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The early detection of hepatocellular carcinoma (HCC) is critical to improving
outcomes since advanced HCC has limited treatment options. Current guide-
lines recommend HCC ultrasound surveillance every 6 months in high-risk
patients however the sensitivity for detecting early stage HCC in clinical prac-
tice is poor. Blood-based biomarkers are a promising direction since they are
more easily standardized and less resource intensive. Combining of multiple
biomarkers is more likely to achieve the sensitivity required for a clinically use-
ful screening algorithm and the longitudinal trajectory of biomarkers contains
valuable information that should be utilized. We propose a multivariate para-
metric empirical Bayes (mPEB) screening approach that defines personalized
thresholds for each patient at each screening visit to identify significant devia-
tions that trigger additional testing with more sensitive imaging. The Hepatitis
C Antiviral Long-term Treatment against Cirrhosis (HALT-C) trial provides a
valuable source of data to study HCC screening algorithms. We study the per-
formance of the mPEB algorithm applied to serum 𝛼-fetoprotein, a widely used
HCC surveillance biomarker, and des-𝛾 carboxy prothrombin, an HCC risk
biomarker that is FDA approved but not used in practice in the United States.
Using cross-validation, we found that the mPEB algorithm demonstrated mod-
erate but improved sensitivity compared to alternative screening approaches.
Future research will validate the clinical utility of the approach in larger cohort
studies with additional biomarkers.
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1 INTRODUCTION

The early detection of hepatocellular carcinoma (HCC) is currently the best available strategy toward potentially
improving the mortality rates associated with HCC in the United States since possibly curative treatments are only
recommended at early or very early stages.1 Patients who receive these treatments have greatly improved 5-year
survival—transplantation (84%), radiofrequency ablation (53%), and resection (47%). By comparison, those diagnosed
with advanced disease have limited treatment options and 5-year survival <10%. In the United States, the over-
all age-adjusted incidence rates for liver cancer have risen, on average, 2.7% each year between 2005 and 2014.
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Approximately 60% of HCC cases are diagnosed with advanced stage disease indicating significant room for improvement
in the current HCC surveillance strategy.2

The 2017 updated guidelines of the American Association for the Study of Liver Diseases (AASLD) recommends ultra-
sonography surveillance with or without serum 𝛼-fetoprotein (AFP) every 6 months in cirrhosis patients at high risk for
HCC.3 However, in clinical practice, the sensitivity of ultrasound for detecting early stage HCC is only 32%.4 The poor
performance of ultrasound is multifactorial including operator dependency, poor sensitivity for early lesions, and difficul-
ties performing ultrasound in obese patients. More sensitive imaging modalities, such as computed tomography (CT) or
magnetic resonance imaging (MRI), are not recommended for surveillance for several reasons including possible harm,
high cost and unknown sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).5
Blood-based surveillance tests are a promising screening modality for HCC since they are noninvasive, more standard-
ized, and more easily applied in limited resource settings. Advances in treatments for hepatitis C virus (HCV), resulting
in cure rates >90%, and the increasing incidence of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steato-
hepatitis (NASH)6 may shift the predominant etiology from HCV to NAFLD/NASH in the future. Ultrasound performs
poorly in these patients and may be impractical given the sheer number of NAFLD/NASH patients in the United States,
further motivating the utility of blood-based surveillance tests.

Serum AFP is widely used in the United States to complement ultrasonography, despite it being optional in current
guidelines. While there is evidence that screening with ultrasound and AFP leads to increased earlier detection vs no
surveillance, there have been no randomized controlled studies evaluating the additive benefit over ultrasound alone.3
A meta-analysis found the pooled sensitivity of ultrasound with and without AFP was 63% and 45%, respectively.7 In
most cancer settings, including HCC, a single biomarker will not cover the heterogeneous subtypes in the target surveil-
lance population. Des-𝛾 carboxy prothrombin (DCP) and lens culinaris agglutinin-reactive alpha-fetoprotein (AFP-L3)
are serum biomarkers that have been evaluated in phase 2 biomarker studies8 and are FDA-approved for HCC risk.

The Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) trial is a rich source of data to better
understand HCC screening. The trial enrolled patients with cirrhosis or advanced fibrosis and active hepatitis to evalu-
ate if long-term low-dose pegylated interferon would prevent fibrosis progression and other clinical outcomes, including
HCC. The study found no reduction in the incidence of HCC compared with placebo.9 Patients underwent extensive
follow-up with visits scheduled every 3 months post-randomization for the first 42 months and every 6 months thereafter.
At each visit patients had local laboratory tests including AFP. Patients had scheduled ultrasounds at 6, 18, 30, and 42
months post-randomization and every 6 months thereafter. DCP was measured at a central laboratory using stored sam-
ples collected during the first 42 months within an ancillary study. An earlier generation of the AFP-L3 assay was used in
the HALT-C Trial and hence it was not included in our algorithms at this stage of the development but will be evaluated
in future studies.

Until recently, most studies evaluating AFP and other biomarkers have focused on comparing current levels to a fixed
threshold however more recent studies have found that trends in AFP have prognostic value.10 The univariate parametric
empirical Bayes (PEB) algorithm was initially proposed by McIntosh and Urban11 as a computationally straightforward
approach to incorporate longitudinal biomarker observations into screening with fewer assumptions than the alternative
longitudinal screening algorithms available to date. The PEB algorithm uses a personalized threshold that combines the
sample average of prior biomarker observations in the patient with a model for the expected behavior of biomarker in the
disease-free population to evaluate whether the current biomarker level represents a significant elevation. Tayob et al12

evaluated the univariate PEB algorithm applied to AFP in the HALT-C trial and found that at 10% screening-level false
positive rate (FPR), the PEB algorithm improved patient-level sensitivity from 60.4% to 77.1% (p-value <0.0005) compared
to a fixed threshold in those with cirrhosis at baseline and from 72.5% to 87.5% (p-value = 0.0015) in those with advanced
fibrosis at baseline.

We have previously proposed a fully Bayesian screening algorithm that incorporates the longitudinal trajectory of
multiple biomarkers into the calculations of the posterior risk of having cancer.13 In the HALT-C Trial, we demonstrated
that a fully Bayesian algorithm with AFP and DCP further improved patient-level sensitivity at 10% screening-level FPR
from 77.1% to 89.5% in those with cirrhosis at baseline. Other approaches that have been proposed for early detection of
cancers include shared random effects models and pattern mixture models (PMMs).14,15 The PMM and our fully Bayesian
algorithm both estimate the posterior risk of having cancer but differ in the estimation approach and the model assumed
for the biomarker trajectories. The PPM assumes a linear mixed model for biomarker trajectories that is anchored from
the time patient enters screening in both cancer free patients and those that develop cancer during screening. Our fully
Bayesian approach anchors time from clinical diagnosis in those that develop cancer during screening. The advantage
of this approach is that we do not require patients to enter screening at similar risk levels or to have risk factors that are
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sufficiently predictive so that conditional on those factors, we can specify a model for the biomarker trajectories. The fully
Bayesian algorithm then uses a changepoint model, where we assume that the changepoint in the biomarkers that signals
onset of cancer occurs in a period prior to clinical diagnosis and is a key parameter in the model. Prior to the change-
point, we include patient specific means biomarker levels that capture the heterogeneity in the screening population. A
disadvantage of this approach is that prospective implementation of the fully Bayesian algorithm requires an estimate
for the clinical diagnosis time. A univariate PEB algorithm, which only looks for deviations from expected behavior, does
not depend on clinical diagnosis time in any way during prospective application of the algorithm. A multivariate PEB
algorithm that is able to retain this feature would be a useful tool in our early detection toolbox.

