guidelines
recommend HCC ultrasound surveillance every six months in high-risk patients
however the sensitivity for detecting early stage HCC in clinical practice is poor.
Blood-based biomarkers are a promising direction since they are more easily stan-
dardized and less resource intensive. Combining of multiple biomarkers is more
likely to achieve the sensitivity required for a clinically useful screening algorithm
and the longitudinal trajectory of biomarkers contains valuable information that
should be utilized. We propose a multivariate parametric empirical Bayes (mPEB)
screening approach that defines personalized thresholds for each patient at each
screening visit to identify significant deviations that trigger additional testing with
more sensitive imaging. The Hepatitis C Antiviral Long-term Treatment against Cir-
rhosis (HALT-C) trial provides a valuable source of data to study HCC screening
algorithms. We study the performance of the mPEB algorithm applied to serum
�-fetoprotein, a widely used HCC surveillance biomarker, and des-
 carboxy pro-
thrombin, an HCC risk biomarker that is FDA approved but not used in practice
in the United States. Using cross-validation, we found that the mPEB algorithm
demonstrated moderate but improved sensitivity compared to alternative screening
approaches. Future research will validate the clinical utility of the approach in larger
cohort studies with additional biomarkers.
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Web Appendix A SEQUENTIAL QUADRATIC PROGRAMMING (SQP) ALGORITHM

The sequential quadratic programming (SQP) is a powerful, efficient and accurate optimization algorithmwhere at each iteration,

an approximate subproblem with a quadratic objective function and linear constraints defines the search direction1. We use the

fmincon solver within the Matlab Optimization Toolbox to implement the SQP algorithm. The SQP is one possible algorithm

that can be used to find a vector x that is a local minimum to a scalar function f (x) where one (or more) of the following

constraints hold:

g(x) ≤ 0

g∗(x) = 0

A ⋅ x ≤ 0

A∗ ⋅ x = 0

xLB ≤ x ≤ xUB

The basic idea is that instead of solving the nonlinear problem, at each iteration xt ,you instead solve a quadratic subproblem

to define the new iterate xt+1 that is ideally a good step for the nonlinear problem. The SPQ designs the quadratic subproblem

as an application of Newton’s method to the Karush-Kuhn-Tucker conditions, the necessary conditions for optimality for a

constrained optimization problem. The details of this algorithm are beyond the scope of this manuscript but both Nocedal and

Wright (2000)1 and the Matlab Help Center (https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-

algorithms.html) provide useful details. In our multivariate PEB algorithm (mPEB), the nonlinear optimization problem we are

trying to solve is

max
ci(n+1)

Pr(Yi(n+1) ∈ Ai(n+1)|Yin, �
∗,Σ∗� ,Σ

∗, Di(n+1) = 1), such that

Pr(Yi(n+1) ∈ Ai(n+1)|Yin, �,Σ� ,Σ, Di(n+1) = 0) ≤ f0.

Therefore x = ci(n+1), the the set of thresholds that characterize the positivity region Ai(n+1), and the functions f (ci(n+1)) and

g(ci(n+1)) are defined to be

f (ci(n+1)) = −Pr(Yi(n+1) ∈ Ai(n+1)|Yin, �
∗,Σ∗� ,Σ

∗, Di(n+1) = 1)

g(ci(n+1)) = Pr(Yi(n+1) ∈ Ai(n+1)|Yin, �,Σ� ,Σ, Di(n+1) = 0) − f0.
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Therefore, we are solving for the optimal c̃i(n+1) that minimizes f (ci(n+1)) such that g(ci(n+1)) ≤ 0. The focus of this manuscript

is the development of an early detection screening algorithm for multiple biomarkers and we take advantage of existing tools to

develop this algorithm. It may be possible to further improve our algorithm by optimizing the solver but that is not our current

goal and could be an avenue of future research.

Web Appendix B HIERARCHICAL CHANGEPOINT MODEL USED FOR DATA

GENERATION IN THE SIMULATIONS

In these simulations, we have generated the longitudinal biomarker data for the cohort from a biologically plausible hierarchical

changepoint model2. For each biomarker, we assumed that the levels vary randomly around a constant mean in the absence of

disease. After the onset of disease (changepoint time), each biomarker may or may not increase linearly with time. The hierar-

chical model connects the multiple biomarkers using a Markov random field distribution for the parameters that reflect whether

or not each biomarker increases after onset of disease. This distribution ensures the probability of observing a changepoint in

one biomarker is conditional on the number of changepoints observed in the other biomarkers.

Definitions

• Yijk: ktℎ marker level for the itℎ patient at the jtℎ screening time

• tij : jtℎ screening time for the itℎ patient

• i indexes theN patients in the study

• j indexes the Ji screening times for the itℎ patient

• k indexes the K biomarkers in the study.

• Di: disease status of the itℎ individual,Di = 0 if the patient is disease-free during the study andDi = 1 if patient develops

the disease during the study.