Here we generalize the univariate PEB algorithm to enable screening with multiple correlated longitudinal biomark-
ers. This is nontrivial. The univariate PEB algorithm requires only a model for the biomarker in disease-free patients and
a target population-level FPR to identify a unique personalized threshold. The generalization to multiple biomarkers will
result in many thresholds that achieve the target population-level FPR and we require a rule for selecting optimal thresh-
olds. We propose a fundamentally different PEB algorithm, where a minimal model for the biomarker levels in diseased
patients is used to select the personalized thresholds to maximize sensitivity. In Section 2, we describe the details of our
proposed multivariate PEB algorithm, including the model assumptions, implementation, and evaluation measures. The
operational characteristics of the screening algorithm are studied in simulations (Section 3). In Section 4, we present the
results from applying the screening approach to the data from the HALT-C Trial. A discussion follows in Section 5.

2 METHODS

An important feature of the univariate PEB approach is that it only requires a model for the biomarker behavior in
disease-free patients. The algorithm then uses deviations from expected disease-free biomarker-behavior to identify
patients that should receive additional screening or diagnostic work-ups (ie, a rule-in screening program where control-
ling the observed FPR is critical). The univariate PEB screening threshold at each screening occasion for each patient is
selected to achieve a target population-level FPR f0, based on the model assumed for the biomarker in disease-free patients
and conditional on the patient’s screening history to date. There is a unique threshold that satisfies these conditions when
screening with a single biomarker.

When we generalize the framework to screening with multiple biomarkers, we no longer have a unique solution. There
are multiple combinations of thresholds for the biomarkers that achieve a target f0, conditional on the patient’s screening
history. We have chosen to make minimal assumptions about the biomarker levels in patients that develop the disease
and select the combination of thresholds that also maximizes the probability of a positive screen if the patient is diseased.
The multivariate PEB algorithm is described for the most general scenario since screening with multiple biomarkers is
an area of active research in many cancer screening settings.

We assume that there are K biomarkers under consideration. The kth marker level for ith patient at jth screening visit
is denoted by Yijk. The subscript i indexes the N patients in the study and j indexes the Ji screening times for the ith patient.
The true disease status of the ith patient at jth screening visit is a time-dependent indicator variable, where Dij = 0 if the
patient is disease-free and Dij = 1 otherwise.

We define general positive and negative regions based on multiple biomarkers, where Boolean operators OR and
AND are used to stratify the multidimensional biomarker support into regions corresponding to a positive or negative
screening results. For example, with three biomarkers a possible rule could be Y1 > c1 OR (Y2 > c2 AND Y3 > c3). We
assume that we have prior knowledge of the structure of this rule based on known properties of the biomarkers from
case-control studies. The example rule describes a scenario where Y1 identifies one subgroup of diseased patients while
Y2 and Y3 are both necessary to identify a second subgroup. Alternatively, logic regression could be used to search for
the best rules for multiple biomarkers using prior phase 2 studies16 when considering the inclusion of more than three
biomarkers. The results from these logic regression models, in addition to prior clinical and biological knowledge, would
then be used to define the positivity region of the multivariate PEB algorithm. Note that the goal at this stage is not to
select the thresholds (eg, c1, c2, and c3) but to define the shape of the positivity region using the Boolean expressions
identified. Based on these guidelines we can construct flexible positivity regions that are able to cover a wide range
of possible joint behaviors for biomarkers. As a bonus, the OR and AND rules are intuitive and familiar to clinical
practitioners.

We use set notation to define the region of positivity in the most general setting. An OR rule defines the union of
two sets while the AND rule defines the intersection of two sets. Note that in this setting, each set is a subset of RK .
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For the above example, when K = 3, the rule Y2 > c2 AND Y3 > c3 defines the intersection of the following two sets:
{(y1, y2, y3) ∶ y1 ∈ R, y2 > c2, y3 ∈ R} and {(y1, y2, y3) ∶ y1 ∈ R, y2 ∈ R, y3 > c3}.

Let A ⊂ RK be the positivity region based on our K biomarkers. Without loss of generality, we can define A =
⋃K̃

k′=1Ak′ ,
where K̃ ≤ K. Note that each set Ak′ can itself be the intersection of sets and hence the union could be over fewer than
K sets. For each biomarker, indexed by k, we can define the set Bk = {(y1, … , yK) ∶ yk > ck, yj ∈ R ∀j ≠ k} to reflect each
biomarkers contribution to the region of positivity. Note that we assume biomarker levels have a positive association
with disease but we can easily define Bk for biomarkers that decrease post-onset. Then each set Ak′ is either defined by
a single biomarker and hence Ak′ = Bk for some k ∈ {1, … ,K}, or Ak′ is defined by an AND rule combining multiple
biomarkers, for example, Ak′ = Bk1 ∩ Bk2 for some k1, k2 ∈ {1, … ,K}. Figure 1 shows the two-dimension representation
of the example rule with three biomarkers Y1 > c1 OR (Y2 > c2 AND Y3 > c3), and connects the graphical representation
of the screening rule with the set notation that we have defined.

Let Yij = [Yij1, … ,YijK] be the vector of K biomarker levels in the ith patient at jth screening visit. We require that
Yijk, k ∈ {1, … ,K}, are non-missing and continuous random variables. Here “non-missing” means that all K biomarkers
should be measured on the blood collected at the jth screening visit. Note that the jth screening visit for the ith patient
does not need to occur at the same time as the jth screening visit for the i′th patient. A patient is then defined to have a
positive screen if Yij ∈ Aij. We define cij = [cij1, … , cijK] to be the set of thresholds that characterize Aij. The shape of Aij,
as defined by the OR and AND rules, is fixed but the thresholds cij are unique to each patient and screening occasion in
the mPEB algorithm implementation.

The biomarker levels in disease-free patients are assumed, after an appropriate monotone transformation, to follow a
multivariate normal hierarchical model.

Yij|𝜃i,Σ,Dij = 0 ∼ MVN(𝜃i,Σ),
𝜃i|𝜇,Σ𝜃,Dij = 0 ∼ MVN(𝜇,Σ𝜃).

In those who develop the disease, we assume biomarker levels also follow a multivariate normal hierarchical model but
with different mean and covariance parameters.

Yij|𝜃∗i ,Σ∗,Dij = 1 ∼ MVN(𝜃∗i ,Σ
∗),

𝜃∗i |𝜇∗,Σ∗
𝜃
,Dij = 1 ∼ MVN(𝜇∗,Σ∗

𝜃
),

(A) (B)

F I G U R E 1 In the example, we define a positive screening rule Y1 > c1 OR (Y2 > c2 AND Y3 > c3). Then in set notation we define (A)
A1′ = B1, where B1 = {(y1, y2, y3) ∶ y1 > c1, y2 ∈ R, y3 ∈ R} and (B) A2′ = B2 ∩ B3, where B2 = {(y1, y2, y3) ∶ y1 ∈ R, y2 > c2, y3 ∈ R} and
B3 = {(y1, y2, y3) ∶ y1 ∈ R, y2 ∈ R, y3 > c3}. Then the positivity region A = A1′ ∪ A2′ . (A) Subgroup of diseased patients identified by rule
Y1 > c1. (B) Subgroup of diseased patients identified by rule Y2 > c2 AND Y3 > c3
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after disease onset. Multivariate normality of the K biomarkers is a stronger assumption than univariate normality, since
even for continuous markers, a monotonic transformation to multivariate normality is not assured. However, it is a reason-
able working assumption that allows us to jointly model the K biomarkers but ensure the computations of the algorithm
are feasible. We evaluate the robustness of our approach to this assumption in simulations. The mPEB algorithm cannot
be used for discrete biomarkers since transformations to multivariate normality or other continuous distributions do not
exist.

Baseline clinical risk factors could be incorporated into the algorithm by extending both models for biomarker levels
to incorporate fixed covariates. In the above models, the mean parameters 𝜇 and 𝜇∗ could be replaced by linear predic-
tors 𝜇 + 𝛽Xi and 𝜇∗ + 𝛽∗Xi, respectively, to improve precision. Time-varying clinical covariates that can explain additional
variability in the biomarker trajectories can be incorporated by redefining the models in terms of residuals after adjust-
ing biomarker levels for time-varying covariates. This extension is a bit more complex since it requires the time-varying
covariates to be measured at the same time as the biomarkers and the relationship between the two can be more complex.
But a clinical time-varying covariate that has a substantial effect on the biomarkers would be important to incorporate to
increase the likelihood that deviations in biomarkers that are not related to onset of cancer are explained.

There are many possible cij that ensure the population-level FPR is at most f0, conditional on the known screening
history for the patient. We define the optimal cij to be the set of thresholds that also maximize the probability of a positive
screen in patients that develop the disease. Suppose the ith patient has completed n screenings and we know their observed
sample means Yin, then the optimal thresholds c̃i(n+1) solve the following problem:

max
ci(n+1)

Pr(Yi(n+1) ∈ Ai(n+1)|Yin, 𝜇
∗,Σ∗

𝜃
,Σ∗,Di(n+1) = 1), such that

Pr(Yi(n+1) ∈ Ai(n+1)|Yin, 𝜇,Σ𝜃,Σ,Di(n+1) = 0) ≤ f0.

Note that the region Ai(n+1) characterized by optimal thresholds c̃i(n+1) is both patient specific and visit specific since it
conditions on the individual screening history of the patient to date but the shape of the region Ai(n+1) is fixed by the
prespecified OR and AND rules.

The conditional distributions are straightforward to derive when we assume a multivariate normal hierarchical model
for biomarker levels.

Yi(n+1)|Yin, 𝜇,Σ𝜃,Σ,Di(n+1) = 0 ∼ MVN(𝜃̂n,Vn),

where 𝜃̂n =
(
Σ−1
𝜃

+ nΣ−1)−1
(
Σ−1
𝜃
𝜇 + nΣ−1Yin

)

and Vn =
(
Σ−1
𝜃

+ nΣ−1)−1 + Σ,

and

Yi(n+1)|Yin, 𝜇
∗,Σ∗

𝜃
,Σ∗,Di(n+1) = 1 ∼ MVN(𝜃̂∗n,V∗

n ),

where 𝜃̂
∗
n =

(
Σ∗−1
𝜃

+ nΣ∗−1)−1
(
Σ∗−1
𝜃

𝜇∗ + nΣ∗−1Yin

)

and V∗
n =

(
Σ∗−1
𝜃

+ nΣ∗−1)−1 + Σ∗,

2.1 Implementation of mPEB algorithm

Before we can implement an mPEB algorithm, we require estimates for the fixed model parameters 𝜇,Σ𝜃,Σ and 𝜇∗,Σ∗
𝜃
,Σ∗.

We assume that we have an existing longitudinal phase 3 study,17 where patients were recruited from the target screening
population. In those who remain disease-free and we have sufficient follow-up, we can use restricted maximum likelihood
estimation to obtain estimates of𝜇,Σ𝜃,Σ. In those who develop the disease, we most likely do not know the specific screen-
ing visit where their true disease status changes from Dij = 0 to Dij = 1. In this setting, we require additional assumptions
to obtain estimates for the parameters 𝜇∗,Σ∗

𝜃
,Σ∗.

Without loss of generality, let di be the time from first screening visit to the clinical detection of disease if the ith
patient is diseased and end of study time if the ith patient is disease-free. We define tij to be the time from first screening
visit to the jth screening visit for the ith patient, that is, ti1 = 0. We assume that among those who develop the disease, for
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all visits where tij > (di − 𝜏) (ie, the screening visit occurs within a fixed preclinical interval of length 𝜏) the patient likely
has undetected disease. We use observations from this period to estimate parameters 𝜇∗,Σ∗

𝜃
,Σ∗ using restricted maximum

likelihood estimation. In HCC, which is a fast growing cancer, we set 𝜏 = 12 months. This time frame allows us to capture
multiple screening visits within a patient since 6-monthly screening is recommended for HCC and also aims to capture
biomarker levels in an early preclinical phase where follow-up testing with MRI or CT is more likely to identify visible
lesions. We can optimize the algorithm for the intended purpose by selecting 𝜏 to be the preclinical window of interest
that is disease specific.

We also require a procedure to solve for the optimal patient-specific thresholds, c̃ij at each screening visit. These thresh-
olds c̃ij are the solution to a constrained nonlinear optimization problem and we can therefore take advantage of existing
numerical optimization algorithms that have been robustly implemented in widely available software. In this setting, both
the objective function and the constraint are nonlinear and twice differentiable. Sequential quadratic programming (SQP)
is a powerful, efficient, and accurate algorithm where at each iteration, an approximate subproblem with a quadratic
objective function and linear constraints defines the search direction.18 Since the SQP approach, like most optimization
routines, only guarantees iteration toward the local solution, we use multiple starting points defined by the demi-deciles
of the biomarker distributions observed. The optimal thresholds c̃ij are then the thresholds that maximize the probabil-
ity of a positive screen in patients that develop the disease across the different starting values. At each screening visit, we
use the patient screening history, the fixed model parameters and our prespecified shape of positivity region Aij to then
solve for the c̃ij. Then if Yij ∈ Aij, the patient has a positive screen at the jth visit. See Web Appendix A for more details.
R-code and Matlab code to implement the screening algorithms discussed here are available at https://github.com/ntayob.

2.2 Evaluation of mPEB algorithm

The standard measures to evaluate screening are based on a single test: sensitivity (proportion of diseased with a positive
test) and specificity (proportion of disease-free with a negative test). We have extended these definitions to the longitudinal
screening setting.12,13 Patient-level sensitivity is defined as the proportion of patients that develop the disease with at
least one positive screening test during the screening period. Screening-level specificity was defined as the proportion
of negative screening tests among all the screenings conducted in the disease-free group. The specificity (1 − FPR) was
defined at the screening level because each false positive result leads to further testing that can be expensive and may lead
to complications and anxiety. The receiver operating characteristic (ROC) curves for the mPEB algorithm are constructed
by varying f0. Note that when the model assumptions hold, f0 is the population-level FPR but in most settings these are
unlikely to hold and instead we can think of f0 as a parameter of the screening algorithm that needs to be fixed prior
to implementation. By adjusting this parameter, we can increase the robustness of the mPEB algorithm by ensuring the
observed specificity of the algorithm achieves target levels.