• di: the last observation time if Di = 0 and clinically diagnosis time if Di = 1

• ∼ N(., .): normal distribution

• ∼ TN[.,.](., .): truncated normal distribution

Without loss of generality, we assume time is measured in years from entry into the cohort.
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Model used for data generation

For each of the N patients in the cohort, we generate the variable Di from the Bernoulli distribution with probability of disease

based on the expected number of patients who develop the disease in the cohort using the annual incidence rate and study

follow-up length.In addtion, the time to last observation or clinical diagnosis time is generated from

di ∼ U [0, 5]

and the screening interval is assumed to be

tij − ti(j−1) ∼ (6, 0.1).

For disease-free patients, with Di = 0:

Yijk = �ik + "ijk

where "ijk ∼ N(0, �2k)

and �ik ∼ N(��k, �2�k)

For patients that develop the disease during the study, with Di = 1, we generate an indicator Iik to distinguish between the

two possible models for the ktℎ marker. If Iik = 0, then we assume that the ktℎ marker level does not increase after disease onset

and follows the same model as control patients:

Yijk = �ik + "ijk

where "ijk ∼ N(0, �2k)

and �ik ∼ N(��k, �2�k)

If Iik = 1, then we assume the ktℎ marker level increases after disease onset, under the following model:
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Yijk = �ik + 
ik(tij − �ik)+ + "ijk

where "ijk ∼ N(0, �2k),

�ik ∼ N(��k, �2�k),

log(
ik) ∼ N(�
k, �2
k),

�ik ∼ TNdi−�∗k ,di
(di − ��k, �2�k)

and (.)+ indicates the positive part of the expression.

The parameter �∗k is fixed based on the known preclinical behavior of the disease. In the case of HCC, a fast growing cancer,

the preclinical duration is assumed to be at most 2 years (�∗k = 2).

The binary indicators, Ii = (Ii1,… , IiK ) are generated from a Markov Random Field (MRF) distribution

P (Ii) ∝ exp
{

�I

( K
∑

k=1
Iik

)

+ �I
(

ITi RIi
)

}

,

whereR is a strictly upper triangular matrix (entries above the diagonal are 1, entries in and below the diagonal are 0) reflecting

the assumption that all K markers are correlated.

Fixed parameter values used in simulation study to generate data.

For scenario C, we used the same parameter values as those listed for scenario A (Web Figure 1 a). The only difference was in

study follow-up and hence the probability of disease specified for the Bernoulli distribution used to generateDi. In scenarios A,

B and D, the probability of disease used was 50/400. In scenario C, the probability of disease was 24/400 in the training cohort

and 72/400 in the validation cohort.

In scenario D (Web Figure 1 b), we used mostly the same data generation mechanism as scenario A except we generated the

parameters �ik, 
ik and �ik from bi-modal distributions rather than the unimodal distributions specified in the above hierarchical

model.

�ik ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N(��k, �2�k), if �� = 1

N(0, �2�k), if �� = 0,
(1)



6 Tayob ET AL

where �� ∼ Bernoulli(0.5).

log(
ik) ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N(�
k, �2
k), if �
 = 1

N(0, �2
k), if �
 = 0,
(2)

where �
 ∼ Bernoulli(0.5).

�ik ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

TNdi−�∗k ,di
(di − ��k, �2�k), if �� = 1

TNdi−�∗k ,di
(di − 0, �2�k), if �� = 0,

(3)

where �� ∼ Bernoulli(0.5).

Web Appendix C ADDITIONAL SIMULATION RESULTS
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Web Figure 1 Simulation settings: Scenario D and E.
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Parameter Scenario A Scenario B
�21 0.23 0.23
��1 2.43 2.43
�2�1 0.79 0.79
�
1 1.87 0.87
�2
1 1.61 0.3
��1 1.05 1.05
�2�1 0.82 0.82
�22 1.35 1.35
��2 3.10 3.10
�2�2 0.80 0.80
�
2 1.92 0.92
�2
2 0.05 0.05
��2 0.56 0.56
�2�2 0.58 0.58
�23 0.80 0.80
��3 2.75 2.75
�2�3 0.79 0.79
�
3 1.00 0.65
�2
3 0.20 0.10
��3 0.75 0.75
�2�3 0.70 0.70
�I 0.15 0.15
�I 0.1 0.1

Web Table 1 Fixed parameter values used in simulation study to generate data.

Clinical 
 Diagnosis

(1)

(2)
(3)

Scenario D
Biomarker mPEB mFB lPEB uPEB uFB ST

(1)
57.81 (0.55) 55.41 (0.50) 56.05 (0.52)

43.24 (0.47) 37.45 (0.50) 40.37 (0.49)
(2) 35.79 (0.50) 30.75 (0.49) 34.63 (0.47)
(3) 30.16 (0.51) 22.47 (0.42) 27.71 (0.47)

Preclinical biomarker levels

(1)
(2)
(3)

Clinical 
 Diagnosis

Maximum preclinical 
 duration

Changepoint time Slope of biomarker post−onset

Clinical 
 Diagnosis

Preclinical 
 biomarker levels

Slope of biomarker 
 post−onset

Changepoint 
 time

Scenario E
Biomarker mPEB mFB lPEB uPEB uFB ST

(1)
62.79 (0.57) 57.69 (0.53) 61.60 (0.55)