Note that although we believe the use of patient-level sensitivity and screening-level specificity is likely the most useful
one for retrospective evaluation of cancer screening from banked specimens, other settings could arise where alternative
combinations would be of interest to a user and the R-code provided could easily be modified. For example, a clinical
setting where both sensitivity and specificity should be evaluated at the screening-level could arise when the treatment
for a true test positive patient will not eliminate the disease nor the future needs for surveillance. In this case, a true
test positive patient after having received appropriate treatment will go back to surveillance and hence screening-level
sensitivity would be a useful measure for evaluation of the screening algorithm.

We consider the performance of the early detection screening algorithms with respect to time-frames prior to HCC
diagnosis (eg, 1 year prior) since positive screening tests within these windows are more likely to lead to earlier detection
of HCC that is visualized with follow-up testing with MRI or CT. Very early positive screening tests in patients that develop
HCC are unlikely to lead to early detection and we exclude these positive screening results when estimating patient-level
sensitivity within the preclinical windows of interest.

3 SIMULATION STUDY

We use the same simulation study design proposed by Tayob et al;13 assuming a hierarchical changepoint model for the
biomarker trajectory. This decision is reasonable since this model reflects a biologically plausible description of biomarker
trajectory. For each biomarker, we assumed that the levels vary randomly around a constant mean in the absence of

https://github.com/ntayob
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disease. After the onset of disease (changepoint time), each biomarker may or may not increase linearly with time. The
hierarchical model connects the multiple biomarkers using a Markov random field distribution for the parameters that
reflect whether or not each biomarker increases after onset of disease. This distribution ensures the probability of observ-
ing a changepoint in one biomarker is conditional on the number of changepoints observed in the other biomarkers. The
details of this hierarchical model are included in Web Appendix B. It is important to note that we do not simulate the
longitudinal biomarkers from the multivariate normal hierarchical models assumed in the mPEB algorithm but instead
use a biologically plausible hierarchical joint model. Hence, these simulations allow us to evaluate our proposed mPEB
algorithm in settings where multivariate normality is not guaranteed.

Our goal is to compare the mPEB algorithm to existing approaches under different scenarios and compare which has
the greater potential to increase early detection of HCC. The existing approaches we consider are the multivariate fully
Bayesian (mFB) screening algorithm,13 the univariate fully Bayesian (uFB) screening,19 univariate parametric empirical
Bayes (uPEB) screening,11 and a standard threshold (ST) approach that ignores screening history. Additional details of
the uFB and uPEB algorithm are provided in the Web Appendices of Tayob et al.13 We also included the results from a
two-step approach that used generalized estimating equations to model the risk of developing cancer in the next 6 months
and identified an optimal combination of the biomarkers in the training cohort and then applied the uPEB algorithm to
the linear combination (lPEB). This approach is computationally simpler but does assume that the relative contribution
of each biomarker at the different time points is fixed. This could be a restrictive assumption, particularly when applying
it to a different population, and hence our mPEB approach utilized Boolean operators instead of a linear rule to combine
the biomarkers in the panel. Web Appendix C includes additional details for each of the existing approaches.

For each approach, we compare the ROC(0.1): patient-level sensitivity corresponding to 90% screening-level specificity
(reported specificity for AFP in clinical practice8) on the ROC curve. The patient-level sensitivity estimate included only
positive screening tests within 1 year prior to clinical diagnosis of HCC, positive screening tests between 1 and 2 years
prior to clinical diagnosis and greater than 2 years prior to clinical diagnosis of HCC. These time-frames were selected to
reflect the short preclinical window of HCC, a fast growing cancer. Patients were simulated to have an average preclinical
window of 1 year, with a maximum preclinical window of 2 years.

The simulation study design assumes we have three biomarkers measured on average every 6 months for 5 years in
two cohorts, with additional variability incorporated since in practice patients do not undergo surveillance exactly every
6 months. The fixed model parameters are estimated using the 400 patients included in the training data. The screening
algorithm was then implemented in the 400 patients included in the validation data. The same data generation model
was used for both the training and validation cohorts, unless otherwise stated. The probability of developing HCC was
assumed to be 50/400, reflecting approximately the number of patients with cirrhosis at baseline biopsy and the number
of patients that developed HCC among those with cirrhosis in the HALT-C Trial. We assume that the diagnosis time or
end of follow-up time was uniformly distributed during the 5-year study period. The parameter values of the hierarchical
model used for data generation are included in Web Table 1.

In scenario A, we selected the parameters of the hierarchical models for markers (1) and (2) to reflect the behavior
of AFP and DCP, respectively, in the HALT-C Trial. The parameters of marker (3) were selected to reflect a biomarker
whose mean level prior to the onset of HCC is greater than that of biomarker (1) but less than that of biomarker (2), with
a shallower slope after onset than either (1) or (2). Next, we assume all three biomarkers had lower rates of increase after
onset (scenario B). This scenario was selected to examine our hypothesis that when biomarkers have flatter trajectories,
a fully Bayesian approach that directly models the biomarker trajectory would be more powerful for detecting changes in
the biomarker levels compared to an mPEB approach that aimed to identify deviations from expected behavior.

In the mFB approach, the parameter di, the time to clinical diagnosis, was a component of the model that required esti-
mation. We are not aware of any approaches that will avoid this estimation step. We used a Bayesian imputation approach
and incorporated random draws from the empirical distribution of di (estimated from the training data). This required an
assumption that the distribution of di in the training data was reflective of the distribution of di in the validation dataset.
This would be violated when the training data were from a study with a relatively short time frame, since most cohort
studies have restricted specimen collection periods, while the validation data were from a cohort being followed for an
extended time frame that is more reflective of a more stable screening population under long term follow-up. In HCC
screening, patients with compensated cirrhosis have a median surveillance period of 8 to 10 years. The empirical distribu-
tion of di will then have an artificial truncation that does not exist in the validation cohort. The mPEB algorithm, which
does not have any dependence on future clinical diagnosis time, could have an intrinsic advantage.

In scenario C, we generated the data to reflect this possible study design by modifying scenario A. In both the training
and validation cohorts, we assume we had 400 patients included. In the training cohorts, the patients were followed for
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up to 3 years, while the patients in the validation cohort were followed for up to 9 years. If we assume an incidence rate of
2% per year, we expect approximately 24 patients to develop HCC in the training cohort and 72 patients to develop HCC
in the validation cohort. The biomarker trajectories were unchanged from scenario A.

We then evaluated a few additional scenarios to explore the robustness of our proposed mPEB algorithm. In scenario
D, we examined the performance of the algorithms in patients that underwent annual surveillance. In scenario A, the
median number of follow-up visits was 5.5 under the assumption of semi-annual surveillance used in the data generation.
When we reduce to annual surveillance, the median number of visits is 3, keeping all other aspects of the data generation
constant.

In the last scenario, we further explore the robustness of the mPEB algorithm to distributional assumptions of mul-
tivariate normality. The hierarchical changepoint model assumed each patient’s preclinical mean biomarker levels were
normally distributed, the changepoint times followed a truncated normal distribution and the biomarker trajectory
post-onset was log-normally distributed. We further perturb the distributional assumptions by modifying the data gener-
ating mechanism so that these parameters follow bi-modal distributions instead. The bi-modal distributions are generated
using mixtures of each distribution with location shifts to create bi-modality. This reflects a clinical setting where unmea-
sured covariates create subpopulations with different biomarker distributions but where the mPEB and mFB algorithms
currently assume all patients are from the same population. It is our hypothesis that the mPEB algorithm that has fewer
distributional assumptions would be more robust in this setting.

3.1 Results

In each of 200 simulation studies, the parameters of the mPEB screening algorithm (as well as the parameters of each of
the existing approaches) were estimated from the training data. All screening algorithms were then implemented in the
validation data. The empirical mean ROC(0.1) and standard error of the mean are presented in Tables 1 to 3 corresponding
to patient-level sensitivity within 1 year prior to diagnosis, patient-level sensitivity between 1 and 2 years prior to diagnosis
and patient-level sensitivity greater than 2 years prior to diagnosis, respectively. A well performing screening algorithm
would have higher patient-level sensitivity within 1 year prior to diagnosis or between 1 and 2 years prior to diagnosis
but lower patient-level sensitivity greater than 2 years prior to diagnosis when we do not expect the patient to have HCC
lesions that can be imaged via CT/MRI.

We observe that under scenario A the mPEB algorithm has slightly greater patient-level sensitivity than the mFB
approach in the 1 year prior to clinical diagnosis, with an empirical mean ROC(0.1) of 72.23% compared to 68.63%
(Table 1). This indicates the utility of the mPEB algorithm since the mFB was optimized for this scenario, that is, the
data were simulated from the same hierarchical model fitted, but the mPEB approach has almost equivalent perfor-
mance with fewer model assumptions. The lPEB approach had patient-level sensitivity (70.09%) that was greater than the
mFB approach but less than the mPEB algorithm. In addition, we observe that the univariate biomarker algorithms and
the fixed threshold approaches all have substantially reduced performance compared to the multivariate approaches. In
Table 2, we observed reduced patient-level sensitivity between 1 and 2 years prior to clinical diagnosis for all methods
but the mPEB algorithm retained slightly greater patient-level sensitivity than the mFB approach and the lPEB approach.
If we focus on patient-level sensitivity greater than 2 years prior to diagnosis (Table 3), we observe that with the mPEB
algorithm 29.26% of patients that develop HCC have at least one positive screen before HCC is considered detectable while
with the mFB and lPEB algorithms, 44.92% and 30.44% of patients have at least one positive screen in this undetectable
time-period, respectively.

In scenario B, we are attempting to study a setting where the mPEB algorithm may not be the preferred approach. If we
examine the patient-level sensitivity within 1 year prior to clinical diagnosis in Table 1, we observe that the mPEB has an
empirical mean ROC(0.1) of 58.76% compared to 52.95% for the mFB algorithm while the lPEB algorithm is comparable
at 58.91%. In the 1 to 2 years prior to clinical diagnosis (Table 2), the mPEB, mFB, and lPEB algorithms have an empirical
mean ROC(0.1) of 26.84%, 21.91%, and 26.16%, respectively. Therefore, the performance of algorithms are reduced but
the mPEB and lPEB would be preferred compared to the mFB algorithm.

In scenario C, we examine a study design that violates the assumptions of the mFB approach. In this setting, the
empirical distribution of di from the training cohort, with support of [0, 3] is no longer a reasonable estimate of the dis-
tribution of di in the validation cohort where follow-up is up to 9 years. When we examine the patient-level sensitivity
within 1 year prior to clinical diagnosis in Table 1, the mPEB empirical mean ROC(0.1) was 73.42%, the lPEB algorithm
was comparable at 71.59% while the mFB approach had much drastically lower patient-level sensitivity of 45.33%, the
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T A B L E 1 Summary of simulation results in 200 studies: Empirical mean ROC(0.1) (empirical standard error of the mean) within 1
year prior to clinical diagnosis

Clinical
 Diagnosis

(1)

(2)
(3)

Scenario A
Biomarker mPEB mFB lPEB uPEB uFB ST

(1) 72.23 (0.47) 68.63 (0.53) 70.09 (0.50) 53.11 (0.48) 46.67 (0.56) 47.50 (0.55)

(2) 47.91 (0.51) 41.30 (0.54) 45.70 (0.51)

(3) 42.51 (0.51) 34.98 (0.48) 38.49 (0.50)

Clinical
 Diagnosis

(1)

(2)
(3)

Scenario B

Biomarker mPEB mFB lPEB uPEB uFB ST

(1) 58.76 (0.53) 52.95 (0.55) 58.91(0.50) 50.13 (0.49) 43.15 (0.52) 41.23 (0.51)

(2) 35.29 (0.47) 26.49 (0.43) 33.28 (0.48)

(3) 37.06 (0.49) 27.99 (0.45) 32.81 (0.53)

Clinical
 Diagnosis

(1)

(2)
(3)

Scenario C
Biomarker mPEB mFB lPEB uPEB uFB ST

(1) 73.42 (0.39) 45.33 (0.50) 71.59 (0.45) 55.06 (0.42) 34.94 (0.48) 48.45 (0.43)

(2) 48.85 (0.43) 23.28 (0.36) 45.88 (0.43)

(3) 42.88 (0.40) 18.47 (0.34) 37.47 (0.41)

Note: The mean biomarker trajectories assumed for each scenario are shown in column 1.
Abbreviations: lPEB, regression plus univariate PEB algorithm applied to the linear combination; mFB, joint multivariate fully Bayesian; mPEB, joint
multivariate parametric empirical Bayes; ST, single threshold; uFB, univariate fully Bayesian; uPEB, univariate parametric empirical Bayes.

largest difference in patient-level sensitivity observed across the scenarios. We observe a similar pattern of results when
we compare the mPEB and lPEB algorithms to the mFB algorithm within 1 to 2 years prior to clinical diagnosis (Table 2).
Of interest is that when we implement the mFB algorithm in this setting, 80.60% of patients that develop HCC have at least
one positive screen before HCC is considered detectable and when we implement the mPEB or lPEB algorithms in this
setting, 49.60% and 49.70% of HCC patients had at least one positive screen (Table 3). Therefore, while the study design
increased the rate of too early positive screens for all algorithms, the impact of it was greater for the mFB algorithm. This
pattern is observed for the univariate algorithms as well.

When we reduce the number of surveillance visits to every 12 months in scenario D, we observe ∼13 to 14 percent-
age point decrease in patient-level sensitivity within 1 year prior to clinical diagnosis for all the multivariate longitudinal
biomarker algorithms studied (Web Table 2) and ∼10 to 13 percentage point decrease in the patient-level sensitivity
between 1 and 2 years prior to clinical diagnosis (Web Table 3). Similarly, we observe declines in the sensitivity of the
univariate biomarker algorithms and a fixed single threshold approach. Therefore, increasing the surveillance interval
to annual when the preclinical period is on average 1 year and the maximum preclinical window is 2 years, impacts the
early detection performance of all surveillance approaches.