48.37 (0.55) 39.92 (0.49) 36.63 (0.47)
(2) 40.57 (0.59) 32.87 (0.50) 35.14 (0.50)
(3) 36.42 (0.79) 28.24 (0.66) 28.57 (0.48)

Web Table 2 Summary of simulation results in 200 studies: empirical mean ROC(0.1) (empirical standard error of the mean)
within 1 year prior to clinical diagnosis. mEB: joint multivariate parametric empirical Bayes, mFB: joint multivariate fully
Bayesian, lPEB: regression plus univariate PEB algorithm applied to the linear combination, uFB: univariate fully Bayesian,
uPEB: univariate parametric empirical Bayes and ST: single threshold. The mean biomarker trajectories assumed for each
scenario are shown in column 1.
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Clinical 
 Diagnosis

(1)

(2)
(3)

Scenario D
Biomarker mPEB mFB lPEB uPEB uFB ST

(1)
20.00 (0.48) 17.67 (0.43) 19.30 (0.53)

18.29 (0.45) 15.03 (0.45) 16.98 (0.45)
(2) 13.68 (0.41 ) 12.00 (0.36) 13.30 (0.43)
(3) 13.97 (0.40) 10.82 (0.36) 12.95 (0.40)

Preclinical biomarker levels

(1)
(2)
(3)

Clinical 
 Diagnosis

Maximum preclinical 
 duration

Changepoint time Slope of biomarker post−onset

Clinical 
 Diagnosis

Preclinical 
 biomarker levels

Slope of biomarker 
 post−onset

Changepoint 
 time

Scenario D
Biomarker mPEB mFB lPEB uPEB uFB ST

(1)
31.31 (0.52) 27.25 (0.52) 30.79 (0.54)

27.55 (0.51) 23.34 (0.50) 20.09 (0.40)
(2) 23.91 (0.51) 19.22 (0.44) 20.10 (0.47)
(3) 20.87 (0.59) 17.62 (0.51) 17.05 (0.39)

Web Table 3 Summary of simulation results in 200 studies: empirical mean ROC(0.1) (empirical standard error of the mean)
within 1-2 years prior to clinical diagnosis. mEB: joint multivariate parametric empirical Bayes, mFB: joint multivariate fully
Bayesian, lPEB: regression plus univariate PEB algorithm applied to the linear combination, uFB: univariate fully Bayesian,
uPEB: univariate parametric empirical Bayes and ST: single threshold. The mean biomarker trajectories assumed for each
scenario are shown in column 1.

Clinical 
 Diagnosis

(1)

(2)
(3)

ScenarioD
Biomarker mPEB mFB lPEB uPEB uFB ST

(1)
18.64 (0.50) 29.62 (0.60) 19.18 (0.49)

19.13 (0.53) 28.68 (0.61) 14.35 (0.46)
(2) 18.87 (0.49) 26.48 (0.62) 17.21 (0.49)
(3) 18.69 (0.53) 27.19 (0.55) 16.80 (0.50)

Preclinical biomarker levels

(1)
(2)
(3)

Clinical 
 Diagnosis

Maximum preclinical 
 duration

Changepoint time Slope of biomarker post−onset

Clinical 
 Diagnosis

Preclinical 
 biomarker levels

Slope of biomarker 
 post−onset

Changepoint 
 time

Scenario E
Biomarker mPEB mFB lPEB uPEB uFB ST

(1)
28.41 (0.63) 44.18 (0.64) 30.66 (0.62)

30.27 (0.65) 44.69 (0.65) 16.41 (0.45)
(2) 30.27 (0.63) 42.24 (0.70) 21.83 (0.56)
(3) 27.93 (0.75) 38.50 (0.90) 19.61 (0.51)

Web Table 4 Summary of simulation results in 200 studies: empirical mean ROC(0.1) (empirical standard error of the mean)
greater than 2 years prior to clinical diagnosis. mEB: joint multivariate parametric empirical Bayes, mFB: joint multivariate fully
Bayesian, lPEB: regression plus univariate PEB algorithm applied to the linear combination, uFB: univariate fully Bayesian,
uPEB: univariate parametric empirical Bayes and ST: single threshold. The mean biomarker trajectories assumed for each
scenario are shown in column 1.
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Randomized patients (N=1050)

Randomized patients with 
complete clinical data (N=1048)

Missing HCC 
status (N=2)

Cirrhosis at baseline biopsy (N=427)

No HCC 
(N=379)

HCC confirmed 
(N=40)

HCC confirmed 
(N=48)

No cirrhosis at baseline biopsy (N=621)

No HCC
(N=581)

No HCC
(N=558)

No HCC 
(N=360)

HCC confirmed 
(N=24)

HCC confirmed 
(N=18)

No HCC (N=918) HCC confirmed (N=42)

Exclude patients with <12 
months of follow-up and 
missing either AFP or DCP

Exclude HCC cases 
diagnosed in the 
extended phase and 
missing either AFP or DCP

Web Figure 2 HALT-C Trial: Standards for Reporting of Diagnostic accuracy (STARD) flow diagram.
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