Lastly, in scenario E, we are generating biomarker trajectories from bimodal parameter distributions resulting from
unmeasured covariates. Once again, in Web Table 2, we observe reduced patient-level sensitivity within 1 year prior to
clinical diagnosis for all the screening algorithms compared to scenario A but the mPEB algorithm is still slightly greater
than the mFB and lPEB algorithms. We observe minimal impact of unmeasured confounders on either the patient-level
sensitivity between 1 and 2 years prior to diagnosis (Web Table 3) or patient-level sensitivity greater than 2 years prior to
diagnosis (Web Table 4).

4 RESULTS FROM THE HALT- C TRIAL

While the HALT-C Trial included extensive follow-up (median follow-up time was 83 months), serum specimens were
only collected and stored during the first 42 months post-randomization. Hence, we only have DCP measured concur-
rently with AFP during the initial phase of the study. Therefore in this analysis, we restrict our attention to the first 48
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T A B L E 2 Summary of simulation results in 200 studies: Empirical mean ROC(0.1) (empirical standard error of the mean) within 1 to
2 years prior to clinical diagnosis

Clinical
 Diagnosis

(1)

(2)
(3)

Scenario A

Biomarker mPEB mFB lPEB uPEB uFB ST

(1) 32.74 (0.56) 28.28 (0.51) 30.77 (0.59) 29.87 (0.52) 24.87 (0.51) 23.18 (0.45)

(2) 23.25 (0.49) 19.00 (0.42) 21.31 (0.45)

(3) 21.99 (0.49) 18.00 (0.43) 19.16 (0.46)

Clinical
 Diagnosis

(1)

(2)
(3)

Scenario B

Biomarker mPEB mFB lPEB uPEB uFB ST

(1) 26.84 (0.46) 21.91 (0.47) 26.16 (0.59) 26.51 (0.48) 21.74 (0.46) 19.17 (0.44)

(2) 20.44 (0.46) 16.10 (0.40) 19.03 (0.45)

(3) 20.67 (0.48) 16.69 (0.44) 17.94 (0.43)

Clinical
 Diagnosis

(1)

(2)
(3)

Scenario C

Biomarker mPEB mFB lPEB uPEB uFB ST

(1) 33.36 (0.44) 18.60 (0.35) 31.74 (0.41) 29.68 (0.40) 17.44 (0.34) 23.52 (0.38)

(2) 23.23 (0.37) 12.72 (0.31) 21.37 (0.39)

(3) 22.11 (0.38) 12.43 (0.31) 19.30 (0.40)

Note: The mean biomarker trajectories assumed for each scenario are shown in column 1.
Abbreviations: lPEB, regression plus univariate PEB algorithm applied to the linear combination; mFB, joint multivariate fully Bayesian; mPEB, joint
multivariate parametric empirical Bayes; ST, single threshold; uFB, univariate fully Bayesian; uPEB, univariate parametric empirical Bayes.

months post-randomization during which time 24 patients with cirrhosis at baseline biopsy and 18 patients with advanced
fibrosis at baseline biopsy developed HCC within 6 months (the recommended HCC surveillance interval) from last con-
current measurement of AFP and DCP. We excluded 46 patients that developed HCC during the extended phase of the
study from the analysis with more than 6 months between biomarker testing and the development of HCC. See Web
Figure 1 for more details on the study cohort. HCC diagnosis was based on histology and in its absence, by imaging with
or without AFP. We evaluated HCC screening in all patients, regardless of assigned treatment, since there was no evidence
the incidence of HCC differed between the two treatment groups.9

The proposed screening methodology performance was evaluated in the HALT-C Trial via 10-fold cross-validation.
Nine hundred and eighteen disease-free patients were randomly divided into eight subsets of 92 patients and two subsets
of 91 patients. Forty-two HCC patients were randomly divided into eight subsets of four patients and two subsets of five
patients. At each iteration of the cross-validation, the validation data consist of one subset of HCC patients and one subset
of disease-free patients. The remaining nine subsets form the training data.

AFP and DCP are potentially complementary biomarkers for HCC early detection and among patients in the HALT-C
trial who develop HCC, we observe elevated levels in either AFP or DCP prior to diagnosis. Hence, the implementation
of the mPEB algorithm uses an OR rule to construct the positivity region, A. In the training cohort, we estimated the
parameters 𝜇,Σ𝜃,Σ via restricted maximum likelihood estimation using all study visits among disease free patients and
we estimated 𝜇∗,Σ∗

𝜃
,Σ∗ using visits within 𝜏 = 12 months prior to HCC diagnosis among those that develop HCC. The

details for implementing the mFB algorithm have been previously described.13

In Table 4, we present the cross-validated ROC estimates at 90% screening-level specificity, calculated by averaging
the patient-level sensitivity at 90% screening-level specificity across each iteration within 1 year prior and between 1
and 2 years prior to clinical diagnosis. These were the periods during which a positive screen was more likely to lead
to confirmation of HCC diagnosis using more sensitive imaging (CT or MRI). In addition, we estimated patient-level
sensitivity at 90% screening-level specificity across each iteration greater than 2 years prior to diagnosis to evaluate the
positive screens observed outside the preclinical window of HCC.

At 90% screening-level specificity, we observed that the mPEB algorithm and mFB algorithms had similar patient-level
sensitivity within 1 year prior to clinical diagnosis (63.67% vs 63.17%, respectively) and the lPEB approach was slightly
lower at 61.17%. The multivariate biomarker algorithms had greater patient-level sensitivity within 1 year compared
to either of the univariate algorithms or a fixed threshold approach. Within 1 to 2 years prior to clinical diagnosis, we
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T A B L E 3 Summary of simulation results in 200 studies: Empirical mean ROC(0.1) (empirical standard error of the mean) greater
than 2 years prior to clinical diagnosis

Clinical
 Diagnosis

(1)

(2)
(3)

Scenario A

Biomarker mPEB mFB lPEB uPEB uFB ST

(1) 29.26 (0.60) 44.92 (0.75) 30.44 (0.59) 29.88 (0.61) 45.31 (0.74) 17.50 (0.51)

(2) 30.16 (0.60) 43.00 (0.71) 25.08 (0.57)

(3) 30.27 (0.62) 41.44 (0.64) 23.01 (0.62)

Clinical
 Diagnosis

(1)

(2)
(3)

Scenario B

Biomarker mPEB mFB lPEB uPEB uFB ST

(1) 29.19 (0.58) 43.91 (0.65) 30.85 (0.63) 29.82 (0.58) 42.45 (0.73) 17.90 (0.47)

(2) 29.69 (0.62) 41.72 (0.68) 24.37 (0.57)

(3) 30.53 (0.61) 43.68 (0.71) 23.11 (0.59)

Clinical
 Diagnosis

(1)

(2)
(3)

Scenario C

Biomarker mPEB mFB lPEB uPEB uFB ST

(1) 49.60 (0.47) 80.60 (0.45) 49.70 (0.49) 50.43 (0.49) 82.79 (0.45) 22.56 (0.39)

(2) 50.24 (0.50) 76.32 (0.48) 36.85 (0.47)

(3) 50.37 (0.50) 77.38 (0.55) 32.87 (0.53)

Note: The mean biomarker trajectories assumed for each scenario are shown in column 1.
Abbreviations: lPEB, regression plus univariate PEB algorithm applied to the linear combination; mFB, joint multivariate fully Bayesian; mPEB, joint
multivariate parametric empirical Bayes; ST, single threshold; uFB, univariate fully Bayesian; uPEB, univariate parametric empirical Bayes.

T A B L E 4 Cross-validated ROC(0.1) for mPEB, mFB, lPEB, uFB, uPEB, and ST in the three time periods

Time period Biomarker mPEB mFB lPEB uPEB uFB ST

1 year prior to
clinical diagnosis

log(AFP) 63.67% 63.17% 61.17% 56.17% 46.17% 50.67%

log(DCP+1) 57.83% 36.83% 51.33%

1 to 2 years prior to
clinical diagnosis

log(AFP) 37.67% 25.33% 39.83% 37.67% 21.17% 36.50%

log(DCP+1) 44.00% 20.00% 37.00%

>2 years prior to
clinical diagnosis

log(AFP) 39.00% 75.67% 47.33% 39.83% 84.00% 36.50%

log(DCP+1) 38.33% 90.17% 31.67%

Abbreviations: lPEB, regression plus univariate PEB algorithm applied to the linear combination; mFB, multivariate fully Bayesian; mPEB, multivariate
parametric empirical Bayes; uFB, univariate fully Bayesian; uPEB, parametric empirical Bayes; ST, single threshold.

observed that the lPEB had greater patient-level sensitivity than either the mPEB algorithm (37.67%) or the mFB algorithm
(25.33%) but the univariate PEB algorithm applied to DCP alone had the largest patient-level sensitivity (44.00%). In
addition, the fixed threshold approach with DCP alone (37.00%) was comparable to the mPEB algorithm.

When we examined patient-level sensitivity greater than 2 years prior to diagnosis, screening approaches with the
lowest patient-level sensitivity were preferred for early detection of HCC. Here we observed that with the mPEB algorithm
39.00% of patients that developed HCC had at least one positive screen before HCC was considered detectable, while with
the mFB algorithm in this setting, 75.67% of HCC patients had at least one positive screen and 47.33% of HCC patients
had a positive screen with the lPEB approach. More than 2 years prior to HCC diagnosis, the univariate fully Bayesian
algorithms had the highest patient-level sensitivity while the fixed threshold approaches had the lowest patient-level
sensitivity.

We also compared the timing of the first positive screening result for the mPEB algorithm to the other approaches
evaluated. For each approach, we compared the proportion of patients that had a positive screen first for the mPEB
algorithm and the proportion of patients that had a positive screen first for the other approach. In Figure 2, we observed
that in the year prior to clinical diagnosis, the mPEB algorithm is more likely to have a positive screen first compared to all
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F I G U R E 2 Cross-validated estimate of the percentage of times the proposed multivariate parametric empirical Bayes (mPEB)
algorithm has a positive screen first, another method has a positive screen first, and the first positive screen for both is the same in the three
time periods. (A) 1 year prior to clinical diagnosis. (B) 1 to 2 years prior to clinical diagnosis. (C) >2 years prior to clinical diagnosis. lPEB,
regression plus univariate PEB algorithm applied to the linear combination; mFB, multivariate fully Bayesian; ST, single threshold; uFB,
univariate fully Bayesian; uPEB, parametric empirical Bayes

other methods considered. The improvement is largest when compared to the fully Bayesian approaches (17.33% vs 7.00%
for the mFB; 32.33% vs 9.00% for the uFB AFP; 48.67% vs 12.00% for the uFB DCP) and more moderate when compared
to the univariate PEB algorithms (20.33% vs 17.00% for the lPEB; 7.50% vs 2.50% for the uPEB AFP; 38.17% vs 24.50% for
the uPEB DCP). In the 1 to 2 years prior to clinical diagnosis, the mPEB algorithm is more likely to have a positive screen
first compared to the mFB (19.83% vs 7.50%), uFB AFP (19.00% vs 7.50%), and uFB DCP (30.17% vs 12.50%) algorithms;
but less likely to have a positive screen first compared to the lPEB (12.83% vs 19.50%), uPEB AFP (2.50% vs 7.00%), uPEB
DCP (23.17% vs 32.00%), and fixed threshold approaches with either AFP (13.67% vs 27.00%) or DCP (25.17% vs 27.00%),
though these differences are mostly moderate. When we compare the timing of positive screens that are greater than 2
years prior to diagnosis, the mPEB algorithm is less likely to have a positive screen first compared to all the algorithms
considered, except the univariate PEB algorithm applied to DCP or the fixed threshold approach with DCP.

While the mPEB algorithm was not shown to be preferred algorithm across all the measures used to evaluate the early
detection screening algorithms, we do observe an increase in patient-level sensitivity within 1 year prior to diagnosis,
the lead time that hepatologists believe is most likely to result in a stage shift of the cancer toward a curable stage. This
demonstrated the potential clinical utility of the algorithm and has motivated its further study and validation in larger
HCC surveillance cohorts. As noted in the simulation study, the mFB and univariate FB algorithms are more likely to have
early positive screens in patients that develop HCC—indicating they are potentially more appropriate for risk prediction
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and less optimized for early detection. The boundary of risk prediction and early detection is not clear but we always
use an operational criterion that the early detection of cancer using a blood test means that the cancer lesion would be
seen if CT/MRI imaging was done on the detected patients. For this reason, patient-level sensitivity beyond 2 years prior
to clinical diagnosis was considered to be most likely the “risk” for cancer rather than “early detection” of cancer. The
univariate PEB from its conceptualization was to detect cancer rather than predicting future cancer risk and this property
was carried forward in the development of the multivariate PEB algorithm. Note that it may be of interest to researchers to
combine the mFB algorithm for risk prediction and the mPEB algorithm for early detection in the surveillance population
but understanding the clinical utility of these comprehensive screening approaches is beyond the scope of this article.

5 DISCUSSION

When we extend screening to multiple biomarkers, an important question is how to optimally combine the multiple
biomarkers. For a single screening occasion, the likelihood ratio has been shown to be the optimal manner to com-
bine biomarkers.20 In this case, a binary regression model is sufficient to estimate the optimal combination and the
combination is optimal in that it provides the highest sensitivity among all possible combination rules. Our previously
proposed fully Bayesian hierarchical changepoint model used a likelihood ratio approach to combine multiple longitudi-
nal biomarkers and performs well in many settings. However, we have shown in our simulations that it is not necessary
optimal for our longitudinal definitions of patient-level sensitivity and screening-level specificity, which are more appro-
priate in the HCC surveillance setting. Our mPEB algorithm defines regions of positivity using logic rules to combine the
biomarkers. These can be intuitively understood by clinicians and hence improve the quality of prior information incor-
porated in developing these models. In addition, despite the simplicity, we can capture a wide range of joint biomarker
behaviors and the approach is likely to approach optimality with minimal distributional assumptions. A theoretical
derivation of optimality in this setting is an area of future research.

A computationally simpler approach that was also considered is to use regression to estimate a fixed linear combina-
tion of the biomarkers and then apply the univariate PEB algorithm to the derived biomarker score. While the approach
has mostly comparable performance in our analyses, it does require assuming that the relative contribution of each
biomarker in the panel is fixed over time. This assumption may not hold when it is applied to a different population. The
proposed mPEB approach of using Boolean operators to combine the biomarkers was based on our goal of maintaining the
flexibility and robustness of the univariate PEB algorithm when generalizing the method to multiple biomarkers, how-
ever we would encourage users to explore all the algorithms in their toolbox fully before identifying the optimal approach
for their setting.

We have developed an mPEB algorithm that defines personalized screening thresholds for multiple screening
biomarkers using the longitudinal history for each patient and a minimal model for the biomarker behavior. In simula-
tion studies, we have demonstrated that the mPEB algorithm has superior performance for early detection of HCC with
greater patient-level sensitivity within 1 year prior to diagnosis compared to both the multivariate fully Bayesian approach
or any of the existing univariate algorithms. These simulation studies are particularly convincing since they are optimized
for the multivariate fully Bayesian approach, since we used the changepoint model to generate the data. The simula-
tions demonstrate that a minimal model for the biomarker behavior after onset of HCC is sufficient to develop an mPEB
algorithm that is robust and has potential clinical utility in many settings. We advocate for a bigger toolbox that contains
many different types of longitudinal algorithms. This would allow a researcher to study and compare each approach in a
retrospective phase 3 study before identifying the optimal algorithm to move forward with in a prospective phase 4 study.

A current limitation of the approach is that it can only be used for complete biomarker panel data and any screening
occasions where only subset of the biomarkers is measured on the blood collected at the visit is excluded. For example, if
one of the biomarkers in the panel is more expensive to measure, it may not be cost-effective to measure at every screening
occasion. Future research would involve developing a more flexible approach that can accommodate incomplete infor-
mation in the biomarker panel at a screening occasion. Another type of missingness that can occur in cohort studies is
loss to follow-up that is missing not at random. In cancer screening cohort studies, it is important to ensure patients not
diagnosed during the study period are cancer-free. In some contexts, we could apply a gold standard diagnostic test to
all patients at the off-study visit but most often cohort studies are designed to ensure a patient has sufficient follow-up to
confirm they are cancer-free. If patients are lost to follow-up, we may need to censor the patients by a reasonable time
frame to ensure all screening visits included were conducted when the patient most likely was cancer-free. For example,
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in our HALT-C analysis, we excluded visits within 1 year prior to last follow-up visit in those not diagnosed with HCC dur-
ing the study. Informative missingness would then likely result in an underpowered study for evaluation of the biomarker
screening algorithm because there are patients that dropped out of the study because they developed cancer and we are
not able to capture the behavior the biomarker panel during this preclinical period. It is not likely to bias the algorithm
unless the biomarker behavior after cancer onset is different in those that dropped out of the study compared to those
that remain in the cohort and are diagnosed.

The HALT-C Trial analysis demonstrated a more nuanced message on the clinical utility of each of the algorithms.
In the 1 year prior to clinical diagnosis, the mPEB algorithm had greater patient-level sensitivity compared to all other
approaches. However, in the 1 to 2 years prior to clinical diagnosis, the univariate PEB algorithm applied to DCP alone
had higher patient-level sensitivity than the mPEB algorithm. Therefore, an argument could be made for the superiority
of either approach. A bootstrap inferential procedure could be used to determine if the differences in the algorithms are
statistically significant but comes with high computational cost (especially when combined with 10-fold cross-validation
to adjust for overfitting). Research into developing a more feasible inferential procedure for comparing longitudinal algo-
rithms based on our proposed measures is underway. There is also some difficulty in interpreting this result once we
remember the context of the HALT-C Trial where patients were under HCC surveillance using AFP and ultrasound. A
doubling of AFP from baseline would trigger additional follow-up leading to AFP-detected HCC patients in our cohort.
This then presents difficulties when modeling the natural history of the joint behavior of AFP and DCP since this is termi-
nated early in AFP-detected HCC patients. This is, in general, a problem with combining multiple screening biomarkers
in a population that is currently under surveillance with a subset of the biomarkers and statistical methods to correct this
are greatly needed to further improve our algorithms and are an avenue of future research.

A key question for researchers is which biomarkers to include in the multivariate biomarker screening algorithms.
These algorithms have been developed in the context where we have validated cancer biomarkers that have shown abil-
ity to distinguish those with cancer at time of clinical diagnosis from cancer-free controls (phase 2 biomarker study) and
have demonstrated utility prior to clinical diagnosis from longitudinal cohort studies (phase 3 biomarker studies).17 It is
critical that the biomarkers have been measured in the same specimens from these retrospective studies so that their joint
behavior can be explored. It is likely that highly correlated biomarkers would result in non-identifiable thresholds. The
SQP algorithm requires both the objective function and the constraint to be twice differentiable and highly correlated
biomarkers would likely violate this assumption. In addition, including additional biomarkers that are highly correlated
with existing biomarkers in the panel is unlikely to increase the sensitivity of the algorithm for early detection and there-
fore would not be of interest for inclusion. Careful study of the biomarkers being included in the algorithm is required and
these algorithms should incorporate both prior information and sensitivity analyses to understand the optimal approach
to move forward into prospective phase 4 studies.

Longitudinal biomarker algorithms gain power for improving early detection by incorporating the prior screening
history for patients. A natural question is how the amount of screening history affects the performance of the algorithms.
All the algorithms considered in this study can be implemented in both patients with no screening history as well as
those with multiple prior visits. The recommended frequency of surveillance visits is cancer-specific and depends on the
expected preclinical window and the cancer doubling time. Guidelines recommend semi-annual HCC surveillance since
HCC is a fast-growing cancer with a short preclinical window that is not expected to be longer than 2 years. Therefore,
surveillance visits are required to be more closely spaced to increase the opportunity to detect HCC at an early stage.
For slower growing cancers, annual or even multiple years between surveillance visits may be more appropriate. From
a technical perspective, the within-patient variability of the biomarker levels in the absence of cancer will also affect the
ability of the algorithms to detect onset of cancer. A useful cancer biomarker either has lower within-patient variability
compared to the between-patient variability, or we have clinical covariates that can explain the additional variability in
biomarkers that can impact the performance of the algorithms.

Our multivariate screening algorithms have demonstrated potential in both simulation studies and detailed analysis
of the HALT-C Trial. However, to truly understand their clinical utility we will need to validate them in two ongoing
prospective cohorts. The first is the Early Detection Research Network’s Hepatocellular Carcinoma cohort, where analy-
sis can begin shortly since the cohort is sufficiently mature. The cohort includes 1560 patients with cirrhosis of varying
etiologies including HCV, HBV, alcoholic liver disease and NAFLD and 87 patient that developed HCC to date. This popu-
lation is more reflective of the changing demographics of the HCC target surveillance population and it will be important
to study the utility of the multivariate screening algorithms in this cohort. In addition, we will be able to refine our
algorithms to enable screening with the FDA approved triplicate AFP, AFP-L3, and DCP and compare our algorithm to
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other approaches such as the GALAD score that combines the triplicate of biomarkers at the current screening occa-
sion with age and gender.21 It is important to demonstrate whether the additional complexity from using longitudinal
biomarkers translates into clinically significant improvements in screening. These methods will be further validated in
The Texas Hepatocellular Carcinoma Consortium (THCCC) cohort which is assembling the largest prospective cohort
study of cirrhosis patients to study early detection of HCC in the United States to date and will be mature in the next few
years.

The longitudinal screening algorithms for multiple biomarkers that we have developed are an important area of
research in many settings though they remain a methodologically challenging problem. We have developed a general,
robust methodology to address a salient clinical question in cancer surveillance and have provided code to implement
these algorithms to promote the more widespread study and usage of these approaches.
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